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Abstract

Frescalo’s “local frequency scaling” and classical occupancy-detection models
both seek to recover true species-occurrence signals from imperfect data. In
this paper, we show that the two approaches rest on the same underlying
detection mathematics. Occupancy models treat each site’s repeat visits as
independent detection trials and separately estimate occupancy probability and
per-visit detectability. Frescalo, by contrast, pools data across ecologically defined
neighbourhoods, standardises for uneven effort, and infers a single discovery rate
per species plus a species-specific “time-factor” to capture trends. We show that
these two approaches rest on the same detection mathematics: the occupancy—
detection formulation can be linked directly to Frescalo’s discovery framework,
where occupancy and detectability combine into one rate parameter (which,
when sampling is light, closely matches the product of occupancy and per-visit
detectability). This connection clarifies how Frescalo’s neighbourhood-scale and
time corrections function as a coarser-scale analogue of repeat-visit models. By
casting Frescalo in occupancy modelling terms, we hope to promote further
investigation into the adoption of occupancy model diagnostics, extensions and
other tests within Frescalo analyses, improving transparency and rigour when
working with less-structured biodiversity data.
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1. Introduction

9

Occupancy-detection models [17] and the Frescalo “local frequency scaling’
method [14] both aim to correct raw biological records (i.e. species occurrence)
data for imperfect sampling. Classical occupancy models do this at the scale of
repeated visits to individual sites, explicitly estimating true presence probabilities
(v) and detectability (p) via a hierarchical likelihood. Frescalo was designed to
work at larger spatio-temporal scales, exploiting emergent patterns of relative
frequency in “neighbourhoods” to derive Poisson-process-based scaling factors
(o) and species’ relative “time-factors” (z) indexing true fluctuations in site
occupancy. Given that many datasets lack repeat-visit structure, and/or may
exhibit variation in the detection process that is only poorly explained by
available covariates [19], understanding how Frescalo recovers effort-adjusted
trends from aggregated data can broaden the toolkit of ecologists.

Whilst the place of occupancy-detection models in the quantitative ecologist’s
armoury is well-established (e.g. MacKenzie et al. [17] has almost 6000 citations
according to Google Scholar, May 2025, ~260 per year since 2002, a figure that
is almost certainly a large underestimate of actual applications), Frescalo has
only seen occasional use by comparison (143 citations, around 11 per year since
2012). This may be due partly to the broader application of occupancy models,
covering both small-scale monitoring and applications to less structured data at
coarser scales [e.g. 24|, but, even so, the scope for the use of Frescalo to derive
time trends and other metrics from unstructured data is likely to be larger than
currently realised: within the outputs that have utilised the method feature
a number of national species distribution Atlases [3, 22, 1], Red Lists [21, 7]
and national biodiversity “status” reports [6]. Arguably then, an increase in
the familiarity of ecologists with the approach would lead to even more such
successful applications.

Although the two model types can appear quite different, Pescott et al. [19]
informally suggested that Frescalo could be seen as a type of occupancy-detection
model “where an adjustment for overlooked species is made in relation to spatial
rather than temporal replication, whilst simultaneously adjusting for variable
regional effort”. We here show that this suggestion can be formalised due to
the two model types’ reliance on the same core mathematics of Bernoulli versus
Poisson detections [cf. 20]. Below we (1) recall each framework, (2) write down
their key equations, and (3) algebraically map one onto the other, demonstrating
that Frescalo time trends are based on an implicit occupancy-detection model
whose “occupancy” and “visits” are folded into a single site/species discoverability
rate parameter A and standardised neighbourhood effort index s;( .

2. Occupancy-detection models

2.1. Basic single-species, single-season model

Following MacKenzie et al. [17], at site ¢ for species j let z;; ~ Bernoulli(¢);;).
Conditional on presence (z;; = 1) and visits v = 1,...,V with visit-specific
detectabilities p;jy,
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Yijo | zij = 1 ~ Bernoulli(p;jy), Yijo = 0 if z;; = 0 (for all v). (1)

Assuming conditional independence across visits, the probability of at least one
detection across V' visits is

\%4

Pr(mgxyz’ju =1) =1 [1 - H(l _pijv)]- (2)

v=1

If detectability is homogeneous across visits (i.e. p;j» = psj), this reduces to

Pr(max yij, = 1) = i [1 = (1 pij)"]. ®)

(Where we below write p without indexing, we mean either the homogeneous
case or a model in which p;;, is governed by shared parameters.) The model
therefore estimates 1;; = Pr(occupied) and the visit-level detection probability
Pr(detect on a visit | occupied) (either as p;; under homogeneity, or via parame-
ters that generate the p;;,,). Inference proceeds via the full likelihood over all
sites and detection histories.

We also note that it is often convenient to parameterise occupancy on the
complementary log-log (cloglog) scale [20],

Yij = 1 — exp{—exp(ny;)}, (4)

whose inverse link is 7;; = log[—log(1 — #;;)]. Equivalently, letting p;; =
exp(n;;) > 0 denote a latent Poisson “use” (presence) rate over the closure
window, we can write

Yij =1 — exp(—pij). (5)
This places occupancy on the same probability-rate mapping used in Frescalo’s
species “discovery” model (see equation 6 below).

3. Frequency scaling using local occupancy (Frescalo)

8.1. Neighbourhood frequencies

Frescalo [14] pools presence-only data across an areal neighbourhood N
around target site i. We denote the observed proportion of neighbourhood sites
in which species j was recorded by f;; (in practice this frequency may relate to
a weighted neighbourhood as per Hill [14], but this detail is not crucial for what
follows). Under a Poisson-process model of species discovery (conditional on
presence) with rate A;; and unknown total neighbourhood-level sampling effort
Si(N), one has

fij =1 —exp(=Aijsiw))- (6)

Thus );; is a combined availability-detectability rate at the neighbourhood scale
(cf. the occupancy-detectability collapse in the “Bridging” section below) and
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fij is the marginal probability of > 1 record over effort s; ). Subsequently,
a frequency-weighted neighbourhood index (a single number that rises with
sampling “depth” in a neighbourhood)

_ Xt
> fij

is standardised to a target value ® by solving for a site-specific effort multiplier

«; such that

Sl = (1= fiy)™)P?
2= (1= fij)]
Mathematically, ® is chosen so that every neighbourhood’s weighted-mean
frequency ¢; =, ffj /22, fij equals @. Hill [14] showed that ¢; is equivalent
to the ratio of the neighbourhood’s mean species richness to the ‘effective
number of common species’ (often labelled N3, the reciprocal of Simpson’s
index; Hill [13]), which means that ¢; isolates neighbourhood sampling intensity
from true differences in richness and evenness. By fixing ¢; = ®, we align all
neighbourhoods to the same effort scale without erasing real ecological differences
(Chao and Ricotta [8] note some relevant qualifications concerning this metric
type for very species-poor assemblages, but these are unlikely to be important
at the scales at which Frescalo is envisaged to be useful).

This process yields the standardised neighbourhood frequencies

fii=1—(1— fi)™ 9)

which are independent of time (i.e. they are calculated with respect to the
entire time period under consideration, rather than any subdivisions of this used
for trend calculations), and serve as a proxy for the “true” discoverability- or
effort-standardised neighbourhood species rank-frequency curve.

bi (7)

di(a;) = = . (8)

3.2. Temporal correction

Within each time period ¢, one chooses a set of local “benchmark” species
[16] and computes the proportion recorded per site and time period (Hill’s s;¢)
as an index of site-level recording effort. (Note that there are potentially many
ways to choose one’s site benchmarks, but Hill [14] proposed a fixed proportion
R* of the standardised neighbourhood species rank-frequency curve after an
additional normalisation step involving the division of species’ ranks by the
expected species count Y j ﬂ-j; however, the precise method of choosing site
benchmarks does not affect what follows.) For each species j in period ¢, Hill
defines a baseline Poisson mean (rate) as

Qije = —In[l — si1 fijl, (10)

i.e. the cloglog transform of the baseline discovery probability. The modelled
discovery probability is then
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Pije(xjp) = 1 — exp(—Qijejt). (11)
Hill [14] estimates the time-factor x;; by matching the total modelled to total
observed presences y;;i:

Zyijt = ZPijt(Cth)- (12)

In practice one can iterate x;; in the exact Poisson form above until those sums
coincide (e.g. see the R code of Pescott [18]), although analytical solutions are
also possible (J.M. Yearsley, pers. comm.). The difference between the (summed)
observed presences y;;; and the model’s baseline expectation after standardising
time-independent neighbourhood effort «; and adjusting for site/time specific
effort s;; is therefore captured by the time factor z;, with xj; = 1 corresponding
to no temporal deviation from the baseline (s;;f;;) expectation. Frescalo can
thus deliver detection-corrected trends from unstructured data when its core
assumptions are met.

4. Bridging the gap

4.1. Static occupancy and detection

We can compare the static (i.e. single-season) single-species occupancy-
detection model probability of at least one detection in V' visits

Pl —(1-p)Y] (13)

with the Poisson-process discovery probability (conditional on a species’ presence
in the all-time frequency curve) used in Frescalo

1 — e s, (14)

For small p and moderate V (so that pV is small and Vp? remains negligible),
we may use the standard Taylor series approximation:

P
ln(lfp):fp—?f§~~%—p when p < 1. (15)

Using the facts that (1—p)" = exp{V In(1—p)}, and In(1 —p) ~ —p (for p < 1),
consequently (1 —p)¥ ~ e PV. Therefore ¥[1 — (1 —p)V] ~ 1[1 — e PV]. On the
other hand, setting A = ¢)p and V' = s;(n, Frescalo’s Poisson form 1 — e vrV
expands in the same way. Recalling the first two terms of the Taylor series for
the exponential function, 1 — e™* ~ x — (2%/2), we have

1—e PV ~ypV — W, (16)
and, , ,
vy pv - L] gy - POEE, (17)
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Therefore to first order both are 1 (pV) with only O((pV)?) differences: only
quadratic, and higher, terms differ. We recover Frescalo’s 1 — e~*%(¥) approxi-
mately whenever pV is small. For larger pV', the neglected higher-order terms
no longer agree so the approximation is lost. However, one can always recover
the exact Poisson rate by solving:

l—e NV =yll-(1-pV] = /\:—%ln[l—ﬂi(l—(l—p)v)], (18)

but that formula reduces to A = ¢p in the limit pV" — 0.

Frescalo’s Poisson rate A is therefore exactly the function of occupancy,
detectability and visit count that makes the first part of equation 18 true [cf.
20]. Whilst in Frescalo we do not use information on V directly, we infer it
via the continuous neighbourhood effort index s;(n), standardised across all
neighbourhoods by the spatial scaler «;. Frescalo can therefore be interpreted as
an occupancy-detection analogue at the neighbourhood scale: it replaces the two
parameters (¢, p) and known V with a Poisson rate A and a continuous effort-
multiplier («) equalising variable survey effort (inferred by the neighbourhood-
level s;(ny) across sites.

Underpinning all of this is the assumption that, within any neighbourhood
and time period, species discovery behaves like a Poisson discovery model. It is
the assumption which justifies the complementary log-log link in equation 10
above. The frequency-weighted mean ¢; of the neighbourhood frequency curve
increases monotonically with effort under this discovery model, and, via its link
to N, allows effort standardisation across neighbourhoods. When sampling
intensifies (so that pV is no longer small), the simple A &~ ¢¥p approximation
breaks down, and the nonlinear cloglog mapping then implies the exact relation
given in equation 18 above.

A key step in recognising the equivalent elements of these models is to
appreciate that Frescalo applies its discoverability standardisation at a large scale:
not only is the adjustment done with respect to the multi-site neighbourhood
and across all species, but it is also calculated across all time periods in the
analysis. The standardised neighbourhood frequencies ﬂj and the species rank-
frequency curve they form is estimated once, independently of time, before
temporal change is examined. In contrast to multi-species occupancy models,
where cross-species dependence is modelled explicitly via hierarchical community
structure—shared site-level random effects and hyperparameters (and sometimes
residual covariance/latent factors) that induce correlation among species [9]—
cross-species dependence is handled implicitly through shared effort and the
benchmark/standardisation steps; Frescalo does not fit any explicit multivariate
covariance structure, but relies on the Poisson discovery model per species and
the monotone response of ¢; to effort.

4.2. Time trend interpretation

A time trend in occupancy derived from a classical occupancy-detection
model is modelled simply by letting v;; vary linearly or non-linearly over time,
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conditional on both model-specific [25, 26] and other standard survey sampling
assumptions [5] being reasonable relative to the inferential target. Frescalo, by
contrast, posits a single time-independent set of discoverability-adjusted baseline
frequencies fij, and then uses benchmarks and the site/period effort index s;; to
compute standardised frequencies under an assumption of stasis, subsequently
letting the time-factors x;; absorb any residual differences as true ecological
change.

This underscores a key difference in how effort-adjustment processes func-
tion in each model type. Occupancy-detection models assume that true site
occupancies, and so trends in these, are directly recoverable from visit-level
information; Frescalo assumes that fine-scale visit data is generally unavailable
and/or uninformative for all or part of the time series of interest, and so models
species’ discoverability at a much larger scale. The main aim of this adjustment
is to ensure a common scale across which neighbourhoods, and therefore sites,
can be compared: without the harmonisation of effort across neighbourhoods,
the time-factors estimated for each site for a species would not be comparable,
making average time-factors and trends in these meaningless.

Another fundamental difference is the meaning of the site occupancy values
produced. As noted, 1;; has the simple meaning of predicted species’ site
occupancy under the classical model (notwithstanding debates around usage
versus occupancy when these types of models are applied at different scales;
[23]). The Frescalo time-factor xj; is, however, defined relative to the benchmark
average, and values > 1 or < 1 indicate that a species is at a higher or lower
average frequency relative to the common species where it occurs, rather than in
absolute occupancy probability. This may be an important limitation to inferring
effort via observable recording outcomes, as opposed to having knowledge of
those factors that directly map onto effort, such as the actual number of visits
and covariates that are known to explain an important portion of observed
variance in species’ visit-level detectability [14, 24, 15].

One way around this issue is the observation of Bijlsma [2] that site occupancy
probabilities can be back-calculated from Frescalo via the combination of the
standardised species’ frequencies f;j, the species’ time-factors x ¢, and by setting
sit = 1 across all sites and time periods (i.e. constant effort), and this has been
exploited in at least one published analysis [see 10]. However, this requires a
note of caution: whilst sensitivity analyses published in Hill [14] suggest that
trends in time-factors estimated by Frescalo can be relatively insensitive to the
choice of R*, the benchmark threshold (variation in this parameter changing
the intercept of estimated trends but not their slope), the same is not true of
back-calculated site occupancy probabilities (P;;; in Frescalo terms). Because
the relationship between time-factors and species’ frequencies is non-linear, the
shifts in time trend intercept seen using different values of R* will not translate
into the same proportional changes in predicted site occupancies over time. This
may be particularly important when these trends are used to classify species’
into risk categories, as for example happens in Red Listing exercises [e.g. 21, 7].
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5. Conclusions

Unstructured species occurrence data are too valuable to ignore, especially
for historical periods where little or no information about the visit-level data col-
lection process survives [19, 11]. Hill’s “frequency scaling using local occupancy”
or Frescalo method allows the careful analyst to infer a large-scale discover-
ability /effort index that can be used to place neighbourhoods on a common
footing for the estimation of distribution trends. The large-scale formulation of
this approach not only allows for the potential inclusion of more data sources
(e.g. records extracted from Atlases or museums), but may also act to reduce
the actual error in species’ trends intrinsically [4, 22]. By demonstrating how
Frescalo represents the classical occupancy-detection model’s ¥ and p with A,
and how it infers visit-related effort via an emergent community-level mean
rate ¢, the approach performs an occupancy-detection-type correction even
when explicit or informative temporal repeat-visit data are lacking. Beyond
this fundamental use-case, Goury et al. [12] have recently highlighted a number
of promising uses and extensions of the Frescalo method that could emerge
from a greater appreciation of the approach. We hope that the parallels and
clarifications described here will support this expansion.
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