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Abstract

Species conservation assessments, such as the International Union for Conservation of Nature
(JUCN) Red List and Green Status of Species, guide global conservation priorities by
evaluating species’ extinction risk and recovery status. Although such frameworks provide
scope to include genetic information, this aspect of biodiversity, which is critical for species’
fitness and adaptive potential, remains underrepresented. The Kunming—Montreal Global
Biodiversity Framework now explicitly highlights genetic diversity, offering an opportunity to
strengthen its integration into these assessments. While the IUCN can account for
subpopulations, these units are rarely applied, and Evolutionarily Significant Units (ESUSs)
remain formally unacknowledged. Incorporating these genetic units could enhance
representation of adaptive genetic diversity and better inform conservation planning and
decision-making, though defining them can be difficult when data are limited. We propose a
flexible framework that integrates molecular and non-molecular evidence to identify

subpopulations and ESUs across taxa and contexts.

Keywords

Conservation policy
Evolutionarily Significant Unit
Genetic diversity

IUCN species assessments

Subpopulations
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Main Text

Box 1: Key terms
CBD the United Nations Convention on Biological Diversity is the foremost authority and

key international treaty on biodiversity, which includes explicit commitments and

agreements to conserve and monitor biodiversity (https://www.cbd.int/). The Kunming-

Montreal Global Biodiversity Framework (KMGBF) is a recent agreement adopted in
December 2022 with commitments from 196 signatory nations. The agreement provides a
pathway for halting and reversing global biodiversity loss. Importantly, genetic diversity is
explicitly recognized in this agreement as a core component of biodiversity that must be

conserved, monitored, and reported.

Evolutionarily Significant Units “ESUs” are lineages demonstrating highly restricted gene

flow from other such lineages within the higher organizational level of species (Fraser and
Bernatchez 2001). Due to limited gene flow, these subpopulation networks follow their own
evolutionary trajectories and thus are likely to house unique adaptive genetic diversity (Funk
et al. 2012; Figure 1c).

A population within the TJUCN Red List framework is defined as the total number of
individuals of the taxon (i.e, species or subspecies) (IUCN 2001; Figure 1a), which differs
from its common biological usage (IUCN 2003). Due to the multiple definitions of this term,

we have avoided it in the remainder of this manuscript.

Subpopulations in the IUCN Red List framework are geographically or otherwise distinct

groups in a population between which there is little demographic or genetic exchange
(typically one successful migrant individual or gamete per year or less; (IUCN 2001; Figure
1b).

Why list Subpopulations and Evolutionarily Significant Units in IUCN assessments?

Genetic diversity is the foundational level of biodiversity but remains rarely considered in
global conservation programs (e.g., neglected in protected area design, Paz-Vinas et al. 2025;

species recovery plans, Pierson et al. 2016; in IUCN assessments, Schmidt et al. 2023; and in


https://www.cbd.int/
https://www.zotero.org/google-docs/?CdUFeL
https://www.zotero.org/google-docs/?5Pgzx7
https://www.zotero.org/google-docs/?aN2IsP
https://www.zotero.org/google-docs/?aN2IsP
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recent policy like the European Union Nature Restoration Law, O’Brien et al. 2024). Though
the recently adopted United Nations Convention on Biological Diversity (CBD; Box 1)
Kunming-Montreal Global Biodiversity Framework includes explicit commitments to
conserve and monitor genetic diversity (Target 4, CBD 2022, da Silva et al. 2026), a greater
integration into other conservation initiatives is urgently needed to help address the decline of

global genetic diversity.

Irreversible allelic diversity and heterozygosity loss have been documented across hundreds of
species (Leigh et al. 2019, Shaw et al. 2025). Human activities are frequently leading to the
extirpation of entire subpopulation networks (Ceballos et al. 2017, Mastretta-Yanes et al.
2024), which likely harboured distinct alleles and possibly local adaptations, representing a
loss of unique evolutionary trajectories. Genetic diversity underpins fitness, resilience, and
adaptive potential (Reed and Frankham 2003, Swindell and Bouzat 2005, Hughes et al. 2008,
Harrisson et al. 2014, Frankham 2015, @rsted et al. 2019, DeWoody et al. 2021, Kardos et al.
2021, Meek et al. 2023, van Oosterhout et al. 2025), and its erosion is closely linked with
species extinction risk through reduced capacity to respond to environmental change or disease
threats (Frankham 2005, Evans and Sheldon 2008, Polishchuk et al. 2015). Importantly,
demographic recovery of a population does not imply genetic recovery, lost genetic variation
may remain depleted for many generations, highlighting the need to maintain distinct
subpopulations and ESUs (Nei et al. 1975, Frankham 2005). Thus, losses in genetic diversity

represent a threat to all levels of biodiversity.

The International Union for Conservation of Nature (IUCN) and its Red List of Threatened
Species (a catalogue of over 163,000 species) is the international standard in assessing the
extinction risk of species based on the best available information. Extinction risk is calculated
on the occupation of the focal species’ historical range, census size and trends, habitat quality
and fragmentation level (IUCN 2001), but genetic diversity is not formally included in
assessment criteria (Schmidt et al. 2023, van Oosterhout 2024). As a result, Red List
conservation status is not directly correlated with remaining levels of genetic diversity or
magnitude of loss (Leigh et al. 2019, Mastretta-Yanes et al. 2024, Shaw et al. 2025). In the
more recently established IUCN Green Status of Species (IUCN 2021), recovery of pre-impact
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census size is assessed as a measure of conservation success. Although genetic diversity is not
explicitly assessed, it is sometimes discussed in Green Status assessments. In some cases,
species with substantial, irreversible genetic diversity loss have received high Green Status
recovery scores, despite persistent risk of inbreeding and limited adaptive capacity (e.g., Alpine
ibex; Brambilla et al. 2020). Though IUCN conservation status (i.e., extinction risk and
recovery status) does not directly prescribe protection or species management, greater
consideration of genetic diversity is necessary to identify important groups in need of
protection.

The recently adopted genetic diversity indicators in the CBD Kunming-Montreal Global
Monitoring Framework (KMGBF) provide inclusive access to genetic diversity assessment
without necessarily requiring molecularly-derived information (Mastretta-Yanes et al. 2024,
Hoban et al. 2025). These indicators track the maintenance of genetic diversity by assessing
and monitoring key evolutionary processes, such as the persistence of subpopulations,
connectivity between them, and the retention of adaptive variation across species. In practice,
this means that even in the absence of genome-wide data, information from ecological surveys,
demographic records, and well-documented populations can be used to infer whether genetic
variation is being preserved and whether evolutionary processes are likely to continue.
Adopting a similar approach within [TUCN assessment criteria is a potential way to include
genetic concerns without the need for scarce molecular data (less than 1.5% IUCN Red List
assessed species have accessible molecular data, Paz-Vinas et al. 2025). Building on the
KMGBF approach, the framework presented here offers a method to identify within-species
units at scales relevant for evolutionary processes, which could inform assessments, within the

IUCN and more broadly, to highlight units that contribute to overall genetic diversity.

Conservation-relevant evolutionary processes can be categorized into two spatiotemporal
scales (Figure 1). Short-term processes, such as gene flow and genetic drift, shape the genetic
structure of species over relatively few generations across “subpopulations”. Subpopulations,
as defined under the IUCN, are akin to the common biological usage of “populations” (see key
terms in Box 1) and correspond to the units used for genetic indicators in the Global

Biodiversity Framework (Figure 1b). Longer-term processes, including environmental
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adaptation (i.e., response to natural selection) and the accumulation of alleles through mutation,
shape the evolutionary trajectory of a species across networks of several subpopulations. These
distinct networks are known as “Evolutionarily Significant Units” (hereafter ESUs) (Allendorf
et al. 2022; Figure 1c). ESUs can follow their own evolutionary trajectory and may occupy
unique or different ecological niches to other units within their species. ldentifying and
considering ESUs can help maintain evolutionary processes beyond individual units,
supporting broader ecosystem function. We note that the distinction between short and long
timescales may not always be time dependent, as some evolution can occur rapidly. However,
we note that we explicitly do not consider human-mediated (e.g., selection for desirable
phenotypes) or drift driven change (e.g., due to human isolation) as valid evolutionary

trajectories for ESUSs.

The TUCN currently assesses species at three levels: species (Figure 1a), subspecies, and
subpopulations (Figure 1b). While ESUs (Figure 1c) are not formally recognized as a separate
unit of assessment, they represent biologically meaningful within-species groups that may not
be captured by subspecies or subpopulation delineations (e.g., Cape parrot, Coetzer et al. 2015;
Leopard skink, Prates et al. 2023). Subpopulations are a recognized unit, but fewer than 5% of
species have them delineated on the Red List (Janet Scott, Programme Officer at IUCN, written
communication, April 2024), reflecting the lack of standardized usage. Considering
subpopulations and ESUs in species assessments could provide additional insight into the
structure and evolutionary potential of species, supporting more nuanced conservation

prioritization and decision-making.

Conservation Units, including ESUs, have a longstanding history in scientific conservation
assessments. The term ESU was first conceptualized by Ryder (1986), and subsequent studies
have proposed varying criteria to define them as conservation-relevant units (overview in
Fraser and Bernatchez 2001). However, challenges arise in standardizing ESU delineation due
to the multidisciplinary nature of conservation science and differing approaches to genetic and
ecological data (e.g., Moritz 1994, Crandall et al. 2000, Funk et al. 2012). For example,
ecological factors such as habitat specialization or behavioral differences play a role in the

divergence of ESUs and might be overlooked if genomic data alone are used to determine them.


https://www.zotero.org/google-docs/?COEOa2
https://www.zotero.org/google-docs/?XtjNRk
https://www.zotero.org/google-docs/?pDaf2m
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In turn, similar phenotypes that are underpinned by different genomic adaptations can also be
overlooked if phenotypic data alone are used (Fenster and Dudash 1994). A holistic approach
that integrates genetic and non-genetic metrics, including adaptive and ecological variation,
has been recommended to improve comparability and relevance (Fraser and Bernatchez 2001,
Robertson et al. 2014).

To support the consideration of ESUs and subpopulations in IJUCN and other conservation
assessments, we present a comprehensive and flexible framework for standardized ESU
identification and improved subpopulation delineation. Our aim is that by identifying unique
genetic units their passive loss could be mitigated by the identification of units at risk of
extinction (i.e., extinction of unique variation or disrupted evolutionary processes). Though we
have developed our framework specifically to support IUCN assessments, we acknowledge
dividing species into subpopulations or ESUs could unintentionally impact downstream
conservation management decisions. A recent meta-analysis found a strong historical tendency
in conservation management to define units as genetically distinct through data
misinterpretation and/or weak or no evidence (Liddell et al. 2021). These divisions have
previously led to erroneously isolated units that unnecessarily increased extinction risk (e.g.,
Perameles gunni; Weeks and Rypalski 2021). We strongly stress that division of species into
subpopulations or ESUs through any framework does not indicate a need to manage units in
isolation (e.g., Senn et al. 2014) but rather could be used to help highlight unique units at risk
of extinction and in need of protective actions (e.g., translocations; habitat restoration) to
prevent irreversible genetic diversity loss or disruption of evolutionary processes. We also draw

attention to the risk assessments included throughout this paper.
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Figure 1 - Within the JUCN assessment guidelines, listing of distinct groups can occur at species (a), subspecies-

gL

(not shown), or subpopulation (b) levels. We suggest the inclusion of Evolutionarily Significant Units “ESUs”
(c). Note that one or several subpopulations together can form an ESU and their grouping is determined by gene
flow. In this cartoon example, gene flow is depicted as being restricted between the ESUs by geographical barriers
(mountains). The two subpopulations on the left side of the panel were historically linked by gene flow, while this
was interrupted by a road, we do not consider them ESUs because the interruption of their gene flow is

anthropogenic and they have the same historical evolutionary trajectory thus they are one ESU.
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Subpopulation and ESU standardized framework

The framework we outline here for standardized identification of subpopulations and ESUs has
two steps: first, identifying genetically meaningful subpopulations and, second, grouping these
into ESUs. Though we recognize the existence of several ESU frameworks (e.g., Fraser and
Bernatchez 2001, Funk et al. 2012), a framework using multiple lines of evidence is necessary

for objective and standardized identification of IUCN-relevant groups.

Three types of data are used in this delineation framework: genetic, recorded biological and
inferred evidence (Figure 2a). Genetic evidence derives from genetic or genomic markers (e.g.,
single nucleotide polymorphisms [SNPs], microsatellites, mitochondrial haplotypes) and is
leveraged to assess differentiation and/or evolutionary distinctiveness, including adaptive
divergences, of groups within a species. Recorded biological evidence does not require genetic
data (e.g., observed biogeographic patterns, variation in transmitted traits) and comes directly
from individuals in the assessed focal species. Inferred evidence also does not require genetic
data and is not directly observed in the focal units, e.g., is deduced from biogeographic patterns
based on modelling techniques. To guide assessors, we have comprehensively listed categories,

specific analyses within each evidence-type and data that can be used (Table 1).
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a) Lines of evidence b) Two - Phase Framework

Phase 1: Identify subpopulations

Genetic Isolation/ Inferred
recorded structure Migration barriers geographic
biological patterns

2 2 1

b — —

Score candidate subpopulation scenarios

*Null - Hypothesis: 1 genetic metapopulation (no subdivision within species)

=1ESU

Phase 2: Delineate Evolutionarily Significant Units (ESUs)

Karyotype/ Ploidy/ Evolutionary Adaptive Inherited Recorded Traditional
Chromosome distinctiveness | |divergence| | characteristic characteristic knowledge
variation variation variation
6 6 6 4 2 2
N 7
TSETT

Score candidate ESU scenarios (note: these scenarios can differ from the subpopulation scenarios)

*Test for 1 ESU

6coring: 2 10 points is required to delineate distinct ESU(&

Tested Scenarios & Results:
Subpop - Scenario A) x subpopulations

Scoring: 2 2 points is required to
proceed to Phase 2
Subpop - Scenario B) n subpopulations | (group into ‘'meaningful' ESU - Scenarios) | ——3  ESU - Scenario Y) j ESUs

Tested Scenarios & Results:
ESU - Scenario X) k ESUs

< 10 points due to various situations:
a) final score could not reach or exceed 10 points (even
if all missing data were supportive of the tested scenario)

M Scenarios falling under the Null - hypothesis - 1 genetic metapopufation - or 1 ESU
can be formally tested using criteria outlined in Table §1. |

= no support for the ESU - Scenario

b) final score does not currently reach or exceed10 points*,
but could do so if missing data subsequently prove
to be supportive of the scenario

d = scenario indicates possible ESUs (pESUs)

|

*if only non-genetic evidence is currently scored, the ESU - scenario
\should be rather considered as 'data-deficient'

Figure 2 - a) Lines of evidence and b) the Two-phase framework to assess the strength of evidence for subpopulations and Evolutionarily Significant Units (ESUs). Different

lines of evidence are highlighted in dark green, green or blue. Scores for each evidence category are indicated within the boxes. Higher scores indicate increased support. The

scores quantify how informative each category of evidence is in assessing the likelihood that a subpopulation or ESU is distinct. The framework is followed using different

‘candidate scenarios’ for various supported groupings of the species. In the case of conflicting evidence, assessors should divide the species into all different ‘scenarios’ and

score each scenario separately. If no data or unclear data are available a score of 0 should be awarded and the evidence category is marked as ‘missing’.
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Table 1 Three categories of evidence used in the two-step framework to delineate subpopulations and ESUs, each containing multiple lines of evidence. For each line of

336  evidence, a description of the methods and metrics used to assess it, examples of supporting studies, and the main risks of over- or under-splitting units are provided. Scores
337 assigned to each line of evidence are also shown. Additional details on the risks of over- and under-splitting for each line of evidence and references are provided in
338  Supplementary material, Section C.
Types of Description How to assess? Example studies using Main Risks of over- and Score
evidence evidence categories under-splitting
Genetic evidence
Genetic Substantial genetic a) structure-like analyses such as e.g., Abbott and Double Over-splitting: cluster 2
structure structure and Structure, Admixture plots, PCA, 2003 detection bias, over-estimation
(Phase 1) fragmentation mostly DAPC, D-stats of genetic differentiation by
determined by limited b) high pairwise Fst values (relative to visual inspection, over-
gene flow between the species wide pairwise levels), interpreting private alleles
subpopulations. ¢) abundance of private alleles, that
indicate long term limited gene flow Under-splitting: generally low
between subpopulations risk
Karyotype, Documented heritable Using conventional cytogenetic e.g., Ferreira et al. 2017, Over-splitting: misinterpreting 6
ploidy, and differences in methods (e.g., chromosome counting, Ahrens et al. 2020, neutral karyotype variation as
chromosome chromosome number, karyotyping), flow-cytometry and/or Hollenbeck et al. 2022 evidence for ESUs
structure ploidy, or molecular cytogenetics (with structural
variation chromosome structure variant detection softwares) to detect: Under-splitting: missing
(Phase 2) between candidate a) karyotype variation important karyotypic

ESUs.

b) differences in ploidy levels between
units

¢) Structural variation of chromosomes
between units

d) evidence of no/rare/unfit hybrids
between proposed units.

differences due to insufficient
sampling or low technical
resolution



Types of Description How to assess? Example studies using Main Risks of over- and Score
evidence evidence categories under-splitting
Evolutionary Genetic evidence of a) reciprocal monophyly e.g., Moritz 1994, Moritz Over-splitting: over- 6
distinctiveness  reproductive isolation,  b) molecular estimates of divergence and Faith 1998, Walsh et interpretation of reciprocal
(Phase 2) due to highly time. al. 2024 monophyly or long divergence
restricted or no gene In complex cases, follow clades times (dependent on
flow between focal supported by >75% bootstrap or methodology used and species
ESUs that may have posterior probability values, derived context/history), assuming no
fuelled evolutionary from a statistically valid evolutionary current gene flow means no
distinctiveness. model and tree-building method. historical gene flow
Under-splitting: over-
interpretation of lack of
reciprocal monophyly,
overlooking variation across
the genome
Adaptive Robust genetic a) robust genomic signals of local e.g., Bonin et al. 2007, Over-splitting: false positives 6
divergence evidence of candidate adaptations supported by multiple Rodriguez-Quilén et al. in outlier tests, environment-
(Phase 2) ESUs harbouring selection detection methods and ideally 2016 based detection confounded by

unique local
adaptation(s) driven
by selection (e.g.,
environmental, sexual
selection) that are not
shared with other
ESUs.

in combination of non-genomic
information (e.g., Gene-environment
associations using Bayenv, RDA,
RandomForest)

b) evidence of stable hybrid zones

neutral structure, hybrid zones
misinterpreted as ESU
boundaries

Under-splitting: no outlier
detection due to low statistical
power, ignoring hybrid zone
context




Types of Description How to assess? Example studies using Main Risks of over- and Score
evidence evidence categories under-splitting
Recorded biological evidence
Isolation and Subpopulations show a) occupation of different e.g., Hewitt 2004, Over- and undersplitting: 2
barriers to evidence of isolation biogeographical zones (e.g., habitat Lorenzen et al. 2012 misinterpretation of observed
migration (i.e., long-term signs maps, maps on environmental patterns) patterns as natural-long term
(Phase 1) of restricted gene flow  b) occupation of discrete remnants of patterns, misidentification of

due to geographic,
environmental, or
temporal differences)
between them.
Alternatively,
subpopulations show
evidence of recently
restricted gene flow
due to human
mediated change (e.g.,
habitat fragmentation,
extirpation of
connecting
subpopulations etc).

historical habitats with little to no
chance of natural migration between
habitat patches.

species or environmental
drivers for species



Types of Description How to assess? Example studies using Main Risks of over- and Score
evidence evidence categories under-splitting
Inherited Candidate ESUs show  a) heritable differences in focal traits e.g., Small et al. 1998, Over-splitting: confusing 4
characteristic consistent heritable observed in common garden Wainwright et al. 2008 plasticity with adaptation,
variation differences in life experiments or other robust analytical overinterpretation non-
(Phase 2) history or tests (e.g., cross-fostering, trait functional traits, neglecting
ecologically/species measurements controlling for distorted variation in small
important traits (e.g., environmental variation) subpopulations
body size, colour,
breeding time, use of Under-splitting: failing to
spawning grounds). recognize evolved differences
in phenotypic plasticity
Recorded Candidate ESUs show ) cultural/learnt behavioural e.g., Guetal., 2021; Over-splitting: 2
characteristic consistent differences differences unique or specific between Lundberg et al., 2017; misinterpretation of acquired
variation in traits that are locally  units Sanchez-Donoso et al., behaviours or phenotypic
(Phase 2) transmitted but not b) acquired/transmitted traits (e.g., 2022; Toews et al., 2019 differences as barriers to gene

robustly shown to be
heritable (acquired
behavioural or
phenotypic
differences;
environmentally
modified traits)

foraging techniques, alternative
migration routes, regional birdsong
‘dialects’; methylation differences;
body size differences)

c) general field-based morphological
and functional trait assessments

flow

Under-splitting: study bias
(lack of studies in general =
data-deficiency, study
selection bias)



Types of Description How to assess? Example studies using Main Risks of over- and Score
evidence evidence categories under-splitting
Traditional Distinctiveness a) recorded differences based on e.g., a proposed tool to Over- and undersplitting: if 2
knowledge between candidate traditional and information local use ILK species not all relevant stakeholders
(Phase 2) ESUs based on knowledge (according to the IUCN assessments (Montanari are consulted, leading to a
indigenous, local, or ILK framework, IUCN, 2022). This and Kanagavel 2017) biased perspective
traditional knowledge.  encompasses information that is not
yet statistically analysed, information
that is analysed should be counted as
inherited or recorded characteristics.
Inferred evidence
Inferred Subpopulation a) subpopulation disjunction from co- Over-splitting: 1
geographic differentiation and occurring species used as a proxy overinterpretation of detected
patterns fragmentation modelled  b) phylogeographic and/or patterns when they don’t reflect
(Phase 1) from the focal species biogeographic evidence from co- genetic differentiation

through e.g., species
distribution modelling
approaches, or
measured/ observed
from closely related
species.

occurring species

c) assumption of biogeographical
data/refugia without direct evidence
d) dispersal distance and buffer
according to the CBD indicators

Under-splitting: patterns in co-
occurring species as proxies can
obscure detected differences
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To enable the application of a pre-defined threshold for delimiting subpopulations or ESUs,
each line of evidence is given a score. The value of the score corresponds to the strength of
evidence. Scores range from 1 to 6. Values of 6 are for evidence-types that offer the strongest
support (i.e., genetic/genomic signals of prolonged reproductive isolation and/or local
adaptations). A score of 6 is only possible in Phase 2, as these differences occur between ESUs.
Scores of 4 and 2 are given to strongly suggestive evidence categories that reflect genetic
divergence or non-molecular signs of local adaptation. A score of 1 is given to data that are
entirely inferred, such as information from projections (e.g., maps, species distribution models)
or information inferred from closely-related species. This is a common, but high-risk evidence-
type, and its low score reflects this associated risk. The relative weighting of evidence-types
reflects the IUCN’s nature of evidence rule for assessment criteria (see IUCN 2024). A score
of 0 is given if there is no data available. The framework does not allow for fractions or partial
scores, scores are in even increments to support quick summing. We have strived to keep the

scoring system simple, but a degree of complexity is needed to capture all outcomes.

To determine the number of divisions, assessors should leverage the collected evidence from
the categories detailed in Table 1 and divide the species into the most likely groups of
subpopulations and ESUs, each grouping is called a ‘candidate scenario’. Focus should be on
the most likely or relevant groupings, particularly those that may exhibit signs of isolation.
Detailed step-by-step guidance on applying these criteria is provided in the accompanying
guidance document at https://github.com/iucn-CGSG/Subpop-ESU-Webtool. In the case of
conflicting evidence, assessors should divide the species into the potential ‘scenarios’ and score
each scenario separately then take the highest scoring. Different scenarios can be tested for
Phase 1 and 2 and subpopulations can be grouped into a smaller number of ESUs.
Comprehensive testing of scenarios based on existing knowledge, covering e.g., 1-7
subpopulations or ESUs is unnecessary, as many will be lacking sufficient data. The results of
the scenario with the highest score (note this may be different for ESUs and subpopulations)
could be used for listing assessment. When defining subpopulations, note that subpopulations
can also be driven by human-mediated fragmentation or disruption of gene flow, whereas ESU

divisions are likely to be more anciently derived.

To identify distinct subpopulations a total score of >2 is required in Phase 1. If multiple
scenarios are tested, the scenario with the highest score is used. If scores are tied, we
recommend choosing the high-score scenario, based on the most robust data (e.g., higher
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resolution genetic marker). If two or more distinct subpopulations are delineated, the assessor
then tests for ESUs in Phase 2. The scores from Phase 1 do not carry over to Phase 2, because
in Phase 2 new candidate scenarios can be tested as it is unlikely that the number of
subpopulations and ESUs are identical. A minimum score of 10 is needed to delineate distinct
ESUs. This can only be reached if genetic or genomic evidence is collected for the species
(Figure 2b and Table 1). At least one genetic evidence category is needed as a ‘yes’, coupled
with either another genetic evidence category or with significant differences in inherited or
acquired characteristics and/or traditional knowledge, to support a scenario with distinct ESUs.
If fewer than 10 points are scored, the candidate scenario can either be regarded as (a) ‘not
supported’, because 10 points cannot be reached or exceeded even if all missing data were
supportive of the tested scenario; or (b) as a ‘possible ESU (pESU)’ scenario, because the
minimum threshold of 10 points could be reached or exceeded if missing data subsequently
prove to be supportive of the tested scenario. However, if a candidate scenario currently only
scores in recorded biological evidence-types (so non-genetic), the scenario should be regarded
as ‘data-deficient’ rather than as a pESU scenario. At the end of Phase 2, assessors should select

the scenario with the highest score.

If no candidate scenarios can reach the minimum threshold of two points in Phase 1 or reach
10 points in Phase 2 (even if missing data could be acquired) the species may comprise a single
genetic metapopulation (a set of spatially discrete or semi-discrete groups of individuals that
are connected through sufficient gene flow to maintain shared genetic variation) and therefore
a single ESU. Assessors can specifically test a scenario with one metapopulation (Phase 1) and
one ESU (Phase 2). However, in order to test for a metapopulation or single ESU, compelling
evidence indicating the lack of distinctiveness within the species has to be present and scored
(criteria are outlined in Table S1 in the Supplementary material, section A). For consistency in
the scoring, the same scoring system as for testing multi-subpopulations or -ESU scenarios is

applied.

This framework has been tested thoroughly on a variety of species across different taxonomic
groups (Table 2) with two detailed examples shown in Box 2 and Box 3 and the best supported
candidate scenarios are visualized in Figure 3 and Figure 4. The thresholds of 2 points in Phase
1 and 10 points in Phase 2 are based on the extensive testing of these species, expressing
different data availability and characteristics. We envision that as the framework is applied,
more evidence types and exceptions will arise, and the framework could be adjusted



408  accordingly. In order to test this framework and further improve it, we are currently testing
409  species listed in the IUCN Green Status of Species framework (IUCN 2021).



410  Table 2 - List of species tested using the proposed framework under different candidate scenarios. Only the highest scoring scenarios for Phase 1 (subpopulations) and Phase
411 2 (ESUs) are shown, as these best support the number of units tested. Scores are shown as points obtained out of the total points available. Relevant data sources supporting

412  each scenario are provided as well as the IUCN Red List and Green Status.

413
Species or subspecies Phase 1 Phase 2 Genetic Data and studies considered IUCN Red IUCN Green
List status Status

Common Eland 2 subpopulations 1ESU Mitochondrial DNA Least not assessed
(Tragelaphus oryx) (4/4 points) (12/18 points) (Gagnon and Chew 2000, Lorenzen et al. 2010, 2012) Concern
Mountain Zebra 2 subpopulations 2 possible ESUs  Mitochondrial and microsatellite data Vulnerable not assessed
(Equus zebra) (4/4 points) (8/14 points) (Moodley and Harley 2005, Kotzé et al. 2019)
African buffalo 2 subpopulations 2 ESUs Nuclear genomes, mitochondrial and Near not assessed
(Syn cerus caffer) (4/4 points) (22/22 points) microsatellite data Threatened

(Van Hooft et al. 2002, Smitz et al. 2013, 2014, de Jager

et al. 2020, 2021, 2025, Quinn et al. 2023, Colangelo et

al. 2024, Talenti et al. 2024)
Rodrigues fruit bat 1 subpopulation 1ESU Microsatellite data Endangered not assessed
(Pteropus rodricensis) (4/4 points) (O’Brien et al. 2007)
Iberian lynx 2 subpopulations 1 ESU Microsatellite and whole-genome sequencing data Vulnerable Largely
(Lynx pardinus) (2/4 points) (10/16 points = (Rodriguez and Delibes 2003, Johnson et al. 2004, Depleted

human mediated  Pertoldi et al. 2006, Abascal et al. 2016, Casas-Marce
admixture due et al. 2017, Kleinman-Ruiz et al. 2017)

to captive breeding

and translocations)




Species or subspecies Phase 1 Phase 2 Genetic Data and studies considered IUCN Red IUCN Green
List status Status
African penguin 1 subpopulation 1ESU Microsatellite data Critically Largely
(Spheniscus demersus) (2/4 points) (Labuschagne et al. 2016) Endangered Depleted
Western leopard toad 4 subpopulations 2 possible ESUs  Mitochondrial and microsatellite data Endangered not assessed
(Sclerophrys (2/4 points) (6/12 points) (Measey and Tolley 2011, da Silva et al. 2017, Stephens
pantherina) al. 2022)
Yellow-tufted honeyeater 2 subpopulations 2 possible ESUs  Microsatellite data, mitochondrial DNA and nuclear Least not assessed
(Lichenostomus (4/4 points) (8/14 points) Sequences Concern
melanops) (Pavlova et al. 2014, Harrisson et al. 2016)
Sable Antelope 5 subpopulations 5 possible ESUs  Mitochondrial genomes Least not assessed
(Hippotragus niger) (4/4 points) (6/16 points) (Rocha et al. 2022) Concern
Black rhinoceros 7 subpopulations 7 possible ESUs  Mitochondrial DNA, microsatellite data, Critically Largely
(Diceros bicornis) (4/4 points) (6/16 points) nuclear genomes Endangered Depleted
(Moodley et al. 2017, Sanchez-Barreiro et al. 2023)

Rewarewa tree 2 or 4 subpopulations 2 ESUs Whole-genome sequencing data Least not assessed
(Knightia excelsa) (2 scenarios scored 4/4  (12/16 points) (McCartney et al. 2024) Concern

points = Assessment

should be done by

species experts)
Hawaiian Koa 7 subpopulations 4 ESUs Microsatellite data and GBS (genotyping-by-sequencing) Vulnerable not assessed

(Acacia koa)

(4/4 points)

(10/16 points)

data
(Shi 2003, Fredua-Agyeman et al. 2008, Baker et al.
2009, Gugger et al. 2018)




Species or subspecies Phase 1 Phase 2 Genetic Data and studies considered IUCN Red IUCN Green

List status Status
Black Wildebeest 1 subpopulation 1 ESU Mitochondrial and microsatellite data Least not assessed
(Connochaetes gnou) (4/4 points) (Corbet and Robinson 1991, Vrahimis et al. 2016, Concern

Grobler et al. 2018)
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Box2: Hawaiian Koa (Acacia koa)

In this box we present the results of all the tested candidate scenarios for the Hawaiian koa
(Acacia koa). Background information and detailed testing output is provided in
Supplementary material, Section B and in the guidance document at https://github.com/iucn-
CGSG/Subpop-ESU-Webtool. The best supported candidate scenarios are visualized in
Figure 3.

Phase 1: Three candidate scenarios are tested:

Subpopulation scenario 1: Genetic clustering and pairwise Fst values based on microsatellite
data suggest two subpopulations: one on Kaua‘i and one spanning Hawai‘i, Maui, and O‘ahu
(Fredua-Agyeman et al. 2008). No clear migration barriers were detected, and no indirect
evidence of fragmentation was available. Thus, only genetic structure supported the
subdivision.

Subpopulation scenario 2: Genetic clustering and pairwise Fst values based on single
nucleotide polymorphisms (SNP) data suggest seven subpopulations (Kaua‘i, Maui, and
O‘ahu each with one, plus four on Hawai‘i), though some overlapping clusters likely reflect
human-mediated dispersal and are a side product of restoration programs (Gugger et al. 2018;
Figure 3 for visualization). No clear migration barriers were detected, and no indirect
evidence of fragmentation was available. Thus, only genetic structure supported the
subdivision.

Subpopulation scenario 3: Natural occurrence patterns across the four Hawaiian Islands
suggest four subpopulations (Kaua‘i, Maui, O‘ahu and Hawai‘i), aligned with distinct
habitats (can be considered different biogeographical zones) and potential migration barriers
(Baker et al. 2009). However, genetic/genomic studies did not confirm strong structure, and
no indirect fragmentation evidence was available. This scenario is supported mainly by
biogeographic isolation.

Subpopulation-scenarios
2 subpop 7 subpop 4 subpop

Is there evidence of genetic structure? (2 points) Yes Yes No

Is there evidence of natural isolation or subpopulation No No Yes
fracmentation (through migration barriers)? (2 poinis)

Is there inferred evidence of likely subpopulation Nodata Nodata  Nodata
fragmentation? (] poin)

Final scores 2 points 2 points 2 points

Interpretation of Phase 1: All three candidate scenarios meet the minimum threshold of two
points, and therefore qualify as subpopulation scenarios. Thus, all three candidate scenarios
in Phase 1 scored are moved onto Phase 2.

When scores are tied as seen in this example (all three candidate scenarios scored two points),
we recommend selecting the one based on the most robust data to maximize the conservation
efforts of genetic diversity. In this example we would consider scenario 2 (seven
subpopulations) as the one scenario based on the most robust data. Distinct subpopulation
clusters were identified using high-resolution genomic markers (11,000 SNPs from >300
samples via genotyping-by-sequencing). Although microsatellites remain valuable in
population genetics, scenario 1 is unlikely to represent the true subpopulation structure.
Instead, it might better reflect higher-level structuring at the ESU level, along with scenario



https://www.zotero.org/google-docs/?wHhyCz

3 (four islands subpopulations). Therefore, the seven subpopulation scenario better represents
subpopulation structure.

Phase 2: The same three candidate scenarios are tested:

ESUs scenario 1: Genetic data support two groups (Kaua‘i vs. Hawai‘i—Maui—O*‘ahu) which
are tested as two distinct ESUs, but no additional evidence (karyotype, adaptive divergence,
or inherited characteristic variation) supports this split. Missing data was identified when
scoring for evolutionary distinctiveness, recorded characteristic variation and traditional
knowledge. Provenance tests revealed phenotypic differences across all four islands, but these
did not align with the two-ESU grouping. Overall, this scenario scored zero points.

ESUs scenario 2: Genomic data identified seven subpopulations, which are tested as seven
distinct ESUs, but admixture within the island of Hawai‘i contradicts the ESU definition of
restricted gene flow. No evidence supported karyotype variation, evolutionary
distinctiveness, or adaptive divergence. Provenance tests revealed phenotypic differences
across all four islands, but these did not align with the seven-ESU grouping. Missing data was
identified when scoring for recorded characteristic variation and traditional knowledge.
Overall, this scenario scored zero points.

ESUs scenario 3: Natural occurrence patterns identified four subpopulations, which are tested
as four ESUs. Adaptive divergence linked to precipitation supports four ESUs corresponding
to the four islands (Gugger et al. 2018). These are reinforced by provenance tests showing
inherited phenotypic differences matching the island divisions (Baker et al. 2009). No
evidence supported karyotype variation and missing data was identified when scoring for
evolutionary distinctiveness, recorded characteristic variation and traditional knowledge.
Overall, with genomic and phenotypic evidence, this scenario scored 10/16 points.

ESUs-scenarios

2ESUs  7ESUs 4 ESUs

Is there inherited variation in chromosome numbers, No No No
ploidy level or chromosome structure? (8 points)

Is there evidence of long-term reproductive isolation? No data No No data
{0 paints)

Is there evidence of local adaptation or adaptive No No Yes
divergence? (0 poinis)

Is there evidence of inherited characteristic No No Yes

differences? (4 points)
Is there evidence supporting transmitted characteristic Nodata Nodata No data
differences? (2 points)

Is there traditional knowledge suggesting Nodata Nodata Nodata
distinctiveness between units? (2 poinis)
Final scores 0 points 0 points 10 points

Interpretation of Phase 2: Scenario 3 scored 10/16 points, providing the best-supported ESU
scenario and highlighting that each Hawaiian Islands (Kaua‘i, Maui, O‘ahu and Hawai‘i) can
be considered a separate ESU.
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Hawaiian Koa (Acacia koa) - best supported scenarios for Phase 1 and Phase 2

Phase 1: Identify subpopulations Phase 2: Delineate Evolutionarily Significant Units (ESUs)
s
Genetic Isolation/ Inferred Karyotype/ Ploidy/ Evolutionary Adaptive Inherited Recorded Traditional
structure Migration barriers geographic Chromosome distinctiveness | |divergence| | characteristic characteristic knowledge
patterns variation variation variation
22 02 m (0/0) 0/6 m (0/0) 6/6 | 4/4 m (0/0) m (0/0)
9 \
- A W 4
YT TN
Scenario with 7 subpopulations scores 2/4 Scenario with 4 ESU scored 10/16 = distinct ESU status
Kaua'i ? Kaua'i P
O'ahu O'ahu
dominated by
1 cluster
Maui Maui
dominated by
g 1 cluster ?
_Hawai'i Hawai'i

7 subpopulations based on: i 4 ESUs based on:
1) genetic clusters indicated by the different colors 1) signal of local adaptation P

based on genottyping-by-sequencing and genome-wide '\. 2) inherited phenotypic differences among islands
genetic markers = most robust evidence . {e.g., tree height and seed variation)

Figure 3 - Visual summary of the best-supported scenarios for Phase 1 and Phase 2 of the Hawaiian Koa tree
(Acacia koa) case study. The top panel summarizes the evidence categories and scores (e.g., 2/2). Categories
with insufficient data are assigned “m” for missing and are given 0 points. The lower panel presents a
schematic illustrating the outcomes for each best-supported scenario. Each tree symbol represents a single
genetic unit, with colours representing unique units. Further details are provided in Supplementary material,

Section B.

Box3: Black Wildebeest (Connochaetes gnou)

In this box we present the results of all the tested candidate scenarios for the Black wildebeest
(Connochaetes gnou). Background information and detailed testing output is provided in
Supplementary material, Section B. The best supported candidate scenarios are visualized in
Figure 4.

Phase 1: one candidate scenario is tested:

Subpopulation scenario 1: Genetic analyses using mitochondrial DNA (Corbet and Robinson
1991) and microsatellites (Grobler et al. 2018) showed no clustering, suggesting one single
metapopulation, with ongoing migration and no isolation barriers (Vrahimis et al. 2016). No
indirect evidence was available to indicate the absence of fragmentation. Thus, this scenario
is supported mainly by a lack of genetic structure and a lack of biogeographic isolation.

1 Metapopulation scenario

Is there no genetic structure? (2 points) Yes
Are there records of continuous occupation of the range Yes
with frequent migration between all regions? (2 points)

Is there inferred evidence of no subpopulation No data

fragmentation? (] point)
Final scores 4points
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Interpretation of Phase 1: Overall, the one subpopulation scenario scored 4/4, exceeding
the threshold and supporting the null hypothesis that the black wildebeest represents a single
subpopulation which can be regarded as a genetic metapopulation and therefore a single ESU
no progression to Phase 2 was needed.

Black Wildebeest (Connochaetes gnou)

Phase 1: Identify subpopulations - specifically testing for 1 subpopulation

No genetic No isolation/ No inferred
structure Migration barriers geographic
patterns
2/2 2/2 m (0/0)
- _/
Y ‘

Scenario with 1 subpopulation (= genetic metapopulation) scores 4/4

1 genetic metapopulation based on:
1) no evidence of genetic clusters within the

distributional range “' ﬂ,
2) no subpopulation fragmentation, continuous :
distribtiuon with migration between all regions : ﬂ' l K‘

Null-hypothesis is accepted, the Black Wildebeest
can therefore be considered to be 1 ESU.

Wildebeest distribution

Figure 4 - Visual summary of the best-supported scenarios for Phase 1 and Phase 2 of the Black Wildebeest
(Connochaetes gnou) case study. The top panel summarizes the evidence categories and scores. Categories
with insufficient data are subdued in colour and assigned m for missing and are given 0 points. The lower
panel presents a schematic illustrating the outcomes for each best-supported scenario. The blue polygon
represents the metapopulation distribution within South Africa. Further details are provided in
Supplementary material, Section B.

ESU and subpopulation division - risks and limitations

Choosing whether or not to split species into smaller units comes with an inherent risk of
‘under- or over-splitting’ that is amplified when non-molecular data are used because genetic
divisions may be cryptic (Frankham et al. 2019). Over-splitting a species into several ESUs
could artificially inflate estimated extinction risks. Conversely, under-splitting a species could
give a falsely optimistic picture of extinction risk or Green Status or inhibit species
management actions, in turn exacerbating extinction risk and fueling genetic diversity loss
(Frankham et al. 2019, Liddell et al. 2021). Careful interpretation is therefore critical, as ESU
delineation influences threat assessments, management decisions, and recognition of adaptive

potential in global conservation policy. An extensive risk assessment has been developed for
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the framework to help assessors and experts balance these challenges (Supplementary material
section C and Table 1). However, balancing the patterns identified with their uncertainty often
requires genetic knowledge. Authors conducting molecular research can support managers and
assessors by offering clear lay summaries of their results in publications and depositing data in
open access repositories to support reuse (Leigh et al. 2024). In turn assessors can seek advice
from trusted sources during evaluations.

In the future, advances in genomics will provide us with deeper biological insights that could
be relevant to management. For example, genetic load consists of deleterious alleles whose
frequency and presence can vary across isolated genetic units. Undoubtedly, a diversity of
genomic data types could become increasingly important for the effective management of
ESUs (Dussex et al. 2023). Nevertheless, we have not yet included genetic load as a criterion
in this framework, because it remains challenging to identify and is less relevant for ESUs
delineation, which focuses on the evolutionary heritage that conservation managers aim to
preserve (more details provided in the Supplementary material, Section D and van Oosterhout
et al. (2025)). Though we have designed a framework that is not entirely reliant on molecular
data, it is an important line of evidence where resolution will also improve in the future and
reassessments could be needed. Genetic or genomic data, often best capture long-term
processes of adaptation (i.e., natural selection) and the accumulation of mutations that shape
evolutionary trajectories (Allendorf et al. 2022). Data quality and resolution—such as uneven
sampling, low marker density, or poor study design—can inflate or obscure signals of
population genetic structure. The type and density of sequence data (e.g., microsatellites, SNP
arrays, or GBS) strongly influence the resolution of ESU (and even subpopulation) delineation,
with low-density markers or sparse sampling increasing the likelihood of misclassification.
These limitations underscore that ESU boundaries should be treated as working hypotheses,

subject to refinement as new evidence emerges.

How Subpopulations and Evolutionarily Significant Units could fit into Conservation

Assessment Frameworks

The importance of delineating biologically meaningful units is underscored by recent cases
where molecular evidence has reshaped IUCN Red List assessments. In some species, weakly
supported subspecies designations were shown to be unfounded, leading to their collapse or
consolidation (e.g., Puma concolor; Culver et al. 2000, Nielsen et al. 2015; Panthera tigris;
Goodrich et al. 2015, Wilting et al. 2015). In other cases, genomic data revealed deep
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evolutionary divergences that had been obscured under traditional taxonomy, prompting
recognition of distinct units with separate conservation assessments (e.g., giraffes, Giraffa spp.;
Fennessy et al. 2016, Coimbra et al. 2021, Bertola et al. 2024; African elephants, Loxodonta
spp.; Roca et al. 2001, Gobush et al. 2021). These examples illustrate how outdated or
unfounded subspecies classifications may misdirect conservation resources, whereas
delineating ESUs and subpopulations provides a more robust, evolutionarily grounded basis

for assessments.

The framework proposed here provides a standardized approach for identifying and delineating
subpopulations and ESUs, which could potentially inform existing IUCN frameworks and
assessments (Red List and Green Status of Species). Within the Red List, for example,
delineated subpopulations and ESUs could be documented under the taxonomy section or
accompanying metadata to provide context on within-species genetic diversity. In some cases,
this approach could serve as a more biologically grounded replacement, or supplement, to
traditional subspecific assessments, particularly where subspecies designations are weakly
supported or inconsistent across taxa. This information might support more nuanced
assessments of extinction risk, particularly for subpopulations that are highly differentiated or
potentially at risk due to fragmentation or isolation (Criterion B; IUCN 2024). In the Green
Status of Species (IUCN 2021), delineating ESUs could offer additional insight into the
retention of historical genetic diversity alongside existing measures of range and population
recovery. Once subpopulations or ESUs are delineated, genetic data or proxy measures could
inform indicators such as ecosystem functionality (IUCN 2024), providing context on

evolutionary processes.

Both phases of this framework can provide complementary information relevant to Red List
assessments under Criterion B, which considers species with subpopulations that are severely
fragmented (i.e., smaller than necessary to support a viable population; IUCN 2024). Severe
fragmentation is currently inferred from habitat fragmentation alone. Information on
subpopulations within the same ESU, particularly where high human-mediated genetic
differentiation is observed, could provide complementary evidence to inform assessments on
fragmentation. Furthermore, identifying ESUs could help distinguish whether observed
subpopulation fragmentation is recent and harmful, or an ancient pattern that is unlikely to

influence extinction risk.
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Delineation of ESUs can also assist with prioritizing site-based protection measures, from local
to regional scales. Many conservation initiatives are focused on site-based protection (e.g.,
30x30, Protected and Conserved Areas; CBD 2022). Understanding which ESUs are present
could help highlight the differential conservation value of sites across a species’ range and
ensure that unique ESUs are not overlooked. The IUCN tool recently developed to support site
prioritization is the ‘Global Standard for the Identification of Key Biodiversity Areas’ (KBAs;
IUCN 2016). While ESUs often span multiple KBAS, standardized ESU delineation could
provide additional evidence for identifying KBAs under criteria related to distinct genetic
diversity (criteria Al, B1 & B2 for threatened species). This information could also contribute
to assessments of relative value of KBAs supporting species that are not currently threatened
or range-restricted (criteria D&E), by highlighting the presence of unique within-species

genetic units.

Importantly, delineating subpopulations and ESUs can help identify units experiencing
different threats across a species’ range. Recognizing these differences allows for unit-specific
assessments of extinction risk or recovery, highlighting subpopulations that may require
targeted conservation actions. This approach enhances the utility of the third level of IJUCN
assessments, ensuring that management priorities reflect both the evolutionary and ecological
realities of within-species variation. Moreover, the units identified through this framework
represent a first step toward linking ecological and evolutionary groupings to quantitative
genetic indicators, such as the KMGBF’s headline indicator - the proportion of populations
with an effective population size greater than 500 individuals. By defining biologically
meaningful units in Phase 1, these groupings could subsequently serve as the basis for
estimating effective population sizes and monitoring genetic diversity at scales relevant for

conservation action.

In this paper, we outlined a two-step framework to standardize the delineation of
subpopulations and ESUs by integrating genetic and non-genetic evidence. By providing a
consistent approach to recognise biologically meaningful within-species units, the framework
can complement existing [UCN assessments, offering additional context on species’ genetic

structure and evolutionary processes. Such information could inform conservation priorities,
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support more nuanced interpretation of recovery or extinction risk indicators, and contribute to

efforts at maintaining and enhancing global genetic diversity.
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