

1 **Invisible but Identifiable: p-Chips as a Reliable Marking Method for Amazonian Bats**

2 **Running title:** p-Chip marking in free-ranging Amazonian bats

3 Juan J. Pellón^{1,2*}, Jorge L. Mendoza^{1,3}, Nick Fluker¹, Naija Cuzmar¹, Cristian Tirapelle¹, Abril Rado^{1,4}

4 Gideon Erkenswick¹, Mrinalini Watsa⁵

5 1. Field Projects International, Escondido, California, USA

6 2. Centro de Investigación Biodiversidad Sostenible (BioS), Lima, Peru

7 3. Samay Conservación, Lima, Peru

8 4. Universidad Nacional de San Antonio Abad del Cusco

9 5. San Diego Zoo Wildlife Alliance, Escondido, California, USA

10 *Corresponding author: Juan J. Pellón (jpellon@ecologia.unam.mx)

12 **Abstract**

13 Marking techniques are essential for studying bat ecology and informing conservation efforts, yet
14 many existing methods present challenges related to size, tag detectability, and long-term retention.
15 p-Chips, ultra-miniaturized transponders detectable via red laser light, offer a promising alternative
16 to traditional banding or passive integrated transponder (PIT) tags. While their use has been
17 successfully demonstrated in captive bats, their effectiveness in free-ranging populations remains
18 largely untested. Across three years of bat research in the Peruvian Amazon, we tagged with p-Chips
19 individuals across 31 species. We documented 88 recaptures, with all p-Chips remaining functional
20 over both short term (≤ 40 days) and long term ($>$ one year) periods. Notably, no adverse effects such
21 as scarring or tissue damage were observed. Red LED illumination facilitated rapid tag visual
22 detection, reducing handling time. These findings support the use of p-Chips as a viable, detectable,
23 minimally invasive, and cost-effective alternative to PIT tags, particularly for small-bodied species.
24 We recommend further research to optimize p-Chip technology for broader application in wildlife
25 tracking and conservation.

26 **Keywords:** Chiroptera, forearm, life tag, mark-recapture, technology, wild bats

27 **Introduction**

28 Individual identification of bats is critical for applied conservation research programs on population
29 dynamics, aging, health and mortality (e.g., van Harten et al., 2022; Humphrey and Oli, 2015; Jin et
30 al., 2012; O’Shea et al., 2010; O’Shea et al., 2004; Cheng and Lee, 2002). Researchers have employed
31 a variety of methods to individually mark bats for long-term monitoring (Kunz and Weise, 2009).
32 Nevertheless, choosing the most effective marking technique remains a challenge, as available
33 techniques vary in terms of cost, durability, practicality, and their impacts on animal health and
34 behavior (Loeb et al., 2025; Reynolds et al., 2025; Lobato-Bailón et al., 2023; Markotter et al. 2023,
35 Mellado et al., 2022; Kunz and Weise, 2009). Effectiveness may also be species-dependent,
36 necessitating the use of multiple complementary approaches (Kunz and Weise, 2009; Bonaccorso et
37 al., 1976).

38 Historically, forearm bands have been widely used due to their relatively low cost and ease of
39 application (Kunz and Weise, 2009). However, concerns over lethal and sublethal injuries, and
40 potential interference with foraging activities in a range of species (Lobato-Bailón et al., 2023) have
41 prompted researchers to explore alternatives (Markotter et al., 2023; Kirkpatrick et al., 2019; Kunz
42 and Weise, 2009; Sherwin et al., 2002; Barnard, 1989).

43 Passive integrated transponder (PIT) tags, a type of radio-frequency identification (RFID) marker,
44 have been frequently employed to permanently mark bats over the last few decades (Fontaine et al.,
45 2024; Escobar et al., 2022; Locatelli et al., 2019; Britzke et al., 2014; Rigby et al., 2012; Ellison et
46 al., 2007; Neubaum et al., 2005; Kerth and Reckardt, 2003; Schooley et al., 1993; Barnard, 1989).
47 These subcutaneous tags encode a unique identification number that is readable by RFID readers,
48 which can even be adapted to automatically detect bats at roost entrances (Rivera-Villanueva et al.,
49 2024; Adams and Ammerman, 2015; Britzke et al., 2014). Although they are widely used and
50 evidence suggests that PIT tags do not negatively affect bats’ body mass, body condition, or
51 reproductive success (Waag et al., 2025; van Harten et al., 2019; Locatelli et al., 2019; Rigby et al.,
52 2012; Neubaum et al., 2005), they have some limitations. Their application typically requires a large
53 needle (12-gauge), which may be invasive for smaller species (Seheult et al., 2024). Tags are not
54 externally visible; therefore, the use of a hand-held ID reader is required; nevertheless, they can
55 migrate or even be occasionally expelled from the body, in which case this may lead to detection
56 difficulties or data loss (van Harten et al., 2021; Rigby et al., 2012; Kunz and Weise, 2009; Barnard,
57 1989). Finally, they are cost-prohibitive at large scales (USD 5–10; Seheult et al., 2024), but these
58 prices vary depending on the vendor and the quantity. Generally, PIT tags are preferable to forearm
59 bands due to their higher retention rates (van Harten et al., 2021; Ellison et al., 2007); however, the

60 concerns over cost, detectability, potential safety issues for very small bats (forearm length < 30 mm),
61 and tag loss in some studies (e.g., Rigby et al., 2012) warrant investigation into alternative
62 technologies.

63 p-Chips (p-Chip Corp., Chicago, Illinois) are ultra-miniaturized semiconductor transponders (500 ×
64 500 μm) that emit a unique ID when activated by a red laser light (PharmaSeq 2012). Although they
65 were designed for a wide range of applications, including labeling, tracking, and authenticating items,
66 their primary initial use was the permanent identification of laboratory mice (Gruda et al., 2010;
67 PharmaSeq, 2012). Since the laser tip must be in close proximity to the tag for successful scanning
68 (< 1 cm), the tag is injected subcutaneously in an area with thin, translucent, and almost hairless skin
69 via a narrow, 21-gauge needle, making them a promising alternative for marking even the smallest
70 bat species in a less invasive way (Ngamprasertwong et al., 2022; Gruda et al., 2010). P-Chips (1-2
71 USD per unit) can also be five to ten-fold less expensive than PIT tags (Seheult et al., 2024). P-Chips
72 (p-Chip Corp.) were available either in preloaded or loose formats; in the latter case, they can be
73 manually loaded into injectors, which can be sterilized between uses or discarded. Currently,
74 PharmaSeq is no longer engaged in commercial sales of p-Chips or preloaded injectors. Researchers
75 interested in using p-Chips may contact p-Chip Corp. directly to purchase them (p-Chip Corp.
76 personal communication) and adapt other needles for injection (see Methods).

77 p-Chips have been successfully used for marking and identification in animals of various sizes,
78 including fish (Spooner and Spurgeon, 2024; Moore and Brewer, 2021; Faggion et al. 2020), rodents
79 (Clein et al., 2024; Warren et al., 2021; San Diego Zoo Wildlife Alliance, 2016), crayfish (Huber et
80 al., 2023), salamanders (Moore et al., 2024), bees (Hamilton et al., 2019; Tenczar et al., 2014), ants
81 (Robinson et al., 2014, Robinson et al., 2009), and even ectoparasites (Folk et al., 2024). Although
82 most evidence comes from captive conditions, p-Chips have been shown to be effective identification
83 markers for wild fish (Spooner and Spurgeon, 2024; Moore, 2020), demonstrating no significant
84 adverse effects and a tag retention rate of up to 94% after more than a year, even in underwater
85 conditions. Therefore, p-Chips are a suitable and considerably smaller alternative to PIT tags.
86 Although p-Chips still require the recapture of marked individuals, unlike some PIT tags that are large
87 enough to be detected by passive detector arrays, their reduced size represents a promising avenue
88 for innovation for small-sized species for which traditional marking techniques are impractical or
89 invasive.

90 Seheult et al., (2024) tested p-Chips in 30 captive *Eptesicus fuscus* (forearm length: 40–48 mm),
91 inserting them in the skin of the wings and tibia. They found that the tags remained functional for
92 over a year (464 days after tagging) while requiring minimal handling due to rapid scanning by the

93 scanner. However, they also noted that visibility decreased over time, which may complicate
94 recapture efforts. This issue could pose a significant challenge in free-ranging bats, where uncertainty
95 about previous tagging might lead to excessive handling in an effort to locate a potentially nonexistent
96 tag.

97 Given these challenges, it was recommended to test them in more species and non-captive conditions.
98 In this study, we share results from using p-Chips in free-ranging Amazonian bats, assessing their
99 application, detectability, and retention across species.

100 **Methodology**

101 This study was conducted at the Estación Biológica Los Amigos (EBLA), located in the southeastern
102 Peruvian Amazon, at the confluence of the Los Amigos and Madre de Dios Rivers (12°30'–12°36'S,
103 70°02'–70°09'W). The region primarily consists of high and low terra firme forests, flooded palm
104 forests, and meandering river floodplain forests (MINAM, 2015). According to *Servicio Nacional de*
105 *Meteorología e Hidrología del Perú* (SENAMHI), in Puerto Maldonado (~ 50 km away and the
106 nearest site), temperature ranges from 16.6°C to 32.2°C and monthly precipitation varies from 58 to
107 299 mm. At this site, an annual mark-recapture program for medium and large mammals has been
108 ongoing since 2018, under which we were able to try this method for the individual identification of
109 bats. Although sampling of bats has taken place since 2018, marking efforts began only at the end of
110 our 2023 field season (end of July–beginning of August).

111 From 2023 to 2025, we captured bats using 6 × 3 m and 12 × 3 m mist nets at accessible sites along
112 the trail system at the field station (Watsa et al., 2023; Figure 1). Bats were identified taxonomically
113 using the dichotomous keys from López-Baucells et al. (2016) and Díaz et al. (2021); and aged based
114 on epiphyseal ossification (Brunet-Rossini and Wilkinson, 2009). To individually mark bats, p-
115 Chips (USD 0.67 each in 2023; PharmaSeq) were subcutaneously implanted into the right mid-
116 forearm region of each animal, primarily using preloaded 21-gauge needles (Figure 2, Video S1). To
117 replicate the pre-loaded injectors developed by p-Chip Corp. (p-Chip Corp. personal communication),
118 in 2025 we manually flattened 40 conventional 21-gauge needles using a press, then loaded them with
119 loose p-Chips under sterile, controlled conditions. These needles were used to insert the p-Chips in
120 bats and performed comparably to the preloaded needles. The forearm was selected as the
121 implantation site to accommodate the wide range of body sizes included in this study, particularly
122 smaller-bodied species, in which implantation in the metacarpals may be anatomically unfeasible or
123 difficult due to needle gauge relative to bone width. We ensured that each p-Chip was inserted into a
124 disinfected injection site being careful that the chip remains right-side-up to maintain detectability.

125 Individual tag numbers were checked using the handheld reader (model WA-6000) connected to a
126 Windows 10 laptop or tablet via USB connection. We purchased our reader from PharmaSeq for USD
127 3,000 in 2023, whereas Seheult et al., (2024) reported a cost of USD 2,000. During preliminary tests,
128 we identified instances where some p-Chips were unreadable or preloaded in a flipped orientation.
129 For this reason, we checked them before injection by slightly exposing the p-Chip with the plunger
130 of the needle to verify its readability and orientation before implanting it. Additionally, the ongoing
131 bat research program involved taking fur for toxicology analyses and a wing punch for DNA
132 barcoding, both serving as short-term external marks that helped confirm recaptures when p-Chip
133 detectability was initially uncertain. Once red LED-assisted visualization reliably revealed tag
134 presence under the skin, these auxiliary short-term marks were no longer needed for this purpose. No
135 standardized timing protocol was applied.

136 We defined eight sampling sites where we have conducted bat sampling since we began marking bats
137 with p-Chips. In 2024, we ran out of p-Chips for sites 1, 5 and 7; however, we report our full sampling
138 schedule (Supplementary Table S2) because recaptures were recorded at sites 1 and 7. Mist-net
139 locations were georeferenced to measure distances between recapture events. We assessed tag
140 functionality within and across years by recording the distance and time between encounters of
141 recaptured individuals.

142 Mist-netting effort was not standardized across sites or nights. Nets were installed in single-high
143 configurations, but the number of nets deployed per night varied with logistical and environmental
144 constraints and with the objectives prioritized by the ongoing research program since 2018. As a
145 result, our mark–recapture assessment was opportunistic, and we therefore do not quantify recapture
146 rates or success. Our observations of recapture events are reported to document p-Chip visual
147 detection, reading and retention under typical field conditions.

148 This study was conducted under the permission RDG-000116-2021-DGGSPFFS (*Servicio Nacional*
149 *Forestal y de Fauna Silvestre*; SERFOR), following the guidelines of the American Society of
150 Mammalogists (Sikes et al., 2016) and with IACUC approval from Washington University in St.
151 Louis and the San Diego Zoo Wildlife Alliance. For the full handling protocol, please see Watsa et
152 al. (2023).

153 **Results**

154 Bats were sampled and tagged from 2023 to 2025 (details in Supplementary Table S2). In 2023, p-
155 Chips were implanted in 24 bats across eight species; in 2024, in 97 bats across 19 species; and in
156 2025, in 179 bats across 27 species (Table 1). In total, we implanted tags in 31 species across three

157 families (Phyllostomidae, Emballonuridae, and Vespertilionidae), spanning a wide range of body
158 sizes from small bats (forearm length < 36 mm) to very large bats (forearm length > 75 mm). The
159 smallest tagged individual had a forearm length of 29.7 mm (*Mesophylla macconnelli*), whereas the
160 largest was a *Vampyrum spectrum* with a forearm length of 108.1 mm. p-Chip visual detection and
161 reading was successful across this size range, however, standardized metrics were not collected (e.g.,
162 detection/reading time), precluding formal comparisons of efficiency among size classes.

163 Over the entire study period, we recaptured 57 individual bats (12 species) across 88 recapture events,
164 given that some individuals were recaptured more than once (Table 2; Supplementary Table S2). The
165 smallest recaptured individual had a forearm length of 31 mm (*Hsunycteris thomasi*), and the largest
166 had a forearm length of 87.5 mm (*Phyllostomus hastatus*). All recaptured individuals that were
167 expected to carry a functional p-Chip, based on complementary marks (shaved hair or wing biopsy),
168 retained the tag, which remained fully functional.

169 In all recaptured individuals, the injection site was undetectable, with no visible scarring,
170 inflammation, or other apparent adverse effects, including in individuals recaptured more than one
171 year after tagging. During the first sampling sessions, we sometimes had difficulty visually locating
172 the p-Chip immediately after injection and during some recapture events. Visual detectability of the
173 p-Chip varied among species. In bats with dark or thick skin (e.g., *Phyllostomus* spp. and *Vampyrum*
174 *spectrum*), the tag was not externally visible under ambient light and could be confused with natural
175 pigmentation patterns, skin markings, or minor wounds. We later found that placing a red LED
176 backlight beneath the wing caused the p-Chip to appear clearly as a black, opaque square, even in
177 dark-skinned species (Figure 2; Video S2). This technique consistently enabled rapid visual detection
178 and reading of the tag across all species, regardless of size or skin characteristics. Scanning time was
179 reduced to a few seconds per individual (< 15 s; outer limit to reading a tag based on rough field
180 estimates), and tags were typically read on the first attempt with the handheld reader. After
181 implementing this technique, and as the handling team gained experience, all implanted p-Chips were
182 successfully detected and scanned.

183 Notably, 11 individuals across six species were recaptured after more than 170 days from the marking
184 date, including a notable recapture event of a female *Carollia brevicauda* captured more than two
185 years after the marking date (859 days) (Table 2). The rest of individuals were recaptured within short
186 periods (0–40 days) after the marking date (Table 2; Supplementary Table S2). Four individuals (3
187 species) were recaptured at distances over 1 km from previous capture locations, while others were
188 always recaptured between 0 and 500 m from previous capture locations (Table 2; Supplementary
189 Table S2).

190 **Discussion**

191 Previously, Seheult et al. (2024) tested p-Chips in captive *E. fuscus*, while Ngamprasertwong et al.
192 (2022) used them to study roost fidelity in *Craseonycteris thonglongyai*, the smallest bat in the world.
193 Our results provide the first evidence of their performance in free-ranging bats within a highly diverse
194 Amazonian high-terrace forest. p-Chips were inserted and successfully read in the forearm of 31 bat
195 species. The short-term functionality of the tags (up to 40 days) was confirmed in 41 individuals
196 across nine species, while long-term functionality (more than 170 days) was confirmed in 16
197 individuals from six species (Table 1; Supplementary Table S2).

198 We demonstrate that inserting p-Chips in the forearm is feasible and effective. Although forearm
199 implantation may reduce visual detectability in large, dark-skinned species, the use of red LED
200 backlighting overcomes previously reported limitations in visual tag localization and enables reliable
201 tag detection across all species. This approach expands the applicability of p-Chips across
202 morphologically diverse bat taxa. After implementing pre-injection verification, we did not observe
203 any flipped p-Chips in preloaded syringes, except possibly during the initial sessions before
204 verification was applied. However, we do not rule out the possibility that tags may flip over time, as
205 noted by Seheult et al. (2024). Although we did not quantitatively assess p-Chip performance across
206 species, our observations suggest that, when the methods described here are followed, p-Chip
207 functionality is broadly consistent across species within the range of forearm sizes evaluated. As with
208 any marking technique, practice is required to achieve consistent successful application. Although
209 the fine-gauge needle used for p-Chip marking allows all species to be tagged with minimal difficulty,
210 handling and tagging very small species may be slightly more challenging. Nevertheless, we expect
211 that training in this technique would be straightforward for new users when following our protocol.

212 Importantly, we did not detect any visible tissue damage or other adverse effects at the implantation
213 site in any recaptured individuals, including those recaptured more than one year after tagging.
214 Although our sampling design does not allow precise quantitative estimates of tag retention or loss in
215 free-ranging bats, these observations suggest that the implantation protocol used here (Watsa et al.,
216 2023) is unlikely to cause detectable morbidity or acute adverse effects associated with p-Chip
217 application. Observations from Seheult et al. (2024) in captive bats further support that mortality or
218 other adverse effects due to p-Chip insertion are highly improbable. Future work could assess tag loss
219 rates in wild bats. Although tag loss appears low in captive bats, estimating loss in free-ranging
220 individuals is challenging; targeted sampling at roosts with high site fidelity may be well suited for
221 this purpose. In addition, consistent with that captive-bat study, we recommend that future evaluations

222 also include other marking methods (e.g., bands, PIT tags) to allow quantitative comparisons of
223 efficiency.

224 Although the number of recaptured bats may appear low, recapture rates in the Amazon are commonly
225 low (e.g., Tavares et al., 2017; Ramos et al., 2010; Sampaio et al., 2003), including at EBLA (Bravo
226 et al., 2008). Comprehensive sampling in the Amazon is logistically challenging because much of the
227 habitat within a given site is inaccessible. Even in areas with established trails, such as at EBLA, it is
228 difficult to sample large areas simultaneously. Recapturing free-ranging bats is further complicated
229 by the potential for long-distance movements; for example, *Artibeus lituratus* can travel up to 113
230 km (Arnone et al., 2016), and movement data for most species are scarce. Given these constraints,
231 our recapture records across time and space support the effectiveness of p-Chips as a marking method.
232 Several individuals were recaptured more than one year after marking (including one after two years),
233 sometimes at the same site, whereas a few were recaptured at more distant sites within relatively short
234 time intervals. Recaptures at the same site after more than a year may indicate roost or foraging-area
235 fidelity, although our sampling design does not allow stronger inference. Together, these results
236 highlight the potential value of p-Chips for large-scale mark-recapture programs across Amazonian
237 bat communities, an approach that has likely been uncommon due to cost and feasibility constraints
238 for some species. Future work could implement a systematic, long-term sampling design that
239 periodically surveys specific areas. Priority sites could include spatially clustered, high-resource
240 locations that attract bats from long distances (e.g., mammal clay licks) and major roost sites.

241 Standardized protocols are essential to advance research using this technique. In particular, consistent
242 placement of p-Chips is critical to ensure reliable localization during recapture events, especially
243 given the absence of visible external marks after healing. This standardization is also crucial for
244 eventually applying p-Chips across broader geographic contexts and among multiple research teams.
245 Our study contributes information on the long-term retention of p-Chips in free-ranging bats, the
246 importance of proper insertion techniques, and the benefits of pre-injection confirmation and red light
247 scanning to improve readability. These results suggest that p-Chips are an effective and minimally
248 invasive method for longitudinal research on wild bats, offering a viable alternative to PIT tags,
249 particularly for smaller species.

250 **Acknowledgments**

251 This work was funded by Field Projects International (FPI) and the San Diego Zoo Wildlife Alliance
252 (SDZWA). The inspiration to work with p-Chips originated from the Pacific Pocket Mouse Program
253 at the SDZWA, where their application demonstrated promising potential for small vertebrate

254 tracking. We extend our gratitude to the numerous volunteers and staff who contribute to FPI's annual
255 research program; their dedication and effort were instrumental in making this study possible. We
256 also acknowledge *Conservación Amazónica* - ACCA for maintaining the Los Amigos Biological
257 Station, where fieldwork for this research was conducted.

258 **References**

259 Adams E.R., Ammerman L.K., 2015. A serpentine antenna configuration for passive integrated
260 transponder tag readers used at bat roosts. Southwest Nat. 60(40): 393–397.

261 Arnone I.S., Trajano E., Pulchérío-Leite A., Passos F.D.C., 2016. Long-distance movement by a great
262 fruit-eating bat, *Artibeus lituratus* (Olfers, 1818), in southeastern Brazil (Chiroptera,
263 Phyllostomidae): evidence for migration in Neotropical bats?. Biota Neotrop. 16(1): e0026.

264 Barnard S.M., 1989. The use of microchip implants for identifying big brown bats (*Eptesicus fuscus*).
265 Animal Keepers' Forum. 16(2): 50–52.

266 Bonaccorso F.J., Smythe N., Humphrey S.R., 1976. Improved techniques for marking bats. J.
267 Mammal. 57(1):181–182.

268 Bravo A., Harms K.E., Stevens R.D., Emmons L.H., 2008. Collpas: Activity hotspots for frugivorous
269 bats (Phyllostomidae) in the Peruvian Amazon. Biotropica. 40(2): 203–210.

270 Britzke E.R., Gumbert M.W., Hohmann M.G., 2014. Behavioural response of bats to passive
271 integrated transponder tag reader arrays placed at cave entrances. J. Fish Wildl. Manag. 5(1): 146–
272 150.

273 Brunet-Rossinni, A.K., Wilkinson, G.S., 2009. Methods for age estimation and the study of
274 senescence in bats. In: Kunz T.H., Parsons S. (Eds.) Ecological and behavioral methods for the study
275 of bats. Johns Hopkins University Press, Baltimore, MD. 315–328.

276 Cheng, H.C., Lee, L.L., 2002. Postnatal growth, age estimation, and sexual maturity in the Formosan
277 leaf-nosed bat (*Hipposideros terasensis*). J. Mammal. 83(3): 785–793.

278 Clein R.S., Warren M.R., Neunuebel J.P., 2024. Mice employ a bait-and-switch escape mechanism
279 to de-escalate social conflict. PLoS Biol. 22(10): e3002496.

280 Díaz, M.M., Solari, S., Gregorin, R., Aguirre, L.F., Barquez, R.M., 2021. Clave de identificación de
281 los murciélagos neotropicales. Programa de Conservación de los Murciélagos de Argentina,
282 Tucumán.

283 Ellison, L.E., O'shea, T.J., Neubaum, A.J., Neubaum, M.A., Pearce, R.D., Bowen, R.A., 2007. A
284 comparison of conventional capture versus PIT reader techniques for estimating survival and capture
285 probabilities of big brown bats (*Eptesicus fuscus*). *Acta Chiropt.* 9(1): 149–160.

286 Escobar, M.A., Puelma-Diez, F., Villaseñor, N.R., 2022. “Pit-tag” como marca permanente en *Myotis*
287 *chiloensis* (Chiroptera: Vespertilionidae) y *Tadarida brasiliensis* (Chiroptera: Molossidae) en Chile
288 central. *Gayana (Concepç)*. 86(2): 40–46.

289 Faggion S., Sanchez P., Vandepitte M., Clota F., Vergnet A., Blanc M.O., Allal F., 2020. Evaluation
290 of a European sea bass (*Dicentrarchus labrax* L.) post-larval tagging method with ultra-small RFID
291 tags. *Aquaculture* 520: 734945.

292 Folk A., Mennerat A., 2024. Methods for tagging an ectoparasite, the salmon louse *Lepeophtheirus*
293 *salmonis*. *Peer Community J.* 4: e4.

294 Fontaine A., Simard A., Simard V., Broders H.G., Elliott, K.H., 2024. Using PIT tags to infer bat
295 reproductive status and parturition date: busy nights during lactation. *J. Mammal.* 105(2): 289–299.

296 Gruda M.C., Pinto A., Craelius A., Davidowitz H., Kopacka W., Li J., Qian J., Rodriguez E.,
297 Mandecki W., 2010. A system for implanting laboratory mice with light-activated microtransponders.
298 *J. Am. Assoc. Lab. Anim. Sci.* 49(6): 826–831.

299 Hamilton A.R., Traniello I.M., Ray A.M., Caldwell A.S., Wickline S.A., Robinson, G.E., 2019.
300 Division of labor in honey bees is associated with transcriptional regulatory plasticity in the brain. *J.*
301 *Exp. Biol.* 222(14): jeb200196.

302 Huber A.F., Fitzsimmons W.A., Westhoff J.T., 2023. The smaller, the better? First evaluation of
303 growth and mortality in crayfish internally tagged with p-Chips. *J. Crustac. Biol.* 43(4): ruad071.

304 Humphrey S.R., Oli M.K., 2015. Population dynamics and site fidelity of the cave bat, *Myotis velifer*,
305 in Oklahoma. *J. Mammal.* 96(5): 946–956.

306 Jin L., Wang J., Zhang Z., Sun K., Kanwal J.S., Feng J., 2012. Postnatal development of
307 morphological and vocal features in Asian particolored bat, *Vespertilio sinensis*. *Mamm. Biol.* 77:
308 339–344.

309 Kerth G., Reckardt K., 2003. Information transfer about roosts in female Bechstein's bats: an
310 experimental field study. *Proc. R. Soc. Lond. B.* 270(1514): 511–515.

311 Kirkpatrick L., Apoznański G., Bruyn L.D., Gyselings R., Kokurewicz T., 2019. Bee markers: A
312 novel method for non-invasive short term marking of bats. *Acta Chiropt.* 21(2): 465–471.

313 Kunz T.H., Weise C.D., 2009. Methods and devices for marking bats. In: Kunz T.H., Parsons S.
314 (Eds.) *Ecological and behavioral methods for the study of bats*. Johns Hopkins University Press,
315 Baltimore, MD, USA. 36–56.

316 Lobato-Bailón L., López-Baucells A., Guixé D., Flaquer C., Camprodon J., Florensa-Rius X., et al.,
317 2023. Reappraising the use of forearm rings for bat species. *Biol. Conserv.* 286: 110268.

318 Locatelli A.G., Ciuti S., Presetnik P., Toffoli R., Teeling E., 2019. Long-term monitoring of the
319 effects of weather and marking techniques on body condition in the Kuhl's pipistrelle bat, *Pipistrellus*
320 *kuhlii*. *Acta Chiropt.* 21(1): 87–102.

321 Loeb, S.C., O'Keefe, J.M., Barclay, R.M., Bennett, A.B., Cable, A.B., Gaulke, S.M., Gual-Suarez, F.,
322 Kuczynska, V., Lausen, C.L., Pérez-Harp, S., Westrich, B.J. (2025). Question the Mark: A Review
323 and Assessment of Bat Marking Practices. *Mammal Rev.* 56(1): e70009.

324 López-Baucells A., Rocha R., Bobrowiec P., Bernard E., Palmeirim J., Meyer C., 2016. Field guide
325 to amazonian bats. Editoria INPA, Manaus.

326 Markotter W., Vries L.D., Paweska J., 2023. Wing tattoos: A cost-effective and long-lasting method
327 for marking bats. *Acta Chiropt.* 25(1): 193–202.

328 Mellado B., Carneiro L.D.O., Nogueira M.R., Monteiro L.R., 2022. The impacts of marking on bats:
329 mark-recapture models for assessing injury rates and tag loss. *J. Mammal.* 103(1): 100–110.

330 Ministerio del Ambiente (MINAM), 2015. Mapa nacional de cobertura vegetal: memoria descriptiva.
331 Dirección General de Evaluación, Valoración y Financiamiento del Patrimonio Natural, Lima.

332 Moore D.M., Gillis M.S., Funk T.S., 2024. Evaluation of p-Chip microtransponder tags on small-
333 bodied salamanders (*Eurycea* spp.). *Amphib. Reptile Conserv.* 18(1): 10–19.

334 Moore, D.M., Brewer, S.K., 2021. Evaluation of visual implant elastomer, PIT, and p-Chip tagging
335 methods in a small-bodied minnow species. *N. Am. J. Fish Manag.* 41(4): 1066–1078.

336 Moore D.M., 2020. Movement and flow-ecology relationships of great plains pelagophil fishes. M.Sc.
337 thesis, Oklahoma State University, Stillwater, OK.

338 Neubaum D.J., Neubaum M.A., Ellison L.E., O'Shea T.J., 2005. Survival and condition of big brown
339 bats (*Eptesicus fuscus*) after radiotagging. *J. Mammal.* 86(1): 95–98.

340 Ngamprasertwong T., Wangthongchaicharoen M., Racey P.A., 2022. Estimation of roost fidelity of
341 Kitti's hog-nosed bat using mark–recapture approach. Abstract, 19th International Bat Research
342 Conference and 50th Annual Meeting of the North American Society for Bat Research, Austin, TX.

343 O'Shea T.J., Ellison L.E., Neubaum D.J., Neubaum M.A., Reynolds C.A., Bowen R.A., 2010.
344 Recruitment in a Colorado population of big brown bats: breeding probabilities, litter size, and first-
345 year survival. *J. Mammal.* 91(2): 418–428.

346 O'Shea T.J., Ellison L.E., Stanley T.R., 2004. Survival estimation in bats: historical overview, critical
347 appraisal, and suggestions for new approaches. In: Thompson, W. (Ed.) *Sampling rare or elusive*
348 *species: concepts, designs, and techniques for estimating population parameters*. Island Press,
349 Washington, DC. 297–336.

350 PharmaSeq Inc., 2012. White paper. Tagging of laboratory mice using electronic p-Chips. Monmouth
351 Junction, NJ 08852. Available from [https://www.isenet.it/wp-
352 content/uploads/2017/01/PharmaSeq_White_Paper_Small_Animal_Tagging.pdf](https://www.isenet.it/wp-content/uploads/2017/01/PharmaSeq_White_Paper_Small_Animal_Tagging.pdf) [11 Jan 2026].

353 Ramos M.J., Marques J.T., Palmeirim J.M., 2010. Ecological responses of frugivorous bats to
354 seasonal fluctuation in fruit availability in Amazonian forests. *Biotropica* 42(6): 680–687.

355 Reynolds D.S., Ineson K., Loeb S., Britzke E., 2025. Injury rates resulting from bat bands:
356 implications for increasing our understanding of bat ecology. *J Mammal.* 106(3): 721–732.

357 Rigby E.L., Aegeater J., Brash M., Altringham, J.D., 2012. Impact of PIT tagging on recapture rates,
358 body condition and reproductive success of wild Daubenton's bats (*Myotis daubentonii*). *Vet. Rec.*
359 170(4): 101–101.

360 Rivera-Villanueva A.N., Frick W.F., Cheng T.L., Zamora-Gutierrez V., 2024. Activity patterns of
361 the nectar-feeding bat *Leptonycteris yerbabuenae* on the Baja California Peninsula, Mexico. *J.*
362 *Mammal.* 105(6): 1221–1230.

363 Robinson E.J.H., Richardson T.O., Sendova-Franks A.B., Feinerman O., Franks N.R., 2009.
364 Radiotagging reveals the roles of corpulence, experience and social information in ant decision
365 making. *Behav. Ecol. Sociobiol.* 63(5): 627–636.

366 Robinson E.J.H., Feinerman O., Franks N.R., 2014. How collective comparisons emerge without
367 individual comparisons of the options. *Proc. R. Soc. Lond. B Biol. Sci.* 281(1787): 20140737.

368 Sampaio E.M., Kalko E.K., Bernard E., Rodríguez-Herrera B., Handley C.O., 2003. A biodiversity
369 assessment of bats (Chiroptera) in a tropical lowland rainforest of Central Amazonia, including
370 methodological and conservation considerations. *Stud. Neotrop. Fauna Environ.* 38(1): 17–31.

371 San Diego Zoo Wildlife Alliance, 2016. San Diego Zoo Global Staff Check Health of Pacific Pocket
372 Mice, One Month After Release at Laguna Coast Wilderness Park. Available from
373 <https://science.sandiegozoo.org/news/san-diego-zoo-global-staff-check-health-pacific-pocket-mice-one-month-after-release-laguna> [11 Jan 2026].

375 Schooley R.L., Van Horne B., Burnham K.P., 1993. Passive integrated transponders for marking free-
376 ranging Townsend's ground squirrels. *J. Mammal.* 74(2): 480–484.

377 Seheult S.D., Panchal R., Borisenko A.V., Bennett P.J., Faure P.A., 2024. Scanning efficacy of p-
378 Chips implanted in the wing and leg of the Big Brown Bat (*Eptesicus fuscus*). *J. Mammal.* 105(3):
379 679–690.

380 Sherwin R.E., Haymond S., Stricklan D., Olsen R., 2002. Freeze-branding to permanently mark bats.
381 *Wildl. Soc. Bull.* 30(1): 97–100.

382 Sikes R.S., the Animal Care and Use Committee of the American Society of Mammalogists 2016.
383 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research
384 and education. *J. Mammal.* 97(3): 663–688.

385 Spooner J., Spurgeon J., 2024. Retention of p-Chip microtransponders and posttagging survival of
386 small-bodied stream fishes. *N. Am. J. Fish Manag.* 44(4): 799–811.

387 Tavares V.D.C., Nobre C.C., de S Palmuti C.F., Nogueira E.D.P., Gomes J.D., Marcos M.H., Silva
388 R.F., Farias S.G., Bobrowiec P.E.D., 2017. The bat fauna from southwestern Brazil and its affinities
389 with the fauna of western Amazon. *Acta Chiropt.* 19(1): 93–106.

390 Tenczar P., Lutz C.C., Rao V.D., Goldenfeld N., Robinson G.E., 2014. Automated monitoring reveals
391 extreme interindividual variation and plasticity in honeybee foraging activity levels. *Anim. Behav.*
392 95: 41–48.

393 van Harten E., Lawrence R., Lumsden L.F., Reardon T., Bennett A.F., Prowse T.A., 2022. Seasonal
394 population dynamics and movement patterns of a critically endangered, cave-dwelling bat,
395 *Miniopterus orianae bassanii*. *Wildl. Res.* 49(7): 646–658.

396 van Harten E., Lentini P.E., Eastick D.L., Bender R., Lumsden L.F., Visintin C., Griffiths S.R., 2021.
397 Low Rates of PIT-Tag Loss in an Insectivorous Bat Species. *J. Wildl. Manage.* 85(8): 1739–1743.

398 van Harten E., Reardon T., Lumsden L.F., Meyers N., Prowse T.A., Weyland J., Lawrence R., 2019.
399 High detectability with low impact: optimizing large PIT tracking systems for cave-dwelling bats.
400 Ecol. Evol. 9(19): 10916–10928.

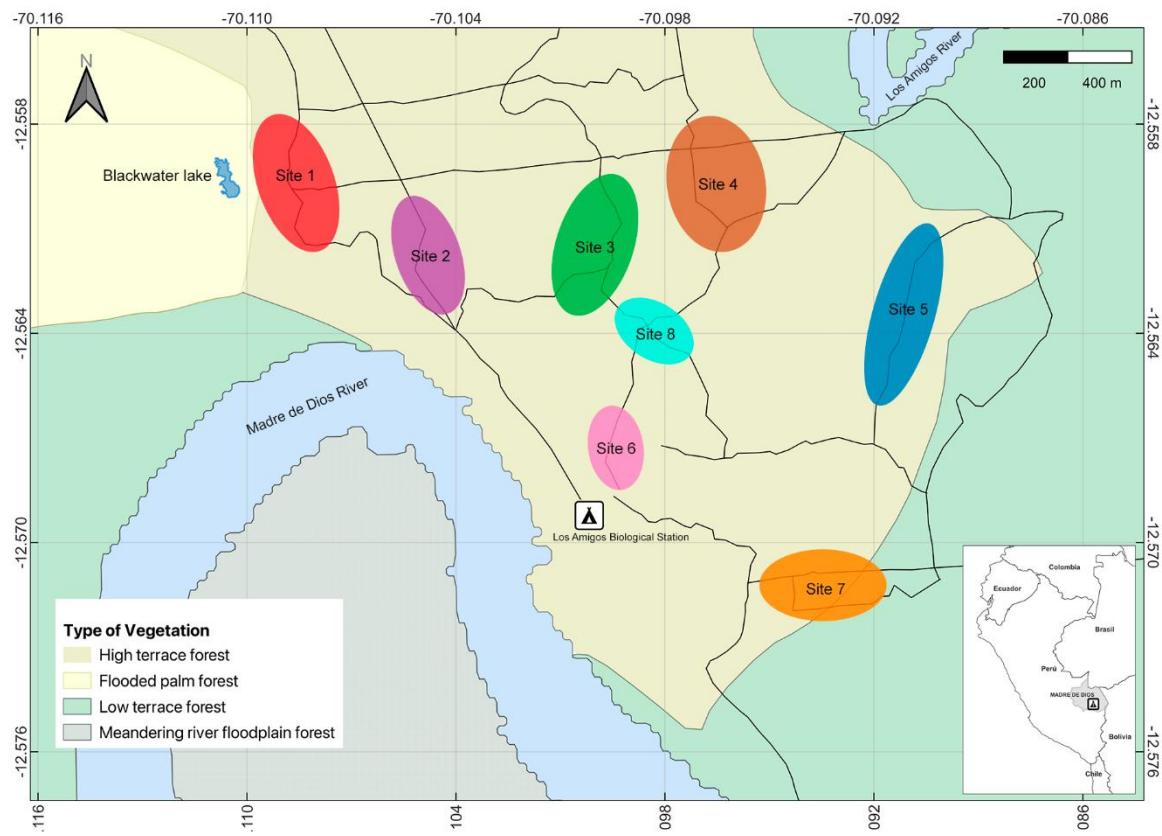
401 Waag, A.G., Johnson, J.S., Schorr, R.A., Frick, W.F., Laverty, T.M., Neubaum, D.J., Siemers, J.L.,
402 Treanor, J.J., Reyes, G.A., Halstead, B.J., 2025. Using Passive Integrated Transponder (PIT) Tags to
403 Monitor and Research Bats: Applications, Benefits, and Limitations. Journal of North American Bat
404 Research Special Issue 1: 100–118.

405 Warren M.R., Spurrier M.S., Sangiamo D.T., Clein R.S., Neunuebel J.P., 2021. Mouse vocal emission
406 and acoustic complexity do not scale linearly with the size of a social group. J. Exp. Biol. 224(11):
407 jeb239814.

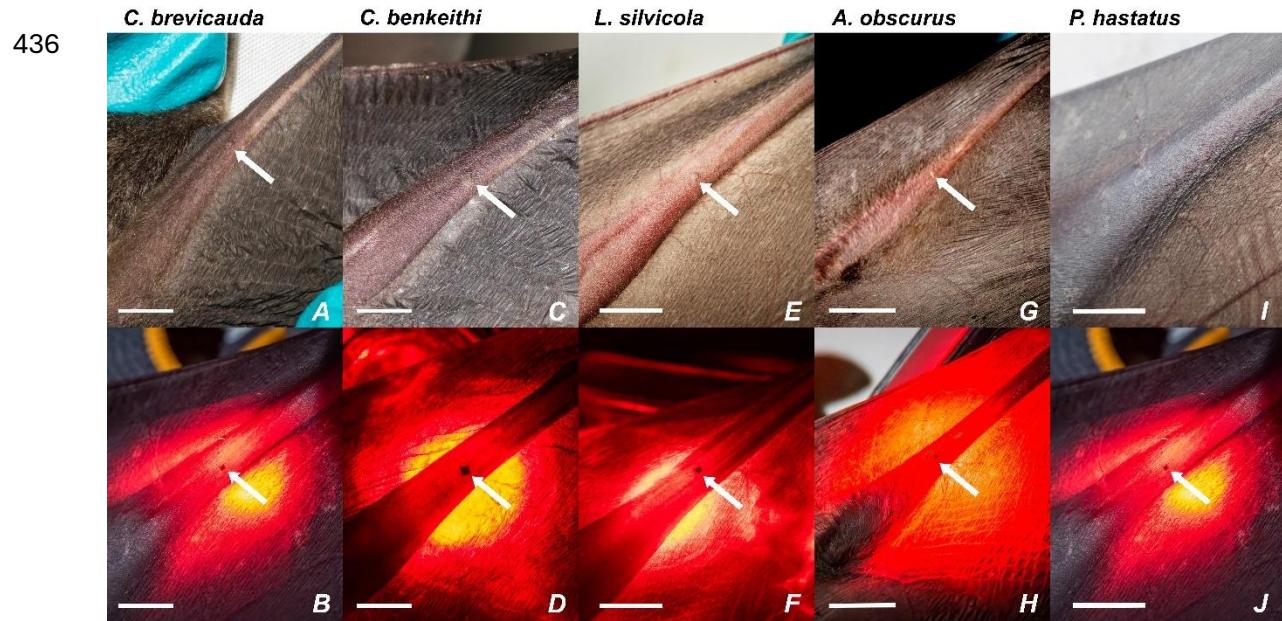
408 Watsa M., Peralta-Aguilar P., Mendoza-Silva J.L., Tirapelle C., Cuzmar N., Sánchez-Vendizú P.,
409 Erkenswick G., 2023. Handling and Sampling Bats - ISL Peru. protocols.io. Available from
410 <https://dx.doi.org/10.17504/protocols.io.q26g7y7o9gwz/v1> [11 Jan 2026].

411

412 **Table 1.** Number of individuals per species tagged with p-Chips during the 2023 and 2024 sampling
 413 efforts at the Estación Biológica Los Amigos (Peru). Size categories were arbitrarily defined based
 414 on the average forearm length (FA) of the captured individuals in this study.


Size category	Species	2023	2024	2025
Small (FA: < 36 mm; n = 69)	<i>Carollia benkeithi</i>	3	8	12
	<i>Glossophaga soricina</i>			5
	<i>Hsunycteris thomasi</i>			1
	<i>Mesophylla macconnelli</i>		1	3
	<i>Micronycteris microtis</i>			1
	<i>Micronycteris minuta</i>		1	3
	<i>Myotis nigricans</i>			1
	<i>Myotis riparius</i>		3	8
	<i>Rhinophylla pumilio</i>	1	2	15
	<i>Thyroptera tricolor</i>			1
Medium (FA: 36 – 55 mm; n = 127)	<i>Carollia brevicauda</i>	5	23	27
	<i>Carollia perspicillata</i>	2	17	34
	<i>Chiroderma trinitatum</i>			1
	<i>Dermanura anderseni</i>		1	
	<i>Dermanura gnoma</i>		1	2
	<i>Gardnerycteris crenulata</i>		1	5
	<i>Micronycteris hirsuta</i>		1	
	<i>Saccopteryx bilineata</i>		1	
	<i>Sturnira tildae</i>			2
	<i>Trinycteris nicefori</i>			4
Large (FA: 55 – 75 mm; n = 83)	<i>Artibeus lituratus</i>	1		2
	<i>Artibeus obscurus</i>	4	12	5
	<i>Artibeus planirostris</i>	2		11
	<i>Desmodus rotundus</i>			1
	<i>Lophostoma silvicola</i>		8	8
	<i>Phyllostomus elongatus</i>		5	14
	<i>Platyrrhinus infuscus</i>			1
	<i>Tonatia maresi</i>		3	3
	<i>Trachops cirrhosus</i>		1	2
Very large (FA: > 75 mm; n = 21)	<i>Phyllostomus hastatus</i>	6	7	7
	<i>Vampyrum spectrum</i>		1	

416 **Table 2.** Bats marked with p-Chips and recaptured at Estación Biológica Los Amigos, Peru. Only the
 417 individuals with the longest intervals and greatest distances between initial capture/mark and
 418 subsequent recapture(s) locations are shown. Each row corresponds to a unique individual. Full
 419 detailed results are available in Supplementary Table S2. For each individual, the table lists the
 420 marking date, the number of recapture events, the maximum number of days from marking to the last
 421 recapture, and the maximum distance recorded among recapture events. “Recapture site” indicates
 422 the site of the farthest recapture. Abbreviations: a, adult; j, juvenile; p, pregnant. *Captured as juvenile
 423 and recaptured as adult; †captured as adult non-pregnant and recaptured pregnant; ‡captured and
 424 recaptured as pregnant.


Bat individual	Date marking	Max. days to recapture	Max. distance traveled	Recapture times	Marking site	Recapture site
<i>Carollia brevicauda</i> ♀j,a*	21/07/2023	344	1014	1	3	1
<i>Artibeus obscurus</i> ♂a	21/07/2023	334	234	1	3	3
<i>Carollia benkeithi</i> ♀a	26/07/2023	334	22	1	2	2
<i>Carollia brevicauda</i> ♀a	03/08/2023	859	192	1	2	2
<i>Phyllostomus elongatus</i> ♂a	11/06/2024	32	194	1	4	4
<i>Carollia brevicauda</i> ♂a	13/06/2024	30	319	1	4	4
<i>Tonatia maresi</i> ♂a	14/06/2024	366	471	1	4	8
<i>Carollia brevicauda</i> ♀a,p†	17/06/2024	345	90	3	4	4
<i>Carollia brevicauda</i> ♀a	18/06/2024	345	131	1	4	4
<i>Artibeus obscurus</i> ♂a	20/06/2024	17	1138	1	3	7
<i>Carollia brevicauda</i> ♂a	20/06/2024	355	160	2	3	3
<i>Carollia brevicauda</i> ♀a	20/06/2024	17	1190	2	3	7
<i>Carollia brevicauda</i> ♀a	20/06/2024	360	217	3	3	8
<i>Lophostoma silvicola</i> ♂a	20/06/2024	374	303	1	3	8
<i>Lophostoma silvicola</i> ♀a	24/06/2024	350	286	2	3	3
<i>Carollia benkeithi</i> ♀a	25/06/2024	343	74	3	2	2
<i>Carollia benkeithi</i> ♂a	25/06/2024	343	160	3	2	2
<i>Carollia perspicillata</i> ♀a	25/06/2024	3	435	1	2	1
<i>Carollia brevicauda</i> ♂a	08/07/2024	542	468	2	6	8
<i>Carollia perspicillata</i> ♀a,p	29/05/2025	17	458	1	4	8
<i>Carollia perspicillata</i> ♂a	30/05/2025	18	443	2	4	8
<i>Carollia perspicillata</i> ♂a	30/05/2025	33	468	1	4	3
<i>Carollia perspicillata</i> ♀a	30/05/2025	20	497	2	4	8
<i>Carollia brevicauda</i> ♂a	04/06/2025	28	365	1	2	3
<i>Carollia brevicauda</i> ♀a,p‡	10/06/2025	176	421	8	3	8
<i>Carollia brevicauda</i> ♂a	11/06/2025	27	327	2	3	8
<i>Carollia benkeithi</i> ♀a	13/06/2025	25	360	4	3	8
<i>Phyllostomus elongatus</i> ♀a	16/06/2025	32	1102	1	8	1
<i>Phyllostomus elongatus</i> ♀a	19/06/2025	171	287	1	8	3

425 **Figure 1.** Bat capture sites at the Estación Biológica Los Amigos (Peru). The vegetation types follow
426 MINAM (2015). Details on the days evaluated at each site are in the Supplementary Table S2.

427 **Figure 2.** Visualization of p-Chips implanted in the middle of the forearm of free-ranging bats at the
428 Estación Biológica Los Amigos (Peru). Each column corresponds to a different individual, with the
429 top and bottom images showing the same individual under natural light and red LED backlighting,
430 respectively. Arrows indicate the location of the p-Chip when visually detectable. Scale bars = 5 mm.
431 *Carollia brevicauda* (A, B); *Carollia benkeithi* (C, D); *Lophostoma silvicola* (E, F); *Artibeus*
432 *obscurus* (G, H); *Phyllostomus hastatus* (I, J). Video demonstration of p-Chip visualization and
433 reading is available in Video S1.

435 **Figure 2**

437 **Video S1.** Demonstration of p-chip placement and reading in a free-ranging *Phyllostomus elongatus*
438 at the Estación Biológica Los Amigos (Peru). Video was too heavy to upload in the platform. The
439 image uploaded are just previews of the video. During the review process, it will be available at this
440 link: <https://drive.google.com/file/d/1p1HqsgXfBpOb7tb8dfRu0pJMNg88YSR5/view?usp=sharing>

441

442 **Table S2 (excel file).** Details of bats marked with p-Chips and recaptured at Estación Biológica Los Amigos, Peru, including the complete sampling
443 schedule since p-Chip tagging began. Each row corresponds to a unique individual. No active marking was conducted at sites 1, 5, and 7. The first
444 row in the timeline indicates the year (23, 2023; 24, 2024; 25, 2025), while the second row represents the site (Figure 1 of the main manuscript). For
445 each individual, the table lists the marking date, the number of recapture events, the maximum number of days from marking to the last recapture,
446 and the maximum distance recorded among recapture events. Cells labeled “C” indicate the initial capture/marketing date, and “R” indicates a recapture
447 event on that date. In some instances, individuals were recaptured twice on the same day, indicated by “2.” Abbreviations: a, adult; j, juvenile; l,
448 lactating; p, pregnant. *Captured as juvenile and recaptured as adult; †captured as an adult non-pregnant individual and recaptured pregnant;
449 ‡captured as pregnant and recaptured pregnant. During the review process, the excel file will be available at this link:
450 https://docs.google.com/spreadsheets/d/1SRwH_ru278LL04s85BLTbRgazSPgIDxd/edit?usp=sharing&ouid=101859936044648558134&rtpof=true&sd=true
451