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Abstract4

Frescalo’s “local frequency scaling” and classical occupancy-detection models
both seek to recover true species-occurrence signals from imperfect data. In
this paper, we show that the two approaches rest on the same underlying
detection mathematics. Occupancy models treat each site’s repeat visits as
independent detection trials and separately estimate occupancy probability and
per-visit detectability. Frescalo, by contrast, pools data across ecologically de-
fined neighbourhoods and infers a single combined detection rate and a temporal
“time-factor” to capture trends. We demonstrate that the Bernoulli-trial formu-
lation of occupancy-detection converges to Frescalo’s Poisson-process framework,
with occupancy and detectability collapsing into a single rate parameter. This
equivalence clarifies how Frescalo’s neighbourhood and time corrections func-
tion as a coarser-scale analogue of repeat-visit models. By casting Frescalo in
occupancy modelling terms, we hope to promote further investigation into the
adoption of occupancy-model diagnostics, extensions and covariate tests within
Frescalo analyses, improving transparency and rigour when working with less
structured biodiversity data.
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1. Introduction7

Occupancy-detection models [9] and the Frescalo “local frequency scaling”8

method [6] both aim to correct raw biological records (i.e. species occurrence)9

data for imperfect sampling. Classical occupancy models do this at the scale10

of repeated visits to individual sites, explicitly estimating true presence prob-11

abilities (ψ) and detectability (p) via a hierarchical likelihood. Frescalo was12

designed to work at larger spatio-temporal scales, exploiting emergent patterns13

of relative frequency in “neighbourhoods” to derive Poisson-process-based scaling14

factors (α) and species’ relative “time factors” indexing true fluctuations in15

site occupancy. Given that many datasets lack repeat-visit structure, and/or16

may exhibit variation in the detection process that is unmodellable due to a17
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lack of knowledge of its determinants [11], understanding how Frescalo recovers18

effort-adjusted trends from aggregated data can broaden the toolkit of ecologists.19

Although the two models can appear quite different, Pescott et al. [11]20

informally suggested that Frescalo could be seen as a type of occupancy-detection21

model “where an adjustment for overlooked species is made in relation to spatial22

rather than temporal replication, whilst simultaneously adjusting for variable23

regional effort”. We here show that this suggestion can be formalised due to24

the two model types’ reliance on the same core mathematics of Bernoulli versus25

Poisson detections. Below we (1) recall each framework, (2) write down their26

key equations, and (3) algebraically map one onto the other, demonstrating that27

Frescalo time trends are based on an implicit occupancy-detection model whose28

“visits” and “occupancy” are folded into a single site/species discoverability rate29

parameter λ and standardised neighbourhood effort index.30

2. Occupancy-detection models31

2.1. Basic single-season model32

Following MacKenzie et al. [9], at each site i for species j assume a latent33

occupancy indicator34

zij ∼ Bernoulli(ψij).
Conditional on presence, v total survey visits indexed by k produce35

yij1, ..., yijv | zij = 1 ∼ Bernoulli(pij)

where p is detectability. If zij = 0 (i.e. species absent), then all yijk = 0.36

Marginalising out zij , it is well-known that the probability of at least one37

detection across v visits is38

P (max
k

yijk = 1) = ψij [1 − (1 − pij)v].

Thus the model simultaneously estimates39

ψij = Pr(occupied), pij = Pr(detect|occupied),

and inference proceeds via the full likelihood over all sites and detection histories.40

3. Frequency scaling using local occupancy (Frescalo)41

3.1. Neighbourhood frequencies42

Frescalo [6] pools presence-only data across a neighbourhood around target43

site i. We denote the observed proportion of neighbourhood sites in which44

species j was recorded by fij (in practice this frequency may relate to a weighted45

neighbourhood as per Hill [6], but this detail is not crucial for what follows).46

Under a Poisson-process model of species discovery with rate λij and unknown47

total neighbourhood-level sampling effort si(N), one has48

fij = 1 − exp(−λijsi(N)).
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Subsequently, a frequency-weighted neighbourhood index49

ϕi =
∑

j f
2
ij∑

j fij

is then “standardised” to a target value Φ by solving for a site-specific effort50

multiplier αi such that51

ϕi(αi) =
∑

j [1 − (1 − fij)αi ]2∑
j [1 − (1 − fij)αi ] = Φ.

Mathematically, Φ is chosen so that every neighbourhood’s weighted-mean52

frequency ϕi =
∑

j f
2
ij/

∑
j fij equals Φ. Hill [6] showed that ϕi is the ratio of53

the mean species richness to the ‘effective number of common species’ (often54

called N2, the reciprocal of Simpson’s index; Hill [5]), which means that ϕi55

isolates sampling intensity from true differences in richness and evenness. By56

fixing ϕi = Φ, we therefore align all neighbourhoods to the same effort scale57

without erasing real ecological differences.58

This process yields the standardised neighbourhood frequencies59

f̃ij = 1 − (1 − fij)αi

which are independent of time (i.e. they are calculated with respect to the60

entire time period under consideration, rather than any subdivisions of this used61

for trend calculations), and serve as a proxy for the “true” discoverability- or62

effort-standardised neighbourhood species rank-frequency curve.63

3.2. Temporal correction64

Within each time period t, one chooses a set of “benchmark” species [8] and65

computes the proportion recorded per site and time period (Hill’s sit) as an index66

of site-level recording effort. (Note that there are potentially many ways to choose67

ones’ neighbourhood benchmarks, but Hill [6] proposed a fixed proportion R∗ of68

the standardised species rank-frequency curve after an additional normalisation69

step involving the division of species’ ranks by the expected species count
∑

j f̃ij ;70

however, the precise method of choosing benchmarks does not affect what follows).71

For each species j in period t, Hill then defines a Poisson-link intensity72

Qijt = − ln[1 − sitf̃ij ],

The modelled “discovery” probability is then73

Pijt(xjt) = 1 − exp(−Qijtxjt).

Hill [6] estimates the time-factor xjt by matching the total modelled to total74

observed presences yijt:75 ∑
i

yijt =
∑

i

Pijt(xjt).

3



In practice one iterates xjt in the exact Poisson form above until those76

sums coincide (e.g. see the R code of Pescott [10]). The difference between77

the (summed) observed presences yijt and the model’s baseline expectation78

after standardising time-independent neighbourhood effort αi and adjusting for79

site/time specific effort sit is therefore captured by the time factor xjt. Frescalo80

can thus deliver detection-corrected trends from unstructured data when its core81

assumptions are met.82

4. Bridging the gap83

4.1. Static occupancy and detection84

We can compare the static (i.e. single season) single-species occupancy-85

detection model probability of at least one detection in v visits86

ψ[1 − (1 − p)v]

with the Poisson-process discovery rate (conditional on the all-time frequency87

curve) used in Frescalo88

1 − e−λsi(N) .

For small pv, (1 − p)v ≈ e−pv, hence ψ[1 − exp(−pv)] ≈ 1 − exp(−ψpv); now89

identifying λ = ψp and v = si(N) recovers the approximate Frescalo detection90

probability 1 − exp(−λsi(N)). For any value of p, exact equivalence can be found91

by solving92

1 − e−λv = ψ[1 − (1 − p)v] (1)

for93

λ = −1
v

ln[1 − ψ(1 − (1 − p)v)], (2)

but this only reduces to ψp in the limit pv → 0. Frescalo’s Poisson rate λ is94

therefore exactly the function of occupancy, detectability and (latent) visit count95

that makes equation (1) true. Whilst in Frescalo we never observe v directly,96

we can infer it via the continuous neighbourhood effort index si(N), which is97

aligned across all neighbourhoods by the spatial scaler αi. Frescalo can therefore98

be interpreted as an occupancy-detection analogue at the neighbourhood scale:99

it replaces the two-parameters (ψ, p) and discrete v with a Poisson rate λ and100

a continuous effort-multiplier α equalising variable survey effort si (inferred by101

the neighbourhood level si(N)) across sites.102

A key step in recognising the equivalent elements of these models is to103

appreciate that Frescalo applies its discoverability standardisation at a large scale:104

not only is the adjustment done with respect to the multi-site neighbourhood and105

across all species, but it is also calculated across all time periods in the analysis.106

The standardised neighbourhood frequencies f̃ij and the species rank-frequency107

curve they form is estimated once, independently of time, before temporal change108

is examined.109
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4.2. Time trend interpretation110

A time trend in occupancy derived from a classical occupancy-detection111

model is modelled simply by letting ψij vary linearly or non-linearly over time,112

conditional on both model-specific [16, 17] and other standard survey sampling113

assumptions [3] being reasonable. Frescalo, by contrast, posits a single time-114

independent set of discoverability-adjusted baseline frequencies f̃ij , and then uses115

benchmarks and the site/period effort index sit to compute expected frequencies116

under an assumption of stasis, subsequently letting the time factors xjt absorb117

any residual differences as true ecological change.118

This underscores a key difference in how effort-adjustment processes func-119

tion in each model type. Occupancy-detection models assume that true site120

occupancies, and so trends in these, are directly recoverable from visit-level121

information. Frescalo assumes that fine-scale visit data is generally unavailable122

and/or uninformative for all or part of the time series of interest, and so models123

species’ discoverability at a much larger scale. The main aim of this adjustment124

is to ensure a common scale across which neighbourhoods, and therefore sites,125

can be compared: without the harmonisation of effort across neighbourhoods,126

the time factors estimated for each site for a species would not be comparable,127

making average time factors and trends in these meaningless.128

Another fundamental difference is the meaning of the site occupancy values129

produced. As noted, ψi has the simple meaning of predicted site occupancy under130

the classical model (notwithstanding debates around usage versus occupancy131

when these types of models are applied at different scales; [14]). The Frescalo132

time factor xjt is, however, defined by the benchmark average, and values >1 or133

<1 indicate that a species is at a higher or lower average frequency relative to the134

common species where it occurs, rather than in absolute occupancy probability.135

This may be an important limitation to inferring effort via observable recording136

outcomes, rather than having knowledge of those factors that directly map onto137

effort, such as the actual number of visits and covariates that are known to explain138

an important portion of observed variance in species’ visit-level detectability139

[6, 15, 7].140

One way around this issue is the observation of Bijlsma [1] that site occupancy141

probabilities can actually be derived from Frescalo via the combination of the142

standardised species’ frequencies f̃ij and the time-factors xjt, and this has been143

exploited in at least one published analysis [4]. However, this requires a note of144

caution: whilst sensitivity analyses published in Hill [6] suggested that the trends145

in time-factors estimated by Frescalo can be relatively insensitive to the choice of146

R∗, the benchmark threshold (variation in this parameter changing the intercept147

of estimated trends but not their slope), the same is not true of back-calculated148

site occupancy probabilities. Because the relationship between time-factors and149

species frequencies is non-linear, the shifts in time trend intercept seen using150

different values of R∗ will not translate into the same proportional changes151

in predicted site occupancies over time (Pescott, pers. obs.) This may be152

particularly important when these trends are used to classify species’ into risk153

categories, as for example happens in Red Listing exercises [e.g. 12].154
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5. Conclusions155

Unstructured species occurrence data are too valuable to ignore, especially156

for historical periods where no information about the visit-level data collection157

process survives [11]. Hill’s “frequency scaling using local occupancy” or Frescalo158

method allows the careful analyst to infer a large-scale detectability or effort159

metric that can subsequently be used to place neighbourhoods on a common160

footing for the estimation of distribution trends. The large-scale formulation of161

this approach not only allows for the potential inclusion of more data sources162

(e.g. records extracted from Atlases or museums), but may also act to reduce163

the actual error in species’ trends intrinsically [2, 13].164

By demonstrating how Frescalo collapses the classical occupancy-detection165

model’s ψ and p into λ, and how it infers visit-related effort via an emergent166

community-level mean rate, the approach performs an occupancy-detection-167

type correction even when explicit or informative temporal repeat-visit data168

are lacking. By highlighting this link, we hope to promote the development of169

additional diagnostics, extensions and more rigorous uncertainty quantification170

for the frequency scaling using local occupancy method.171
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