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Abstract4

Frescalo’s “local frequency scaling” and classical occupancy-detection models
both seek to recover true species-occurrence signals from imperfect data. In
this paper, we show that the two approaches rest on the same underlying
detection mathematics. Occupancy models treat each site’s repeat visits as
independent detection trials and separately estimate occupancy probability and
per-visit detectability. Frescalo, by contrast, pools data across ecologically defined
neighbourhoods, standardises for uneven effort, and infers a single discovery rate
per species plus a species-specific “time-factor” to capture trends. We show that
these two approaches rest on the same detection mathematics: the occupancy–
detection formulation can be linked directly to Frescalo’s discovery framework,
where occupancy and detectability combine into one rate parameter (which,
when sampling is light, closely matches the product of occupancy and per-visit
detectability). This connection clarifies how Frescalo’s neighbourhood-scale and
time corrections function as a coarser-scale analogue of repeat-visit models. By
casting Frescalo in occupancy modelling terms, we hope to promote further
investigation into the adoption of occupancy model diagnostics, extensions and
other tests within Frescalo analyses, improving transparency and rigour when
working with less-structured biodiversity data.
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1. Introduction7

Occupancy-detection models [17] and the Frescalo “local frequency scaling”8

method [14] both aim to correct raw biological records (i.e. species occurrence)9

data for imperfect sampling. Classical occupancy models do this at the scale of10

repeated visits to individual sites, explicitly estimating true presence probabilities11

(ψ) and detectability (p) via a hierarchical likelihood. Frescalo was designed to12

work at larger spatio-temporal scales, exploiting emergent patterns of relative13

frequency in “neighbourhoods” to derive Poisson-process-based scaling factors14

(α) and species’ relative “time-factors” (x) indexing true fluctuations in site15

occupancy. Given that many datasets lack repeat-visit structure, and/or may16

exhibit variation in the detection process that is only poorly explained by17

available covariates [19], understanding how Frescalo recovers effort-adjusted18

trends from aggregated data can broaden the toolkit of ecologists.19

Whilst the place of occupancy-detection models in the quantitative ecologist’s20

armoury is well-established (e.g. MacKenzie et al. [17] has almost 6000 citations21

according to Google Scholar, May 2025, ~260 per year since 2002, a figure that22

is almost certainly a large underestimate of actual applications), Frescalo has23

only seen occasional use by comparison (143 citations, around 11 per year since24

2012). This may be due partly to the broader application of occupancy models,25

covering both small-scale monitoring and applications to less structured data at26

coarser scales [e.g. 24], but, even so, the scope for the use of Frescalo to derive27

time trends and other metrics from unstructured data is likely to be larger than28

currently realised: within the outputs that have utilised the method feature29

a number of national species distribution Atlases [3, 22, 1], Red Lists [21, 7]30

and national biodiversity “status” reports [6]. Arguably then, an increase in31

the familiarity of ecologists with the approach would lead to even more such32

successful applications.33

Although the two model types can appear quite different, Pescott et al. [19]34

informally suggested that Frescalo could be seen as a type of occupancy-detection35

model “where an adjustment for overlooked species is made in relation to spatial36

rather than temporal replication, whilst simultaneously adjusting for variable37

regional effort”. We here show that this suggestion can be formalised due to38

the two model types’ reliance on the same core mathematics of Bernoulli versus39

Poisson detections [cf. 20]. Below we (1) recall each framework, (2) write down40

their key equations, and (3) algebraically map one onto the other, demonstrating41

that Frescalo time trends are based on an implicit occupancy-detection model42

whose “occupancy” and “visits” are folded into a single site/species discoverability43

rate parameter λ and standardised neighbourhood effort index si(N).44

2. Occupancy-detection models45

2.1. Basic single-species, single-season model46

Following MacKenzie et al. [17], at site i for species j let zij ∼ Bernoulli(ψij).47

Conditional on presence (zij = 1) and visits v = 1, . . . , V with visit-specific48

detectabilities pijv,49
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yijv | zij = 1 ∼ Bernoulli(pijv), yijv = 0 if zij = 0 (for all v). (1)

Assuming conditional independence across visits, the probability of at least one50

detection across V visits is51

Pr(max
v

yijv = 1) = ψij

[
1 −

V∏
v=1

(1 − pijv)
]
. (2)

If detectability is homogeneous across visits (i.e. pijv ≡ pij), this reduces to52

Pr(max
v

yijv = 1) = ψij
[
1 − (1 − pij)V

]
. (3)

(Where we below write p without indexing, we mean either the homogeneous53

case or a model in which pijv is governed by shared parameters.) The model54

therefore estimates ψij = Pr(occupied) and the visit-level detection probability55

Pr(detect on a visit | occupied) (either as pij under homogeneity, or via parame-56

ters that generate the pijv). Inference proceeds via the full likelihood over all57

sites and detection histories.58

We also note that it is often convenient to parameterise occupancy on the59

complementary log-log (cloglog) scale [20],60

ψij = 1 − exp{− exp(ηij)}, (4)

whose inverse link is ηij = log[− log(1 − ψij)]. Equivalently, letting µij =61

exp(ηij) > 0 denote a latent Poisson “use” (presence) rate over the closure62

window, we can write63

ψij = 1 − exp(−µij). (5)

This places occupancy on the same probability-rate mapping used in Frescalo’s64

species “discovery” model (see equation 6 below).65

3. Frequency scaling using local occupancy (Frescalo)66

3.1. Neighbourhood frequencies67

Frescalo [14] pools presence-only data across an areal neighbourhood N68

around target site i. We denote the observed proportion of neighbourhood sites69

in which species j was recorded by fij (in practice this frequency may relate to70

a weighted neighbourhood as per Hill [14], but this detail is not crucial for what71

follows). Under a Poisson-process model of species discovery (conditional on72

presence) with rate λij and unknown total neighbourhood-level sampling effort73

si(N), one has74

fij = 1 − exp(−λijsi(N)). (6)

Thus λij is a combined availability-detectability rate at the neighbourhood scale75

(cf. the occupancy-detectability collapse in the “Bridging” section below) and76
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fij is the marginal probability of ≥ 1 record over effort si(N). Subsequently,77

a frequency-weighted neighbourhood index (a single number that rises with78

sampling “depth” in a neighbourhood)79

ϕi =
∑
j f

2
ij∑

j fij
(7)

is standardised to a target value Φ by solving for a site-specific effort multiplier80

αi such that81

ϕi(αi) =
∑
j [1 − (1 − fij)αi ]2∑
j [1 − (1 − fij)αi ] = Φ. (8)

Mathematically, Φ is chosen so that every neighbourhood’s weighted-mean82

frequency ϕi =
∑
j f

2
ij/

∑
j fij equals Φ. Hill [14] showed that ϕi is equivalent83

to the ratio of the neighbourhood’s mean species richness to the ‘effective84

number of common species’ (often labelled N2, the reciprocal of Simpson’s85

index; Hill [13]), which means that ϕi isolates neighbourhood sampling intensity86

from true differences in richness and evenness. By fixing ϕi = Φ, we align all87

neighbourhoods to the same effort scale without erasing real ecological differences88

(Chao and Ricotta [8] note some relevant qualifications concerning this metric89

type for very species-poor assemblages, but these are unlikely to be important90

at the scales at which Frescalo is envisaged to be useful).91

This process yields the standardised neighbourhood frequencies92

f̃ij = 1 − (1 − fij)αi (9)

which are independent of time (i.e. they are calculated with respect to the93

entire time period under consideration, rather than any subdivisions of this used94

for trend calculations), and serve as a proxy for the “true” discoverability- or95

effort-standardised neighbourhood species rank-frequency curve.96

3.2. Temporal correction97

Within each time period t, one chooses a set of local “benchmark” species98

[16] and computes the proportion recorded per site and time period (Hill’s sit)99

as an index of site-level recording effort. (Note that there are potentially many100

ways to choose one’s site benchmarks, but Hill [14] proposed a fixed proportion101

R∗ of the standardised neighbourhood species rank-frequency curve after an102

additional normalisation step involving the division of species’ ranks by the103

expected species count
∑
j f̃ij ; however, the precise method of choosing site104

benchmarks does not affect what follows.) For each species j in period t, Hill105

defines a baseline Poisson mean (rate) as106

Qijt = − ln[1 − sitf̃ij ], (10)

i.e. the cloglog transform of the baseline discovery probability. The modelled107

discovery probability is then108
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Pijt(xjt) = 1 − exp(−Qijtxjt). (11)

Hill [14] estimates the time-factor xjt by matching the total modelled to total109

observed presences yijt:110 ∑
i

yijt =
∑
i

Pijt(xjt). (12)

In practice one can iterate xjt in the exact Poisson form above until those sums111

coincide (e.g. see the R code of Pescott [18]), although analytical solutions are112

also possible (J.M. Yearsley, pers. comm.). The difference between the (summed)113

observed presences yijt and the model’s baseline expectation after standardising114

time-independent neighbourhood effort αi and adjusting for site/time specific115

effort sit is therefore captured by the time factor xjt, with xjt = 1 corresponding116

to no temporal deviation from the baseline (sitf̃ij) expectation. Frescalo can117

thus deliver detection-corrected trends from unstructured data when its core118

assumptions are met.119

4. Bridging the gap120

4.1. Static occupancy and detection121

We can compare the static (i.e. single-season) single-species occupancy-122

detection model probability of at least one detection in V visits123

ψ[1 − (1 − p)V ] (13)

with the Poisson-process discovery probability (conditional on a species’ presence124

in the all-time frequency curve) used in Frescalo125

1 − e−λsi(N) . (14)

For small p and moderate V (so that pV is small and V p2 remains negligible),126

we may use the standard Taylor series approximation:127

ln(1 − p) = −p− p2

2 − p3

3 · · · ≈ −p when p ≪ 1. (15)

Using the facts that (1−p)V = exp{V ln(1−p)}, and ln(1−p) ≈ −p (for p ≪ 1),128

consequently (1 − p)V ≈ e−pV . Therefore ψ[1 − (1 − p)V ] ≈ ψ[1 − e−pV ]. On the129

other hand, setting λ = ψp and V = si(N), Frescalo’s Poisson form 1 − e−ψpV
130

expands in the same way. Recalling the first two terms of the Taylor series for131

the exponential function, 1 − e−x ≈ x− (x2/2), we have132

1 − e−ψpV ≈ ψpV − (ψpV )2

2 , (16)

and,133

ψ(1 − e−pV ) ≈ ψ

[
pV − (pV )2

2

]
= ψpV − ψ(pV )2

2 . (17)

5



Therefore to first order both are ψ(pV ) with only O((pV )2) differences: only134

quadratic, and higher, terms differ. We recover Frescalo’s 1 − e−λsi(N) approxi-135

mately whenever pV is small. For larger pV , the neglected higher-order terms136

no longer agree so the approximation is lost. However, one can always recover137

the exact Poisson rate by solving:138

1 − e−λV = ψ[1 − (1 − p)V ] =⇒ λ = − 1
V

ln[1 − ψ(1 − (1 − p)V )], (18)

but that formula reduces to λ = ψp in the limit pV → 0.139

Frescalo’s Poisson rate λ is therefore exactly the function of occupancy,140

detectability and visit count that makes the first part of equation 18 true [cf.141

20]. Whilst in Frescalo we do not use information on V directly, we infer it142

via the continuous neighbourhood effort index si(N), standardised across all143

neighbourhoods by the spatial scaler αi. Frescalo can therefore be interpreted as144

an occupancy-detection analogue at the neighbourhood scale: it replaces the two145

parameters (ψ, p) and known V with a Poisson rate λ and a continuous effort-146

multiplier (α) equalising variable survey effort (inferred by the neighbourhood-147

level si(N)) across sites.148

Underpinning all of this is the assumption that, within any neighbourhood149

and time period, species discovery behaves like a Poisson discovery model. It is150

the assumption which justifies the complementary log-log link in equation 10151

above. The frequency-weighted mean ϕi of the neighbourhood frequency curve152

increases monotonically with effort under this discovery model, and, via its link153

to N2, allows effort standardisation across neighbourhoods. When sampling154

intensifies (so that pV is no longer small), the simple λ ≈ ψp approximation155

breaks down, and the nonlinear cloglog mapping then implies the exact relation156

given in equation 18 above.157

A key step in recognising the equivalent elements of these models is to158

appreciate that Frescalo applies its discoverability standardisation at a large scale:159

not only is the adjustment done with respect to the multi-site neighbourhood160

and across all species, but it is also calculated across all time periods in the161

analysis. The standardised neighbourhood frequencies f̃ij and the species rank-162

frequency curve they form is estimated once, independently of time, before163

temporal change is examined. In contrast to multi-species occupancy models,164

where cross-species dependence is modelled explicitly via hierarchical community165

structure—shared site-level random effects and hyperparameters (and sometimes166

residual covariance/latent factors) that induce correlation among species [9]—167

cross-species dependence is handled implicitly through shared effort and the168

benchmark/standardisation steps; Frescalo does not fit any explicit multivariate169

covariance structure, but relies on the Poisson discovery model per species and170

the monotone response of ϕi to effort.171

4.2. Time trend interpretation172

A time trend in occupancy derived from a classical occupancy-detection173

model is modelled simply by letting ψij vary linearly or non-linearly over time,174
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conditional on both model-specific [25, 26] and other standard survey sampling175

assumptions [5] being reasonable relative to the inferential target. Frescalo, by176

contrast, posits a single time-independent set of discoverability-adjusted baseline177

frequencies f̃ij , and then uses benchmarks and the site/period effort index sit to178

compute standardised frequencies under an assumption of stasis, subsequently179

letting the time-factors xjt absorb any residual differences as true ecological180

change.181

This underscores a key difference in how effort-adjustment processes func-182

tion in each model type. Occupancy-detection models assume that true site183

occupancies, and so trends in these, are directly recoverable from visit-level184

information; Frescalo assumes that fine-scale visit data is generally unavailable185

and/or uninformative for all or part of the time series of interest, and so models186

species’ discoverability at a much larger scale. The main aim of this adjustment187

is to ensure a common scale across which neighbourhoods, and therefore sites,188

can be compared: without the harmonisation of effort across neighbourhoods,189

the time-factors estimated for each site for a species would not be comparable,190

making average time-factors and trends in these meaningless.191

Another fundamental difference is the meaning of the site occupancy values192

produced. As noted, ψij has the simple meaning of predicted species’ site193

occupancy under the classical model (notwithstanding debates around usage194

versus occupancy when these types of models are applied at different scales;195

[23]). The Frescalo time-factor xjt is, however, defined relative to the benchmark196

average, and values > 1 or < 1 indicate that a species is at a higher or lower197

average frequency relative to the common species where it occurs, rather than in198

absolute occupancy probability. This may be an important limitation to inferring199

effort via observable recording outcomes, as opposed to having knowledge of200

those factors that directly map onto effort, such as the actual number of visits201

and covariates that are known to explain an important portion of observed202

variance in species’ visit-level detectability [14, 24, 15].203

One way around this issue is the observation of Bijlsma [2] that site occupancy204

probabilities can be back-calculated from Frescalo via the combination of the205

standardised species’ frequencies f̃ij , the species’ time-factors xjt, and by setting206

sit = 1 across all sites and time periods (i.e. constant effort), and this has been207

exploited in at least one published analysis [see 10]. However, this requires a208

note of caution: whilst sensitivity analyses published in Hill [14] suggest that209

trends in time-factors estimated by Frescalo can be relatively insensitive to the210

choice of R∗, the benchmark threshold (variation in this parameter changing211

the intercept of estimated trends but not their slope), the same is not true of212

back-calculated site occupancy probabilities (Pijt in Frescalo terms). Because213

the relationship between time-factors and species’ frequencies is non-linear, the214

shifts in time trend intercept seen using different values of R∗ will not translate215

into the same proportional changes in predicted site occupancies over time. This216

may be particularly important when these trends are used to classify species’217

into risk categories, as for example happens in Red Listing exercises [e.g. 21, 7].218

7



5. Conclusions219

Unstructured species occurrence data are too valuable to ignore, especially220

for historical periods where little or no information about the visit-level data col-221

lection process survives [19, 11]. Hill’s “frequency scaling using local occupancy”222

or Frescalo method allows the careful analyst to infer a large-scale discover-223

ability/effort index that can be used to place neighbourhoods on a common224

footing for the estimation of distribution trends. The large-scale formulation of225

this approach not only allows for the potential inclusion of more data sources226

(e.g. records extracted from Atlases or museums), but may also act to reduce227

the actual error in species’ trends intrinsically [4, 22]. By demonstrating how228

Frescalo represents the classical occupancy-detection model’s ψ and p with λ,229

and how it infers visit-related effort via an emergent community-level mean230

rate ϕ, the approach performs an occupancy-detection-type correction even231

when explicit or informative temporal repeat-visit data are lacking. Beyond232

this fundamental use-case, Goury et al. [12] have recently highlighted a number233

of promising uses and extensions of the Frescalo method that could emerge234

from a greater appreciation of the approach. We hope that the parallels and235

clarifications described here will support this expansion.236
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