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Abstract 17 

Natural history collections are fundamental for biodiversity research. The broad use of them 18 
relies on the digitization effort, especially georeferencing that translates textual locality 19 
descriptions into geographic coordinates. However, traditional georeferencing approaches are 20 
labor-intensive and costly, thus georeferencing is a major bottleneck in the digitization 21 
process that prevents the usage of millions of specimens across the world. This study 22 
investigated the potential of using large language models (LLMs) to facilitate georeferencing. 23 
We utilized LLMs from OpenAI and DeepSeek to georeference 5,000 vascular plant 24 
specimen records with known coordinates, and compared the results against those of 25 
GEOLocate (a widely used georeferencing tool) and manual georeferencing. We found that 26 
the best-performing LLMs (e.g., gpt-4o) outperformed specialized tools like GEOLocate in 27 
spatial applicability, and demonstrated near-human-level accuracy with a median 28 
georeferencing error of <10 km. Georeferencing based on LLMs were also considerably fast 29 
(<1 s per record) and affordable ($0.10 per 100 records); thus, they present a cost-effective 30 
approach for georeferencing. LLMs may not fully replace human curation in the short term, 31 
but can be incorporated into current workflows to greatly increase the efficiency of 32 
georeferencing. Future advances in LLMs may revolutionize the digitization of natural history 33 
collections. 34 
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Introduction 37 

Natural history collections form the foundation of our knowledge of biodiversity. They 38 
represent irreplaceable snapshots of biodiversity across space and time critical for ecological 39 
and evolutionary research 1-3. The specimens that make up these collections offer valuable 40 
insights into ecosystem dynamics by documenting habitat preferences 4, species interactions 5; 41 
temporal responses to climate change 6, 7; revealing evolutionary relationships 8, 9; prioritizing 42 
geographic areas with concentrations of rare and imperiled species for conservation focus 10; 43 
and providing historical baselines for tracking environmental change 11. It is estimated that the 44 
total number of specimens in natural history collections ranges between 2 and 3 billion 12. 45 
Massive digitization efforts have greatly increased accessibility to these specimens and 46 
facilitated innovative, large-scale research. However, only a small portion of these natural 47 
history collections have been digitized. For instance, it has been estimated that less than 30% 48 
of herbarium specimens have at least collection location and date information online 13, 14.  49 

Specimen digitization involves converting the information within physical specimens into 50 
digital formats, encompassing textual, visual, temporal, and geographic information, among 51 
other data types 15. Georeferencing is one of the outstanding challenges of the digitization 52 
process 16. Georeferencing interprets a specimen's textual locality description, including 53 
directional cues, man-made landmarks, or references to roads, into a set of geographic 54 
coordinates 17, 18. This associates the occurrence of an organism to a point in space, enabling a 55 
suite of ecological inquiries, such as inferring the environmental requirements of a species or 56 
ecological patterns of species co-occurrences 19, 20. Currently, georeferencing is done largely 57 
manually, and is a labor-intensive and costly (and therefore slow) process. As a consequence, 58 
the vast majority of collections still remain non-georeferenced 16. While recent collections are 59 
often geotagged using GPS units, specimens collected before GPS units were widely available 60 
(i.e., before the 1990s) often require georeferencing to link the specimen to a point on a map. 61 

Traditional georeferencing methods include using gazetteer-based applications or manually 62 
searching for locations with maps. For example, GEOLocate is a georeferencing software 63 
developed 20 years ago that is still commonly used by museums 16, 21. GEOLocate converts 64 
textual locality descriptions from specimens into geographic coordinates by standardizing 65 
terms and extracting distances, directions, and key geographic identifiers 21. GEOLocate can 66 
batch-process locality descriptions but is not fully automated even in batch mode. As a 67 
consequence, manual georeferencing (e.g., looking up a location in Google Maps) remains a 68 
time-consuming, and therefore costly, necessity, and additional funds for corrections and 69 
quality control are usually needed 22, 23. 70 

Recent breakthroughs in Large Language Models (LLMs) have great potential to address this 71 
critical bottleneck 24. LLMs are large-scale natural language processing models trained 72 
through deep learning to read, understand, and generate text, and are widely applied in 73 
various language tasks 25. LLMs demonstrate great potential in text mining capabilities, which 74 
may revolutionize a variety of ecological studies 26, 27, such as extracting species distributions 75 
and richness 28, 29, as well as listing endangered species and classifying the threats from 76 
unstructured text to support biodiversity conservation 30, 31. Previous studies have examined 77 
the utility of LLMs for geospatial reasoning 24, such as geographic entity classification and 78 
directional inference 32-34. However, their potential to infer geographic coordinates based on 79 
textual locality descriptions remains unexplored  24. 80 

Here, we present the first benchmark of georeferencing using LLMs. We compared the 81 
accuracy and efficiency of LLMs with approaches commonly used in georeferencing 82 
practices, including manual georeferencing, GEOLocate, and county-centroid (directly using 83 
the centroid of the county where the specimen is located as the geographic reference 84 
coordinates). The experiment was based on 5,000 specimen records collected across the globe 85 
that have locality descriptions and geographic coordinates. We included gpt-4o (ChatGPT 86 
model version 4o) and deepseek-chat (DeepSeek model version 3), as well as earlier versions 87 
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of GPT models, including gpt-4o-mini, gpt-4-turbo, and gpt-3.5-turbo. We also included 88 
LLMs with enhanced reasoning capabilities, including o1-preview (advanced OpenAI 89 
reasoning model version o1 preview) and deepseek-reasoner (DeepSeek reasoning model 90 
version R1). We also investigated whether georeferencing accuracy can be affected by 91 
geographic factors and textual features of locality descriptions. 92 

Results 93 

Overall accuracy of georeferencing 94 

Georeferencing by LLMs achieved human-like accuracy (Fig. 1). Among all non-reasoning 95 
LLMs examined, gpt-4o and deepseek-chat demonstrated the highest accuracy in 96 
georeferencing 4,750 specimen samples (top 5 percentile outliers of each georeferencing 97 
method were excluded to avoid extreme cases; Fig. 1, Extended Table 1), with median error 98 
distances of 9.7 and 12.3 km, respectively. A Wilcoxon test indicated that the accuracies of 99 
gpt-4o and deepseek-chat did not differ from that of manual georeferencing (p>0.05, N=95, 100 
top 5 percentile outliers of 100 sampled records from these 5,000 entries were excluded) and 101 
significantly outperformed (p<0.05, N=4,750) the accuracy of GEOLocate (23.4 km median) 102 
and the "county-centroid" method (18.2 km median), a common practice in which the 103 
centroid coordinates of the county or equivalent geopolitical locality of collection are 104 
assigned to a specimen 35, 36. In contrast, simpler or earlier versions of LLMs like gpt-4o-mini 105 
and gpt-3.5-turbo exhibited relatively lower accuracy, performing even worse than the 106 
county-centroid method (p<0.05, N=4750). Compared with gpt-4o and deepseek-chat, the use 107 
of advanced reasoning models (o1-preview and deepseek-reasoner) did not lead to a 108 
significant improvement in georeferencing accuracy (p>0.05, N = 95) (Fig. 1, Extended Fig. 109 
1), despite the higher costs and increased processing times (Extended Table 1).  110 

 111 

Figure 1.  Summary of georeferencing using different methods. a. Three examples of 112 
georeferencing results based on humans and large language models. b. Density plot and boxplot of 113 
georeferencing accuracy of different methods. A higher georeferencing accuracy (x-axis) is represented 114 
by a smaller error distance (distance to ground truth coordinate). The letters in the boxplot indicate 115 
intergroup differences according to the Wilcoxon test, where letters appearing later in the sequence 116 
correspond to smaller mean georeferencing errors. Identical letters signify no significant differences 117 
between methods (p > 0.05). In the boxplot, the models or methods are ordered from top to bottom 118 
based on the ascending median georeferencing error. The outliers (i.e., the top 5 percentile) of each 119 
georeferencing method were excluded from the analysis to minimize the effect of large errors and 120 
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emphasize each method's usual performance. Thus, the sample size is 95 for o1-preview, deepseek-121 
reasoner, and human georeferencing, and 4750 for all other georeferencing methods. The statistics for a 122 
sample size of 95 across all methods are shown in Extended Figure 1 & Table 1.   123 

Georeferencing accuracy also showed considerable spatial variation across countries (Figs. 2 124 
& 3). LLMs achieved higher median accuracy for specimen localities in the United States, 125 
Western Europe, Southern Africa, Southeast Asia, and Australia, and the median error 126 
distance was mostly within 5km for the best-performing LLMs (e.g., gpt-4o) (Fig. 2a-d, 3a-d, 127 
Extended Fig. 2, Supplementary Information Tables S1, 2). Compared with LLMs, 128 
GEOLocate showed a more distinct contrast between better-performing regions (United 129 
States, Western Europe) vs. other regions, and the error distance could exceed 1,000km for 130 
specimen localities in Russia (Supplementary Information Table S1). The county-centroid 131 
approach showed higher accuracy (lower error distance) for smaller-sized countries, likely 132 
because of smaller county size therein (Extended Fig. 3). The manually georeferenced results 133 
exhibited smaller spatial variation (Fig. 2f, 3f). We also noticed spatial variation in 134 
georeferencing accuracy within countries/regions. For example, higher accuracies were 135 
concentrated on the east and west coasts of the United States and the coastlines of Australia, 136 
while the accuracies were lower for the Andes Mountains, Rocky Mountain Region of the 137 
Western United States, and Central Australia (Figs. 2 & 3). 138 

 139 

Figure 2. The geographic distribution of georeferencing accuracy. Georeferencing accuracy is 140 
represented by the error distance (distance between georeferenced coordinates and ground truth), and 141 
smaller values indicate higher accuracy. Maps represent different georeferencing methods: gpt-4o (a, 142 
5000 samples), o1-preview (b, 100 samples), deepseek-chat (c, 5000 samples), deepseek-reasoner (d, 143 
100 samples), GEOLocate (e, 5000 samples) and manual georeferencing (f, 100 samples). See Extended 144 
Figure 2 for results of other OpenAI LLM and county centroid-based method.   145 
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 146 

Figure 3. The georeferencing accuracy at country level. Georeferencing accuracy is represented by 147 
the median error distance (distance between georeferenced coordinates and ground truth) of all sample 148 
points in each country, and smaller values indicate higher accuracy. Maps represent different 149 
georeferencing methods: gpt-4o (a, country-level statistics based on 5000 samples), o1-preview (b, 150 
country-level statistics based on 100 samples), deepseek-chat (c, country-level statistics based on 5000 151 
samples), deepseek-reasoner (d, country-level statistics based on 100 samples), GEOLocate (e, 5000 152 
samples) and manual georeferencing (f, country-level statistics based on 100 samples). See Extended 153 
Figure 3 for country-level statistics of other OpenAI LLMs and county centroid-based methods.  154 

Trade-offs between georeferencing accuracy and time-monetary cost 155 

Most OpenAI models were able to georeference one specimen record within one second, 156 
though gpt-4o requires a 1-second interval between API calls. The deepseek-chat model was 157 
slightly slower, requiring ~2 seconds per record, but continuous API calls are allowed, and it 158 
is currently free. The deepseek-reasoner and o1-preview models used complex reasoning, 159 
resulting in longer processing times (Fig. 2, Extended Table 1). In particular, deepseek-160 
reasoner took an average of 92 seconds (sd = 68s; Extended Table 1) to georeference one 161 
record, sometimes even exceeding the time it took for manual georeferencing. The o1-preview 162 
model had the highest monetary cost among all LLMs, averaging over $13 per 100 queries 163 
(Extended Table 1).  164 

Non-reasoning models like gpt-4o and deepseek-chat achieved high efficiency at low costs. 165 
The goodness of fit (R2) for models between the median georeferencing error and processing 166 
time was 0.41 for the linear model and 0.45 for the exponential model (Fig. 4a); for median 167 
georeferencing error and monetary cost, the goodness of fit was 0.48 for the linear model and 168 
0.49 for the exponential model (Fig. 4b). 169 
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 170 

Figure 4. The relationship between the georeferencing accuracy and (a) efficiency or (b) 171 
monetary cost among different georeferencing methods. Georeferencing accuracy is represented by 172 
the median of error distance (distance between georeferenced coordinates and ground truth) of each 173 
method (y-axis), and smaller values indicate higher accuracy. The black dashed line in the figure 174 
represents the fit exponential curve, illustrating the power-law relationship between the georeferencing 175 
accuracy and the associated costs. The x-axis is log-10 transformed. 176 

Factors influencing the performance of LLM georeferencing 177 

The accuracy of all georeferencing methods showed a gradual increase (i.e., decrease in error 178 
distance) with the increase of the human footprint index of the locality where specimens were 179 
collected (Fig. 5). The increase in accuracy was more pronounced for GEOLocate and 180 
simpler/earlier versions of OpenAI LLMs, such as gpt-4o-mini and gpt-3.5-turbo (Fig. 5a).  181 

We used Flesch-Kincaid Grade Level (FKGL) 37, Gunning Fog Index (GFI) 38, Simple 182 
Measure of Gobbledygook (SMOG) 39, Coleman-Liau Index (CLI) 40 and Automated 183 
Readability Index (ARI) 41 to quantify readability of locality description text (see Extended 184 
Table 2 for definitions and calculations). To measure the level of detail in the locality 185 
description texts, we also calculated the frequency of keywords, including digital characters, 186 
punctuation marks, directional terms, and distance units, as well as the frequency of road 187 
names and artificial and natural objects (Extended Table 2). The correlations among all text 188 
features, including frequency of keywords and readability indexes, were moderate or weak 189 
(i.e., |r|<0.65; Extended Fig. 4). Overall, the frequency of selected keywords had stronger 190 
effects than readability on georeferencing accuracy (Fig. 5b). GEOLocate was more strongly 191 
affected by the frequency of selected keywords, especially about artificial objects such as 192 
buildings, than LLMs (Fig. 5b). 193 

We found the readability of locality texts had minimal or insignificant impact on the accuracy 194 

a 
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of georeferencing methods (Fig. 5b). FKGL had a significant positive effect on human 195 
georeferencing error, and GFI negatively affected the GEOLocate error. SMOG showed a 196 
negative effect on georeferencing error of the older version of the OpenAI model gpt-4o-197 
turbo and gpt-3.5-turbo, and CLI positively affected both errors of o1-preview and human 198 
georeferencing (p<0.05, Fig. 5b). 199 

Number of digits (digits) had no significant effect on georeferencing accuracy for any method 200 
(p>0.05, Fig. 5b), while the number of punctuation marks negatively affected (p<0.05) 201 
georeferencing error of all OpenAI and DeepSeek non-reasoning LLMs. Each additional 202 
punctuation mark reduced the error by 0.6, 2.2, 0.5, 0.6 and 0.6 km, respectively, for gpt-4o, 203 
gpt-4o-mini gpt-4o-turbo, gpt-3.5-turbo and deepseek-chat (Fig. 5b). The directional indicator 204 
was associated negatively with the error of gpt-4o and gpt-4o-mini (p<0.05), and positively 205 
with the error of gpt-3.5-turbo (Fig. 5b). Each additional directional indicator reduced the 206 
error by 0.6 and 1.4 km, respectively, for gpt-4o and gpt-4o-mini, while increasing the error 207 
by 1.7 km for gpt-3.5-turbo (Fig. 5b). The frequency of distance indicators was positively 208 
associated with the error of gpt-4o and gpt-4o-mini assessed (p<0.05, Fig. 5b), and the 209 
increased error distance by having an additional distance indicator ranged from 1.5 to 3.4 km, 210 
while the error of GEOLocate would significantly (p<0.05) decrease by 14.4 km with an 211 
additional distance indicator (Fig. 5b). 212 

The frequency of keywords related to roads, natural objects (e.g., mountain, river, and 213 
canyon), and artificial objects (e.g., building, bridge, and dam) was mostly negatively 214 
associated with the error distance of most LLMs and GEOLocate (p < 0.05, Fig. 5b). Each 215 
additional keyword related to roads or artificial objects reduced the error by 1.1 and 5.8 km 216 
for all OpenAI and DeepSeek non-reasoning models, while reducing the error by 12.8 and 217 
44.2 km for GEOLocate (Fig. 5b). Additional keywords pertaining to natural objects did not 218 
(p>0.05) reduce the error of newer versions of LLMs (gpt-4o and deepseek-chat), but did 219 
significantly increase (p<0.05) the error of o1-preview by 4.4 km and reduce (p<0.05) the 220 
error of GEOLocate by 22.4 km (Fig. 5b). 221 

 222 

Figure 5. The impact of human activities at specimen collection sites and the textual description 223 
characteristics of locality on the georeferencing errors of various methods. a. Locally estimated 224 
scatterplot smoothing (LOESS) curves (solid lines) and linear fits (dashed lines) for relationships 225 
between human activity intensity measured by the Human Footprint (HFP) index and the 226 
georeferencing errors. b. Linear regression analysis of the impact of readability metrics and the counts 227 
of different word types on the georeferencing error distances across methods. Numbers and colors 228 
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indicate the values of linear regression coefficients, with only significant results (p < 0.05) labeled with 229 
numbers. The independent variables here are not standardized, so the regression coefficients indicate 230 
how much the error distance increases in kilometers for each one-unit increase in the independent 231 
variables. The full names and meanings of the variable abbreviations are provided in Extended Table 2. 232 
As the outliers (i.e., top 5 percentile) of each georeferencing method were excluded from the analysis, 233 
regressions for all non-reasoning LLMs (gpt-4o, gpt-4o-mini, gpt-4-turbo, gpt-3.5-turbo and deepseek-234 
chat) and GEOLocate were based on all the 4750 samples, while regressions for reasoning LLMs and 235 
human georeferencing were based on selected 95 samples. 236 

Discussion 237 

Accurate and efficient georeferencing is a major challenge for the broad application of natural 238 
history collections. Recent breakthroughs in LLMs that can analyze and generate human-like 239 
language can potentially address the challenges in georeferencing in a time- and cost-efficient 240 
manner, thus rapidly generating coordinates for large numbers of specimens that remain un-241 
georeferenced. Here, we conducted the first benchmark of LLM georeferencing performances 242 
and compared them to existing approaches. We found that the best-performing LLMs (e.g., 243 
gpt-4o) achieved a median georeferencing error below 10 km that was not significantly 244 
different from human georeferencing (Wilcoxon test, p>0.05, N=100; Extended Table 1 and 245 
Extended Fig. 1), and was significantly better than GEOLocate and the county-centroid 246 
approach (Wilcoxon test, p<0.05, N=4750; Extended Table 1 and Fig. 1). Further, LLMs were 247 
considerably faster (<1s per record) and less expensive ($0.1 per 100 records) than manual 248 
georeferencing; in particular, model gpt-4o and deepseek-chat achieved the best tradeoff 249 
between accuracy and cost (Fig. 2). Compared with o1-preview and deepseek-reasoner, the 250 
more recently released reasoning LLMs showed similar accuracy but took longer to perform 251 
georeferencing 42. However, the reasoning logics used by LLMs were very similar to the 252 
inferences used by humans during georeferencing (Supplementary Information Table S3). 253 
Given the advances in prompt engineering 43 and model fine-tuning 44 that can further 254 
enhance LLMs’ performance in specialized domains, LLMs show huge potential in 255 
adequately and rapidly georeferencing the remaining millions of natural history collections. 256 

LLMs demonstrate near-human levels of georeferencing accuracy 257 

The median georeferencing error distance of the best-performing LLMs is ~10km, which is 258 
on par with the median error distance for manual georeferencing. Many macroecological and 259 
biogeographic studies rely on spatial datasets with a resolution of 10 km or more, making 260 
LLM georeferenced coordinates sufficiently accurate for a broad range of ecological studies. 261 
Ecological niche modeling is one notable example, where georeferenced coordinates from 262 
specimens are often overlaid with environmental data at relatively coarse resolution to study 263 
species’ ecological niches and geographic distributions 45, 46. WorldClim 47 is one of the most 264 
commonly used climatic datasets available at 30”, 2.5’, and 10’ resolution (approximately 265 
1km, 9 km, and 18km at the equator). Similarly, ERA5-Land atmospheric reanalysis products 266 
(10 km resolution) 48 and CRUTS (Climatic Research Unit Time-Series, 0.5-degree resolution 267 
or 50 km at the equator) 49 have been used in studying climate-induced faunal changes 50, and 268 
are broadly used in environmental and atmospheric science 51. Despite the increase in 269 
availability of fine-resolution environmental data, coarse resolutions, such as 10km or above, 270 
are still preferred for a variety of practical (e.g., limited computation power), methodological 271 
(e.g., unifying different datasets to a coarse resolution), and theoretical (e.g., the effect of 272 
climate at large spatial scales) reasons 52-54. 273 

LLMs offer a balance between georeferencing accuracy and efficiency 274 

Performing georeferencing with LLMs can be considerably faster (<1s per record) than 275 
manual georeferencing, and more affordable ($0.1 per 100 records). While humans achieved 276 
the lowest absolute median error distance in georeferencing, the time spent by humans was 277 
over a hundred times higher than the best-performing LLM (gpt-4o, Fig. 4a and Extended 278 
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Table 1). Still, our estimated time of manual georeferencing is likely an underestimation, 279 
because humans rarely continuously perform georeferencing. In reality, human performance 280 
often deteriorates with time spent on tasks and people require rest 55. The inefficiency of 281 
manual georeferencing is indeed one of the major bottlenecks in georeferencing faced by 282 
many museums and herbaria 16, 56. In practice, people often set a time limit for the 283 
georeference of one record to avoid long inquiries. Mast et al. 57 used 15 minutes as a limit in 284 
a georeferencing project; similarly, we have used 15 minutes in our experiment. 285 

Compared to humans, the processing time of automated georeferencing methods can be 286 
considered almost instantaneous. Since the locality descriptions are typically short text 287 
strings, preprocessing time is minimal. The limiting factor is the response time from the 288 
GEOLocate and LLM servers that return the georeferencing output. Typically, the speed or 289 
total number of queries to a server is limited. Both OpenAI and DeepSeek impose rate limits 290 
on their APIs to manage usage and maintain service reliability 58, 59. Despite such limits, it is 291 
still technically feasible to parallelize georeferencing to more instances, thus further speeding 292 
up the process to another magnitude.   293 

By looking at all georeferencing methods together, we found a negative relationship between 294 
georeferencing efficiency and accuracy (median error distance) (Fig. 4). In other words, 295 
spending more time can lead to smaller georeferencing errors. Simpler LLMs or GEOLocate 296 
fell in the fastest but least accurate category, while humans fell in the slowest but most 297 
accurate (smallest median error) category. The gpt-4o and deepseek-chat models fell in the 298 
middle of the two extremes, achieving a balance between efficiency and accuracy. Also, gpt-299 
4o and deepseek-chat both fell below the fitted curve (model fitting based on all 300 
georeferencing methods; Fig. 4), this indicates that they are both more cost-efficient (or 301 
accurate) than expected. To put the cost and efficiency of LLMs in a more realistic scenario: 302 
the University of North Carolina at Chapel Hill Herbarium (NCU) currently has ~500,000 303 
specimens that are not georeferenced, and manual georeferencing of them will take ~3.3 years 304 
and cost ~$0.8 million. These numbers will decrease to ~5 days and ~$500 using gpt-4o 305 
(based on the price of gpt-4o API in December 2024), or ~13 days and $0 if using free 306 
DeepSeek APIs. Furthermore, instead of fully replacing manual georeferencing, a hybrid or 307 
sequential approach could be used to balance the efficiency and reliability, i.e., to let LLMs 308 
do a first pass to be later verified by humans (as funding permits). 309 

Georeferencing accuracy increases with human footprint 310 

Our study also identified critical geographic factors and textual features that affect 311 
georeferencing accuracy. We found a positive relationship between the degree of human 312 
activity/development in a region and georeferencing accuracy (Fig. 5). We used human 313 
footprint as an approximation for human development, and expected a higher human footprint 314 
to provide more structural anchors and spatial references on a map, which can benefit 315 
georeferencing 34. Indeed, LLMs, humans, and GEOLocate all showed high georeferencing 316 
accuracy in developed regions such as the U.S. and Western Europe (Fig. 3). However, the 317 
georeferencing accuracy of GEOLocate is more strongly influenced by the human footprint 318 
compared to that of LLMs or humans (Fig. 5). GEOLocate usually depends on fixed 319 
gazetteers, making it unable to resolve locations outside its database 60. In contrast, the 320 
accuracy of LLMs was less influenced by human footprint (Fig. 5), likely because of the vast 321 
amount of data used in LLM training that is beyond gazetteers in scope and extent 61. 322 

We didn’t find a strong positive connection between georeferencing accuracy and higher text 323 
readability. More recent versions of non-reasoning LLMs (gpt-4o, gpt-4o-mini and deepseek-324 
chat) were not significantly influenced (Wilcoxon test, p>0.05, N=4750) by any readability 325 
metric (Fig. 5); however, the georeferencing errors of earlier or simpler versions of non-326 
reasoning LLMs (gpt-4-turbo and gpt-3.5-turbo) were higher for descriptions that scored 327 
higher by SMOG (Fig. 5). SMOG measures sentence complexity based on the number of 328 
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complex words 39, indicating that early or simpler LLMs were less able to read and 329 
understand complex words. The georeferencing error of OpenAI reasoning model o1-preview 330 
was positively influenced by CLI (p<0.05). Increased CLI and FKGL would also significantly 331 
trouble human georeferencing (p<0.05). CLI and FKGL primarily measure the length of 332 
words and sentences 37, 40. However, the effects are not particularly strong. In fact, the locality 333 
descriptions are usually not overly hard to read or interpret, because the locality descriptions 334 
were typically short paragraphs of text written on small-sized labels, thus there is no space to 335 
convey long or complex information. Therefore, sentence readability is not a key factor in 336 
determining the accuracy of LLM georeferencing. 337 

We found mixed evidence for increased georeferencing accuracy with more detailed textual 338 
descriptions. The accuracy of GEOLocate is positively influenced by the frequency of 339 
keywords related to distance, roads, and natural and artificial objects, while the influence of 340 
textual descriptions was weaker for LLMs (Fig. 5b). The results for GEOLocate were 341 
expected because georeferencing in GEOLocate relies on predefined functions of text 342 
matching and spatial inferences 21. Interestingly, for LLMs, the frequency of keywords related 343 
to road, natural, and artificial objects led to increased georeferencing accuracy, while the 344 
frequency of keywords related to direction and distance had the opposite effects (Fig. 5b). 345 
This is likely because the prior set of keywords can provide more spatial anchors or 346 
references for the LLM to use, while the latter set of keywords is more about spatial 347 
information that relies on spatial reasoning, which indicates the potential weakness of LLMs 348 
in spatial reasoning 32, 62. Nevertheless, more complex spatial information is known to 349 
increase the essential difficulty of georeferencing 60. 350 

Georeferencing of the future 351 

LLM-driven georeferencing faces key challenges. The first is related to the uncertainty of 352 
georeferenced coordinates. Georeferenced coordinates are commonly accompanied by an 353 
uncertainty value, which is often recorded as the maximum distance from a center coordinate 354 
of a georeference to the furthest point where the true location might be 63. Specialized tools 355 
and methodology have been developed to calculate uncertainty values based on spatial 356 
features (e.g., area size or offset distance) 64. However, in practice, uncertainty values are very 357 
often not recorded 65. Also, when calculating uncertainty, the previously developed tools and 358 
methodology are often not used; instead, the determination of the uncertainty often relies on 359 
personalized workflows 16, 66. Therefore, the evaluation of the uncertainty of georeferencing 360 
becomes a difficult task. Further, LLMs are limited in their capacity to provide an 361 
“uncertainty value” (in the sense of a statistical uncertainty) because LLMs generate 362 
responses by predicting the next token based on learned patterns, and the predictions are more 363 
of a reflection of training data rather than being calibrated to reflect real-world uncertainty 67, 364 
68. Another challenge, partly related to the uncertainty issue, is that LLMs typically always 365 
return some results, even when the input location description makes no sense 69. In other 366 
words, when the input data is inappropriate for georeferencing, LLMs will still generate a 367 
seemingly valid output, while humans are able to determine that such a description is not 368 
sufficient for determining coordinates. Additionally, humans are able to set some thresholds 369 
for how accurate a description must be to warrant georeferencing: if a locality description 370 
only mentions the country or state/province of occurrence with no more detailed information, 371 
a human can decide whether or not to georeference that description. Special techniques are 372 
needed to fine-tune an LLM to handle such scenarios 70. Lastly, georeferencing faces the 373 
challenge that historical specimen records often cite missing landmarks or outdated 374 
boundaries 60; though this challenge is not limited to LLMs. Historical maps are often used to 375 
facilitate the manual georeferencing of historical localities, but this step is time-consuming. 376 
Therefore, future studies may explore the incorporation of historical maps, as well as 377 
contextual information, such as year of collection, into the LLM-facilitate georeferencing, via 378 
prompt engineering 71 or model fine-tuning 72. 379 
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Concluding remarks 380 

The ability to better harness the information within our invaluable natural history collections 381 
is critical to addressing the grand environmental challenges we face. LLMs present a cost-382 
effective approach for specimen digitization and thus should be incorporated in future 383 
georeferencing workflows. LLMs may not fully replace human curation, but can be used by 384 
humans to greatly increase the efficiency of georeferencing. Most natural history collections 385 
are underfunded and understaffed 73, 74 - using LLMs to conduct first-pass georeferencing to 386 
be later verified by humans can greatly increase the number of records that can be 387 
georeferenced by existing staff. Further, these first-pass LLM georeferenced records can be 388 
immediately used for purposes that do not require the highest possible level of spatial 389 
accuracy. We have demonstrated the potential of LLMs to revolutionize the process of 390 
georeferencing. With further advances in LLMs, they may prove instrumental in rapidly 391 
providing the large amounts of biodiversity data we require to face the grand environmental 392 
challenges of our era. 393 

Methods 394 

Specimen selection  395 

We obtained preserved specimen records of vascular plants from the Global Biodiversity 396 
Information Facility (GBIF), one of the largest biodiversity databases. We chose plants as a 397 
test case, as plants generally remain fixed in space over their lifetimes, thus decreasing 398 
potential uncertainties in the georeferencing process. Our initial dataset comprised records of 399 
preserved specimens collected between 2000 and 2024 across all continents except 400 
Antarctica. These specimens have known GPS coordinates, no geospatial issues according to 401 
GBIF’s record-flagging procedures (which identify suspect coordinates), and belong to the 402 
plant division Tracheophyta (vascular plants). The coordinates collected from GPS devices 403 
were assumed to be the ground truth in the following evaluations. The initial dataset included 404 
a total of 13,064,051 records (DOI: https://doi.org/10.15468/dl.fj3sqk). 405 

We performed additional data cleaning to enhance the reliability of these records. First, we 406 
removed records without locality information (11,738,740 left). Second, we excluded records 407 
with coordinates that were not recorded using GPS devices (e.g., handheld GPS units) in the 408 
field, as we intended to use the recorded coordinates to evaluate the accuracy of 409 
georeferenced results. Information on the method of georeferencing is recorded in the fields 410 
“georeferenceProtocol”, “georeferenceSources”, and “georeferenceRemarks.” We only kept 411 
records containing the word “GPS” in the description of these attributes, and excluded those 412 
with “Google”, “GEOLocate”, “OpenStreetMap”, or other georeferencing tools (735,145 413 
left). Third, we removed duplicated location records based on latitude, longitude, and locality 414 
description (184,772 left). We also removed records missing information on country, 415 
state/province, and county. Records with locality descriptions of fewer than 5 words were also 416 
removed (165,581 left). Finally, we removed records with latitude and longitude embedded in 417 
the locality information description, to avoid the possibility of “cheating” during the 418 
georeferencing process. 419 

The original data was reduced to 138,617 unique location records after cleaning. The counts 420 
for each continent are as follows: 570 from Africa, 1,558 from Asia, 82,577 from Oceania, 421 
353 from Europe, 51,955 from North America, and 1,604 from South America. To ensure 422 
balanced sampling across continents, we randomly sampled 1,000 each from Asia, Oceania, 423 
and South America; 500 and 300 from Africa and Europe, respectively (due to fewer records 424 
from those continents); and 1,200 from North America for georeferencing performance 425 
evaluations. 426 

Georeferencing with large language models and traditional methods  427 

We accessed the APIs for OpenAI and DeepSeek models through the “openai” (version 428 

https://doi.org/10.15468/dl.fj3sqk
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1.66.3) Python package 75. We combined each record’s country, state/province, county, and 429 
locality into a list for the script. We used a one-shot prompting strategy that defined the role 430 
of georeferencing in the domain of biogeography and ecology, and specified the format of 431 
input and output data and the steps to follow (Box 1). The prompt was also followed by one 432 
example of locality description and georeferenced coordinates, a strategy that is known to 433 
improve LLM performance 76. The "input_data" represents each of the selected 5,000 records’ 434 
input list in the loop. The “temperature” of the LLM controls the randomness and 435 
predictability of the model's output, which we set to 0.01 (near zero) to ensure deterministic 436 
answers. This “temperature” index is only applicable to the non-reasoning models (gpt-4o, 437 
gpt-4o-mini, gpt-3.5-turbo, gpt-4-turbo, and deepseek-chat), and is not applicable to the 438 
reasoning models (o1-preview and deepseek-reasoner). Moreover, due to the potential high 439 
financial costs, we did not run o1-preview and deepseek-reasoner on all 5,000 samples. 440 
Instead, we conducted the analysis on a systematic sample of 100 points. These 100 samples 441 
were also used in the subsequent manual georeferencing experiment. The selection of the 100 442 
records is detailed in the following "Manual Georeferencing" section. 443 

 444 

We batch-georeferenced the selected 5,000 records in R (v4.2.2) using GEOLocate v2 web 445 
services by inputting country, state/province, county, and locality information. The output 446 
coordinates were directly used. We did not perform any additional manual intervention of the 447 
coordinates; a similar methodology was used in Murphey et al. 60. We recognize that manual 448 
intervention is commonly done in practice 57; however, manual intervention overlaps with the 449 
manual georeferencing that we performed in the next step. When multiple possible outputs 450 
were returned for one input, the output with the highest precision score would be kept. If 451 
multiple outputs had the same precision scores, they would all be kept for the accuracy 452 
evaluation; note that we used the mean of their error distances (see next section), instead of 453 
the mean of their coordinates, for our analyses. Precision score is a reliability assessment of 454 
all output results by GEOLocate, with higher scores generally indicating greater reliability 21. 455 

Finally, to serve as a benchmark for comparison of both LLMs and GEOLocate, manual 456 
georeferencing of 100 records was performed by nine human participants. The nine 457 
participants included 2 undergraduate students, 3 graduate students, 2 postdocs, and 2 faculty, 458 
who all had prior experience working with specimen records. We divided the 5,000 records 459 

Box 1. Prompt used for georeferencing with large language models: 

You are an assistant specializing in georeferencing locations using locality descriptions. 

You have been assigned a task for georeferencing coordinates in the domain of 
biogeography and ecology. 

You will follow the instructions below to obtain the coordinates of input location 
description. 

1. You will be given a Python list of 4 strings that represent country/region, 
state/province, county and locality information. 

2. The 4 strings in the Python list represent increasing accuracy of the location. 

3. The priority of information is 'locality information', 'county', 'state/province', 
'country/region'. When more accurate information is available, you will prioritize the use of 
that information. 

4. The output will be a Python list of 2 float numbers, the first float number represents 
latitude, the second float number represents longitude. 

5. Please only output the list without any explanations. 

An example of input data looks like this: 

'["United States", "California", "San Bernardino", "Along Santa Ana River wash 
upstream from La Cadena Ave, both railroad tracks, and under powerline."] ' 

The expected output looks like this: 

" [34.0459, -117.32332] " 

Now, you will georeference this record: input_data 
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into 10 groups based on the deciles of georeferencing error distances of the best non-460 
reasoning LLM (i.e., gpt-4o). The calculation of georeferencing error is detailed in the next 461 
section. We then randomly sampled 10 records from each decile for a total of 100 records. 462 
Then, each of the nine participants was tasked with georeferencing ~33 records, resulting in 463 
each of the 100 records being georeferenced independently by three participants. The nine 464 
participants received the same instructions for using Google Maps or Google Earth to 465 
georeference their records. The information provided to participants was the same as that used 466 
for LLMs and GEOLocate, i.e. country, state/province, county, and locality information. For 467 
each record, participants first used the search box to locate and define the general area of the 468 
record based on explicitly mentioned place names in the locality description. Then, utilizing 469 
the “measure distance” tool and referencing the orientation and distance details provided in 470 
the locality description, the participants pinpointed the most probable location and recorded 471 
the latitude and longitude provided by Google Maps or Google Earth. 472 

Evaluation of georeferencing accuracy 473 

We used the “distHaversine” function in the R package “geosphere” (version 1.5-20)  77 to 474 
calculate the distance between a georeferenced coordinate and the ground truth coordinate 475 
(i.e., error distance). Larger distances represent lower accuracy. The outliers (i.e., top 5 476 
percentile) of each georeferencing method were excluded from the analysis. This helps 477 
minimize the effect of large errors that could affect the overall results and mislead the 478 
interpretation of georeferencing accuracy. By removing these extreme values, the analysis 479 
concentrates on the majority of the data, giving a more accurate estimate of the method's 480 
usual performance. We also calculated the mean and standard deviation of the error distances 481 
across 5,000 or 100 records for different georeferencing methods. For GEOLocate, when 482 
multiple output coordinates had the same highest precision scores, the error distance was 483 
calculated as the mean of the distances of these highest-scoring coordinates. For manual 484 
georeferencing, the error distance for each record was calculated as the mean of the distances 485 
from the three participants (repetitions). As a control, we extracted the centroid of the county 486 
for each record and calculated its distance to the true coordinates, which is a common 487 
approach for georeferencing without detailed locality descriptions 35, 36, 78, 79; thus the county-488 
centroid approach provided a baseline for georeferencing without incorporating locality 489 
information. We performed Wilcoxon tests to evaluate the difference in accuracy among 490 
different georeferencing methods. We also visualized the georeferencing accuracy on maps, 491 
and summarized the accuracy by country.  492 

Evaluation of georeferencing efficiency and cost 493 

To compare the efficiency and cost of different georeferencing methods, we recorded the time 494 
taken to georeference each record and calculated the monetary cost for georeferencing 100 495 
records. For georeferencing with LLM and GEOLocate, we used the “time.perf_counter” 496 
function in Python (version 3.8.12) and “Sys.time” function in R (version 4.2.2) to record the 497 
execution time of each loop (precise to milliseconds). Compared to the georeferencing time, 498 
the data preparation time in Python or R was minor, thus the choice of Python or R 499 
programming environments did not affect the efficiency comparison. Additionally, we used 500 
the API expenditure (in USD) of different LLMs from OpenAI and Deepseek's platform 501 
webpages (accessed on December 1, 2024). GEOLocate is a free software/service, thus its 502 
monetary cost is always $0. During the manual georeferencing processes, every participant 503 
was requested to record the time taken to complete each record using the same online timer 504 
(https://www.online-stopwatch.com/). We calculated the human cost based on a typical salary 505 
rate of curators ($25/hr) who are the typical personnel that perform georeferencing tasks in 506 
museums and herbaria.  507 

We performed generalized linear models to investigate the relationship between 508 
georeferencing accuracy and georeferencing time and monetary cost. We applied a base-10 509 
logarithmic transformation to georeferencing time and monetary cost to reduce scale 510 
disparities and mitigate the influence of large values. We then compared the goodness of fit 511 
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(R2) between linear and exponential models with georeferencing error distance as the 512 
dependent variable and georeferencing time or monetary cost as the independent variable. The 513 
model with the better fit (R2) was selected as the representative accuracy-time/cost 514 
expectation curve.  515 

Factors that affect georeferencing accuracy 516 

The visualization of outputs showed that the georeferencing error distances were not uniform 517 
across regions; thus, we further investigated potential geographic factors and textual features 518 
that may affect georeferencing accuracy. We hypothesized that regions with higher human 519 
activity and greater development would have more geographical reference points (e.g., more 520 
documented location names on a map) that are accessible to both LLMs and humans, thus 521 
leading to increased georeferencing accuracy. To test this hypothesis, we extracted the human 522 
footprint index based on the ground truth coordinates of the 5,000 specimen records from the 523 
Global Human Footprint Dataset of the Last of the Wild Project, Version 2, with around 1 km 524 
resolution 80. This dataset integrates nine global data layers, including human population 525 
pressure (population density), land use and infrastructure (built-up areas, nighttime lights, 526 
land cover), and human accessibility (coastlines, roads, railroads, navigable rivers). We used 527 
the human footprint index as an approximation for human activity and development. We used 528 
locally weighted regression (LOESS) curves to analyze the relationship between 529 
georeferencing error and human footprint index. This analysis was performed for all 530 
georeferencing methods. 531 

We also hypothesized that higher text readability and the more detailed textual descriptions in 532 
locality would lead to increased georeferencing accuracy. To quantitatively evaluate the 533 
readability of the locality text, we employed 5 commonly used readability metrics: Flesch-534 
Kincaid Grade Level (FKGL) 37, Gunning Fog Index (GFI) 38, Simple Measure of 535 
Gobbledygook (SMOG) 39, Coleman-Liau Index (CLI) 40 and Automated Readability Index 536 
(ARI) 41. The definition and calculation of each metric were shown in Table 1; a higher value 537 
of each metric indicates more complex text (thus lower readability). These metrics were 538 
chosen for their diverse approaches to assessing text complexity, offering a comprehensive 539 
view of readability for various applications, from education to technical documentation 81. 540 
The calculations were performed in R using the “quanteda.textstats” package (v 0.97.2) 82. 541 
Then, to measure the level of detail in the locality descriptions, we calculated the frequency of 542 
numbers, punctuation marks, directional terms, and distance units, as well as the frequency of 543 
road names, artificial objects, and natural objects (Table 1) using R package “stringr” (v 544 
1.5.1) 83. The georeferencing error distance was treated as a dependent variable, and the above 545 
readability metrics and textual features were treated as independent variables. We used 546 
general linear models to examine the relationship between georeferencing error distance and 547 
textual features. To mitigate multicollinearity among the independent variables, we performed 548 
univariate regressions, where each independent variable is regressed separately. The 549 
regression coefficients measure the individual effects of each textual feature, which are 550 
expected to show how much the error distance increases in kilometers for each one-unit 551 
increase in the independent variables. The regression analysis was performed for each 552 
georeferencing method, respectively. 553 
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Extended Table 1. Summary of georeferencing accuracy and efficiency across various models or methods. The outliers (i.e., top 5 percentile) are removed 764 
when calculating the median, mean, and standard deviation, so the sample size being considered in statistics is either 4750 or 95. 765 

Model/method Sample size 
Median error 

(km) 

Mean error ± 

sd (km) 

Time per record 

(mean±sd, seconds) 

Cost per 100 

records ($) 

Human 100 3.4 8.3±10.8 211±173.0 160.00 

OpenAI 

o1-preview 100 9.7 13.9±13.3 27.1±14.8 13.48 

gpt-4o 100 9.3 17.1±19.8 0.9±0.5 0.10 

gpt-4o 5000 9.7 17.8±20.7 0.9±0.5 0.10 

gpt-4o-mini 100 46.5 57.0±46.7 0.8±0.6 Free 

gpt-4o-mini 5000 39.6 54.8±49.4 0.8±0.6 Free 

gpt-4-turbo 100 14.0 21.0±19.4 1.1±0.7 0.82 

gpt-4-turbo 5000 15.3 23.8±23.6 1.1±0.7 0.82 

gpt-3.5-turbo 100 27.9 37.7±32.8 0.6±0.4 0.01 

gpt-3.5-turbo 5000 27.0 41.4±41.0 0.6±0.4 0.01 

Deepseek 

deepseek-reasoner (R1) 100 12.0 17.9±18.0 92.3±68.3 1.38 

deepseek-chat (V3) 100 12.5 17.5±18.3 2.3±0.3 Free 

deepseek-chat (V3) 5000 12.3 20.3±21.8 2.3±0.3 Free 

GEOLocate 
100 14.3 98.2±176.9 0.9±1.5 Free 

5000 23.4 110.2±185.9 0.9±1.5 Free 

County centroid 
100 17.9 30.0±30.2 0 Free 

5000 18.2 30.8±32.2 0 Free 

 766 
  767 
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Extended Table 2. Independent variables, include readability metrics and the counts of different word types in the 768 
locality descriptions 769 

Categories Variable Abbr. Keywords or illustrate 

Readability 

metrics 

Flesch-Kincaid 

Grade Level 
FKGL 

Meaning: estimates the U.S. school grade level required to 

understand a text. 

Higher Value = More complex text. 

Formula: 

FKGL = 0.39 × (
Total Words

Total Sentences
) + 11.8 × (

Total Syllables

Total Words
) − 15.59  

Gunning Fog 

Index 
GFI 

Meaning: measures the number of years of formal education 

required to understand a text easily. 

Higher Value = More complex text. 

Formula: 

𝐺𝐹𝐼 = 0.4 × (
Total Words

Total Sentences
+ 100 ×

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑊𝑜𝑟𝑑𝑠 (≥3 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠)

Total Words
)  

Simple 

Measure of 

Gobbledygook 

SMOG 

Meaning: measures the readability of healthcare and academic texts 

by focusing on multi-syllabic words. 

Higher Value = More complex text 

Formula: 

𝑆𝑀𝑂𝐺 = 1.043 × √30 ×
Polysyllabic Words (≥3 syllables)

Total Sentences
  

Coleman-Liau 

Index 
CLI 

Meaning: Estimates the readability grade level based on character 

count rather than syllables. 

Higher Value = More complex text. 

Formula: 

𝐶𝐿𝐼 = 0.0588 × (
𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑡𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
× 100) − 0.296 × (

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
×

100) − 15.8  

Automated 

Readability 

Index 

ARI 

Meaning: A machine-calculated readability score based on word 

length and sentence complexity. 

Higher Value = More complex text. 

Formula: 

𝐴𝑅𝐼 = 4.71 × (
𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
) + 0.5 × (

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) − 21.43  

Non-text 

characters 

Number of 

digits 
digit — 

Number of 

punctuation 

marks 

punctuation — 

Spatial 

keywords 

Number of 

direction words 
direction 

north, south, east, west, northeast, southeast, northwest, southwest, N, 

S, E, W, NE, SE, NW, SW, NNE, NNW, SSE, SSW, ENE, ESE, 

WNW, WSW 

Number of 

distance words 
distance 

km, m, mi, mile, miles, meter, meters, kilometer, kilometers, feet, 

foot 

Object 

keywords 

Number of road 

names 
road 

street, st, road, rd, avenue, ave, boulevard, blvd, drive, dr, lane, ln, 

highway, hwy, path, trail 

Number of 

natural objects 
natural_obj. 

river, mountain, lake, forest, sea, ocean, beach, desert, valley, canyon, 

waterfall, island, hill, pond, creek, bay, swamp, marsh, glacier, cliff, 

plain, meadow, grove, prairie, stream, woods, coast, shore, wetland, 

peak, brook 

Number of 

artificial 

objects (except 

roads) 

artificial_abj. 

building, structure, house, bridge, city, village, town, urban, tower, 

factory, dam, monument, temple, stadium, castle, fort, palace, 

skyscraper, residence, office, industrial, farm, plaza, apartment, 

church, mosque, synagogue, mall, market, school, hospital 

 770 
771 
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 772 
Extended Figure 1. Density plot and boxplot of georeferencing accuracy of different methods. A higher georeferencing 773 
accuracy (x-axis) is represented by a smaller error distance (distance to ground truth coordinate). The letters in the boxplot 774 
indicate intergroup differences according to the Wilcoxon test, where letters appearing later in the sequence correspond to 775 
smaller mean georeferencing errors. Identical letters signify no significant differences between methods (p > 0.05). In the 776 
boxplot, the models or methods are ordered from top to bottom based on the ascending median georeferencing error. Here, 777 
only the results of the most accurate LLM, GEOLocate, and manual georeferencing are displayed. All methods were applied to 778 
a sample size of 100 in this figure  779 
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 780 

Extended Figure 2. The geographic distribution of georeferencing accuracy. Georeferencing accuracy is represented by the 781 
error distance (distance between georeferenced coordinates and ground truth), and smaller values indicate higher accuracy. 782 
Maps represent three OpenAI LLMs (a-c, except gpt-4o shown in Figure 2a) and county centroid-based georeferencing method 783 
(d). The sample size is 5000 for each.  784 

  785 

a 

c 
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d 
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 786 

Extended Figure 3. The georeferencing accuracy at country level. Georeferencing accuracy is represented by the median 787 
error distance (distance between georeferenced coordinates and ground truth) of all sample points in each country, and smaller 788 
values indicate higher accuracy. Maps represent three OpenAI LLMs (a-d, except gpt-4o shown in Figure 3a) and county 789 
centroid-based georeferencing method (d). All country-level statistics were based on 5000 samples. 790 
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 792 

Extended Figure 4. Correlation plot between independent variables. The independent variables include all readability 793 
metrics and the counts of different word types in the locality descriptions those are listed in Extended Table 2. The numbers 794 
represent the Pearson correlation coefficients, with only statistically significant correlations (p < 0.05) marked. 795 

  796 
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Table S1 Statistical analysis of the mean, standard deviation (sd), and median (med.) of error distances based on multiple georeferencing methods for 5000 sample points. 813 
 814 

  gpt-4o gpt-4o-mini gpt-4-turbo gpt-3.5-turbo deepseek-chat GEOLocate CountyCentroid 

Country Count Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. 

Argentina 21 25.3 ± 20.4 18.1 85.4 ± 63.3 64.9 27.4 ± 28 21.9 41.5 ± 36.4 30.9 22 ± 21.3 17.3 33.6 ± 26.5 30.4 27.6 ± 24.2 20.6 

Australia 988 38.7 ± 79.3 14.4 108.9 ± 187.7 56.7 52.9 ± 109.7 22.3 79.8 ± 145.1 38.3 44.2 ± 73.5 17.6 367.9 ± 623.8 64.2 96.9 ± 137.5 61.0 

Azerbaijan 16 16.1 ± 17.3 10.2 42.3 ± 30.8 30.5 26.3 ± 31.1 17.9 18.6 ± 11.1 15.9 18.4 ± 17 14.1 37.8 ± 49.7 22.9 18.7 ± 8.7 16.8 

Belgium 1 2.5 ± 0 2.5 1.7 ± 0 1.7 2.9 ± 0 2.9 5 ± 0 5.0 3.2 ± 0 3.2 2.4 ± 0 2.4 2.7 ± 0 2.7 

Benin 2 20.5 ± 24.7 20.5 41 ± 53.3 41.0 21 ± 25.5 21.0 20.5 ± 24.8 20.5 20.6 ± 24.9 20.6 19.5 ± 26.2 19.5 11.4 ± 16 11.4 

Bolivia 38 38.5 ± 48.5 16.1 79.4 ± 70.6 66.2 37.4 ± 51.8 18.3 69.6 ± 58.6 55.5 28.4 ± 22.5 23.5 135.2 ± 144.4 64.5 33.3 ± 26.9 24.3 

Botswana 1 21.7 ± 0 21.7 64.9 ± 0 64.9 19 ± 0 19.0 86.4 ± 0 86.4 28.5 ± 0 28.5 63.3 ± 0 63.3 95.1 ± 0 95.1 

Brazil 286 41.3 ± 59.5 17.1 118.9 ± 99 68.0 43.6 ± 28.1 42.1 96.4 ± 48.2 105.2 37 ± 34.7 25.8 611.8 ± 369.1 648.6 57.4 ± 29.6 57.7 

Bulgaria 36 5.9 ± 4.9 5.2 26.8 ± 24.3 19.4 9.3 ± 6.3 9.0 21.5 ± 20.8 14.4 10.9 ± 10.9 8.7 53.2 ± 87.7 6.5 12.3 ± 6.3 10.6 

Burkina Faso 10 18.8 ± 16.4 15.5 106.2 ± 87.6 112.4 36 ± 38.2 23.9 55 ± 52.6 40.8 14.1 ± 7.8 15.3 12.6 ± 11.9 14.2 10.9 ± 4 10.1 

Cambodia 1 3.3 ± 0 3.3 16.6 ± 0 16.6 1.1 ± 0 1.1 15.8 ± 0 15.8 0.7 ± 0 0.7 3.5 ± 0 3.5 18.6 ± 0 18.6 

Cameroon 108 20.2 ± 18.6 15.0 60.8 ± 46.4 60.6 29.6 ± 20.4 26.7 41 ± 31 27.1 23.2 ± 15.9 18.6 61.1 ± 115.2 16.8 12.1 ± 7.9 10.3 

Canada 4 27.1 ± 23.2 22.4 64.1 ± 28.4 70.2 26.5 ± 11.8 29.5 70.6 ± 34.5 73.3 46 ± 18.7 45.7 288 ± 555.8 14.5 45.5 ± 25.9 41.6 

Chile 43 14.7 ± 19.6 6.2 42.1 ± 35.5 31.7 21.8 ± 20 17.9 34.7 ± 35 24.4 17.3 ± 22.9 8.9 130.7 ± 203.1 31.3 16.2 ± 12 13.3 

China 125 51 ± 40.9 44.5 73 ± 40 66.6 64.5 ± 49.7 56.4 73.7 ± 51.1 65.0 57.5 ± 40.6 48.4 509 ± 588.8 294.0 22.4 ± 11.4 20.3 

Colombia 130 13.2 ± 15.6 8.5 56.1 ± 40.2 45.8 15.8 ± 14.7 11.1 77.2 ± 195.5 35.1 15.2 ± 12.5 10.9 115.6 ± 139.9 69.6 10.3 ± 10.3 6.7 

Costa Rica 2 9.6 ± 12 9.6 13.8 ± 9.6 13.8 12.8 ± 8.4 12.8 9.5 ± 11.5 9.5 19.2 ± 3.9 19.2 53.7 ± 48.6 53.7 7.7 ± 0.2 7.7 

Côte d'Ivoire 1 23.8 ± 0 23.8 27.3 ± 0 27.3 23.9 ± 0 23.9 23.6 ± 0 23.6 47 ± 0 47.0 23.8 ± 0 23.8 2.1 ± 0 2.1 

Democratic 

Republic of the 

Congo 

1 22.3 ± 0 22.3 107.3 ± 0 107.3 74.8 ± 0 74.8 81.1 ± 0 81.1 55.7 ± 0 55.7 10.9 ± 0 10.9 35.1 ± 0 35.1 

Denmark 11 4.2 ± 3.3 3.1 12.7 ± 7 14.2 6.8 ± 4.7 5.6 13.4 ± 11.6 13.0 9.7 ± 10 4.0 24.5 ± 36.9 9.4 13.1 ± 9.5 12.8 

Ecuador 200 20.3 ± 26.4 11.8 53.4 ± 39 44.6 21.4 ± 18.1 17.7 66.3 ± 65.5 42.2 16.1 ± 13.5 12.0 71.4 ± 108.8 25.1 11.6 ± 13.4 8.5 

Equatorial 

Guinea 
2 115.2 ± 147 115.2 67.5 ± 3.7 67.5 66.6 ± 5.3 66.6 54.7 ± 17.5 54.7 33.7 ± 27.5 33.7 11.9 ± 0 11.9 7.1 ± 1 7.1 

France 3 28.1 ± 42.7 3.7 24 ± 22.8 18.3 5.9 ± 2.5 5.6 10.8 ± 7.9 9.0 1.9 ± 1.5 1.3 27.7 ± 45.5 2.2 1.8 ± 0.4 1.8 

French Guiana 14 21.9 ± 26.7 12.7 30.2 ± 16.5 31.5 22.4 ± 23.8 14.9 39.1 ± 25.6 34.6 16.4 ± 18.8 12.2 47.5 ± 37.8 50.7 24.7 ± 22 17.5 

Gabon 39 57.5 ± 59.8 34.7 196.6 ± 85.8 203.5 85.7 ± 77.9 61.9 139.2 ± 197.1 96.6 50.1 ± 32.7 39.9 122.2 ± 213 26.1 35.8 ± 13.6 40.3 

Georgia 146 11.8 ± 11.2 8.8 52.9 ± 35.5 47.1 14.9 ± 13 10.5 24 ± 24.4 12.2 14.5 ± 15.5 8.2 29.1 ± 45.2 11.3 14.8 ± 9.1 12.7 
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  gpt-4o gpt-4o-mini gpt-4-turbo gpt-3.5-turbo deepseek-chat GEOLocate CountyCentroid 

Country Count Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. 

Germany 2 2.2 ± 1.5 2.2 12.4 ± 1.1 12.4 9.7 ± 0.7 9.7 10 ± 2.1 10.0 6.1 ± 6 6.1 29.8 ± 40.2 29.8 4.6 ± 5.3 4.6 

Greece 1 0.2 ± 0 0.2 0.3 ± 0 0.3 0.5 ± 0 0.5 0.6 ± 0 0.6 0.1 ± 0 0.1 35.4 ± 0 35.4 15.5 ± 0 15.5 

Guinea 10 41.4 ± 31.4 44.0 81.7 ± 54.9 62.2 45.3 ± 25.9 35.5 48.3 ± 23.3 47.0 39.2 ± 24.5 45.2 51.7 ± 14.5 44.9 12.7 ± 5.7 10.2 

Guyana 51 41.8 ± 33.8 34.8 95.4 ± 54.9 112.0 49.7 ± 55.6 27.3 61.4 ± 48.9 49.2 33.9 ± 29.1 33.0 46.6 ± 87.1 15.7 70.6 ± 42.1 74.7 

India 12 12.5 ± 17.6 3.4 51.2 ± 58.9 23.4 15.1 ± 17 9.2 37.7 ± 24.6 32.6 22.8 ± 23.6 14.7 312.8 ± 453.9 69.5 13.2 ± 9.4 11.1 

Indonesia 106 31.2 ± 49.5 15.8 66.1 ± 59.4 46.5 45.3 ± 43.1 42.3 95.2 ± 138.9 59.1 128.4 ± 1074.3 15.4 118.8 ± 255 63.8 4.5 ± 4 3.1 

Italy 22 7.6 ± 6.7 6.0 16.7 ± 11.5 14.8 12.3 ± 11 9.0 22.7 ± 22.8 14.8 11.3 ± 8.9 11.2 73.8 ± 57 66.9 5.2 ± 4.2 3.9 

Japan 2 22.3 ± 26.2 22.3 16.9 ± 18.4 16.9 10.8 ± 9.8 10.8 12.2 ± 9.7 12.2 12.3 ± 16.1 12.3 47.8 ± 54 47.8 8.9 ± 6.4 8.9 

Kazakhstan 11 49.7 ± 91.3 4.7 128.6 ± 107.6 62.7 68.9 ± 101.3 41.7 61.2 ± 96.5 40.8 53.1 ± 87.4 9.3 307 ± 304.1 336.1 51.7 ± 41.7 35.7 

Kenya 7 10.4 ± 12 4.9 33.4 ± 28.5 23.6 8.9 ± 9.3 6.2 140.7 ± 229.1 14.8 9.3 ± 10.1 4.5 50.3 ± 47.9 51.9 15.6 ± 11.4 14.3 

Liberia 5 45.5 ± 35.3 31.9 100.8 ± 86 87.9 34.8 ± 20.3 29.6 48.2 ± 29.1 32.3 32.2 ± 8.7 32.4 112.3 ± 115.1 60.4 7.9 ± 4.7 7.4 

Madagascar 81 26.8 ± 38.7 13.0 204.5 ± 567.8 66.4 32.5 ± 41.3 16.4 54.2 ± 70.6 30.1 29.4 ± 51.2 12.9 139.6 ± 175.9 89.4 10.2 ± 6.3 8.7 

Malawi 5 15.3 ± 7.1 10.5 34.2 ± 10.3 36.0 32.8 ± 24.8 27.5 8.9 ± 1.7 8.0 13.9 ± 3.2 16.0 35.2 ± 0 35.2 3.8 ± 2.2 2.3 

Malaysia 61 11 ± 16.9 4.7 46.8 ± 44.7 31.0 20.8 ± 25.4 10.6 29.1 ± 31.4 16.0 12.1 ± 14.6 4.5 54.1 ± 109.8 17.3 37.7 ± 30.7 26.2 

México 318 21.3 ± 24.9 12.2 81.7 ± 70.4 67.1 31.3 ± 32.8 20.2 58.9 ± 62.4 36.7 24.3 ± 34.8 12.5 99 ± 195.4 31.7 20.8 ± 28.3 12.5 

Morocco 6 57 ± 61.8 30.1 58.9 ± 73.3 31.7 54 ± 57.5 35.7 41 ± 41.8 23.6 47.6 ± 49.9 22.5 67 ± 58.9 44.8 7.8 ± 3.3 7.3 

Mozambique 83 41.1 ± 70.9 10.0 70.2 ± 55.6 42.7 41.3 ± 40.3 37.6 70.4 ± 64 47.9 28.7 ± 45 5.8 22.2 ± 37.2 5.8 11.5 ± 5.5 10.9 

Myanmar 3 28.5 ± 30.4 16.9 71.1 ± 12.3 67.3 153.9 ± 129.5 87.3 53 ± 20.9 62.6 121.7 ± 51.3 99.4 241.2 ± 35.8 250.1 40.7 ± 45 20.6 

namibia 1 4.6 ± 0 4.6 50.6 ± 0 50.6 7.1 ± 0 7.1 202.9 ± 0 202.9 7.9 ± 0 7.9 0.2 ± 0 0.2 40.6 ± 0 40.6 

Netherlands 2 2 ± 1.3 2.0 3.3 ± 0.3 3.3 2.2 ± 1.3 2.2 2.9 ± 0.7 2.9 3.7 ± 0.8 3.7 2.4 ± 1.8 2.4 3.8 ± 0.5 3.8 

New Zealand 1 10.1 ± 0 10.1 41.6 ± 0 41.6 16.9 ± 0 16.9 6.8 ± 0 6.8 10.2 ± 0 10.2 2.8 ± 0 2.8 15.6 ± 0 15.6 

Pakistan 9 66.6 ± 48.4 75.5 103 ± 63.7 81.9 65.7 ± 45.4 57.9 85 ± 65.5 71.1 82.9 ± 54.3 106.3 265.9 ± 337.7 55.5 38 ± 19.8 39.1 

Panama 2 10.3 ± 2.6 10.3 17.1 ± 7.3 17.1 28.9 ± 28 28.9 44.3 ± 55.8 44.3 5.8 ± 3.2 5.8 44.7 ± 53.7 44.7 12.7 ± 9.7 12.7 

Papua New 

Guinea 
29 30.6 ± 36 10.5 85 ± 76.5 56.2 35.9 ± 35.9 20.8 50.9 ± 48.9 35.8 27.4 ± 29.4 13.9 34 ± 37.3 27.5 43.7 ± 30.1 37.5 

Peru 197 29.8 ± 31.3 22.3 71.6 ± 137.3 37.6 29.5 ± 21.9 23.1 49.9 ± 44.9 35.8 30.1 ± 28 22.4 70.4 ± 137.1 27.9 23.8 ± 25.6 16.6 

Philippines 34 6.2 ± 5.3 3.7 35.9 ± 33.8 20.6 8.5 ± 6.9 7.1 15.8 ± 9.9 16.3 7 ± 5.9 5.4 129.6 ± 104.7 161.7 3.3 ± 1.7 2.8 

Portugal 13 3.3 ± 2.8 2.0 10.8 ± 14.4 7.5 5.2 ± 4.7 3.6 5 ± 4.1 3.2 4.4 ± 3.2 3.8 37.5 ± 119.9 1.4 2.9 ± 1.7 2.5 

Republic of the 

Congo 
1 15.3 ± 0 15.3 43.7 ± 0 43.7 15.6 ± 0 15.6 134.6 ± 0 134.6 18 ± 0 18.0 0 ± 0 0.0 24 ± 0 24.0 

Réunion 8 5 ± 2.7 4.4 13 ± 6.8 10.9 5.9 ± 2.6 5.1 9.2 ± 4.9 10.6 6.3 ± 3.6 5.2 13.1 ± 14 9.1 5 ± 2.1 4.8 
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  gpt-4o gpt-4o-mini gpt-4-turbo gpt-3.5-turbo deepseek-chat GEOLocate CountyCentroid 

Country Count Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. 

Russia 92 40.2 ± 40.7 25.1 174.2 ± 149.6 147.0 76.8 ± 113.3 27.4 111.9 ± 118.7 67.7 54.5 ± 64.9 27.0 2425.9 ± 2541 1218.8 53.9 ± 32.9 45.1 

Slovakia 1 5.2 ± 0 5.2 26.5 ± 0 26.5 15.8 ± 0 15.8 13.2 ± 0 13.2 12.5 ± 0 12.5 2.7 ± 0 2.7 14.4 ± 0 14.4 

Solomon 

Islands 
1 12 ± 0 12.0 26.3 ± 0 26.3 21.4 ± 0 21.4 21.4 ± 0 21.4 17.3 ± 0 17.3 40.7 ± 0 40.7 7.3 ± 0 7.3 

Somalia 28 33 ± 22.4 27.3 92.1 ± 36.6 91.0 58.7 ± 25.3 53.5 56.7 ± 26 51.1 56.6 ± 26 54.8 323.8 ± 276.9 542.9 57.9 ± 18.3 57.3 

South Africa 54 14 ± 17.4 5.8 73.9 ± 60 58.0 18.9 ± 20.4 7.5 32.5 ± 31.8 16.8 29 ± 38.6 6.0 77.8 ± 126.7 16.3 15.2 ± 10.2 13.5 

Spain 43 12.9 ± 19.1 7.4 39.2 ± 43.2 26.9 12.5 ± 13.4 6.5 23.2 ± 23.4 15.4 17.8 ± 23.6 6.9 25 ± 66.3 3.6 5.2 ± 3.6 3.3 

Suriname 3 29.1 ± 20.5 26.7 97.8 ± 43.8 98.2 68.8 ± 58.1 44.3 58.2 ± 50.3 39.2 46.3 ± 34.2 32.3 51.5 ± 7.3 51.5 31.8 ± 28.4 22.8 

Sweden 1 4.2 ± 0 4.2 33.9 ± 0 33.9 3 ± 0 3.0 20.9 ± 0 20.9 4.4 ± 0 4.4 5.7 ± 0 5.7 19.5 ± 0 19.5 

Tanzania 46 43.2 ± 35 34.3 78.3 ± 46.5 81.5 38.3 ± 31.4 28.0 49.9 ± 33.9 39.0 34.3 ± 31.3 25.4 92 ± 92 41.9 10.3 ± 6.8 7.8 

Thailand 155 11.3 ± 11.8 8.3 33.8 ± 33.8 23.7 18.5 ± 19 11.4 28 ± 30.1 16.3 11.6 ± 11.3 8.4 63.4 ± 160 12.1 6 ± 4.6 4.9 

Timor-Leste 260 8.6 ± 9.8 5.5 37.6 ± 34.7 24.8 12.7 ± 14.2 9.1 40.1 ± 93.7 11.2 8.8 ± 9.2 5.8 39.3 ± 39.8 30.2 3.1 ± 2.2 2.8 

Turkey 86 16 ± 16.6 12.1 48.3 ± 44.3 31.6 21.4 ± 24.5 15.1 32.3 ± 32.1 20.9 14.6 ± 11.1 11.9 77.7 ± 163.5 17.9 15.2 ± 8.4 14.0 

United States 878 12.4 ± 24.3 5.1 32.9 ± 46.6 15.6 27.4 ± 330.4 7.6 24.5 ± 37.9 11.6 36.6 ± 306 8.3 33.6 ± 99.4 5.4 56.9 ± 150.2 38.6 

Uruguay 6 17.5 ± 8.3 20.6 36.3 ± 15.1 37.8 17.3 ± 9 19.1 34.3 ± 15.9 43.3 13.6 ± 9.6 15.0 28.3 ± 33.1 14.5 11.2 ± 6.2 12.1 

Uzbekistan 1 23.9 ± 0 23.9 46.3 ± 0 46.3 60.7 ± 0 60.7 60.1 ± 0 60.1 47.7 ± 0 47.7 46.6 ± 0 46.6 15 ± 0 15.0 

Venezuela 7 31.2 ± 48.9 16.5 71.6 ± 90.6 48.1 38.9 ± 48.7 18.3 56 ± 69.1 19.7 27 ± 31.1 14.6 37.5 ± 57.9 17.3 38.4 ± 69 11.8 

Vietnam 26 17.5 ± 24.5 12.3 31.1 ± 24.4 24.6 22 ± 24.3 17.0 29.8 ± 28.1 22.1 15.3 ± 18.5 11.5 100.6 ± 176.8 19.2 4.5 ± 2.5 4.3 

815 
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Table S2 Statistical analysis of the mean, standard deviation (sd), and median (med.) of error distances based on multiple georeferencing methods for the 100 sample points with 816 
human georeferencing results. 817 

  gpt-4o gpt-4o-mini gpt-4-turbo gpt-3.5-turbo o1-preview deepseek-chat deepseek-reasoner GEOLocate CountyCentroid human 

Country Count Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. 

Argentina 1 
17.6 ± 

0 
17.6 

208.6 

± 0 
208.6 35.5 ± 0 35.5 35.5 ± 0 35.5 1.7 ± 0 1.7 5.2 ± 0 5.2 5.1 ± 0 5.1 14.2 ± 0 14.2 141.4 ± 0 141.4 1 ± 0 1.0 

Australia 24 
32.9 ± 

36.7 
15.6 

80.8 ± 

77.3 
62.1 

36.3 ± 

35.8 
21.2 

46.1 ± 

43 
42.9 

18.1 ± 

19.8 
8.1 

24.5 ± 

30.7 
13.8 

33.2 ± 

43.3 
15.2 

286.3 ± 

540.4 
42.9 29.9 ± 33.8 12.6 

35.8 ± 

133.4 
2.8 

Bolivia 1 
34.8 ± 

0 
34.8 

92.7 ± 

0 
92.7 60.1 ± 0 60.1 65.8 ± 0 65.8 38.5 ± 0 38.5 16.1 ± 0 16.1 34.6 ± 0 34.6 304.4 ± 0 304.4 11 ± 0 11.0 

27.6 ± 

0 
27.6 

Brazil 4 
31.2 ± 

32.6 
18.4 

143.2 

± 63.7 
160.0 

41.8 ± 

19.2 
48.2 

111.3 ± 

10.1 
114.9 

32.2 ± 

27.5 
19.6 36.6 ± 30 24.4 

35.2 ± 

23.3 
24.1 

649.8 ± 

32.9 
665.8 71.7 ± 49 71.4 

80.2 ± 

108.3 
28.2 

Bulgaria 1 2.9 ± 0 2.9 
28.9 ± 

0 
28.9 15.8 ± 0 15.8 24.8 ± 0 24.8 7.6 ± 0 7.6 14.3 ± 0 14.3 14.4 ± 0 14.4 4.1 ± 0 4.1 7 ± 0 7.0 3.4 ± 0 3.4 

Cameroon 5 
12.3 ± 

7.1 
10.7 

51.4 ± 

37.1 
43.1 

20.1 ± 

15.2 
19.1 

41.3 ± 

28.2 
41.4 

15.2 ± 

11.6 
16.7 12.7 ± 8.6 12.5 16.8 ± 8.2 18.1 25.2 ± 39.7 12.5 45.7 ± 57.5 26.4 

12.3 ± 

13.7 
7.7 

Canada 1 
25.3 ± 

0 
25.3 84 ± 0 84.0 32.6 ± 0 32.6 57 ± 0 57.0 15.7 ± 0 15.7 27.8 ± 0 27.8 68.4 ± 0 68.4 1.4 ± 0 1.4 70.7 ± 0 70.7 4.4 ± 0 4.4 

Chile 2 
2.4 ± 

0.5 
2.4 

4.8 ± 

1.4 
4.8 4 ± 0.3 4.0 

9.3 ± 

1.4 
9.3 

3.3 ± 

0.2 
3.3 2.3 ± 2.8 2.3 3.6 ± 0.5 3.6 22.9 ± 1.3 22.9 17.9 ± 0.1 17.9 

14 ± 

17.8 
14.0 

China 4 
67.7 ± 

38 
76.8 

63.2 ± 

35.9 
67.3 

67.5 ± 

27.9 
67.1 

85.4 ± 

71.1 
67.3 

54.9 ± 

48.7 
44.9 

68.4 ± 

49.3 
67.3 

42.7 ± 

21.6 
50.7 

363.1 ± 

347.4 
316.9 19.1 ± 15.7 19.9 

32.1 ± 

46.6 
13.5 

Colombia 2 5 ± 1 5.0 
45.8 ± 

3.7 
45.8 

4.6 ± 

0.9 
4.6 

18.9 ± 

22.4 
18.9 

4.7 ± 

0.1 
4.7 6.7 ± 2.7 6.7 7.2 ± 1 7.2 

485.2 ± 

129.6 
485.2 44.3 ± 36.1 44.3 

23.9 ± 

27 
23.9 

Ecuador 2 
21.2 ± 

11.6 
21.2 

66.3 ± 

10.6 
66.3 

42.1 ± 

20.9 
42.1 75.6 ± 2 75.6 

18.8 ± 

4.1 
18.8 

30.1 ± 

22.4 
30.1 30.4 ± 6.7 30.4 

167.7 ± 

114.4 
167.7 19.8 ± 1.2 19.8 

16 ± 

11.2 
16.0 

Gabon 1 
18.5 ± 

0 
18.5 

100.9 

± 0 
100.9 29.5 ± 0 29.5 96.6 ± 0 96.6 10.2 ± 0 10.2 22.8 ± 0 22.8 18.2 ± 0 18.2 754.3 ± 0 754.3 1.5 ± 0 1.5 

28.3 ± 

0 
28.3 

Georgia 6 
16.2 ± 

11.9 
13.1 

72.5 ± 

20.5 
76.3 

16.5 ± 

13.3 
10.8 

32.2 ± 

28.8 
28.8 

18.7 ± 

15.1 
13.8 16.4 ± 9.5 15.1 

18.6 ± 

14.1 
15.7 52.8 ± 99.8 11.1 60.7 ± 81.9 23.1 

6.6 ± 

6.5 
4.7 

Guyana 1 
58.3 ± 

0 
58.3 

118.3 

± 0 
118.3 6.7 ± 0 6.7 82.9 ± 0 82.9 50 ± 0 50.0 80.4 ± 0 80.4 57.5 ± 0 57.5 2.7 ± 0 2.7 31.5 ± 0 31.5 1.7 ± 0 1.7 

Kazakhstan 1 1.3 ± 0 1.3 
59.2 ± 

0 
59.2 1.2 ± 0 1.2 32.7 ± 0 32.7 1.8 ± 0 1.8 1.7 ± 0 1.7 2.2 ± 0 2.2 336.1 ± 0 336.1 57.5 ± 0 57.5 0.2 ± 0 0.2 

Madagascar 1 4 ± 0 4.0 
107.5 

± 0 
107.5 3.1 ± 0 3.1 22.5 ± 0 22.5 11.4 ± 0 11.4 9.5 ± 0 9.5 12 ± 0 12.0 84.3 ± 0 84.3 13.1 ± 0 13.1 9.3 ± 0 9.3 

Mozambique 2 
32.7 ± 

13.8 
32.7 

130.2 

± 134 
130.2 

45.7 ± 

52.7 
45.7 

151 ± 

146.4 
151.0 

12.5 ± 

12.1 
12.5 

13.4 ± 

15.3 
13.4 

174.6 ± 

235.5 
174.6 3.2 ± 3.4 3.2 37.6 ± 34 37.6 

1.3 ± 

1.2 
1.3 

Peru 4 
34.5 ± 

15.6 
35.1 

42 ± 

15.2 
47.2 

20.7 ± 

13.4 
23.0 

47.6 ± 

24.4 
50.6 

27.9 ± 

30.8 
18.4 

23.9 ± 

15.6 
17.4 

28.3 ± 

13.1 
25.4 30 ± 30.6 29.2 13.2 ± 7.6 11.5 

14.6 ± 

13.5 
11.8 

Philippines 1 5.5 ± 0 5.5 
112.5 

± 0 
112.5 8.9 ± 0 8.9 24.2 ± 0 24.2 4.9 ± 0 4.9 1 ± 0 1.0 0.5 ± 0 0.5 161.4 ± 0 161.4 94 ± 0 94.0 0.1 ± 0 0.1 
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  gpt-4o gpt-4o-mini gpt-4-turbo gpt-3.5-turbo o1-preview deepseek-chat deepseek-reasoner GEOLocate CountyCentroid human 

Country Count Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. Mean±sd Med. 

South Africa 2 
14.4 ± 

13.9 
14.4 

31.1 ± 

34.3 
31.1 

20.6 ± 

20.3 
20.6 

44.3 ± 

58.9 
44.3 

22.5 ± 

24.2 
22.5 

57.9 ± 

74.3 
57.9 6.9 ± 3.2 6.9 

117.1 ± 

33.8 
117.1 10.8 ± 13 10.8 

7.6 ± 

9.6 
7.6 

Tanzania 2 
21.8 ± 

19 
21.8 

141.3 

± 26.8 
141.3 

21.8 ± 

8.9 
21.8 

89.8 ± 

60.2 
89.8 

21.1 ± 

13.5 
21.1 9.5 ± 8.2 9.5 

36.2 ± 

26.9 
36.2 29.5 ± 34.3 29.5 32.6 ± 10.9 32.6 

19.7 ± 

21.1 
19.7 

Thailand 4 
4.9 ± 

4.9 
4.7 

16.4 ± 

18.9 
10.8 7.2 ± 7 5.7 

13.1 ± 

17.7 
6.4 

5.1 ± 

5.1 
4.1 5.7 ± 5.1 5.6 3.9 ± 4.6 2.4 12 ± 11 8.8 24.1 ± 31.4 10.8 

5.6 ± 

5.2 
3.5 

Timor-Leste 8 
7.3 ± 

6.9 
5.3 

33.2 ± 

40 
15.2 

17.2 ± 

18.5 
14.3 

63.5 ± 

135.7 
17.1 

7.6 ± 

6.3 
6.5 

12.4 ± 

11.9 
7.3 2.9 ± 2.8 2.0 27.9 ± 27.8 21.1 23.1 ± 16.9 20.5 4 ± 2.8 4.1 

Turkey 2 
7.7 ± 

5.8 
7.7 

66.3 ± 

77.8 
66.3 

11.6 ± 

5.7 
11.6 

9.9 ± 

3.3 
9.9 

14.2 ± 

17 
14.2 11.2 ± 5.3 11.2 9.6 ± 6 9.6 29.1 ± 30.5 29.1 2.6 ± 2.3 2.6 

30.5 ± 

36.5 
30.5 

United 

States 
18 

10.2 ± 

15.2 
6.1 

44.4 ± 

57 
29.1 

13.9 ± 

12.4 
9.9 

24.5 ± 

25.9 
19.5 

11.9 ± 

13.5 
9.5 

20.1 ± 

19.5 
13.2 

17.6 ± 

19.8 
11.8 12.8 ± 27.6 3.8 47.5 ± 44.1 29.0 

4.1 ± 

6.9 
1.3 

 818 

  819 
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Table S3 The process of reasoning of DeepSeek-reasoner for the three georeferencing examples in 820 
Figure 1a. 821 

Locality Reasoning process 

Pony Express 

Trail, 0.7 

mile east of 

its junction 

with Sly Park 

Road in 

Pollock Pines 

(California, 

USA) 

 

Okay, let's see. I need to georeference this location based on the given 

information. The input is ["United States", "California", "El Dorado", "Pony 

Express Trail, 0.7 mile east of its junction with Sly Park Road in Pollock Pines"].  

First, breaking down the components. The country is the US, state California, 

county El Dorado, and the locality details are Pony Express Trail, 0.7 mile east 

of its junction with Sly Park Road in Pollock Pines. 

Since the priority is locality > county > state > country, I should focus on the 

most specific info first. The locality mentions a specific point along Pony 

Express Trail, 0.7 miles east of where it meets Sly Park Road in Pollock Pines. 

Pollock Pines is a community in El Dorado County.  

I'll start by finding the coordinates of the junction between Pony Express Trail 

and Sly Park Road in Pollock Pines. Let me check a map. Pollock Pines is in 

California, El Dorado County. Sly Park Road is a known road there. Pony 

Express Trail intersects with Sly Park Road. Once I have that intersection point, 

I need to go 0.7 miles east along Pony Express Trail from there.  

Wait, wait. The description says 0.7 mile east of the junction. But if the trail runs 

east-west, then moving east from the junction would be along the trail. But first, 

I need the exact coordinates of the junction. Let me search for the intersection of 

Pony Express Trail and Sly Park Road in Pollock Pines, CA.  

Looking it up, the intersection is at approximately 38.7667° N, 120.5866° W. 

Now, moving 0.7 miles east along Pony Express Trail from there. One mile is 

about 1.60934 kilometers, so 0.7 miles is roughly 1.126 km. However, 

converting this distance to decimal degrees isn't straightforward. But since the 

direction is east, which affects longitude. The exact change in longitude depends 

on the latitude. At 38.7°N, each degree of longitude is approximately 88.6 km. 

So 1.126 km east would be roughly 1.126 / 88.6 ≈ 0.0127 degrees. So adding 

that to the longitude: -120.5866 + 0.0127 ≈ -120.5739.  

But wait, this is a rough estimate. Maybe there's a more precise way. 

Alternatively, using a mapping tool like Google Maps to find the intersection 

and then measure 0.7 miles east. Let me check.  

Searching for Sly Park Rd and Pony Express Trail, Pollock Pines, CA. The 

intersection is at 38.766667, -120.586667. Moving east along Pony Express Trail 

for 0.7 miles. Using Google Maps' measure distance function. Starting at the 

intersection, heading east on Pony Express Trail. At 0.7 miles, the coordinates 

are approximately 38.7663, -120.5733.  

So the latitude is roughly 38.7663, longitude -120.5733. But I should confirm if 

this is accurate. Alternatively, check if there are any landmarks or addresses that 

match this point.  

Alternatively, maybe there's a specific address or a marker. But since the 

description is about a point along the trail, the calculated coordinates based on 

the junction and distance would be the way to go.  

Therefore, the coordinates would be approximately [38.7663, -120.5733]. But I 

need to format them as floats in a list. Let me check again. The original 

intersection is at 38.766667, -120.586667. Moving east 0.7 miles would decrease 

the longitude (since west is negative). Wait, east direction would mean 
increasing longitude (since west longitude is negative). So moving east would 

subtract from the negative value? Wait, longitude west is negative. So moving 
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Locality Reasoning process 

east from a point at -120.5866 would mean adding to the longitude (making it 

less negative). So 0.7 miles east would be -120.5866 + (0.7 miles in degrees).  

Calculating again: 1 degree of longitude at 38.7667°N is approximately 

cos(38.7667) * 111.32 km ≈ 0.785 * 111.32 ≈ 87.3 km per degree. So 0.7 miles 

is 1.126 km. 1.126 / 87.3 ≈ 0.0129 degrees. So the new longitude is -120.5866 + 

0.0129 ≈ -120.5737. So the coordinates would be approximately 38.7667 

(latitude remains roughly the same if moving east along a straight trail) and 

longitude -120.5737.  

So the final coordinates would be [38.7667, -120.5737]. But checking via 

Google Maps, perhaps the exact point is slightly different. Let me try to find a 

more precise measurement.  

Alternatively, perhaps using a geocoding API or tool would get the exact 

coordinates, but since I can't do that here, relying on estimation. However, based 

on the information given and the calculation, the latitude and longitude should 

be around 38.7667, -120.5737. Rounding to three decimal places as in the 

example (Tanzania had 3 decimals), so [38.767, -120.574]. Wait, but the example 

had [-6.192, 36.006], which is three decimal places. So maybe I should present 

three decimals.  

But the initial intersection was at 38.766667, -120.586667. After moving east 

0.7 miles, the longitude becomes approximately -120.5737, which would be -

120.574 when rounded to three decimals. Latitude remains about 38.7667 (since 

moving east along a trail that's relatively straight might not change latitude 

much). So perhaps [38.767, -120.574].  

Alternatively, checking if there's any specific landmark at that location. For 

example, if the Pony Express Trail at that point has a marker or a known 

coordinate. But without access to real-time data, I'll proceed with the calculated 

estimate.  

So the final answer is [38.767, -120.574]. 

Kissena Park, 

0.3 mi W of 

164th Street, 

ca. 0.1 mi N 

of Booth 

Memorial 

Avenue 

(New York, 

USA) 

 

Okay, let's tackle this georeferencing problem. The input is ["United States", 

"New York", "Queens", "Kissena Park, 0.3 mi W of 164th Street, ca. 0.1 mi N 

of Booth Memorial Avenue"].  

First, I need to prioritize the most specific information. The locality mentions 

Kissena Park, which is a specific park in Queens, New York. The other details 

are directions from streets, which should help pinpoint the exact spot. 

Starting with Kissena Park. I know that Kissena Park is a real park in Queens, 

so I'll look up its coordinates. A quick check shows Kissena Park's general 

coordinates are around 40.741°N, -73.803°W. But the description gives more 

precise directions: 0.3 miles west of 164th Street and approximately 0.1 miles 

north of Booth Memorial Avenue.  

Next, I need to find the intersection of 164th Street and Booth Memorial Avenue 

in Queens. Let me verify their locations. 164th Street runs north-south, and 

Booth Memorial Avenue is east-west. The intersection point would be at some 

coordinates, say around 40.7375°N, -73.795°W as a rough estimate.  

Now, moving 0.3 miles west from 164th Street. Since 164th Street is a north-

south road, moving west would decrease the longitude. 0.3 miles is roughly 

0.003 degrees in longitude (since 1 mile ≈ 0.0145 degrees at this latitude). So 

subtracting 0.003 from -73.795 gives approximately -73.798.  

Then, moving 0.1 miles north from Booth Memorial Avenue. Assuming Booth 
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Locality Reasoning process 

Memorial is east-west, moving north increases latitude. 0.1 miles is about 

0.00145 degrees. Adding that to 40.7375 gives around 40.73895.  

But wait, the original park's coordinates are 40.741, -73.803. The calculated 

point is slightly south and east of the park's general area. Maybe the specific 

location is within the park boundaries. Alternatively, perhaps the directions are 

more precise.  

Another approach: use geocoding services. Searching for "Kissena Park, 0.3 mi 

W of 164th St, 0.1 mi N of Booth Memorial Ave, Queens, NY" might yield exact 

coordinates. Let me check.  

Looking up the address details, 164th Street and Booth Memorial Avenue 

intersect in Fresh Meadows, Queens. Moving west 0.3 miles from there would 

be towards Kissena Park. A point 0.1 mi north of Booth Memorial along that 

western direction would place it inside the park.  

Using Google Maps, the intersection of 164th St and Booth Memorial Ave is at 

40.7355, -73.7938. Moving west 0.3 mi (approx 0.0043 degrees) would be 

40.7355, -73.7938 - 0.0043 = -73.7981. Then 0.1 mi north (0.00145 degrees) 

gives latitude 40.7355 + 0.00145 ≈ 40.73695.  

Wait, but Kissena Park's main area is around 40.741, -73.803. The calculated 

coordinates here are south and east of that. Maybe the directions were from a 

different part of 164th St? Or perhaps I should use the park's main coordinates 

as the primary and adjust slightly based on the directions. Alternatively, maybe 

the description refers to a specific point within the park.  

Alternatively, check if there's a specific landmark or point in Kissena Park 

matching the description. Alternatively, perhaps using a geocoding API would 

give precise coordinates. Since I can't access APIs, I'll have to approximate.  

Given that the park's main coordinates are 40.741, -73.803, and the directions 

from 164th St and Booth Memorial Ave, which is to the east of the park, moving 

west 0.3 mi would place the point within the park. So adjusting the longitude 

from 164th St's longitude (say -73.7938) west by 0.3 mi (which is 0.0043 

degrees) gives -73.7981. Latitude: starting at 40.7355 (Booth Memorial) and 

moving 0.1 mi north gives 40.73695. But that's still south of the park's main area. 

Hmm, maybe the starting intersection is different.  

Alternatively, maybe the 164th Street referred to is further north. Let me check 

another part of 164th St. For example, if 164th St near Kissena Blvd, the 

intersection might be at 40.741, -73.803. Wait, no, 164th St runs through 

different areas.  

Alternatively, perhaps the user's description is within Kissena Park, so the main 

park coordinates are sufficient, adjusted slightly. But the directions are specific.  

Alternatively, use the park's centroid as a fallback. But the problem requires 

using the most precise info.  

Another way: 164th Street in Queens. Let me check 164th St and Booth 

Memorial Ave. On maps, the intersection is at 40.7355, -73.7938. Moving 0.3 

mi west (which is about 0.3 * 1.60934 km ≈ 0.48 km). West in longitude is 

negative, so subtract 0.0043 degrees (since 1 degree ≈ 111 km, 0.48 km is 

~0.0043 degrees). So longitude becomes -73.7938 - 0.0043 = -73.7981. Then 0.1 

mi north (0.1 * 1.60934 ≈ 0.16 km, which is 0.00145 degrees north). Latitude 

becomes 40.7355 + 0.00145 ≈ 40.73695.  

But this point (40.73695, -73.7981) is in the vicinity of Kissena Corridor Park, 

which is south of Kissena Park. However, the locality mentions Kissena Park 
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specifically. Maybe there's an error in the starting intersection. Alternatively, 

perhaps the directions are within the park's boundaries.  

Alternatively, maybe the correct coordinates are the park's main area, around 

40.741, -73.803. But the directions suggest a specific spot. However, without 

precise data, perhaps the best approximation is to take the park's coordinates. 

But given the instructions to use the most precise info, maybe the calculated 

coordinates based on the directions are better.  

Alternatively, check if there's a more accurate geocode. For example, searching 

for "Kissena Park 164th Street Booth Memorial Avenue" might find a specific 

location. However, based on available data, the coordinates derived from moving 

west and north as described would be approximately (40.73695, -73.7981), but 

I'm not entirely confident. Alternatively, maybe the user intended the main park 

area, but with the directions, it's better to use the adjusted coordinates.  

Alternatively, perhaps the correct coordinates are (40.741, -73.803) as the park's 

main point, but adjusted slightly. Wait, 0.3 mi west of 164th St: if 164th St is at 

-73.7938, then 0.3 mi west is -73.7981, and 0.1 mi north from Booth Memorial 

(40.7355) gives 40.73695. But this is outside the main park area. So perhaps the 

locality is in the park but the directions are relative to a nearby intersection.  

Alternatively, maybe the directions are within the park. For example, if 164th 

Street is on the east side of the park, moving west into the park. But without 

precise street data, it's challenging.  

Given the ambiguity, but following the instructions to prioritize the most 

accurate info, the final coordinates should be based on the directions given. So 

the answer would be approximately [40.737, -73.798], but I need to check if 

that's within Kissena Park. Looking at a map, Kissena Park spans roughly from 

40.735 to 40.745 in latitude and -73.81 to -73.79 in longitude. The calculated 

point (40.737, -73.798) is within that range, so it's plausible.  

Alternatively, the exact coordinates might be better represented as 40.7369, -

73.7981. Rounding to three decimal places, that's [40.737, -73.798].  

But wait, the example output had two decimal places, but the user specified "a 

Python list of 2 float numbers". The example had three decimals, like [-6.192, 

36.006], so three decimals are acceptable.  

Final answer: [40.737, -73.798]. Let me verify once more. If 164th and Booth 

Memorial is at 40.7355, -73.7938, then west 0.3 mi is -73.7981, north 0.1 mi is 

40.73695. So rounding to three decimals: latitude 40.737, longitude -73.798. 

That should be correct. 

Robertons 

Knob 

FireTrail, 

approx 800m 

from carpark 

atlocked gate 

towards 

Wrights LO, 

New England 

National 

Park.  

(New South 

Wales, 

Okay, let's tackle this georeferencing problem. The input is a list with four 

elements: country (Australia), state (New South Wales), county (Kempsey), and 

a detailed locality description. The task is to find the latitude and longitude 

coordinates based on the most accurate information available. 

First, the priority is locality, then county, state, and country. So I should focus on 

the locality description first. The locality given is "Robertons Knob Fire Trail, 

approx 800m from carpark at locked gate towards Wrights LO, New England 

National Park."  

I need to parse this. The key elements here are New England National Park, 

which is in New South Wales. The specific trail mentioned is Robertons Knob 

Fire Trail. The mention of being approximately 800 meters from the carpark at 

a locked gate towards Wrights LO (which I assume is a lookout or some 
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Australia) 

 

landmark) gives a specific point within the park. 

To find coordinates, I might start by looking up New England National Park in 

New South Wales. The park is a known area, so its general coordinates can be 

found. But the exact fire trail and the specific location 800m from the carpark 

might not be straightforward.  

Alternatively, maybe there's a known point for Robertons Knob itself. Searching 

for Robertons Knob in New England National Park might yield coordinates. If 

that's not available, perhaps the Wrights Lookout (assuming LO stands for 

Lookout) is a known point. The fire trail's starting point or the carpark location 

could be reference points. 

I can check online maps or geographic databases. Let's try to think of possible 

steps: 

1. Search for "Robertons Knob Fire Trail, New England National Park, NSW, 

Australia" to see if there's a trail with coordinates. If the trail is a named feature, 

maybe it's recorded in mapping services like Google Maps, OpenStreetMap, or 

government GIS databases. 

2. If the trail isn't found directly, look for New England National Park's visitor 

information or official park maps that might mention Robertons Knob Fire Trail. 

The park's management might have detailed maps with trails and landmarks. 

3. The mention of Wrights LO (Lookout) could be a key point. If Wrights 

Lookout has known coordinates, then moving 800m from the carpark towards 

that lookout along the fire trail might help approximate the location. However, 

without knowing the exact starting point (the carpark), this could be tricky. 

4. The carpark at the locked gate is another reference. If the coordinates of the 

carpark are known, then moving 800m towards Wrights Lookout from there 

along the fire trail would give the approximate location. But this requires 

knowing the carpark's position and the trail's direction. 

Since the exact coordinates might not be readily available, perhaps the best 

approximation is the general area of Robertons Knob within the park. Checking 

geographic databases for Robertons Knob in New England National Park. Let 

me think: a quick search (hypothetically, since I can't browse) might show that 

Robertons Knob is a peak in the park. If so, its coordinates could be around -

30.50 latitude and 152.40 longitude. But I need to verify this. 

Wait, New England National Park is located in the Northern Tablelands of New 

South Wales. Major landmarks include Point Lookout, which is a well-known 

spot. But Robertons Knob might be a lesser-known peak. Alternatively, perhaps 

the fire trail is near Wrights Lookout. If Wrights Lookout has coordinates, then 

moving 800m from the carpark towards it would be approximate. 

Alternatively, perhaps the main entrance or a known trailhead for Robertons 

Knob Fire Trail has coordinates. For example, if the carpark's coordinates are 

available, then moving 800m along the trail towards Wrights Lookout would 

give the point. But without specific data, this is challenging. 

In cases where exact coordinates can't be found, sometimes the centroid of the 

park or the nearest named feature is used. However, the user instructions specify 

prioritizing the most accurate information. Since the locality mentions a specific 

trail and distance from a carpark, ideally we need to find that exact spot. If that's 

not possible, defaulting to the park's coordinates might be a last resort, but that's 

less accurate. 

Alternatively, perhaps there are existing datasets or research papers that mention 
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Robertons Knob Fire Trail. For example, ecological studies conducted in the area 

might provide GPS coordinates for specific trails or points. 

Assuming that after some research, the coordinates for the locked gate carpark 

are found, and then moving 800m towards Wrights Lookout along the fire trail. 

For example, if the carpark is at -30.541, 152.401, then moving northwest 

(assuming the trail direction) 800m might lead to approximately -30.535, 

152.393. But this is just a hypothetical example. 

Alternatively, if Robertons Knob itself is a known geographic feature, its 

coordinates might be recorded. For instance, Robertons Knob could be at -

30.523, 152.386. Then the fire trail would be near that peak. 

In the absence of precise information, the best approach is to find the most 

accurate available data. If the fire trail is not mapped, then using the coordinates 

of New England National Park's centroid might be a fallback, but that's less 

precise. However, given that the locality mentions a specific trail and distance 

from a carpark, perhaps the approximate coordinates can be found through 

existing maps. 

After checking (hypothetically), let's say that New England National Park's 

visitor center or a prominent landmark like Wrights Lookout is at -30.4915, 

152.4092. The Robertons Knob Fire Trail might start near there. If the carpark 

is at the locked gate near Wrights Lookout, then 800m along the trail towards 

the lookout would be in that vicinity. Adjusting the coordinates accordingly, 

maybe the latitude is around -30.49 and longitude 152.40. But this is a rough 

estimate. 

Alternatively, looking up "Robertons Knob Fire Trail coordinates" might yield a 

specific point. Suppose a mapping service like OpenStreetMap has the trail 

mapped. For example, a node on the trail could be at -30.543, 152.398. That 

would be the coordinates to use. 

Given that the user wants only the output list without explanation, after doing 

the research (in reality, using APIs or databases), the final coordinates would be 

determined. Since I can't access real-time data, I have to rely on existing 

knowledge or common coordinates for that area.  

Wait, New England National Park is centered around approximately -30.49, 

152.41. But Robertons Knob Fire Trail might be in a different part. Another 

approach: Kempsey is the county, but New England National Park is actually in 

the Northern Tablelands, which is more near Armidale, so perhaps the 

coordinates are further inland. Maybe around -30.5, 152.4.  

Alternatively, checking the exact location: New England National Park is located 

near the town of Ebor. Key landmarks include Point Lookout. However, 

Robertons Knob might be a specific peak within the park. Let me try to recall if 

Robertons Knob is a known peak. If so, its coordinates might be available.  

After checking, suppose Robertons Knob is recorded at -30.5365, 152.3852. The 

fire trail would be near there. The description mentions approx 800m from the 

carpark at locked gate towards Wrights LO. If the carpark is at the start of the 

trail, then 800m along the trail towards Wrights Lookout (assuming LO is 

Lookout) would be the point. If the carpark is at the base, then moving 800m 

towards the lookout would be in the direction of the trail.  

Alternatively, if Wrights Lookout is a known point, say at -30.530, 152.390, then 

the carpark might be 800m southwest of that. But without exact data, it's hard to 

say.  
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In such cases, the best possible coordinates would be the approximate center of 

the park or the nearest known landmark. However, given the specific trail name, 

if available, use that.  

Assuming after research, the coordinates for Robertons Knob Fire Trail's 

approximate location based on available data are [-30.5365, 152.3852], then 

that's the answer. But I need to ensure that the latitude and longitude are in the 

correct order and formatted as floats. 
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