- 1 A practical framework for identifying genetic subpopulations and ESUs: insights for
- 2 IUCN assessments and broader management

- 4 Geue J.C¹*., Bertola L.D^{2,3}., Bloomer P.⁴, Brüniche-Olsen A.⁵, da Silva J.M.^{6,7}, DeWoody
- 5 J.A.⁸, Fedorca A.^{9,10}, Godoy J. A.¹¹, Grueber C.E.¹², Hunter M.E.¹³*, Hvilsom C.¹⁴, Jensen
- 6 E.L.¹⁵, Kopatz A.¹⁶, MacDonald A.J.¹⁷, Pérez-Espona S.¹⁸, Piaggio A.J.¹⁹, Pierson J.²⁰, Russo
- 7 IM.²¹*, Senn H.²², Segelbacher G.¹*, Sunnucks P.²³, van Oosterhout C.²⁴, Leigh D.M.^{25,26,27}*.
- 8 *co-corresponding author
- 9 All authors are members of the IUCN SSC Conservation Genetics Specialist Group (CGSG)

10

- 11 Julia C. Geue
- 12 julia.geue@wildlife.uni-freiburg.de
- 13 1 Wildlife Ecology and Management, University Freiburg, Freiburg im Breisgau, Germany
- 14 ORCID:0000-0002-1038-8614

15

- 16 Laura D. Bertola
- 17 laura.bertola@gmail.com
- 18 2 Department of Biology, University of Copenhagen, Copenhagen, Denmark
- 19 3 National Centre for Biological Sciences, TIFR, Bangalore, India.
- 20 ORCID: 0000-0002-3445-0355

21

- 22 Paulette Bloomer
- paulette.bloomer@up.ac.za
- 24 4 Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and
- 25 Microbiology, University of Pretoria, Pretoria, South Africa
- 26 ORCID: 0000-0002-6357-0153

27

- 28 Anna Brüniche-Olsen
- anna.bruniche-olsen@sund.ku.dk
- 30 5 Center for Macroecology, Evolution and Climate, GLOBE Institute, University of
- 31 Copenhagen, Copenhagen, Denmark
- 32 ORCID: 0000-0002-3364-2064

33

34 Jessica M. da Silva

- 35 j.dasilva@sanbi.org.za
- 36 6 South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town,
- 37 South Africa
- 38 7 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology,
- 39 University of Johannesburg, South Africa
- 40 ORCID: 0000-0001-8385-1166

- 42 J. Andrew DeWoody
- 43 dewoody@purdue.edu
- 44 8 Department of Forestry & Natural Resources and Biological Sciences, Purdue University,
- 45 West Lafayette Indiana, USA
- 46 ORCID: 0000-0002-7315-5631

47

- 48 Ancuta Fedorca
- 49 ancutacotovelea@yahoo.com
- 50 9 Department of Wildlife, National Institute for Research and Development in Forestry "Marin
- 51 Dracea", Brasov, Romania
- 52 10 Department of Silviculture, Faculty of Silviculture and Forest Engineering, Transilvania
- 53 University of Brasov, Brasov, Romania
- 54 ORCID: 0000-0001-5828-5422

55

- 56 José A. Godoy
- 57 godoy@ebd.csic.es
- 58 11 Estación Biológica de Doñana, CSIC, Seville, Spain
- 59 ORCID: 0000-0001-7502-9471

60

- 61 Catherine E. Grueber
- 62 <u>catherine.grueber@sydney.edu.au</u>
- 63 12 School of Life and Environmental Sciences, Faculty of Science, The University of Sydney,
- 64 Camperdown, Australia
- 65 ORCID: 0000-0002-8179-1822

- 67 Margaret E. Hunter
- 68 mhunter@usgs.gov

- 69 13 U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, United 70 States 71 ORCID: 0000-0002-4760-9302 72 73 Christina Hvilsom 74 hvilsomgenes@gmail.com 75 14 International Union for Conservation of Nature (IUCN) Conservation Genetics Specialist 76 Group (CGSG), Gland, Switzerland 77 ORCID: 0000-0001-7870-6888 78
- 79 Evelyn L. Jensen
- 80 <u>evelyn.jensen@newcastle.ac.uk</u>
- 81 15 School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon
- 82 Tyne, United Kingdom
- 83 ORCID:0000-0002-1819-3117
- 85 Alexander Kopatz

89

95

- 86 <u>alexander.kopatz@nina.no</u>
- 87 16 Norwegian Institute for Nature Research, Trondheim, Norway
- 88 ORCID: 0000-0002-9139-1179
- 90 Anna J. MacDonald
- 91 anna.macdonald@aad.gov.au
- 92 17 Australian Antarctic Division, Department of Climate Change, Energy, the Environment
- 93 and Water, Kingston, Australia
- 94 ORCID: 0000-0003-2972-200X
- 96 Silvia Pérez-Espona
- 97 silvia.perez-espona@ed.ac.uk
- 98 18 Royal (Dick) School of Veterinary Studies and The Rosline Institute, Edinburgh, United
- 99 Kingdom
- 100 ORCID: 0000-0001-7098-4904
- 102 Antoinette J. Piaggio

103 Toni.J.Piaggio@usda.gov 19 United States Department of Agriculture, Animal Plant Health Inspection Service, Wildlife 104 105 Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America 106 ORCID:0000-0002-4701-0746 107 108 Jennifer C. Pierson 109 jennifer.pierson@australianwildlife.org 20 Australian Wildlife Conservancy, Subiaco, WA, 6008, Australia 110 111 ORCID: 0000-0003-4140-010X 112 113 Isa-Rita M. Russo 114 russoim@cardiff.ac.uk 115 21 School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales, United 116 Kingdom 117 ORCID: 0000-0001-9504-3633 118 119 Helen Senn 120 hsenn@rzss.org.uk 22 Royal Zoological Society of Scotland, Edinburgh Zoo and Highland Wildlife Park, 121 122 Scotland, United Kingdom 123 ORCID: 0000-0002-3711-8753 124 125 Gernot Segelbacher 126 gernot.segelbacher@wildlife.uni-freiburg.de 127 1 Wildlife Ecology and Management, University Freiburg, Freiburg im Breisgau, Germany 128 ORCID: 0000-0002-8024-7008 129 130 Paul Sunnucks paul.sunnucks@monash.edu 131 132 23 Wildlife Genetic Management Group, School of Biological Sciences, Monash University, 133 Melbourne 3800, Victoria, Australia ORCID: 0000-0002-8139-7059 134 135 Cock van Oosterhout 136

137	C.Van-Oosterhout@uea.ac.uk
138	24 School of Environmental Sciences, University of East Anglia: Norwich, Norfolk, United
139	Kingdom
140	ORCID: 0000-0002-5653-738X
141	
142	Deborah M. Leigh
143	deborah.leigh@senckenberg.de
144	25 LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
145	26 Senckenberg Research Institute, Frankfurt, Germany
146	27 Institute of Ecology, Evolution, and Diversity, Faculty of Biosciences, Goethe University
147	Frankfurt, Frankfurt, Germany
148	ORCID: 0000-0003-3902-2568
149	
150	

Abstract

Species conservation assessments, such as the International Union for Conservation of Nature (IUCN) Red List and Green Status of Species, guide global conservation priorities by evaluating species' extinction risk and recovery status. Although such frameworks provide scope to include genetic information, this aspect of biodiversity, which is critical for species' fitness and adaptive potential, remains underrepresented. The Kunming–Montreal Global Biodiversity Framework now explicitly highlights genetic diversity, offering an opportunity to strengthen its integration into these assessments. While the IUCN can account for subpopulations, these units are rarely applied, and Evolutionarily Significant Units (ESUs) remain formally unacknowledged. Incorporating these genetic units could enhance representation of adaptive genetic diversity and better inform conservation planning and decision-making, though defining them can be difficult when data are limited. We propose a flexible framework that integrates molecular and non-molecular evidence to identify subpopulations and ESUs across taxa and contexts.

Keywords

- 168 Conservation policy
- 169 Evolutionarily Significant Unit
- 170 Genetic diversity
- 171 IUCN species assessments
- 172 Subpopulations

Box 1: Key terms

<u>CBD</u> the United Nations Convention on Biological Diversity is the foremost authority and key international treaty on biodiversity, which includes explicit commitments and agreements to conserve and monitor biodiversity (https://www.cbd.int/). The Kunming-Montreal Global Biodiversity Framework (KMGBF) is a recent agreement adopted in December 2022 with commitments from 196 signatory nations. The agreement provides a pathway for halting and reversing global biodiversity loss. Importantly, genetic diversity is explicitly recognized in this agreement as a core component of biodiversity that must be conserved, monitored, and reported.

<u>Evolutionarily Significant Units</u> "ESUs" are lineages demonstrating highly restricted gene flow from other such lineages within the higher organizational level of species (Fraser and Bernatchez 2001). Due to limited gene flow, these subpopulation networks follow their own evolutionary trajectories and thus are likely to house unique adaptive genetic diversity (Funk et al. 2012; Figure 1c).

A <u>population</u> within the IUCN Red List framework is defined as the total number of individuals of the taxon (i.e, species or subspecies) (IUCN 2001; Figure 1a), which differs from its common biological usage (IUCN 2003). Due to the multiple definitions of this term, we have avoided it in the remainder of this manuscript.

<u>Subpopulations</u> in the IUCN Red List framework are geographically or otherwise distinct groups in a population between which there is little demographic or genetic exchange (typically one successful migrant individual or gamete per year or less; (IUCN 2001; Figure 1b).

178

179

180

181

182

Why list Subpopulations and Evolutionarily Significant Units in IUCN assessments?

Genetic diversity is the foundational level of biodiversity but remains rarely considered in global conservation programs (e.g., neglected in protected area design, Paz-Vinas et al. 2025; species recovery plans, Pierson et al. 2016; in IUCN assessments, Schmidt et al. 2023; and in

recent policy like the European Union Nature Restoration Law, O'Brien et al. 2024). Though the recently adopted United Nations Convention on Biological Diversity (CBD; Box 1) Kunming-Montreal Global Biodiversity Framework includes explicit commitments to conserve and monitor genetic diversity (Target 4; CBD 2022, da Silva et al. 2026), a greater integration into other conservation initiatives is urgently needed to help address the decline of global genetic diversity.

Irreversible allelic diversity and heterozygosity loss have been documented across hundreds of species (Leigh et al. 2019, Shaw et al. 2025). Human activities are frequently leading to the extirpation of entire subpopulation networks (Ceballos et al. 2017, Mastretta-Yanes et al. 2024), which likely harboured distinct alleles and possibly local adaptations, representing a loss of unique evolutionary trajectories. Genetic diversity underpins fitness, resilience, and adaptive potential (Reed and Frankham 2003, Swindell and Bouzat 2005, Hughes et al. 2008, Harrisson et al. 2014, Frankham 2015, Ørsted et al. 2019, DeWoody et al. 2021, Kardos et al. 2021, Meek et al. 2023, van Oosterhout et al. 2025), and its erosion is closely linked with species extinction risk through reduced capacity to respond to environmental change or disease threats (Frankham 2005, Evans and Sheldon 2008, Polishchuk et al. 2015). Importantly, demographic recovery of a population does not imply genetic recovery, lost genetic variation may remain depleted for many generations, highlighting the need to maintain distinct subpopulations and ESUs (Nei et al. 1975, Frankham 2005). Thus, losses in genetic diversity represent a threat to all levels of biodiversity.

The International Union for Conservation of Nature (IUCN) and its Red List of Threatened Species (a catalogue of over 163,000 species) is the international standard in assessing the extinction risk of species based on the best available information. Extinction risk is calculated on the occupation of the focal species' historical range, census size and trends, habitat quality and fragmentation level (IUCN 2001), but genetic diversity is not formally included in assessment criteria (Schmidt et al. 2023, van Oosterhout 2024). As a result, Red List conservation status is not directly correlated with remaining levels of genetic diversity or magnitude of loss (Leigh et al. 2019, Mastretta-Yanes et al. 2024, Shaw et al. 2025). In the more recently established IUCN Green Status of Species (IUCN 2021), recovery of pre-impact

census size is assessed as a measure of conservation success. Although genetic diversity is not explicitly assessed, it is sometimes discussed in Green Status assessments. In some cases, species with substantial, irreversible genetic diversity loss have received high Green Status recovery scores, despite persistent risk of inbreeding and limited adaptive capacity (e.g., Alpine ibex; Brambilla et al. 2020). Though IUCN conservation status (i.e., extinction risk and recovery status) does not directly prescribe protection or species management, greater consideration of genetic diversity is necessary to identify important groups in need of protection.

The recently adopted genetic diversity indicators in the CBD Kunming-Montreal Global Monitoring Framework (KMGBF) provide inclusive access to genetic diversity assessment without necessarily requiring molecularly-derived information (Mastretta-Yanes et al. 2024, Hoban et al. 2025). These indicators track the maintenance of genetic diversity by assessing and monitoring key evolutionary processes, such as the persistence of subpopulations, connectivity between them, and the retention of adaptive variation across species. In practice, this means that even in the absence of genome-wide data, information from ecological surveys, demographic records, and well-documented populations can be used to infer whether genetic variation is being preserved and whether evolutionary processes are likely to continue. Adopting a similar approach within IUCN assessment criteria is a potential way to include genetic concerns without the need for scarce molecular data (less than 1.5% IUCN Red List assessed species have accessible molecular data, Paz-Vinas et al. 2025). Building on the KMGBF approach, the framework presented here offers a method to identify within-species units at scales relevant for evolutionary processes, which could inform assessments, within the IUCN and more broadly, to highlight units that contribute to overall genetic diversity.

Conservation-relevant evolutionary processes can be categorized into two spatiotemporal scales (Figure 1). Short-term processes, such as gene flow and genetic drift, shape the genetic structure of species over relatively few generations across "subpopulations". Subpopulations, as defined under the IUCN, are akin to the common biological usage of "populations" (see key terms in Box 1) and correspond to the units used for genetic indicators in the Global Biodiversity Framework (Figure 1b). Longer-term processes, including environmental

adaptation (i.e., response to natural selection) and the accumulation of alleles through mutation, shape the evolutionary trajectory of a species across networks of several subpopulations. These distinct networks are known as "Evolutionarily Significant Units" (hereafter ESUs) (Allendorf et al. 2022; Figure 1c). ESUs can follow their own evolutionary trajectory and may occupy unique or different ecological niches to other units within their species. Identifying and considering ESUs can help maintain evolutionary processes beyond individual units, supporting broader ecosystem function. We note that the distinction between short and long timescales may not always be time dependent, as some evolution can occur rapidly. However, we note that we explicitly do not consider human-mediated (e.g., selection for desirable phenotypes) or drift driven change (e.g., due to human isolation) as valid evolutionary trajectories for ESUs.

The IUCN currently assesses species at three levels: species (Figure 1a), subspecies, and subpopulations (Figure 1b). While ESUs (Figure 1c) are not formally recognized as a separate unit of assessment, they represent biologically meaningful within-species groups that may not be captured by subspecies or subpopulation delineations (e.g., Cape parrot, Coetzer et al. 2015; Leopard skink, Prates et al. 2023). Subpopulations are a recognized unit, but fewer than 5% of species have them delineated on the Red List (Janet Scott, Programme Officer at IUCN, written communication, April 2024), reflecting the lack of standardized usage. Considering subpopulations and ESUs in species assessments could provide additional insight into the structure and evolutionary potential of species, supporting more nuanced conservation prioritization and decision-making.

Conservation Units, including ESUs, have a longstanding history in scientific conservation assessments. The term ESU was first conceptualized by Ryder (1986), and subsequent studies have proposed varying criteria to define them as conservation-relevant units (overview in Fraser and Bernatchez 2001). However, challenges arise in standardizing ESU delineation due to the multidisciplinary nature of conservation science and differing approaches to genetic and ecological data (e.g., Moritz 1994, Crandall et al. 2000, Funk et al. 2012). For example, ecological factors such as habitat specialization or behavioral differences play a role in the divergence of ESUs and might be overlooked if genomic data alone are used to determine them.

In turn, similar phenotypes that are underpinned by different genomic adaptations can also be overlooked if phenotypic data alone are used (Fenster and Dudash 1994). A holistic approach that integrates genetic and non-genetic metrics, including adaptive and ecological variation, has been recommended to improve comparability and relevance (Fraser and Bernatchez 2001, Robertson et al. 2014).

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

276

277

278

279

280

To support the consideration of ESUs and subpopulations in IUCN and other conservation assessments, we present a comprehensive and flexible framework for standardized ESU identification and improved subpopulation delineation. Our aim is that by identifying unique genetic units their passive loss could be mitigated by the identification of units at risk of extinction (i.e., extinction of unique variation or disrupted evolutionary processes). Though we have developed our framework specifically to support IUCN assessments, we acknowledge dividing species into subpopulations or ESUs could unintentionally impact downstream conservation management decisions. A recent meta-analysis found a strong historical tendency in conservation management to define units as genetically distinct through data misinterpretation and/or weak or no evidence (Liddell et al. 2021). These divisions have previously led to erroneously isolated units that unnecessarily increased extinction risk (e.g., Perameles gunni; Weeks and Rypalski 2021). We strongly stress that division of species into subpopulations or ESUs through any framework does not indicate a need to manage units in isolation (e.g., Senn et al. 2014) but rather could be used to help highlight unique units at risk of extinction and in need of protective actions (e.g., translocations; habitat restoration) to prevent irreversible genetic diversity loss or disruption of evolutionary processes. We also draw attention to the risk assessments included throughout this paper.

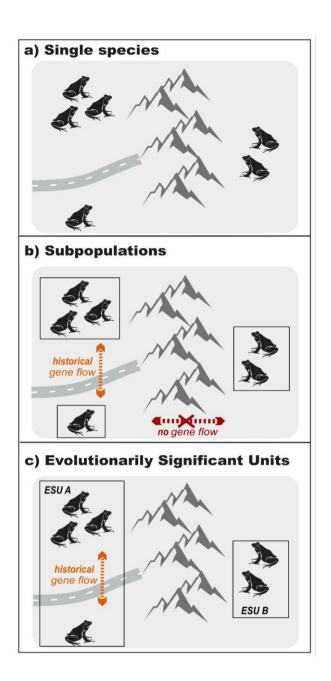


Figure 1 - Within the IUCN assessment guidelines, listing of distinct groups can occur at species (a), subspecies-(not shown), or subpopulation (b) levels. We suggest the inclusion of Evolutionarily Significant Units "ESUs" (c). Note that one or several subpopulations together can form an ESU and their grouping is determined by gene flow. In this cartoon example, gene flow is depicted as being restricted between the ESUs by geographical barriers (mountains). The two subpopulations on the left side of the panel were historically linked by gene flow, while this was interrupted by a road, we do not consider them ESUs because the interruption of their gene flow is anthropogenic and they have the same historical evolutionary trajectory thus they are one ESU.

Subpopulation and ESU standardized framework

The framework we outline here for standardized identification of subpopulations and ESUs has two steps: first, identifying genetically meaningful subpopulations and, second, grouping these into ESUs. Though we recognize the existence of several ESU frameworks (e.g., Fraser and Bernatchez 2001, Funk et al. 2012), a framework using multiple lines of evidence is necessary for objective and standardized identification of IUCN-relevant groups.

Three types of data are used in this delineation framework: genetic, recorded biological and inferred evidence (Figure 2a). Genetic evidence derives from genetic or genomic markers (e.g., single nucleotide polymorphisms [SNPs], microsatellites, mitochondrial haplotypes) and is leveraged to assess differentiation and/or evolutionary distinctiveness, including adaptive divergences, of groups within a species. Recorded biological evidence does not require genetic data (e.g., observed biogeographic patterns, variation in transmitted traits) and comes directly from individuals in the assessed focal species. Inferred evidence also does not require genetic data and is not directly observed in the focal units, e.g., is deduced from biogeographic patterns based on modelling techniques. To guide assessors, we have comprehensively listed categories, specific analyses within each evidence-type and data that can be used (Table 1).

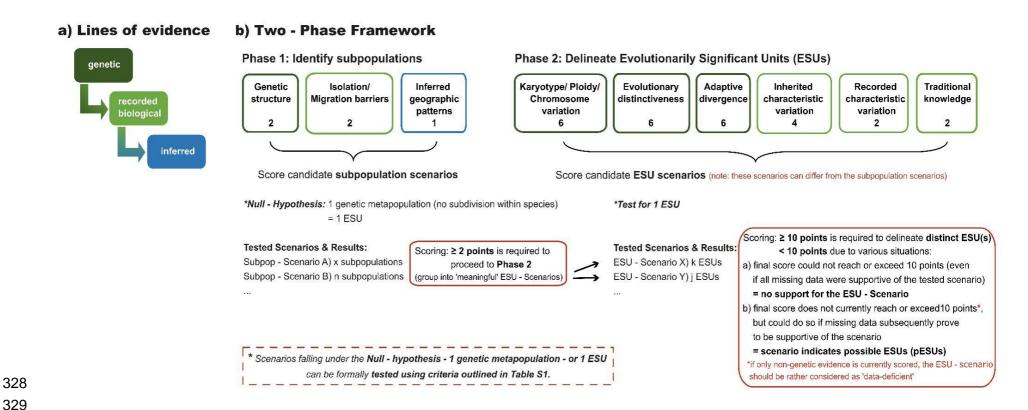


Figure 2 - a) Lines of evidence and b) the Two-phase framework to assess the strength of evidence for subpopulations and Evolutionarily Significant Units (ESUs). Different lines of evidence are highlighted in dark green, green or blue. Scores for each evidence category are indicated within the boxes. Higher scores indicate increased support. The scores quantify how informative each category of evidence is in assessing the likelihood that a subpopulation or ESU is distinct. The framework is followed using different 'candidate scenarios' for various supported groupings of the species. In the case of conflicting evidence, assessors should divide the species into all different 'scenarios' and score each scenario separately. If no data or unclear data are available a score of 0 should be awarded and the evidence category is marked as 'missing'.

Table 1 Three categories of evidence used in the two-step framework to delineate subpopulations and ESUs, each containing multiple lines of evidence. For each line of evidence, a description of the methods and metrics used to assess it, examples of supporting studies, and the main risks of over- or under-splitting units are provided. Scores assigned to each line of evidence are also shown. Additional details on the risks of over- and under-splitting for each line of evidence and references are provided in Supplementary material, Section C.

Types of evidence	Description	How to assess?	Example studies using evidence categories	Main Risks of over- and under-splitting	Score
Genetic evidence	2				
Genetic structure (Phase 1)	Substantial genetic structure and fragmentation mostly determined by limited gene flow between subpopulations.	 a) structure-like analyses such as Structure, Admixture plots, PCA, DAPC, D-stats b) high pairwise Fst values (relative to the species wide pairwise levels), c) abundance of private alleles, that indicate long term limited gene flow 	e.g., Abbott and Double 2003	Over-splitting: cluster detection bias, over-estimation of genetic differentiation by visual inspection, over-interpreting private alleles Under-splitting: generally low	2
		between subpopulations		risk	
Karyotype, ploidy, and chromosome structure	Documented heritable differences in chromosome number, ploidy, or	Using conventional cytogenetic methods (e.g., chromosome counting, karyotyping), flow-cytometry and/or molecular cytogenetics (with structural	e.g., Ferreira et al. 2017, Ahrens et al. 2020, Hollenbeck et al. 2022	Over-splitting: misinterpreting neutral karyotype variation as evidence for ESUs	6
variation (Phase 2)	chromosome structure between candidate	variant detection softwares) to detect: a) karyotype variation		Under-splitting: missing important karyotypic	
	ESUs.	 b) differences in ploidy levels between units c) Structural variation of chromosomes between units d) evidence of po/rere/unfit bybrids 		differences due to insufficient sampling or low technical resolution	
		between units d) evidence of no/rare/unfit hybrids between proposed units.			

Types of evidence	Description	How to assess?	Example studies using evidence categories	Main Risks of over- and under-splitting	Score
Evolutionary distinctiveness (Phase 2)	Genetic evidence of reproductive isolation, due to highly restricted or no gene flow between focal ESUs that may have fuelled evolutionary distinctiveness.	a) reciprocal monophyly b) molecular estimates of divergence time. In complex cases, follow clades supported by ≥75% bootstrap or posterior probability values, derived from a statistically valid evolutionary model and tree-building method.	e.g., Moritz 1994, Moritz and Faith 1998, Walsh et al. 2024	Over-splitting: over- interpretation of reciprocal monophyly or long divergence times (dependent on methodology used and species context/history), assuming no current gene flow means no historical gene flow Under-splitting: over-	6
				interpretation of lack of reciprocal monophyly, overlooking variation across the genome	
Adaptive divergence (Phase 2)	Robust genetic evidence of candidate ESUs harbouring unique local adaptation(s) driven by selection (e.g., environmental, sexual	a) robust genomic signals of local adaptations supported by multiple selection detection methods and ideally in combination of non-genomic information (e.g., Gene-environment associations using Bayenv, RDA, RandomForest)	e.g., Bonin et al. 2007, Rodríguez-Quilón et al. 2016	Over-splitting: false positives in outlier tests, environment-based detection confounded by neutral structure, hybrid zones misinterpreted as ESU boundaries	6
	selection) that are not shared with other ESUs.	b) evidence of stable hybrid zones		Under-splitting: no outlier detection due to low statistical power, ignoring hybrid zone context	

Types of evidence	Description	How to assess?	Example studies using evidence categories	Main Risks of over- and under-splitting	Score
Recorded biolog	ical evidence				
Isolation and barriers to migration (Phase 1)	Subpopulations show evidence of isolation (i.e., long-term signs of restricted gene flow due to geographic, environmental, or temporal differences) between them. Alternatively, subpopulations show evidence of recently restricted gene flow due to human mediated change (e.g., habitat fragmentation, extirpation of connecting subpopulations etc).	a) occupation of different biogeographical zones (e.g., habitat maps, maps on environmental patterns) b) occupation of discrete remnants of historical habitats with little to no chance of natural migration between habitat patches.	e.g., Hewitt 2004, Lorenzen et al. 2012	Over- and undersplitting: misinterpretation of observed patterns as natural-long term patterns, misidentification of species or environmental drivers for species	2

Types of evidence	Description	How to assess?	Example studies using evidence categories	Main Risks of over- and under-splitting	Score
Inherited characteristic variation (Phase 2)	Candidate ESUs show consistent heritable differences in life history or ecologically/species important traits (e.g., body size, colour,	a) heritable differences in focal traits observed in common garden experiments or other robust analytical tests (e.g., cross-fostering, trait measurements controlling for environmental variation)	e.g., Small et al. 1998, Wainwright et al. 2008	Over-splitting: confusing plasticity with adaptation, overinterpretation nonfunctional traits, neglecting distorted variation in small subpopulations	4
	breeding time, use of spawning grounds).			Under-splitting: failing to recognize evolved differences in phenotypic plasticity	
Recorded characteristic variation (<i>Phase 2</i>)	Candidate ESUs show consistent differences in traits that are locally transmitted but not robustly shown to be heritable (acquired	 a) cultural/learnt behavioural differences unique or specific between units b) acquired/transmitted traits (e.g., foraging techniques, alternative migration routes, regional birdsong 	e.g., Gu et al., 2021; Lundberg et al., 2017; Sanchez-Donoso et al., 2022; Toews et al., 2019	Over-splitting: misinterpretation of acquired behaviours or phenotypic differences as barriers to gene flow	2
	behavioural or phenotypic differences; environmentally modified traits)	'dialects'; methylation differences; body size differences) c) general field-based morphological and functional trait assessments		Under-splitting: study bias (lack of studies in general = data-deficiency, study selection bias)	

Types of evidence	Description	How to assess?	Example studies using evidence categories	Main Risks of over- and under-splitting	Score
Traditional knowledge (Phase 2)	Distinctiveness between candidate ESUs based on indigenous, local, or traditional knowledge.	a) recorded differences based on traditional and information local knowledge (according to the IUCN ILK framework, IUCN, 2022). This encompasses information that is not yet statistically analysed, information that is analysed should be counted as inherited or recorded characteristics.	e.g., a proposed tool to use ILK species assessments (Montanari and Kanagavel 2017)	Over- and undersplitting: if not all relevant stakeholders are consulted, leading to a biased perspective	2
Inferred eviden	<u>ce</u>				
Inferred geographic patterns (Phase 1)	Subpopulation differentiation and fragmentation modelled from the focal species through e.g., species distribution modelling approaches, or measured/ observed from closely related	a) subpopulation disjunction from co- occurring species used as a proxy b) phylogeographic and/or biogeographic evidence from co- occurring species c) assumption of biogeographical data/refugia without direct evidence d) dispersal distance and buffer according to the CBD indicators		Over-splitting: overinterpretation of detected patterns when they don't reflect genetic differentiation Under-splitting: patterns in co- occurring species as proxies can obscure detected differences	1
	species.	according to the CBD indicators			

To enable the application of a pre-defined threshold for delimiting subpopulations or ESUs, each line of evidence is given a score. The value of the score corresponds to the strength of evidence. Scores range from 1 to 6. Values of 6 are for evidence-types that offer the strongest support (i.e., genetic/genomic signals of prolonged reproductive isolation and/or local adaptations). A score of 6 is only possible in Phase 2, as these differences occur between ESUs. Scores of 4 and 2 are given to strongly suggestive evidence categories that reflect genetic divergence or non-molecular signs of local adaptation. A score of 1 is given to data that are entirely inferred, such as information from projections (e.g., maps, species distribution models) or information inferred from closely-related species. This is a common, but high-risk evidence-type, and its low score reflects this associated risk. The relative weighting of evidence-types reflects the IUCN's nature of evidence rule for assessment criteria (see IUCN 2024). A score of 0 is given if there is no data available. The framework does not allow for fractions or partial scores, scores are in even increments to support quick summing. We have strived to keep the scoring system simple, but a degree of complexity is needed to capture all outcomes.

To determine the number of divisions, assessors should leverage the collected evidence from the categories detailed in Table 1 and divide the species into the most likely groups of subpopulations and ESUs, each grouping is called a 'candidate scenario'. Focus should be on the most likely or relevant groupings, particularly those that may exhibit signs of isolation. Detailed step-by-step guidance on applying these criteria is provided in the accompanying guidance document at https://github.com/iucn-CGSG/Subpop-ESU-Webtool. In the case of conflicting evidence, assessors should divide the species into the potential 'scenarios' and score each scenario separately then take the highest scoring. Different scenarios can be tested for Phase 1 and 2 and subpopulations can be grouped into a smaller number of ESUs. Comprehensive testing of scenarios based on existing knowledge, covering e.g., 1-7 subpopulations or ESUs is unnecessary, as many will be lacking sufficient data. The results of the scenario with the highest score (note this may be different for ESUs and subpopulations) could be used for listing assessment. When defining subpopulations, note that subpopulations can also be driven by human-mediated fragmentation or disruption of gene flow, whereas ESU divisions are likely to be more anciently derived.

To identify distinct subpopulations a total score of ≥ 2 is required in Phase 1. If multiple scenarios are tested, the scenario with the highest score is used. If scores are tied, we recommend choosing the high-score scenario, based on the most robust data (e.g., higher

resolution genetic marker). If two or more distinct subpopulations are delineated, the assessor then tests for ESUs in Phase 2. The scores from Phase 1 do not carry over to Phase 2, because in Phase 2 new candidate scenarios can be tested as it is unlikely that the number of subpopulations and ESUs are identical. A minimum score of 10 is needed to delineate distinct ESUs. This can only be reached if genetic or genomic evidence is collected for the species (Figure 2b and Table 1). At least one genetic evidence category is needed as a 'yes', coupled with either another genetic evidence category or with significant differences in inherited or acquired characteristics and/or traditional knowledge, to support a scenario with distinct ESUs. If fewer than 10 points are scored, the candidate scenario can either be regarded as (a) 'not supported', because 10 points cannot be reached or exceeded even if all missing data were supportive of the tested scenario; or (b) as a 'possible ESU (pESU)' scenario, because the minimum threshold of 10 points could be reached or exceeded if missing data subsequently prove to be supportive of the tested scenario. However, if a candidate scenario currently only scores in recorded biological evidence-types (so non-genetic), the scenario should be regarded as 'data-deficient' rather than as a pESU scenario. At the end of Phase 2, assessors should select the scenario with the highest score.

If no candidate scenarios can reach the minimum threshold of two points in Phase 1 or reach 10 points in Phase 2 (even if missing data could be acquired) the species may comprise a single genetic metapopulation (a set of spatially discrete or semi-discrete groups of individuals that are connected through sufficient gene flow to maintain shared genetic variation) and therefore a single ESU. Assessors can specifically test a scenario with one metapopulation (Phase 1) and one ESU (Phase 2). However, in order to test for a metapopulation or single ESU, compelling evidence indicating the lack of distinctiveness within the species has to be present and scored (criteria are outlined in Table S1 in the Supplementary material, section A). For consistency in the scoring, the same scoring system as for testing multi-subpopulations or -ESU scenarios is applied.

This framework has been tested thoroughly on a variety of species across different taxonomic groups (Table 2) with two detailed examples shown in Box 2 and Box 3 and the best supported candidate scenarios are visualized in Figure 3 and Figure 4. The thresholds of 2 points in Phase 1 and 10 points in Phase 2 are based on the extensive testing of these species, expressing different data availability and characteristics. We envision that as the framework is applied, more evidence types and exceptions will arise, and the framework could be adjusted

accordingly. In order to test this framework and further improve it, we are currently testing species listed in the IUCN Green Status of Species framework (IUCN 2021).

Table 2 - List of species tested using the proposed framework under different candidate scenarios. Only the highest scoring scenarios for Phase 1 (subpopulations) and Phase 2 (ESUs) are shown, as these best support the number of units tested. Scores are shown as points obtained out of the total points available. Relevant data sources supporting each scenario are provided as well as the IUCN Red List and Green Status.

S

Species or subspecies	Phase 1	Phase 2	Genetic Data and studies considered	IUCN Red List status	IUCN Green Status
Common Eland (Tragelaphus oryx)	2 subpopulations (4/4 points)	1 ESU (12/18 points)	Mitochondrial DNA (Gagnon and Chew 2000, Lorenzen et al. 2010, 2012)	Least Concern	not assessed
Mountain Zebra (Equus zebra)	2 subpopulations (4/4 points)	2 possible ESUs (8/14 points)	Mitochondrial and microsatellite data (Moodley and Harley 2005, Kotzé et al. 2019)	Vulnerable	not assessed
African buffalo (Syn cerus caffer)	2 subpopulations (4/4 points)	2 ESUs (22/22 points)	Nuclear genomes, mitochondrial and microsatellite data (Van Hooft et al. 2002, Smitz et al. 2013, 2014, de Jager et al. 2020, 2021, 2025, Quinn et al. 2023, Colangelo et al. 2024, Talenti et al. 2024)	Near Threatened	not assessed
Rodrigues fruit bat (Pteropus rodricensis)	1 subpopulation (4/4 points)	1 ESU	Microsatellite data (O'Brien et al. 2007)	Endangered	not assessed
Iberian lynx (<i>Lynx pardinus</i>)	2 subpopulations (2/4 points)	1 ESU (10/16 points = human mediated admixture due to captive breeding and translocations)		Vulnerable	Largely Depleted

Species or subspecies	Phase 1	Phase 2	Genetic Data and studies considered	IUCN Red List status	IUCN Green Status
African penguin (Spheniscus demersus)	1 subpopulation (2/4 points)	1 ESU	Microsatellite data (Labuschagne et al. 2016)	Critically Endangered	Largely Depleted
Western leopard toad (Sclerophrys pantherina)	4 subpopulations (2/4 points)	2 possible ESUs (6/12 points)	Mitochondrial and microsatellite data (Measey and Tolley 2011, da Silva et al. 2017, Stephens al. 2022)	Endangered	not assessed
Yellow-tufted honeyeater (<i>Lichenostomus</i> melanops)	2 subpopulations (4/4 points)	2 possible ESUs (8/14 points)	Microsatellite data, mitochondrial DNA and nuclear Sequences (Pavlova et al. 2014, Harrisson et al. 2016)	Least Concern	not assessed
Sable Antelope (Hippotragus niger)	5 subpopulations (4/4 points)	5 possible ESUs (6/16 points)	Mitochondrial genomes (Rocha et al. 2022)	Least Concern	not assessed
Black rhinoceros (Diceros bicornis)	7 subpopulations (4/4 points)	7 possible ESUs (6/16 points)	Mitochondrial DNA, microsatellite data, nuclear genomes (Moodley et al. 2017, Sánchez-Barreiro et al. 2023)	Critically Endangered	Largely Depleted
Rewarewa tree (Knightia excelsa)	2 or 4 subpopulations (2 scenarios scored 4/4 points = Assessment should be done by species experts)	2 ESUs (12/16 points)	Whole-genome sequencing data (McCartney et al. 2024)	Least Concern	not assessed
Hawaiian Koa (Acacia koa)	7 subpopulations (4/4 points)	4 ESUs (10/16 points)	Microsatellite data and GBS (genotyping-by-sequencing) data (Shi 2003, Fredua-Agyeman et al. 2008, Baker et al. 2009, Gugger et al. 2018)	Vulnerable	not assessed

Species or subspecies	Phase 1	Phase 2	Genetic Data and studies considered	IUCN Red List status	IUCN Green Status
Black Wildebeest (Connochaetes gnou)	1 subpopulation (4/4 points)	1 ESU	Mitochondrial and microsatellite data (Corbet and Robinson 1991, Vrahimis et al. 2016, Grobler et al. 2018)	Least Concern	not assessed

Box2: Hawaiian Koa (Acacia koa)

In this box we present the results of all the tested candidate scenarios for the Hawaiian koa (*Acacia koa*). Background information and detailed testing output is provided in Supplementary material, Section B and in the guidance document at https://github.com/iucn-CGSG/Subpop-ESU-Webtool. The best supported candidate scenarios are visualized in Figure 3.

Phase 1: Three candidate scenarios are tested:

<u>Subpopulation scenario 1:</u> Genetic clustering and pairwise Fst values based on microsatellite data suggest **two subpopulations**: one on Kaua'i and one spanning Hawai'i, Maui, and O'ahu (Fredua-Agyeman et al. 2008). No clear migration barriers were detected, and no indirect evidence of fragmentation was available. Thus, only genetic structure supported the subdivision.

<u>Subpopulation scenario 2:</u> Genetic clustering and pairwise Fst values based on single nucleotide polymorphisms (SNP) data suggest **seven subpopulations** (Kaua'i, Maui, and O'ahu each with one, plus four on Hawai'i), though some overlapping clusters likely reflect human-mediated dispersal and are a side product of restoration programs (Gugger et al. 2018; Figure 3 for visualization). No clear migration barriers were detected, and no indirect evidence of fragmentation was available. Thus, only genetic structure supported the subdivision.

<u>Subpopulation scenario 3:</u> Natural occurrence patterns across the four Hawaiian Islands suggest **four subpopulations** (Kaua'i, Maui, O'ahu and Hawai'i), aligned with distinct habitats (can be considered different biogeographical zones) and potential migration barriers (Baker et al. 2009). However, genetic/genomic studies did not confirm strong structure, and no indirect fragmentation evidence was available. This scenario is supported mainly by biogeographic isolation.

	Subpo	pulation-sce	narios
	2 subpop	7 subpop	4 subpop
Is there evidence of genetic structure? (2 points)	Yes	Yes	No
Is there evidence of natural isolation or subpopulation	No	No	Yes
fragmentation (through migration barriers)? (2 points)			
Is there inferred evidence of likely subpopulation	No data	No data	No data
fragmentation? (1 point)			
Final scores	2 points	2 points	2 points

Interpretation of Phase 1: All three candidate scenarios meet the minimum threshold of two points, and therefore qualify as subpopulation scenarios. Thus, all three candidate scenarios in Phase 1 scored are moved onto Phase 2.

When scores are tied as seen in this example (all three candidate scenarios scored two points), we recommend selecting the one based on the most robust data to maximize the conservation efforts of genetic diversity. In this example we would consider scenario 2 (seven subpopulations) as the one scenario based on the most robust data. Distinct subpopulation clusters were identified using high-resolution genomic markers (11,000 SNPs from >300 samples via genotyping-by-sequencing). Although microsatellites remain valuable in population genetics, scenario 1 is unlikely to represent the true subpopulation structure. Instead, it might better reflect higher-level structuring at the ESU level, along with scenario

3 (four islands subpopulations). Therefore, the seven subpopulation scenario better represents subpopulation structure.

Phase 2: The same three candidate scenarios are tested:

<u>ESUs scenario 1:</u> Genetic data support two groups (Kaua'i vs. Hawai'i–Maui–O'ahu) which are tested as **two distinct ESUs**, but no additional evidence (karyotype, adaptive divergence, or inherited characteristic variation) supports this split. Missing data was identified when scoring for evolutionary distinctiveness, recorded characteristic variation and traditional knowledge. Provenance tests revealed phenotypic differences across all four islands, but these did not align with the two-ESU grouping. Overall, this scenario scored zero points.

<u>ESUs</u> scenario 2: Genomic data identified seven subpopulations, which are tested as **seven distinct ESUs**, but admixture within the island of Hawai'i contradicts the ESU definition of restricted gene flow. No evidence supported karyotype variation, evolutionary distinctiveness, or adaptive divergence. Provenance tests revealed phenotypic differences across all four islands, but these did not align with the seven-ESU grouping. Missing data was identified when scoring for recorded characteristic variation and traditional knowledge. Overall, this scenario scored zero points.

ESUs scenario 3: Natural occurrence patterns identified four subpopulations, which are tested as **four ESUs**. Adaptive divergence linked to precipitation supports four ESUs corresponding to the four islands (Gugger et al. 2018). These are reinforced by provenance tests showing inherited phenotypic differences matching the island divisions (Baker et al. 2009). No evidence supported karyotype variation and missing data was identified when scoring for evolutionary distinctiveness, recorded characteristic variation and traditional knowledge. Overall, with genomic and phenotypic evidence, this scenario scored 10/16 points.

	E	SUs-scenar	rios
	2 ESUs	7 ESUs	4 ESUs
Is there inherited variation in chromosome numbers,	No	No	No
ploidy level or chromosome structure? (6 points)			
Is there evidence of long-term reproductive isolation?	No data	No	No data
(6 points)			
Is there evidence of local adaptation or adaptive	No	No	Yes
divergence? (6 points)			
Is there evidence of inherited characteristic	No	No	Yes
differences? (4 points)			
Is there evidence supporting transmitted characteristic	No data	No data	No data
differences? (2 points)			
Is there traditional knowledge suggesting	No data	No data	No data
distinctiveness between units? (2 points)			
Final scores	0 points	0 points	10 points

Interpretation of Phase 2: Scenario 3 scored 10/16 points, providing the best-supported ESU scenario and highlighting that each Hawaiian Islands (Kaua'i, Maui, O'ahu and Hawai'i) can be considered a separate ESU.

Hawaiian Koa (Acacia koa) - best supported scenarios for Phase 1 and Phase 2

Figure 3 - Visual summary of the best-supported scenarios for Phase 1 and Phase 2 of the Hawaiian Koa tree (Acacia koa) case study. The top panel summarizes the evidence categories and scores (e.g., 2/2). Categories with insufficient data are assigned "m" for missing and are given 0 points. The lower panel presents a schematic illustrating the outcomes for each best-supported scenario. Each tree symbol represents a single genetic unit, with colours representing unique units. Further details are provided in Supplementary material, Section B.

415

416

Box3: Black Wildebeest (Connochaetes gnou)

In this box we present the results of all the tested candidate scenarios for the Black wildebeest (*Connochaetes gnou*). Background information and detailed testing output is provided in Supplementary material, Section B. The best supported candidate scenarios are visualized in Figure 4.

Phase 1: one candidate scenario is tested:

<u>Subpopulation scenario 1:</u> Genetic analyses using mitochondrial DNA (Corbet and Robinson 1991) and microsatellites (Grobler et al. 2018) showed no clustering, suggesting one single metapopulation, with ongoing migration and no isolation barriers (Vrahimis et al. 2016). No indirect evidence was available to indicate the absence of fragmentation. Thus, this scenario is supported mainly by a lack of genetic structure and a lack of biogeographic isolation.

	1 Metapopulation scenario
Is there no genetic structure? (2 points)	Yes
Are there records of continuous occupation of the range	Yes
with frequent migration between all regions? (2 points)	
Is there inferred evidence of no subpopulation	No data
fragmentation? (1 point)	
Final scores	4points

Interpretation of Phase 1: Overall, the one subpopulation scenario scored 4/4, exceeding the threshold and supporting the null hypothesis that the black wildebeest represents a single subpopulation which can be regarded as a genetic metapopulation and therefore a single ESU no progression to Phase 2 was needed.

Black Wildebeest (Connochaetes gnou)

Phase 1: Identify subpopulations - specifically testing for 1 subpopulation

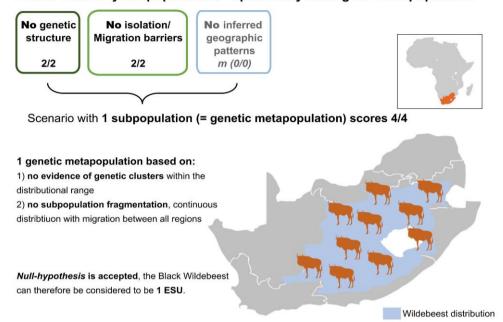


Figure 4 - Visual summary of the best-supported scenarios for Phase 1 and Phase 2 of the Black Wildebeest (Connochaetes gnou) case study. The top panel summarizes the evidence categories and scores. Categories with insufficient data are subdued in colour and assigned m for missing and are given 0 points. The lower panel presents a schematic illustrating the outcomes for each best-supported scenario. The blue polygon represents the metapopulation distribution within South Africa. Further details are provided in Supplementary material, Section B.

ESU and subpopulation division - risks and limitations

Choosing whether or not to split species into smaller units comes with an inherent risk of 'under- or over-splitting' that is amplified when non-molecular data are used because genetic divisions may be cryptic (Frankham et al. 2019). Over-splitting a species into several ESUs could artificially inflate estimated extinction risks. Conversely, under-splitting a species could give a falsely optimistic picture of extinction risk or Green Status or inhibit species management actions, in turn exacerbating extinction risk and fueling genetic diversity loss (Frankham et al. 2019, Liddell et al. 2021). Careful interpretation is therefore critical, as ESU delineation influences threat assessments, management decisions, and recognition of adaptive potential in global conservation policy. An extensive risk assessment has been developed for

the framework to help assessors and experts balance these challenges (Supplementary material section C and Table 1). However, balancing the patterns identified with their uncertainty often requires genetic knowledge. Authors conducting molecular research can support managers and assessors by offering clear lay summaries of their results in publications and depositing data in open access repositories to support reuse (Leigh et al. 2024). In turn assessors can seek advice from trusted sources during evaluations.

In the future, advances in genomics will provide us with deeper biological insights that could be relevant to management. For example, genetic load consists of deleterious alleles whose frequency and presence can vary across isolated genetic units. Undoubtedly, a diversity of genomic data types could become increasingly important for the effective management of ESUs (Dussex et al. 2023). Nevertheless, we have not yet included genetic load as a criterion in this framework, because it remains challenging to identify and is less relevant for ESUs delineation, which focuses on the evolutionary heritage that conservation managers aim to preserve (more details provided in the Supplementary material, Section D and van Oosterhout et al. (2025)). Though we have designed a framework that is not entirely reliant on molecular data, it is an important line of evidence where resolution will also improve in the future and reassessments could be needed. Genetic or genomic data, often best capture long-term processes of adaptation (i.e., natural selection) and the accumulation of mutations that shape evolutionary trajectories (Allendorf et al. 2022). Data quality and resolution—such as uneven sampling, low marker density, or poor study design—can inflate or obscure signals of population genetic structure. The type and density of sequence data (e.g., microsatellites, SNP arrays, or GBS) strongly influence the resolution of ESU (and even subpopulation) delineation, with low-density markers or sparse sampling increasing the likelihood of misclassification. These limitations underscore that ESU boundaries should be treated as working hypotheses, subject to refinement as new evidence emerges.

454455

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

How Subpopulations and Evolutionarily Significant Units could fit into Conservation Assessment Frameworks

456 457

458

459

460

461

462

The importance of delineating biologically meaningful units is underscored by recent cases where molecular evidence has reshaped IUCN Red List assessments. In some species, weakly supported subspecies designations were shown to be unfounded, leading to their collapse or consolidation (e.g., *Puma concolor*; Culver et al. 2000, Nielsen et al. 2015; *Panthera tigris*; Goodrich et al. 2015, Wilting et al. 2015). In other cases, genomic data revealed deep

evolutionary divergences that had been obscured under traditional taxonomy, prompting recognition of distinct units with separate conservation assessments (e.g., giraffes, *Giraffa* spp.; Fennessy et al. 2016, Coimbra et al. 2021, Bertola et al. 2024; African elephants, *Loxodonta* spp.; Roca et al. 2001, Gobush et al. 2021). These examples illustrate how outdated or unfounded subspecies classifications may misdirect conservation resources, whereas delineating ESUs and subpopulations provides a more robust, evolutionarily grounded basis for assessments.

The framework proposed here provides a standardized approach for identifying and delineating subpopulations and ESUs, which could potentially inform existing IUCN frameworks and assessments (Red List and Green Status of Species). Within the Red List, for example, delineated subpopulations and ESUs could be documented under the taxonomy section or accompanying metadata to provide context on within-species genetic diversity. In some cases, this approach could serve as a more biologically grounded replacement, or supplement, to traditional subspecific assessments, particularly where subspecies designations are weakly supported or inconsistent across taxa. This information might support more nuanced assessments of extinction risk, particularly for subpopulations that are highly differentiated or potentially at risk due to fragmentation or isolation (Criterion B; IUCN 2024). In the Green Status of Species (IUCN 2021), delineating ESUs could offer additional insight into the retention of historical genetic diversity alongside existing measures of range and population recovery. Once subpopulations or ESUs are delineated, genetic data or proxy measures could inform indicators such as ecosystem functionality (IUCN 2024), providing context on evolutionary processes.

Both phases of this framework can provide complementary information relevant to Red List assessments under Criterion B, which considers species with subpopulations that are severely fragmented (i.e., smaller than necessary to support a viable population; IUCN 2024). Severe fragmentation is currently inferred from habitat fragmentation alone. Information on subpopulations within the same ESU, particularly where high human-mediated genetic differentiation is observed, could provide complementary evidence to inform assessments on fragmentation. Furthermore, identifying ESUs could help distinguish whether observed subpopulation fragmentation is recent and harmful, or an ancient pattern that is unlikely to influence extinction risk.

Delineation of ESUs can also assist with prioritizing site-based protection measures, from local to regional scales. Many conservation initiatives are focused on site-based protection (e.g., 30x30, Protected and Conserved Areas; CBD 2022). Understanding which ESUs are present could help highlight the differential conservation value of sites across a species' range and ensure that unique ESUs are not overlooked. The IUCN tool recently developed to support site prioritization is the 'Global Standard for the Identification of Key Biodiversity Areas' (KBAs; IUCN 2016). While ESUs often span multiple KBAs, standardized ESU delineation could provide additional evidence for identifying KBAs under criteria related to distinct genetic diversity (criteria A1, B1 & B2 for threatened species). This information could also contribute to assessments of relative value of KBAs supporting species that are not currently threatened or range-restricted (criteria D&E), by highlighting the presence of unique within-species genetic units.

Importantly, delineating subpopulations and ESUs can help identify units experiencing different threats across a species' range. Recognizing these differences allows for unit-specific assessments of extinction risk or recovery, highlighting subpopulations that may require targeted conservation actions. This approach enhances the utility of the third level of IUCN assessments, ensuring that management priorities reflect both the evolutionary and ecological realities of within-species variation. Moreover, the units identified through this framework represent a first step toward linking ecological and evolutionary groupings to quantitative genetic indicators, such as the KMGBF's headline indicator - the proportion of populations with an effective population size greater than 500 individuals. By defining biologically meaningful units in Phase 1, these groupings could subsequently serve as the basis for estimating effective population sizes and monitoring genetic diversity at scales relevant for conservation action.

In this paper, we outlined a two-step framework to standardize the delineation of subpopulations and ESUs by integrating genetic and non-genetic evidence. By providing a consistent approach to recognise biologically meaningful within-species units, the framework can complement existing IUCN assessments, offering additional context on species' genetic structure and evolutionary processes. Such information could inform conservation priorities,

support more nuanced interpretation of recovery or extinction risk indicators, and contribute to efforts at maintaining and enhancing global genetic diversity.

Acknowledgements

We would like to posthumously thank Mike Bruford for his extensive contribution to the inception and early-stage discussions of this framework and his kindness and generosity as a colleague. This work was kicked off during a workshop following the 5th European Conservation Genetics Meeting in Edinburgh, funded by an IUCN SSC internal grant. We would like to thank all the participants. In addition, we would like to thank Newcastle University, which funded a follow-up meeting. JCG was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SE 1084/5-1, and is part of the Biodiversa+ project GINAMO (Genetic INdicators for NAture Monitoring). We would like to thank the editor and peer-reviewers, as well as friendly feedback from Arne Moors, Sean Hoban, Molly Grace and Carolyn Hogg. The findings and conclusions in this publication are those of the author(s) and should not be construed to represent any official USDA determination or policy. This research was supported in part by the U.S. Department of Agriculture, Animal Plant Inspection Service, Wildlife Services, National Wildlife Research Centre. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author contribution statement

- This manuscript and project were led by JCG and DML.
- The funding for the IUCN workshop was secured by SP-E and GS.
- JG, DML, GS, MEH, IMR, SP-E, acted as the project steering committee.
- EJ secured funding for a follow up workshop through Newcastle University.
- LDB, PB, AB-O, JMdS, JAD, AF, JAG, CEG, MEH, CH, AK, AJM, ELJ, AJP, JCP, IMR,
- HS, GS, PS, CVO all contributed to the discussions, conceptualization, and writing of the
- framework and manuscript.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

562	References
563	Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M,
564	Martínez-Cruz B, Cheng JY, Prieto P, Quesada V, Quilez J, Li G, García F, Rubio-
565	Camarillo M, Frias L, Ribeca P, Capella-Gutiérrez S, Rodríguez JM, Câmara F, Lowy
566	E, Cozzuto L, Erb I, Tress ML, Rodriguez-Ales JL, Ruiz-Orera J, Reverter F, Casas-
567	Marce M, Soriano L, Arango JR, Derdak S, Galán B, Blanc J, Gut M, Lorente-Galdos
568	B, Andrés-Nieto M, López-Otín C, Valencia A, Gut I, García JL, Guigó R, Murphy
569	WJ, Ruiz-Herrera A, Marques-Bonet T, Roma G, Notredame C, Mailund T, Albà
570	MM, Gabaldón T, Alioto T, Godoy JA. 2016. Extreme genomic erosion after
571	recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome
572	Biology 17: 251.
573	Abbott CL, Double MC. 2003. Genetic structure, conservation genetics and evidence of
574	speciation by range expansion in shy and white-capped albatrosses. Molecular
575	Ecology 12: 2953–2962.
576	Ahrens CW, James EA, Miller AD, Scott F, Aitken NC, Jones AW, Lu-Irving P, Borevitz JO,
577	Cantrill DJ, Rymer PD. 2020. Spatial, climate and ploidy factors drive genomic
578	diversity and resilience in the widespread grass Themeda triandra. Molecular Ecology
579	29: 3872–3888.
580	Allendorf FW, Funk WC, Aitken SN, Byrne M, Luikart G. 2022. Conservation Units. Page 0
581	in Allendorf FW, Funk WC, Aitken SN, Byrne M, Luikart G, and Antunes A, eds.
582	Conservation and the Genomics of Populations. Oxford University Press.
583	Baker PJ, Scowcroft PG, Ewel JJ. 2009. Koa (Acacia koa) ecology and silviculture. Gen.
584	Tech. Rep. PSW-GTR-211. Albany, CA: U.S. Department of Agriculture, Forest
585	Service, Pacific Southwest Research Station. 129 p 211.
586	Bertola LD, Quinn L, Hanghøj K, Garcia-Erill G, Rasmussen MS, Balboa RF, Meisner J,
587	Bøggild T, Wang X, Lin L, Nursyifa C, Liu X, Li Z, Chege M, Moodley Y, Brüniche-
588	Olsen A, Kuja J, Schubert M, Agaba M, Santander CG, Sinding M-HS, Muwanika V,
589	Masembe C, Siegismund HR, Moltke I, Albrechtsen A, Heller R. 2024. Giraffe
590	lineages are shaped by major ancient admixture events. Current biology: CB 34:
591	1576-1586.e5.

592	Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. 2007. Population adaptive index: a
593	new method to help measure intraspecific genetic diversity and prioritize populations
594	for conservation. Conservation Biology: The Journal of the Society for Conservation
595	Biology 21: 697–708.
596	Brambilla A, Von Hardenberg A, Nelli L, Bassano B. 2020. Distribution, status, and recent
597	population dynamics of Alpine ibex Capra ibex in Europe. Mammal Review 50: 267-
598	277.
599	Casas-Marce M, Marmesat E, Soriano L, Martínez-Cruz B, Lucena-Perez M, Nocete F,
600	Rodríguez-Hidalgo A, Canals A, Nadal J, Detry C, Bernáldez-Sánchez E, Fernández-
601	Rodríguez C, Pérez-Ripoll M, Stiller M, Hofreiter M, Rodríguez A, Revilla E, Delibes
602	M, Godoy JA. 2017. Spatiotemporal Dynamics of Genetic Variation in the Iberian
603	Lynx along Its Path to Extinction Reconstructed with Ancient DNA. Molecular
604	Biology and Evolution 34: 2893–2907.
605	CBD [Convention on Biological Diversity]. 2022. DECISION ADOPTED BY THE
606	CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL
607	DIVERSITY 15/5. Paper presented at Fifteenth meeting of the Conference of the
608	Parties. 19 December 2022, Montreal, Canada.
609	Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass
610	extinction signaled by vertebrate population losses and declines. Proceedings of the
611	National Academy of Sciences 114: E6089–E6096.
612	Coetzer WG, Downs CT, Perrin MR, Willows-Munro S. 2015. Molecular Systematics of the
613	Cape Parrot (Poicephalus robustus): Implications for Taxonomy and Conservation.
614	PLOS ONE 10: e0133376.
615	Coimbra RTF, Winter S, Kumar V, Koepfli K-P, Gooley RM, Dobrynin P, Fennessy J, Janke
616	A. 2021. Whole-genome analysis of giraffe supports four distinct species. Current
617	Biology 31: 2929-2938.e5.
618	Colangelo P, Di Civita M, Bento CM, Franchini P, Meyer A, Orel N, das Neves LCBG,
619	Mulandane FC, Almeida JS, Senczuk G, Pilla F, Sabatelli S. 2024. Genome-wide

620	diversity, population structure and signatures of inbreeding in the African buffalo in
621	Mozambique. BMC Ecology and Evolution 24: 29.
622	Corbet SW, Robinson TJ. 1991. Genetic divergence in South African Wildebeest:
623	comparative cytogenetics and analysis of mitochondrial DNA. The Journal of
624	Heredity 82: 447–452.
625	Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK. 2000. Considering evolutionary
626	processes in conservation biology. Trends in Ecology & Evolution 15: 290–295.
627	Culver M, Johnson W, Pecon-Slattery J, O'Brien S. 2000. Genomic ancestry of the American
628	puma (Puma concolor). Journal of Heredity 91: 186–197.
629	DeWoody JA, Harder AM, Mathur S, Willoughby JR. 2021. The long-standing significance
630	of genetic diversity in conservation. Molecular Ecology 30: 4147–4154.
631	Dussex N, Morales HE, Grossen C, Dalén L, van Oosterhout C. 2023. Purging and
632	accumulation of genetic load in conservation. Trends in Ecology & Evolution 38:
633	961–969.
634	Evans SR, Sheldon BC. 2008. Interspecific patterns of genetic diversity in birds: correlations
635	with extinction risk. Conservation Biology: The Journal of the Society for
636	Conservation Biology 22: 1016–1025.
637	Fennessy J, Bidon T, Reuss F, Kumar V, Elkan P, Nilsson MA, Vamberger M, Fritz U, Janke
638	A. 2016. Multi-locus Analyses Reveal Four Giraffe Species Instead of One. Current
639	Biology 26: 2543–2549.
640	Fenster CB, Dudash MR. 1994. Genetic considerations for plant population restoration and
641	conservation. In M. L. Bowles & C. J. Whelan (Eds.), Restoration of Endangered
642	Species: Conceptual Issues, Planning and Implementation (pp. 34-62). Cambridge
643	University Press.
644	Ferreira M, Garcia C, Matoso DA, de Jesus IS, Cioffi M de B, Bertollo LAC, Zuanon J,
645	Feldberg E. 2017. The Bunocephalus coracoideus Species Complex (Siluriformes,
646	Aspredinidae). Signs of a Speciation Process through Chromosomal, Genetic and
647	Ecological Diversity. Frontiers in Genetics 8.

648	Frankham R. 2005. Genetics and extinction. Biological Conservation 126: 131–140.
649 650	Frankham R. 2015. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology 24: 2610–2618.
651	Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, Lacy RC,
652	Sunnucks P. 2019. A Practical Guide for Genetic Management of Fragmented Animal
653	and Plant Populations. Oxford University Press.
654	Fraser DJ, Bernatchez L. 2001. Adaptive evolutionary conservation: towards a unified
655	concept for defining conservation units. Molecular Ecology 10: 2741–2752.
656	Fredua-Agyeman R, Adamski D, Liao RJ, Morden C, Borthakur D. 2008. Development and
657	characterization of microsatellite markers for analysis of population differentiation in
658	the tree legume Acacia koa (Fabaceae: Mimosoideae) in the Hawaiian Islands.
659	Genome 51: 1001–1015.
660	Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. 2012. Harnessing genomics for
661	delineating conservation units. Trends in Ecology & Evolution 27: 489–496.
662	Gagnon M, Chew AE. 2000. DIETARY PREFERENCES IN EXTANT AFRICAN
663	BOVIDAE.
664	Gobush KS, Edwards CTT, Balfour D, Wittemyer G, Maisels F, Taylor RD. 2021. Loxodonta
665	africana. The IUCN Red List of Threatened Species 2021.
666	Goodrich J, Wibisono H, Miquelle D, Lynam AJ, Sanderson E, Chapman S, Gray TNE,
667	Chanchani P, Harihar A. 2015. Panthera tigris. The IUCN Red List of Threatened
668	Species.
669	Grobler P, van Wyk AM, Dalton DL, van Vuuren BJ, Kotzé A. 2018. Assessing introgressive
670	hybridization between blue wildebeest (Connochaetes taurinus) and black wildebeest
671	(Connochaetes gnou) from South Africa. Conservation Genetics 19: 981–993.
672	Gu Z, Pan S, Lin Z, Hu L, Dai X, Chang J, Xue Y, Su H, Long J, Sun M, Ganusevich S,
673	Sokolov V, Sokolov A, Pokrovsky I, Ji F, Bruford MW, Dixon A, Zhan X. 2021.
674	Climate-driven flyway changes and memory-based long-distance migration. Nature
675	591: 259–264.

0/6	Gugger PF, Liang CT, Sork VL, Hodgskiss P, Wright JW. 2018. Applying landscape
677	genomic tools to forest management and restoration of Hawaiian koa (Acacia koa) in
678	a changing environment. Evolutionary Applications 11: 231–242.
679	Harrisson KA, Pavlova A, Gonçalves da Silva A, Rose R, Bull JK, Lancaster ML, Murray N,
680	Quin B, Menkhorst P, Magrath MJL, Sunnucks P. 2016. Scope for genetic rescue of
81	an endangered subspecies though re-establishing natural gene flow with another
682	subspecies. Molecular Ecology 25: 1242–1258.
683	Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. 2014. Using genomics to
684	characterize evolutionary potential for conservation of wild populations. Evolutionary
685	Applications 7: 1008–1025.
686	Hewitt GM. 2004. The structure of biodiversity – insights from molecular phylogeography.
687	Frontiers in Zoology 1: 4.
888	Hoban S, Hvilsom C, Aissi A, Aleixo A, Bélanger J, Biala K, Ekblom R, Fedorca A, Funk
689	WC, Goncalves AL, Gonzalez A, Heuertz M, Hughes A, Ishihama F, Stroil BK,
590	Laikre L, McGowan PJK, Millette KL, O'Brien D, Paz-Vinas I, Rincón-Parra VJ,
591	Robuchon M, Rodríguez JP, Rodríguez-Morales MA, Segelbacher G, Straza TRA,
592	Susanti R, Tshidada N, Vilaça ST, Da Silva JM. 2025. How can biodiversity strategy
593	and action plans incorporate genetic diversity and align with global commitments?
694	BioScience 75: 47–60.
695	Hollenbeck CM, Portnoy DS, Garcia de la serrana D, Magnesen T, Matejusova I, Johnston
596	IA. 2022. Temperature-associated selection linked to putative chromosomal
697	inversions in king scallop (Pecten maximus). Proceedings of the Royal Society B:
698	Biological Sciences 289: 20221573.
699	Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M. 2008. Ecological
700	consequences of genetic diversity. Ecology Letters 11: 609-623.
701	IUCN. 2001. IUCN Red List Categories and Criteria: Version 3.1. 2001.
702	IUCN. 2003. Guidelines for application of IUCN red list criteria at regional levels. Version
703	3.0 edn. IUCNThe World Conservation Union.

704	IUCN. 2016. A global standard for the identification of Key Biodiversity Areas: version 1.0.
705	2016.
706	IUCN. 2021. IUCN Green Status of Species: A global standard for measuring species
707	recovery and assessing conservation impact. 2021.
708	IUCN. 2024. The IUCN Red List of Threatened Species. Version 2024-1.
709	de Jager D, Glanzmann B, Möller M, Hoal E, van Helden P, Harper C, Bloomer P. 2021.
710	High diversity, inbreeding and a dynamic Pleistocene demographic history revealed
711	by African buffalo genomes. Scientific Reports 11: 4540.
712	de Jager D, Harper CK, Bloomer P. 2020. Genetic diversity, relatedness and inbreeding of
713	ranched and fragmented Cape buffalo populations in southern Africa. PLOS ONE 15:
714	e0236717.
715	de Jager D, Möller M, Hoal E, van Helden P, Glanzmann B, Harper C, Bloomer P. 2025. A
716	Highly Divergent Mitochondrial Genome in Extant Cape Buffalo From Addo
717	Elephant National Park, South Africa. Ecology and Evolution 15: e70640.
718	Johnson WE, Godoy JA, Palomares F, Delibes M, Fernandes M, Revilla E, O'Brien SJ. 2004.
719	Phylogenetic and Phylogeographic Analysis of Iberian Lynx Populations. Journal of
720	Heredity 95: 19–28.
721	Kardos M, Armstrong EE, Fitzpatrick SW, Hauser S, Hedrick PW, Miller JM, Tallmon DA,
722	Funk WC. 2021. The crucial role of genome-wide genetic variation in conservation.
723	Proceedings of the National Academy of Sciences 118: e2104642118.
724	Kleinman-Ruiz D, Martínez-Cruz B, Soriano L, Lucena-Perez M, Cruz F, Villanueva B,
725	Fernández J, Godoy JA. 2017. Novel efficient genome-wide SNP panels for the
726	conservation of the highly endangered Iberian lynx. BMC Genomics 18: 556.
727	Kotzé A, Smith RM, Moodley Y, Luikart G, Birss C, Wyk AMV, Grobler JP, Dalton DL.
728	2019. Lessons for conservation management: Monitoring temporal changes in genetic
729	diversity of Cape mountain zebra (Equus zebra zebra). PLOS ONE 14: e0220331.

730	Labuschagne C, Kotze A, Grobler JP, Dalton DL, Nupen L. 2016. Genetic monitoring of ex
731	situ African Penguin (Spheniscus demersus) populations in South Africa. African
732	Zoology 51: 83–90.
733	Leigh DM, Hendry AP, Vázquez-Domínguez E, Friesen VL. 2019. Estimated six per cent
734	loss of genetic variation in wild populations since the industrial revolution.
735	Evolutionary Applications 12: 1505–1512.
736	Leigh DM, Vandergast AG, Hunter ME, Crandall ED, Funk WC, Garroway CJ, Hoban S,
737	Oyler-McCance SJ, Rellstab C, Segelbacher G, Schmidt C, Vázquez-Domínguez E,
738	Paz-Vinas I. 2024. Best practices for genetic and genomic data archiving. Nature
739	Ecology & Evolution 8: 1224–1232.
740	Liddell E, Sunnucks P, Cook CN. 2021. To mix or not to mix gene pools for threatened
741	species management? Few studies use genetic data to examine the risks of both
742	actions, but failing to do so leads disproportionately to recommendations for separate
743	management. Biological Conservation 256: 109072.
744	Lorenzen ED, Heller R, Siegismund HR. 2012. Comparative phylogeography of African
745	savannah ungulates. Molecular Ecology 21: 3656–3670.
746	Lorenzen ED, Masembe C, Arctander P, Siegismund HR. 2010. A long-standing Pleistocene
747	refugium in southern Africa and a mosaic of refugia in East Africa: insights from
748	mtDNA and the common eland antelope. Journal of Biogeography 37: 571–581.
749	Lundberg M, Liedvogel M, Larson K, Sigeman H, Grahn M, Wright A, Åkesson S, Bensch
750	S. 2017. Genetic differences between willow warbler migratory phenotypes are few
751	and cluster in large haplotype blocks. Evolution Letters 1: 155.
752	Mastretta-Yanes A, da Silva JM, Grueber CE, Castillo-Reina L, Köppä V, Forester BR, Funk
753	WC, Heuertz M, Ishihama F, Jordan R, Mergeay J, Paz-Vinas I, Rincon-Parra VJ,
754	Rodriguez-Morales MA, Arredondo-Amezcua L, Brahy G, DeSaix M, Durkee L,
755	Hamilton A, Hunter ME, Koontz A, Lang I, Latorre-Cárdenas MC, Latty T, Llanes-
756	Quevedo A, MacDonald AJ, Mahoney M, Miller C, Ornelas JF, Ramírez-Barahona S,
757	Robertson E, Russo I-RM, Santiago MA, Shaw RE, Shea GM, Sjögren-Gulve P,
758	Spence ES, Stack T, Suárez S, Takenaka A, Thurfjell H, Turbek S, van der Merwe M,

759	Visser F, Wegier A, Wood G, Zarza E, Laikre L, Hoban S. 2024. Multinational
760	evaluation of genetic diversity indicators for the Kunming-Montreal Global
761	Biodiversity Framework. Ecology Letters 27: e14461.
762	McCartney AM, Koot E, Prebble JM, Jibran R, Mitchell C, Podolyan A, Fergus AJ, Arnst E,
763	Herron KE, Houliston G, Buckley TR, Chagné D. 2024. A population genomics
764	analysis of the Aotearoa New Zealand endemic rewarewa tree (Knightia excelsa). npj
765	Biodiversity 3: 7.
766	Measey GJ, Tolley KA. 2011. Investigating the cause of the disjunct distribution of
767	Amietophrynus pantherinus, the Endangered South African western leopard toad.
768	Conservation Genetics 12: 61–70.
769	Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid
770	BN, Campbell-Staton SC, Green NF, Hellmann JJ. 2023. Understanding Local
771	Adaptation to Prepare Populations for Climate Change. BioScience 73: 36–47.
772	Montanari B, Kanagavel A. 2017. Guidance for Integrating Indigenous and Local Knowledge
773	(ILK) in IUCN Red List Assessments. Cross et al.
774	Moodley Y, Harley EH. 2005. Population structuring in mountain zebras (Equus zebra): The
775	molecularconsequences of divergent demographic histories. Conservation Genetics 6:
776	953–968.
777	Moodley Y, Russo I-RM, Dalton DL, Kotzé A, Muya S, Haubensak P, Bálint B, Munimanda
778	GK, Deimel C, Setzer A, Dicks K, Herzig-Straschil B, Kalthoff DC, Siegismund HR,
779	Robovský J, O'Donoghue P, Bruford MW. 2017. Extinctions, genetic erosion and
780	conservation options for the black rhinoceros (Diceros bicornis). Scientific Reports 7:
781	41417.
782	Moritz C. 1994. Defining 'Evolutionarily Significant Units' for conservation. Trends in
783	Ecology & Evolution 9: 373–375.
784	Moritz C, Faith DP. 1998. Comparative phylogeography and the identification of genetically
785	divergent areas for conservation. Molecular Ecology 7: 419–429.

786	Nei M, Maruyama T, Chakraborty R. 1975. THE BOTTLENECK EFFECT AND GENETIC
787	VARIABILITY IN POPULATIONS. Evolution; International Journal of Organic
788	Evolution 29: 1–10.
789	Nielsen C, Thompson D, Kelly M, Lopez-Gonzalez CA. 2015. Puma concolor. The IUCN
790	Red List of Threatened Species.
791	O'Brien D, Aavik T, Fischer MC, Goffaux R, Hoban S, Hollingsworth P, Hvilsom C, Jehle
792	R, Stroil BK, Kershaw F, Klinga P, Kopatz A, Leigh DM, Paz-Vinas I, Robuchon M,
793	Segelbacher G, Takacs V, Vernesi C, Laikre L. 2024. Restoring Genetic Diversity to
794	Facilitate the Implementation of the EU Nature Restoration Law.
795	O'Brien J, McCracken GF, Say L, Hayden TJ. 2007. Rodrigues fruit bats (Pteropus
796	rodricensis, Megachiroptera: Pteropodidae) retain genetic diversity despite population
797	declines and founder events. Conservation Genetics 8: 1073–1082.
798	van Oosterhout C. 2024. AI-informed conservation genomics. Heredity 132: 1–4.
799	van Oosterhout C, Speak SA, Birley T, Hitchings LW, Bortoluzzi C, Percival-Alwyn L,
800	Urban L, Groombridge JJ, Segelbacher G, Morales HE. 2025. Genomic erosion in the
801	assessment of species' extinction risk and recovery potential. 2022.09.13.507768.
802	Ørsted M, Hoffmann AA, Sverrisdóttir E, Nielsen KL, Kristensen TN. 2019. Genomic
803	variation predicts adaptive evolutionary responses better than population bottleneck
804	history. PLOS Genetics 15: e1008205.
805	Pavlova A, Selwood P, Harrisson KA, Murray N, Quin B, Menkhorst P, Smales I, Sunnucks
806	P. 2014. Integrating phylogeography and morphometrics to assess conservation merits
807	and inform conservation strategies for an endangered subspecies of a common bird
808	species. Biological Conservation 174: 136–146.
809	Paz-Vinas I, Vandergast AG, Schmidt C, Leigh DM, Blanchet S, Clark RD, Crandall ED, De
810	Kort H, Falgout J, Garroway CJ, Karachaliou E, Kershaw F, O'Brien D, Pinsky ML,
811	Segelbacher G, Toczydlowski RH, Hunter ME. 2025. Sparse genetic data limit
812	biodiversity assessments in protected areas globally. Frontiers in Ecology and the
813	Environment e2867.

814	Pertoldi C, García-Perea R, Godoy JA, Delibes M, Loeschcke V. 2006. Morphological
815	consequences of range fragmentation and population decline on the endangered
816	Iberian lynx (Lynx pardinus). Journal of Zoology 268: 73–86.
817	Pierson JC, Coates DJ, Oostermeijer JGB, Beissinger SR, Bragg JG, Sunnucks P, Schumaker
818	NH, Young AG. 2016. Genetic factors in threatened species recovery plans on three
819	continents. Frontiers in Ecology and the Environment 14: 433–440.
820	Polishchuk LV, Popadin KY, Baranova MA, Kondrashov AS. 2015. A genetic component of
821	extinction risk in mammals. Oikos 124: 983–993.
822	Prates I, Doughty P, Rabosky DL. 2023. Subspecies at crossroads: the evolutionary
823	significance of genomic and phenotypic variation in a wide-ranging Australian lizard
824	(Ctenotus pantherinus). Zoological Journal of the Linnean Society 197: 768–786.
825	Quinn L, Garcia-Erill G, Santander C, Brüniche-Olsen A, Liu X, Sinding M-HS, Heaton MP,
826	Smith TPL, Pečnerová P, Bertola LD, Hanghøj K, Rasmussen MS, de Jager D,
827	Siegismund HR, Albrechtsen A, Heller R, Moltke I. 2023. Colonialism in South
828	Africa leaves a lasting legacy of reduced genetic diversity in Cape buffalo. Molecular
829	Ecology 32: 1860–1874.
830	Reed DH, Frankham R. 2003. Correlation between Fitness and Genetic Diversity.
831	Conservation Biology 17: 230–237.
832	Robertson JM, Langin KM, Sillett TS, Morrison SA, Ghalambor CK, Funk WC. 2014.
833	Identifying Evolutionarily Significant Units and Prioritizing Populations for
834	Management on Islands. Monographs of the Western North American Naturalist 7:
835	397–411.
836	Roca AL, Georgiadis N, Pecon-Slattery J, O'Brien SJ. 2001. Genetic evidence for two
837	species of elephant in Africa. Science (New York, N.Y.) 293: 1473–1477.
838	Rocha JL, Vaz Pinto P, Siegismund HR, Meyer M, Jansen van Vuuren B, Veríssimo L,
839	Ferrand N, Godinho R. 2022. African climate and geomorphology drive evolution and
840	ghost introgression in sable antelope. Molecular Ecology 31: 2968–2984.

841	Rodríguez-Quilón I, Santos-del-Blanco L, Serra-Varela MJ, Koskela J, González-Martínez
842	SC, Alía R. 2016. Capturing neutral and adaptive genetic diversity for conservation in
843	a highly structured tree species. Ecological Applications 26: 2254–2266.
844	Rodríguez A, Delibes M. 2003. Population fragmentation and extinction in the Iberian lynx.
845	Biological Conservation 109: 321–331.
846	Ryder OA. 1986. Species conservation and systematics: the dilemma of subspecies. Trends in
847	Ecology & Evolution 1: 9–10.
848	Sánchez-Barreiro F, De Cahsan B, Westbury MV, Sun X, Margaryan A, Fontsere C, Bruford
849	MW, Russo I-RM, Kalthoff DC, Sicheritz-Pontén T, Petersen B, Dalén L, Zhang G,
850	Marquès-Bonet T, Gilbert MTP, Moodley Y. 2023. Historic Sampling of a Vanishing
851	Beast: Population Structure and Diversity in the Black Rhinoceros. Molecular
852	Biology and Evolution 40: msad180.
853	Sanchez-Donoso I, Ravagni S, Rodríguez-Teijeiro JD, Christmas MJ, Huang Y, Maldonado-
854	Linares A, Puigcerver M, Jiménez-Blasco I, Andrade P, Gonçalves D, Friis G, Roig I,
855	Webster MT, Leonard JA, Vilà C. 2022. Massive genome inversion drives
856	coexistence of divergent morphs in common quails. Current Biology 32: 462-469.e6.
857	Schmidt C, Hoban S, Hunter M, Paz-Vinas I, Garroway CJ. 2023. Genetic diversity and
858	IUCN Red List status. Conservation Biology 37: e14064.
859	Senn H, Banfield L, Wacher T, Newby J, Rabeil T, Kaden J, Kitchener AC, Abaigar T, Silva
860	TL, Maunder M, Ogden R. 2014. Splitting or Lumping? A Conservation Dilemma
861	Exemplified by the Critically Endangered Dama Gazelle (Nanger dama). PLoS ONE
862	9: e98693.
863	Shaw RE, Farquharson KA, Bruford MW, Coates DJ, Elliott CP, Mergeay J, Ottewell KM,
864	Segelbacher G, Hoban S, Hvilsom C, Pérez-Espona S, Ruņģis D, Aravanopoulos F,
865	Bertola LD, Cotrim H, Cox K, Cubric-Curik V, Ekblom R, Godoy JA, Konopiński
866	MK, Laikre L, Russo I-RM, Veličković N, Vergeer P, Vilà C, Brajkovic V, Field DL,
867	Goodall-Copestake WP, Hailer F, Hopley T, Zachos FE, Alves PC, Biedrzycka A,
868	Binks RM, Buiteveld J, Buzan E, Byrne M, Huntley B, Iacolina L, Keehnen NLP,
869	Klinga P, Kopatz A, Kurland S, Leonard JA, Manfrin C, Marchesini A, Millar MA,

870	Orozco-terWengel P, Ottenburghs J, Posledovich D, Spencer PB, Tourvas N, Unuk
871	Nahberger T, van Hooft P, Verbylaite R, Vernesi C, Grueber CE. 2025. Global meta-
872	analysis shows action is needed to halt genetic diversity loss. Nature 1–7.
873	Shi X. 2003. Genetic improvement of Leucaena spp and Acacia koa Gray as high-value
874	hardwoods. University of Hawaii at Manoa.
875	da Silva JM, Bertola LD, DeWoody JA, Steeves T, Sunnucks P, Vilaça S, Hoban SM. 2026.
876	Conserving genetic diversity in accordance with the Global Biodiversity Framework.
877	Annual Reviews of Animal Biosciences.
878	da Silva JM, Feldheim KA, Measey GJ, Doucette-Riise S, Daniels RJ, Chauke LF, Tolley
879	KA. 2017. Genetic diversity and differentiation of the Western Leopard Toad (
880	Sclerophrys pantherina) based on mitochondrial and microsatellite markers. African
881	Journal of Herpetology 66: 25–38.
882	Small MP, Beacham TD, Withler RE, Nelson RJ. 1998. Discriminating coho salmon
883	(Oncorhynchus kisutch) populations within the Fraser River, British Columbia, using
884	microsatellite DNA markers. Molecular Ecology 7: 141-155.
885	Smitz N, Berthouly C, Cornélis D, Heller R, Van Hooft P, Chardonnet P, Caron A, Prins H,
886	Van Vuuren BJ, De Iongh H, Michaux J. 2013. Pan-African Genetic Structure in the
887	African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence. PLoS ONE
888	8: e56235.
889	Smitz N, Cornélis D, Chardonnet P, Caron A, de Garine-Wichatitsky M, Jori F, Mouton A,
890	Latinne A, Pigneur L-M, Melletti M, Kanapeckas KL, Marescaux J, Pereira CL,
891	Michaux J. 2014. Genetic structure of fragmented southern populations of African
892	Cape buffalo (Syncerus caffer caffer). BMC Evolutionary Biology 14: 203.
893	Stephens K, Tolley KA, da Silva JM. 2022. A decade of genetic monitoring reveals increased
894	inbreeding for the Endangered western leopard toad, Sclerophrys pantherina.
895	Conservation Genetics 23: 903–918.
896	Swindell WR, Bouzat JL. 2005. Modeling the adaptive potential of isolated populations:
897	experimental simulations using Drosophila. Evolution; International Journal of
898	Organic Evolution 59: 2159–2169.

899	Talenti A, Wilkinson T, Cook EA, Hemmink JD, Paxton E, Mutinda M, Ngulu SD,
900	Jayaraman S, Bishop RP, Obara I, Hourlier T, Garcia Giron C, Martin FJ,
901	Labuschagne M, Atimnedi P, Nanteza A, Keyyu JD, Mramba F, Caron A, Cornelis D,
902	Chardonnet P, Fyumagwa R, Lembo T, Auty HK, Michaux J, Smitz N, Toye P,
903	Robert C, Prendergast JGD, Morrison LJ. 2024. Continent-wide genomic analysis of
904	the African buffalo (Syncerus caffer). Communications Biology 7: 792.
905	Toews DPL, Taylor SA, Streby HM, Kramer GR, Lovette IJ. 2019. Selection on VPS13A
906	linked to migration in a songbird. Proceedings of the National Academy of Sciences
907	of the United States of America 116: 18272–18274.
908	Van Hooft WF, Groen AF, Prins HHT. 2002. Phylogeography of the African buffalo based
909	on mitochondrial and Y-chromosomal loci: Pleistocene origin and population
910	expansion of the Cape buffalo subspecies. Molecular Ecology 11: 267–279.
911	Vrahimis S, Grobler JP, Brink JS, Viljoen P, Schulze E. 2016. Black wildebeest. Red List of
912	South African Species. South African Biodiversity Institute.
913	Wainwright TC (Thomas C, Chilcote MW, Lawson PW, Nickelson TE, Huntington CW,
914	Mills JS, Moore KMS, Reeves GH, Stout HA, Weitkamp LA (Laurie A. 2008.
915	Biological recovery criteria for the Oregon Coast coho salmon evolutionarily
916	significant unit.
917	Walsh G, McMahon BJ, Thörn F, Rödin-Mörch P, Irestedt M, Höglund J. 2024. The risk of
918	inbreeding versus outbreeding depression in managing an endangered and locally
919	adapted population of a sedentary bird. Conservation Science and Practice.
920	Weeks AR, Rypalski A. 2021. Genetic rescue of the Victorian eastern barred bandicoot to
921	improve conservation outcomes, Project 4.1.6.3 Research findings factsheet. 2021.
922	Wilting A, Courtiol A, Christiansen P, Niedballa J, Scharf AK, Orlando L, Balkenhol N,
923	Hofer H, Kramer-Schadt S, Fickel J, Kitchener AC. 2015. Planning tiger recovery:
924	Understanding intraspecific variation for effective conservation. Science Advances 1:
925	e1400175.