
 

IQ2MC: A New Framework to Infer Phylogenetic Time Trees Using IQ-TREE 3 

and MCMCTree with Mixture Models 

Piyumal Demotte1, Muthukumaran Panchaksaram2, Hashara Kumarasinghe1,  

Nhan Ly-Trong1, Mario dos Reis2,$, Bui Quang Minh1,$ 

1 School of Computing, College of Systems and Society, Australian National University, 

Canberra, ACT 2600, Australia 

2 School of Biological and Behavioural Sciences, Queen Mary University of London, London 

E1 4NS, United Kingdom 

$ Corresponding authors: 

Bui Quang Minh, m.bui@anu.edu.au 

Mario dos Reis, m.dosreisbarros@qmul.ac.uk  

1 

mailto:m.bui@anu.edu.au
mailto:m.dosreisbarros@qmul.ac.uk


DEMOTTE ET AL. 

ABSTRACT 

IQ-TREE and MCMCTree are two widely used phylogenetic tools to infer phylogenetic trees 

and estimate divergence times, respectively. As MCMCTree performs fast approximate 

Markov Chain Monte Carlo sampling to obtain the times along a fixed tree topology, it would 

be natural to use IQ-TREE to obtain the tree. However, it is currently not possible to integrate 

these tools seamlessly, as MCMCTree requires pre-calculation of the gradients and Hessian 

for fast approximate calculation of the likelihood, which is unavailable in IQ-TREE. 

Furthermore, MCMCTree only implements a small subset of substitution models; and 

complex models such as the mixture models are not available. This is an important limitation 

because complex substitution models are required for reliable estimates of divergence times 

in deep phylogenies. Here, we introduce a new pipeline IQ2MC, which facilitates the 

integration of IQ-TREE 3 and MCMCTree, substantially speeds up the pre-calculation steps, 

and allows the use of a wide range of IQ-TREE’s complex models in divergence time 

inference. IQ2MC provides an updated version IQ-TREE 3.0.1 to calculate the gradients and 

Hessian at the maximum likelihood branch lengths, and then MCMCTree is used for MCMC 

sampling of divergence times. IQ2MC also provides several advanced partition models and 

mixture models not available in the current MCMCTree workflow. We finally show the 

applications of IQ2MC on simulated and four empirical datasets of placental mammals, 

plants, eukaryotes/prokaryotes, and metazoan. A tutorial to use IQ2MC is available at 

https://iqtree.github.io/doc/Dating. 

Keywords: Bayesian phylogenetic dating, Markov Chain Monte Carlo, Maximum likelihood, 

Mixture models 
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PHYLOGENETIC TIME TREES USING IQ-TREE 3 AND MCMCTREE 

Estimation of species divergence times is an integral part of understanding the 

evolutionary process among species (Marin et al. 2017; Betts et al. 2018; Álvarez-Carretero 

et al. 2022; Stiller et al. 2024). By placing speciation events in a geological time scale, we 

can obtain much richer information about patterns of evolution and diversification through 

time that cannot be obtained by using uncalibrated molecular trees. The current 

state-of-the-art is Bayesian molecular dating approaches (Thorne et al. 1998; Yang and 

Rannala 2006; Ronquist et al. 2012; Drummond and Bouckaert 2015), which allow 

incorporation of arbitrary fossil calibration densities to construct the prior on node ages, 

while integrating over sophisticated models of rate variation among branches of the 

phylogeny, such as the independent log-normal and geometric Brownian rate models (Thorne 

et al. 1998; Drummond and Rambaut 2007; Rannala and Yang 2007). Typically, Markov 

Chain Monte Carlo (MCMC) is used to approximate the posterior distributions of tree 

topologies, times, rates of evolution, and other model parameters.  

Despite its flexibility, full MCMC sampling is computationally intensive for large 

phylogenies. Therefore, approximation methods have been developed. Thorne et al. (1998) 

proposed to first infer a tree topology using a tree reconstruction method and then sample 

other parameters on this fixed tree using approximate likelihoods based on a normal 

approximation of the likelihood function. dos Reis and Yang (2011) further refined this 

approach by using the full Taylor approximation of the likelihood and by implementing 

transformations of the branch lengths to improve the accuracy of the approximation. The 

approximate method is currently implemented in the MCMCTree software as part of the 

PAML package (Yang 2007), and has been widely used to date large phylogenies with 

hundreds of species such as plants, mammals, insects, and birds (Morris et al. 2018; 

Álvarez-Carretero et al. 2022; Romiguier et al. 2022; Stiller et al. 2024). However, the major 

limitation of MCMCTree is that it lacks advanced models of sequence evolution, such as 
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mixture models frequently used to infer deep divergences (Lartillot and Philippe 2004; Quang 

et al. 2008).  

Here we introduce a new streamlined workflow, IQ2MC, to efficiently infer time trees 

by combining IQ-TREE 3 (Wong et al. 2025) and MCMCTree (dos Reis and Yang 2011). In 

particular, IQ2MC improves the efficiency of gradients and Hessian calculation (required in 

the likelihood approximation) compared to the workflow using PAML. An added benefit of 

IQ2MC is that we can now use all models of sequence evolution available in IQ-TREE 3 that 

are not supported in PAML (Yang 2007), including partition (Chernomor et al. 2016) and 

mixture models (Le et al. 2008; Quang et al. 2008; Ren et al. 2024). Such models are 

important for more accurate dating analysis, as model violation might bias time tree inference 

(Barba-Montoya et al. 2020; Tao et al. 2020), as we will also show in this paper. We discuss 

the IQ2MC workflow for time tree inference, present the technical details of the 

implementation, especially for partition and mixture models, and validate IQ2MC using 

simulated and four empirical datasets. Our new IQ2MC workflow demonstrates the 

application and impact of advanced substitution models in IQ-TREE 3 for time tree inference 

using MCMCTree. 

 

MATERIALS AND METHODS 

IQ2MC workflow to infer time trees 

We introduce IQ2MC, a streamlined workflow for efficient inference of time trees by 

combining IQ-TREE 3 (Wong et al. 2025) and MCMCTree as follows (Fig. 1). Given an 

input multiple sequence alignment (MSA), IQ2MC first finds a best-fit model 

(Kalyaanamoorthy et al. 2017) and reconstructs a maximum likelihood (ML) tree with branch 

lengths in number of substitutions per site (Wong et al. 2025). Users then need to annotate the 

maximum likelihood tree with fossil/tip date calibrations (which can be done with commonly 
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PHYLOGENETIC TIME TREES USING IQ-TREE 3 AND MCMCTREE 

used tree editing tools such as FigTree, (Rambaut 2009) or iTOL, (Letunic and Bork 2021)). 

Instead of constructing an ML tree, users can also provide a tree topology, and IQ2MC will 

estimate the branch lengths. In the second step, IQ2MC computes the gradient vector and 

Hessian matrix of the log-likelihood function at the maximum likelihood estimates (MLEs) of 

the branch lengths on the fixed tree topology (this is done using the newly implemented 

option --dating mcmctree in IQ-TREE v3.0.1). Step 2 will automatically generate a control 

input file for MCMCTree, which users can optionally modify to set appropriate parameter 

values such as those required for MCMC convergence (Yang and Rodríguez 2013), the 

birth-death-process prior (Rannala and Yang 1996),  or the evolutionary rate model (Rannala 

and Yang 2007; dos Reis et al. 2014). In the third step, users can then run MCMCTree using 

the control file, tree file (which contains the fossil calibrations), and the gradient and Hessian 

(stored in the in.BV file) to obtain the MCMC samples of divergence times and evolutionary 

rates. Currently, step 2 is done using the BaseML and CodeML programs of the PAML 

package, and thus only those substitution models available in PAML can be used (but see for 

Wang and Luo (2025), for an approximate alternative). IQ2MC is a convenient and much 

faster drop-in replacement for PAML and allows users to do everything within a few 

command lines. 

 

Figure 1. General workflow of IQ2MC for inferring time trees with IQ-TREE 3 and MCMCTree. 

Step 1 infers the best-fit substitution model and a maximum likelihood phylogenetic tree from a given 
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multiple sequence alignment using IQ-TREE 3. Step 2 computes the gradient vector and the Hessian 

matrix of the log-likelihood function at the maximum likelihood parameter estimates using IQ-TREE 

3. Step 3 constructs a time tree using MCMCTree with the user-provided time calibrations of internal 

nodes/tips. 

 

Taylor expansion of the Log-likelihood with single substitution models 

Calculation of Felsenstein’s phylogenetic likelihood over site-patterns in an MSA is 

computationally expensive, and the computational cost grows proportionally with the number 

of taxa and site-patterns in the MSA, becoming prohibitive for phylogenomic alignments 

with millions of sites. Therefore, MCMCTree approximates the log-likelihood during MCMC 

sampling by its second-order Taylor expansion evaluated at the MLEs of the phylogeny’s 

branch lengths (dos Reis and Yang, 2011). Computation of the approximate likelihood only 

depends on the number of taxa in the phylogeny and not on the length of the MSA, and it is 

therefore much faster than exact likelihood in timetree inference (Battistuzzi et al. 2011). The 

approximation works on a fixed tree topology and by fixing the substitution model 

parameters to their maximum-likelihood estimates. 

Let  be a tree topology with  taxa, and let  be the vector 𝑇 𝑛 𝐵 = (𝑏
1
,  𝑏

2
,  .....  ,  𝑏

2𝑛−3
)

of branch lengths of  in units of substitutions per site. Let  be the vector of maximum 𝑇  𝐵

likelihood estimates (MLEs) of B, obtained under a substitution rate matrix ,  which applies 𝑄

to all sites in the MSA. The matrix  is of size 4×4 for DNA and 20×20 for protein 𝑄

alignments. We can apply Taylor expansion (Thorne et al. 1998; dos Reis and Yang 2011) to 

approximate the log-likelihood of  given the alignment : 𝐵 𝐷

  .          (1) log 𝐿(𝐷; 𝐵) ≈ log  𝐿 (𝐷;  𝐵 ) + 𝑔(𝐷, 𝐵)𝑇(𝐵 − 𝐵) +  1/2 (𝐵 − 𝐵 )𝑇𝐻(𝐷, 𝐵)(𝐵 − 𝐵)

Where  and  are the gradient vector and Hessian matrix of the log-likelihood 𝑔(𝐷, 𝐵) 𝐻(𝐷, 𝐵)

function evaluated at the branch length MLEs. 
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Technically, one needs to compute the log-likelihood, first derivative, and second 

derivative of the log-likelihood for each site pattern in the MSA, which are then combined 

into  and . This Taylor approximation works well when  is log 𝐿(𝐷;  𝐵 ),  𝑔(𝐷, 𝐵) 𝐻(𝐷, 𝐵) 𝐵

close enough to  during the MCMC sampling. If not, one needs to apply transformations of  𝐵

the branch lengths (dos Reis and Yang 2011). As this equation only applies to homogeneous 

substitution models over sites, we now extend it to partition and mixture models. 

Edge-linked partitions model with proportional branch lengths 

For phylogenomic data with multiple genes or loci, it is common to use partition 

models (Lanfear et al. 2014; Kainer and Lanfear 2015; Chernomor et al. 2016), where each 

partition represents a subset of sites and different partitions may have different substitution 

models. The likelihood for each partition needs to be calculated separately for dating under 

MCMCTree.  

Edge-linked partition models (-p option in IQ-TREE) estimate a single set of branch 

lengths  shared across all partitions. However, each partition  is assigned a 𝐵 𝑖 

partition-specific rate  that rescales the shared branch lengths. Low    means that the 𝑟
𝑖

𝑟
𝑖

partition  is slowly evolving, whereas high   means that the partition  is fast evolving. For 𝑖 𝑟
𝑖

𝑖

 partitions,  we compute gradient vector  and Hessian matrix 𝑝 𝐷
1
,  𝐷

2
,  … ,  𝐷

𝑝
 , 𝑔(𝐷

𝑖 
, 𝑟

𝑖
𝐵)

). Since all partitions share the same set of branch lengths, we can obtain a single 𝐻(𝐷
𝑖
 , 𝑟

𝑖
𝐵

gradient vector and Hessian matrix by scaling each partition-specific gradient and Hessian by 

 and  respectively, and summing them:  and 𝑟
𝑖

𝑟
𝑖
2 𝑔(𝐷, 𝐵) =

𝑖
∑ 𝑟

𝑖
 𝑔(𝐷

𝑖 
, 𝑟

𝑖
𝐵)

 We then apply equation (1) to approximate the log-likelihood 𝐻(𝐷, 𝐵) =
𝑖

∑ 𝑟
𝑖
2 𝐻(𝐷

𝑖 
, 𝑟

𝑖
𝐵).

under the edge-linked partition model.     

7 

https://paperpile.com/c/eBDlyW/4LwRE
https://paperpile.com/c/eBDlyW/cOXp+h3jI+4c7xP


DEMOTTE ET AL. 

Edge-unliked partition models  

Edge-unlinked partition models (-Q option in IQ-TREE) allow a different set of 

branch lengths for each partition:  for partition . Consequently, we estimate a separate  𝐵
𝑖

 𝐷
𝑖

gradient vector  and a Hessian matrix for each partition . For  partitions 𝑔(𝐷
𝑖
 , 𝐵

𝑖
) 𝐻(𝐷

𝑖
 , 𝐵

𝑖
) 𝑖 𝑝

, we approximate the per-partition log-likelihood  for each 𝐷
1
,  𝐷

2
,  … ,  𝐷

𝑝
𝑙𝑜𝑔 𝐿(𝐷

𝑖
,  𝐵

𝑖
)

partition  (Eq. 1), and sum them up to obtain the total approximate log-likelihood:  𝑖

 log 𝐿(𝐷; 𝐵) ≈
𝑖=1

𝑝

∑  {log  𝐿 (𝐷
𝑖
 ;  𝐵

𝑖
 ) + 𝑔(𝐷

𝑖
 , 𝐵

𝑖
)𝑇(𝐵

𝑖
− 𝐵

𝑖
) +  1/2 (𝐵

𝑖
− 𝐵

𝑖
)𝑇 𝐻(𝐷

𝑖
 , 𝐵

𝑖
) (𝐵

𝑖
− 𝐵

𝑖
)}.

            (2) 

Mixture models 

Single and partition models assume a single rate matrix  for all sites in a partition or 𝑄

an MSA. However, this is known to be biologically unrealistic and can cause biased 

phylogenetic estimates (Lartillot et al. 2007), and thus a number of mixture models have been 

introduced (Le et al. 2008, 2012; Quang et al. 2008; Wang et al. 2018; Ren et al. 2024). A 

mixture model typically consists of several substitution matrices , the { 𝑄
1
,  𝑄

2
 ,  ....  ,  𝑄

𝑘
}

so-called classes. Each site in the MSA has a certain probability (or weight) of belonging to a 

class. Because we do not know which class a site belongs to, site likelihoods are marginalized 

by their weighted sum over the substitution classes in the mixture. A benefit of mixture 

models compared with partition models is that users do not need to manually partition the 

sites into subsets.  

Mixture models in phylogenetics includes models of rate variation among sites (Yang 

1994, 1995; Soubrier et al. 2012), variation in amino acid stationary frequencies among sites 

(Quang et al. 2008; Wang et al. 2018), and variation of amino acid or DNA substitution rate 

matrices among sites (Le et al. 2008, 2012; Ren et al. 2024). In this section, we mainly focus 
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on the computation of  and  for the latter ones, but similar calculations also apply to other 𝑔 𝐻

types of mixture models. 

Let  be the  rate matrices in the mixture model with corresponding  {𝑄
1
,  𝑄

2
,  … ,  𝑄

𝑘
} 𝑘

weights , where 1. The log-likelihood under the mixture model is {𝑤
1
,  𝑤

2
,  … ,  𝑤

𝑘
}

𝑗=1

𝑘

∑ 𝑤
𝑗
 =  

the sum over the log-likelihoods for sites and substitution rate matrices: 

           (3) 𝑙𝑜𝑔 𝐿(𝐷; 𝐵) =
𝑠 
∑ 𝑙𝑜𝑔 {

𝑗=1

𝑘

∑ 𝑤
𝑗
 𝐿(𝐷

𝑠
; 𝐵, 𝑄

𝑗
) }

Yang (2000) gives the derivatives of the log-likelihood function under a single 

substitution matrix. Here we provide the derivation of the gradient and the Hessian under a 

mixture of rate matrices. Let  =  be the site-likelihood 𝑓
𝑠
 =  𝐿(𝐷

𝑠
 , 𝐵)  

𝑗=1

𝑘

∑ 𝑤
𝑗
 𝐿(𝐷

𝑠
; 𝐵, 𝑄

𝑗
) 

under a mixture model. The first and second-order partial derivatives of with respect to the 𝑓
𝑠
 

branch lengths  are: 𝐵

 = ,    (4) 
∂𝑓

𝑠

∂𝐵  
𝑗=1

𝑘

∑ 𝑤
𝑗
 

∂𝐿(𝐷
𝑠
;𝐵,𝑄

𝑗
)

∂𝐵

 = .   (5) 
∂2𝑓

𝑠

∂𝐵∂𝐵𝑇
 

𝑗=1

𝑘

∑ 𝑤
𝑗
 

∂2𝐿(𝐷
𝑠
;𝐵,𝑄

𝑗
)

∂𝐵∂𝐵𝑇

From Eq. (3),  .  Therefore, the gradient and Hessian of the total 𝑙𝑜𝑔 𝐿(𝐷; 𝐵) =  
𝑠
∑  𝑙𝑜𝑔 {𝑓

𝑠
}

log-likelihood are; 

        (6)  𝑔(𝐷, 𝐵) =
𝑠 
∑

∂𝑓
𝑠

∂𝐵

𝑓
𝑠

       (7) 𝐻(𝐷, 𝐵) =
𝑠 
∑ 

𝑓
𝑠
(

∂2𝑓
𝑠

∂𝐵∂𝐵𝑇
 )− (

∂𝑓
𝑠

∂𝐵 )2

(𝑓
𝑠
)2
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We use Eq. (7) to obtain the diagonal elements of the Hessian matrix only, as the 

off-diagonal elements estimated this way are not stable. For the off-diagonal elements, we 

used the outer-product-of-scores (OPS) estimator as it is more stable (Porter 2002; Seo et al. 

2004). However, the OPS estimator assumes all parameter estimates are within parameter 

space, and thus the OPS method does not produce the correct diagonal entries for branch 

lengths with MLEs equal to zero. Thus, our approach here, combining Eq. (7) with the OPS 

estimator, provides the best estimates (see dos Reis and Yang, 2011, for a discussion of this 

issue). 

Simulated data 

We conducted the following simulations to test IQ2MC. We reused six DNA 

alignments from Tao et al. (2020), simulated using a rooted 16-taxon phylogeny 

(Supplementary Fig. S1) with 5,000 sites using a strict clock under the GTR+G4 model with 

 (Tavaré 1986; Yang 1994). The six alignments were generated under six different α = 0. 25

sequence divergences: 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 nucleotide substitutions per site per unit 

time, henceforth denoted as 1x, 2x, 4x, 6x, 8x, and 10x, respectively. 

We also used the 16-taxon tree to simulate 42 amino acid alignments under a 

combination of the 6 divergence levels above and 7 substitution models: LG+G4 (Le and 

Gascuel 2008) and six profile mixture models; LG+G4+C10 to LG+G4+C60 (Quang et al. 

2008) using AliSim-HPC (Ly-Trong et al. 2023). All alignments have 5,000 sites and the 

same gamma shape ( ). We then validated IQ2MC by running IQ2MC and PAML α = 0. 25

on all DNA and amino acid alignments using GTR+G4 and LG+G4 models, respectively, to 

verify that both tools produce the same results, including estimated branch lengths, gradient 

vector, and Hessian matrix.  

Next, we assessed the impact of model violation and varying the placement of 

informative calibrations on the nodes of the phylogeny. We hypothesize that if a phylogeny 
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only has an informative calibration on a young node, then large discrepancies will be 

observed in the estimated age of the root when using simple vs. complex substitution models, 

because simpler models tend to underestimate longer branches more than shorter ones. Each 

alignment was analysed under three fossil calibration settings: young, middle, and root. In the 

young calibration setting, the age of the youngest internal node (t15) (Supplementary Fig. S1) 

is calibrated with a narrow uniform distribution B(0.18, 0.22), and the root node is  (t1) 

calibrated with a gamma density G(2, 0.66), which is a diffuse calibration with a large 

variance. Thus, in this case, the youngest node has the most informative calibration. For the 

middle calibration, the middle node (t10) is calibrated with a narrow uniform distribution 

B(1.08, 1.32), and the root node (t1) is calibrated with the same diffuse gamma distribution as 

above G(2, 0.66). Thus, in this case, the middle node has the most informative calibration. 

Finally, for the root calibration setting, the root (t1) is calibrated with a narrow uniform 

distribution, B(2.7, 3.3). We note MCMCTree conditions the birth-death process on the age of 

the phylogeny’s root to generate the prior on node ages without fossil calibrations. Thus, a 

calibration on the root is always required by MCMCTree.  

For the six DNA alignments, we then ran IQ2MC under the GTR+G4 model (which 

was used to simulate the alignments) and compared the results with those under the simpler 

and incorrect JC69 model (Jukes and Cantor 1969). For the 36 amino acid alignments 

simulated under profile mixture models, we compare the results obtained using IQ2MC with 

the correct profile mixture model vs using the simpler LG+G4 model. 

Empirical data 

To demonstrate the impact of using the new partition and mixture models available in 

IQ2MC, we used IQ2MC to reanalyze four empirical datasets (Table 1) originally analyzed 

with the existing PAML workflow. For all analyses, we used the published tree topologies 

11 

https://paperpile.com/c/eBDlyW/ipcw


DEMOTTE ET AL. 

and four calibration settings: young, middle, root, and all calibrations as used in the original 

papers. For each setting, we always set a calibration on the root node of the tree as required 

by MCMCTree, whereas in the young and middle calibrations, a calibration is additionally 

added to either one node closest to the tips or one node in the middle of the tree, respectively. 

Supplementary Tables S1-S4 show the detailed prior distributions.  

Table 1: Datasets used in the empirical analyses. 

Dataset Datatype Taxa Partitions Sites Fossil 
calibrati

ons 

Reference 

Placental 
mammals/ 

Afrotheria subtree  

DNA 60 5 262,910 10 (Álvarez-Carre
tero et al. 
2022) 

Plants 
 

DNA 103  1 2,217 37 (Morris et al. 
2018) 

Eukaryotes and 
Prokaryotes 

 

Amino 
Acid 

102 29 9,874 11 (Betts et al. 
2018) 

Metazoans Amino 
Acid 

54 10 38,577 34 (dos Reis et al. 
2015) 

 

For three datasets (placental mammals/afrotheria subtree, metazoans, Eukaryotes and 

Prokaryotes), we ran IQ2MC under combinations of two substitution models and two 

partition models (giving four model combinations): single and mixture models, edge-linked 

partition models, and edge-unlinked partition models. Whereas for the plant dataset, we used 

single and mixture models. For single models, IQ2MC applies GTR+G4 and LG+G4 for 

DNA and amino acid alignments, respectively. For edge-linked and edge-unlinked partition 

models, ModelFinder (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017) is used to 

determine the best-fit models. That is, different partitions may use different substitution 
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models (say HKY+G4 in one partition and GTR+G4 in another). For mixture models, we 

used MixtureFinder (Ren et al. 2024) for DNA alignments and LG+G4+C60 for amino acid 

alignments. 

For comparison, we also ran PAML under single and edge-unlinked partition models 

because it does not support edge-linked partition and mixture models. The PAML pipeline 

always produced the same results as the IQ2MC pipeline when the models matched, and thus, 

we do not report the PAML results. For all IQ2MC analyses, we used the autocorrelated rates 

model, the same priors on the mean rate, rate diffusion, and calibration densities as the 

original publications. MCMCTree v4.10.7 (Rannala and Yang 2007) is used with the default 

ARCSINE transform on the branch lengths (dos Reis and Yang 2011). For each combination 

of datasets and models, we carried out two independent MCMC runs, where the number of 

MCMC iterations was manually determined to ensure convergence (supplementary Table 

S10). That is, we ensured the effective sample size (ESS) was at least 200 for all sampled 

parameters after removing 10% of the samples as burn-in, and that the two MCMC 

independent runs resulted in congruent histograms for sampled parameters. For each 

comparison of divergence times estimated using partition/mixture models versus the single 

models, we calculated the slope and  from a linear regression. 𝑅2

 

RESULTS 

IQ2MC allows parallel gradient and Hessian calculation for advanced models of sequence 

evolution such as mixture models 

The IQ2MC workflow (Fig. 1) implements multi-threading calculations of the 

gradient and Hessian matrix for all models of sequence evolution in IQ-TREE 3, including all 

DNA, protein, codon, binary, and morphological models, which results in much faster 

optimisation routines than those implemented in PAML. This is particularly striking for the 
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optimisation of large amino acid phylogenies, which can take several days with PAML but 

only a few hours with IQ-TREE. Moreover, IQ2MC supports edge-linked (EL) and 

edge-unlinked (EUL) partition models (Chernomor et al. 2016), whereas BaseML/CodeML is 

limited to edge-unlinked models. More importantly, IQ2MC supports mixture models (Le et 

al. 2008, 2012; Quang et al. 2008; Wang et al. 2018; Ren et al. 2024) which are especially 

useful for deep divergence dating but not available in BaseML/CodeML. Compared with the 

current PAML workflow (Yang 2007; Álvarez-Carretero et al. 2022), this integration 

significantly broadens the scope and applicability of advanced models in phylogenetic dating 

with MCMCTree. 

IQ2MC is highly accurate under different simulation conditions 

For DNA alignment simulations, branch lengths, gradients, and Hessians estimated 

using the GTR+G4 model in the IQ2MC workflow were virtually identical to those from 

PAML, except for tiny numerical differences due to the different optimisation algorithms 

used in the two programs (Supplementary Fig. S2). Both programs also produced virtually 

identical estimates for the simulated amino acid alignments under the LG+G4 model 

(Supplementary Fig. S6). For profile mixture models (LG+G4+C10 to LG+G4+C60), branch 

lengths were estimated only with IQ2MC, as PAML lacks support for these models. These 

estimates also show strong agreement with the true values used in the simulation 

(Supplementary Fig. S7). Furthermore, we compared the divergence times estimated between 

the two workflows for GTR+G4 (Supplementary Fig. S3) and LG+G4 (Supplementary Fig. 

S8) models, and the results are essentially the same.  

Wrong substitution models substantially bias divergence times under simulations 

Simulation analyses on both DNA and amino acid data show that model violations 

substantially affect divergence time estimates, particularly at higher evolutionary rates.   

Figure 2 compares divergence times from LG+G4 and LG+G4+C60 models to ground truth 
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across two divergence levels (1x and 10x), with time estimates from each model on the y-axis 

and simulation ground truths on the x-axis. 

 

 

Figure 2: Comparison of estimated divergence times under LG+G4 (misspecified) and LG+G4+C60 

(true) model to ground truth times under the IQ2MC workflow. Three different calibration settings are 

used with varying rates (1x and 10x). The columns represent the young, middle, and root calibration 
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settings. Young calibration setting (young node (red) t15 ~ B(0.18,022),  root node (blue) t1 ~ 

G(2,0.66)), middle calibration setting (middle node (green) t10 ~ B(1.08,1.32), root node (blue) t1 ~ 

G(2,0.66)), and root calibration setting  (root node (blue) t1 ~ B(2.7, 3.3))  while the first and second 

rows represent the rates 1x and 10x rates for the LG+G4 model and third and fourth rows represent 1x 

and 10x rates for the LG+G4+C60 model. RMSE: root mean square error. 

 

Under the young calibration setting, the misspecified LG+G4 model leads to a 

substantial underestimation of divergence times compared to the true LG+G4+C60 model, 

with discrepancies increasing at higher evolutionary rates (Fig. 2, left column). In the middle 

calibration setting, placing the calibration on an older node improves agreement between 

LG+G4 estimates and ground truth at lower rates (Fig. 2, middle column). However, 

discrepancies remain at higher divergence levels (10x) when using LG+G4 compared to the 

LG+G4+C60 profile mixture model. 

In the root calibration, both times estimated under true and misspecified models are 

more similar to the ground truth at lower rates. In other words, a precise calibration on the 

root pins the inferred timespan of the phylogeny, making the analysis robust to substitution 

model misspecification. Despite this improvement, estimation bias remains, and is stronger 

under faster evolutionary rates, with the LG+G4 model substantially overestimating 

divergence times for the middle nodes at higher divergence levels. (see Fig. 2, right column).  

Similar patterns were observed in other comparisons. For DNA alignments, time 

estimates obtained using the misspecified JC69 model tended to be similarly biased, with 

substantial underestimation of the root age for the young calibration setting, whereas 

estimates under the true GTR+G4 model were centered on the true values (Supplementary 

Figures S4 and S5). For amino acid alignments, the time estimates follow the same trend, 

with the simpler LG+G4 model providing larger estimation errors compared to the  

LG+G4+C10 to LG+G4+C60 models (Supplementary Figures S9-S14).  
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Impact of partition and mixture models for time estimates in empirical data 

 

DNA mixture models for divergence time estimation: Placental Mammals  and Plant Data 

Analysis 

To analyze the effects of complex DNA models on divergence time estimations, we 

reanalyzed two datasets of placental mammals and plants. The placental mammal dataset 

consists of 60 taxa with 250 million years of tree depth. This is a subset of data under the 

Afrotheria clade analyzed by (Álvarez-Carretero et al. 2022) using the sequential Bayesian 

sub-tree dating approach. We did not remove the taxa representing the outgroup, as in the 

sequential Bayesian sub-tree dating approach, the out-group is commonly used until the 

merging step of sub-trees to the backbone trees and is useful for transferring phylogenetic and 

calibration information from the backbone tree to the sub-tree (Álvarez-Carretero et al. 2022; 

Stiller et al. 2024). 

Since we do not know the truth, we compared the divergence times inferred between 

the simpler model (GTR+G4 on a concatenated alignment) and the complex model (GTR 

mixture model estimated with MixtureFinder on a concatenated alignment). We computed the 

gradients and the Hessian under both substitution models and estimated divergence times 

under four different calibration settings (supplementary Tables S1 and S6). The Bayesian 

Information Criterion (BIC) score for the GTR+G4 model is 1,672,596.65, and the BIC score 

for the GTR mixture model is 1,661,753.49, which indicates a much better fit of the mixture 

model to the data. The linear regression slopes ranged from 1.05 to 1.13 with low dispersion (

) (Fig. 3a-3d). The highest linear regression slope (1.13) was obtained when the 𝑅2 =  0. 99

middle calibration setting was utilized. Under all analyses, the root age was underestimated 

by the GTR+G4 model compared with the GTR mixture model but fell within the 95% 
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credible interval (CIs) of root age estimated by the mixture model. The divergence time 

estimates for the outgroup showed substantial discrepancies when young, middle, and root 

calibration settings were used, specifically the GTR+G4 model underestimating divergence 

times (Fig. 3a–3c). However, these discrepancies disappeared when all calibrations were 

applied (Fig. 3d). This suggests that DNA mixture models can have a substantial impact on 

divergence time estimation, particularly in sequential Bayesian subtree dating approaches. 

Therefore, their effects should be thoroughly investigated for the robustness and accuracy of 

time tree inference. 
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Figure 3: Comparison of estimated divergence times under complex and simple substitution models 

for empirical datasets. (a-d) divergence times comparison for the placental mammal/afrotheria subtree 

dataset under GTR+G4 and MxitureFinder with concatenated alignments. (e-h) divergence times 

comparison for the plant dataset under GTR+G4 and MixtureFinder with concatenated alignments. 

(i-l) divergence times comparison for the eukaryotes and prokaryotes dataset under LG+G4 and 

LG+G4+C60 models with concatenated alignments. (m-p) divergence times comparison for the 

metazoan dataset under LG+G4 with concatenated alignment and ModelFinder with edge-unlinked 

partition model. (a, e, i,m) Only young and root calibrations are used. (b, f, j, n) Only the middle and 

root calibrations are used. (c, g, k, o) Only root calibration is used. (d, h, l, p) All calibrations in the 

source publication are used. Each axis represents divergence times in million years. In each plot, the 

red dot represents the young calibration, the green dot represents the middle calibration, and the blue 

dot represents the root calibration (Supplementary Table S1-S4). 

 

We also estimated the divergence times with EUL and EL partition models, where the 

best-fitted substitution model for each partition was obtained with ModelFinder. We 

compared the times obtained with the GTR+G4 model (on a concatenated MSA) with EUL 

and EL partition models. The analyses reveal the significant impact of the substitution model 

and the partition scheme on divergence time estimation (Supplementary Fig. S15) when using 

partition models instead of concatenated MSA. 

We further investigated the effects of DNA mixture models on divergence time 

estimation using a plant dataset. The dataset originally consisted of 103 taxa, 856,439 sites, 

and 798 million years of tree depth. Following Tao et al. (2020), we used the 2,217-site 

subsampled MSA, shown to yield comparable time estimates to the full alignment (Morris et 

al. 2018) and also suitable for mixture model estimation under MixtureFinder  (Ren et al. 

2024). We selected the GTR+G4 model on a concatenated MSA as the simple model and a 

4-component DNA mixture model estimated by the MixtureFinder as the complex model  
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(Supplementary Table S7) for the time estimates comparison. The BIC score for the GTR+G4 

model is 217,754.25, and the BIC score for the DNA mixture model is 211,087.20, 

demonstrating the better fit of the DNA mixture model for the data. However, the time 

estimates obtained by both simpler and complex substitution models were very similar, as 

observed by Tao et al. (2020) previously for the GTR+G4 and JC69 model comparison. The 

maximum linear regression slope was 1.04 with low dispersion ( , Fig. 3e-3h).  𝑅2 =  1

For all the calibration settings, the GTR+G4 model underestimated the root age 

compared to the DNA mixture model, but fell within 95% CIs of the root age estimated by 

the DNA mixture model. Therefore, the impact on the DNA mixture model for the time tree 

is negligible for the plant data compared to the placental mammal data. This suggests that the 

effect of the substitution model on time estimates is data and context-dependent (Tao et al. 

2020), demonstrating the importance of thoroughly evaluating model choice for accurate 

divergence time estimation. 

 

Protein Mixture Models for Eukaryotes and Prokaryotes Data  

We next reanalyze a dataset of Eukaryotes and Prokaryotes (Betts et al. 2018; Tao et 

al. 2020) with 102 species and 4.5 billion years of tree depth to demonstrate the usage of 

complex amino acid substitution models available in IQ2MC for phylogenetic dating. We 

compare the divergence time estimated using the LG+G4 model and the LG+G4+C60 profile 

mixture model on a concatenated MSA. We calculated the gradients and Hessian matrix for 

each substitution model (Supplementary Table S8) and estimated divergence times under four 

different calibration settings (Supplementary Table S3). The BIC score for the LG+G4 model 

is 2,329,433.11, and the BIC score for the LG+G4+C60 model is 2,312,129.03, suggesting a 

better fit of the profile mixture model to the data. 
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Divergence time estimates obtained using the LG+G4 model were highly consistent 

with those from the profile mixture model (LG+G4+C60) across all four calibration settings, 

yielding a maximum slope of 1.01 and an R² of 1 (Fig. 3i-3l). Under the young, middle, and 

all-calibration settings, the LG+G4 model exhibited a slight tendency to underestimate 

divergence times compared to the profile mixture model, though the estimates remained 

within  95% CIs of the profile mixture model. These findings suggest that the profile mixture 

model may exert a minor influence on divergence time estimation for deep phylogenies, 

which requires further investigation. 

We further analyzed the divergence times estimated for Eukaryotes and Prokaryotes 

data with EUL and EL partition models. ModelFinder was used to estimate the best-fit 

substitution model for each partition (Supplementary Table S8). The source publication of the 

dataset contained 29 partitions, and the time estimates in the original research showed a high 

influence on partition schemes (Betts et al. 2018; Tao et al. 2020). Moreover, we observe the 

same influence on time estimates when the divergence times are estimated under the EUL 

and EL partition models with ModelFinder (Supplementary Fig. S16 and S17). 

 

Partition models with ModelFinder for Metazoan Data 

We further investigated the effects of partition models for divergence time estimation 

using the Metazoan data (dos Reis et al. 2015), which includes 54 species and 757 million 

years of tree depth. Here we compare the divergence time estimated using the LG+G4 model 

and the best-fitted substitution models estimated with ModelFinder for the EUL partition 

model. We calculated the gradients and Hessian matrix for the LG+G4 model with a 

concatenated alignment. For the EUL model with ModelFinder, gradient vectors and Hessian 

matrices were estimated for each partition separately (Supplementary Table S9). The LG+G4 

model yielded a BIC score of 2,152,878.01 while the EUL model had a lower BIC score of 
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2,145,256.68, indicating that the EUL model provides a better fit for Metazoan data. We then 

used MCMCTree for divergence time estimation with four calibration settings  

(Supplementary Table S4). 

The divergence times estimated with the young, root, and all calibration settings 

produced highly variable time estimates when the EUL partition model and rather simple 

LG+G4 model were compared (Fig. 3m, 3o, and 3p). Especially, under the young calibration 

setting, the LG+G4 model overestimates the time estimates against the EUL partition model 

(Fig. 3m) with a slope of 1.01 and R² of 0.99. Furthermore, under the root-only calibration 

settings (Fig. 3o), the LG+G4 model underestimates divergence time with a slope of 1.07 and 

R² of 0.97. However, both models produced similar root age estimates across the two 

calibration settings. The highest discrepancies in time estimates occur under the 

all-calibration setting (Fig. 3p), with a slope of 1.19 and   0.94. The LG+G4 model 𝑅2

underestimates the root age and the divergence times for some nodes while overestimating 

others compared to the EUL model. 

 In addition to the comparison of the LG+G4 model to the EUL partition model, we 

compared the time estimates from the LG+G4 model against the LG+G4+C60 on a 

concatenated MSA and the EL partition model. The time estimates from the LG+G4 model 

showed dissimilarities to the estimates of the LG+G4+C60 profile mixture model with a 

slope of 1.03 and R² of 0.99, even with all calibrations applied. The time estimates of the 

LG+G4 model were consistent with the estimates obtained from the EL model. However, 

LG+G4  underestimated the times of the internal nodes with a slope of 1.05 and R² of 1 under 

the root-only calibration setting (Supplementary Fig. S18).  

 

Wall-clock time and RAM usage 
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We evaluated the computational efficiency of IQ-TREE 3 for gradient and Hessian 

calculations by benchmarking IQ-TREE’s runtime and memory usage against PAML 

(BaseML and CodeML for DNA and amino acid data, respectively). We simulated two large 

DNA and protein alignments using Alisim-HPC (Ly-Trong et al. 2023) with 300 taxa and 

500,000 sites under GTR+G4 and LG+G4 substitution models. We evaluated two threading 

configurations for IQ-TREE: a single-threaded mode and a 10-threaded mode. For PAML, we 

used only a single thread, as it does not support multithreading. In the IQ2MC 

implementation of gradient and Hessian computation, we leveraged vector operations and 

OpenMP (Open Multi-Processing) within IQ-TREE to optimize and parallelize computations 

across multiple CPU cores. All analyses are conducted on a server with an AMD EPYC 7551 

32-core Processor and 500 GB of RAM. The wall-clock runtimes and memory usage reported 

in Table 2 represent the averages from three independent runs. 

Across all analyses, IQ-TREE significantly outperformed PAML in both 

single-threaded and multi-threaded modes (Table 2). For DNA data, IQ-TREE was able to 

achieve a 9.45x speed up under a single-threaded mode, while with 10 threads, a 92.5x speed 

up was achieved. The same observation was visible for amino acid data, where IQ-TREE was 

14.71x times faster under a single-threaded mode than PAML, while 148.82x speed-up is 

achieved with 10 threads, making large-scale Hessian computations for phylogenomic data 

feasible within practical timeframes. The peak memory usage of IQ-TREE remains 

comparable to PAML in the case of DNA data (18.3 GB vs. 14 GB) and amino acid data (68 

GB vs. 64 GB). However, considering the substantial reductions in runtime, this increase is a 

reasonable trade-off for large-scale phylogenomic analyses. 
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Table 2:  Runtime comparison between PAML (CodeML and BaseML as existing tools), and  

IQ-TREE 3 (new implementation) for computing the gradient and Hessian matrix at the 

maximum likelihood estimates of the branch lengths.  

Method  Simulated DNA data  
(300 taxa  500k sites) ×

Simulated amino acid data  
(300 taxa  500k sites) ×

Runtime* 
(hh:mm:ss) 

Memory Speedup Runtime 
(hh:mm:ss) 

Memory Speedup 

PAML 13:03:23  14 GB - 247:32:02 64 GB - 

IQ-TREE 
(1 thread) 

1:22:53 18.3 GB 9.45 16:49:59 68 GB 14.71 

IQ-TREE 
(10 threads) 

0:08:28 18.3 GB 92.5 1:39:48 68 GB 148.82 

* Analyses are conducted on AMD EPYC 7551 32-core server with 500 GB RAM. 

 

We further benchmarked IQ-TREE 3 and PAML for gradient and Hessian estimation 

using simulated MSAs with varying numbers of sites and taxa (Supplementary Fig. S19 and 

S20). Our results show that, on average, IQ-TREE achieves a 100x speed-up compared to 

PAML. We also measured the runtime and peak memory consumption for gradient and 

Hessian calculations across all empirical datasets analyzed (Supplementary Table S5). The 

runtime ranged from a few seconds to several hours. Notably, when using ModelFinder or 

MixtureFinder for model selection, the runtime can increase to several hours, depending on 

the dataset size and number of substitution models evaluated. 

For Bayesian dating with the approximate likelihood method, MCMCTree typically 

requires several hours to multiple days to achieve MCMC convergence, depending on the 

size of the dataset. For instance, the Eukaryotes and Prokaryotes dataset analysis using a 
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concatenated MSA took approximately 60 hours (Supplementary Table S11). Under the EUL 

partition model with  29 partitions, MCMC convergence required 183 hours. These results 

indicate that the primary computational bottleneck now shifts to the MCMCTree algorithm 

for divergence time estimation. This underscores the need for faster MCMC algorithms to 

keep pace with growing phylogenomic datasets. 

 

DISCUSSION 

We present a novel framework, IQ2MC, for time tree inference that seamlessly 

integrates IQ-TREE 3 and MCMCTree. IQ2MC enables significant speed-ups (up to 2 orders 

of magnitude) in the pre-calculation step of the gradient and the Hessian of branch lengths, a 

key step for fast MCMC sampling of divergence times. This approach takes full advantage of 

the wide range of advanced substitution models and model selection tools available in 

IQ-TREE 3, making molecular dating faster, more accurate, and user-friendly. By 

accommodating more sophisticated models of sequence evolution on simulated and empirical 

data analysis, we show that IQ2MC can facilitate more reliable time tree estimates. 

Importantly, IQ2MC introduces the usage of DNA mixture models and amino acid 

profile mixture models, which were previously unavailable with MCMCTree. These models, 

designed to account for site-specific variations in substitution patterns, significantly improve 

the realism of evolutionary models and help to identify potential biased date estimates that 

can arise when simpler models are used. Through comprehensive analyses of simulated and 

empirical datasets, we reveal the impact of adopting mixture models compared to simpler 

substitution models, highlighting their significance in time tree estimation. Furthermore, the 

analysis of four empirical datasets suggests that one should carefully select the substitution 

models for divergence time estimation. As we show here, when phylogenies are densely 

calibrated, estimated divergence times between simple and complex substitution models are 
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not markedly different (as noticed by Tao et al. 2020), arguably because the dense 

calibrations and the relaxed clocks interact to place node ages in their right geological 

context. On the other hand, when calibrations across the phylogeny are sparse, differences in 

time estimates between simple and complex substitution models can be very dramatic, as 

shown here for our simulation analyses and in the Metazoan dataset. Thus, correct model 

selection appears critical for robust divergence time estimation in deep phylogenies, as has 

also been pointed out by Wang and Luo (2025). Finally, the impact of advanced substitution 

models on divergence times with different clock models should be further investigated, 

especially in the context of mixture models, which leads to a potential future research 

direction. 

The combination of increased computational efficiency and support for a large array 

of substitution models in IQ-TREE 3 for the approximate likelihood technique represents a 

substantial step forward in large-scale phylogenomic dating. IQ-TREE highly optimizes the 

necessary precalculation of the derivatives, and the computational bottleneck now shifts to 

MCMCTree. Therefore, we will investigate efficient MCMC algorithms, including parallel 

MCMC techniques such as Metropolis-coupled MCMC, in the future to improve the 

divergence time estimation. 
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Supplementary data is available at: doi.org/10.5281/zenodo.15321227 
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