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Abstract 14 
The fossil record is our only direct source of evidence for how life on Earth has waxed and 15 
waned over its long history. However, the fossil record is also incomplete and biased in many 16 
ways, after passing through biological, geological, and socio-economic filters. This means that 17 
we only possess snapshots of information, relating to specific places and times in Earth history, 18 
from which to try and understand large-scale biodiversity patterns. Over the last fifty years, a 19 
wide variety of methods have been developed to try and elucidate macroevolutionary patterns 20 
by accounting for fossil record structure or bias, with varying levels of success. Here we review 21 
the different approaches that have previously been applied to this problem, and discuss their 22 
strengths and weaknesses. We illustrate this by applying a selection of these methods to the 23 
global brachiopod fossil record of the Permian and Triassic. Finally, we highlight some avenues 24 
for future improvement, including (1) using simulations to investigate method efficacy, (2) 25 
designing studies around testable hypotheses, (3) embracing uncertainty, and (4) improving the 26 
integration of data from fossil and modern organisms. Although we cannot know exactly how 27 
biodiversity has changed over life’s history, it is clear that new innovations in computational 28 
palaeontology are helping us to improve the trustworthiness of our estimates of biodiversity 29 
through deep time.  30 
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The fossil record and its biases 31 
Fossils, defined as biological presence, activity or signatures preserved in the rock record, are 32 
our sole direct source of evidence for how life existed in the geological past, with the fossil 33 
record comprising our knowledge of fossil data collectively. We know that these data are 34 
incomplete - the vast majority of organisms ever to have lived did not enter the fossil record 35 
(e.g. Marshall 2017; Žliobaitė & Fortelius 2022). Charles Darwin, when discussing the fossil 36 
record in On the Origin of Species by Means of Natural Selection, wrote “I look at the natural 37 
geological record as a history of the world imperfectly kept” (1859).  38 

Among the many processes serving as filters to fossilisation, many are selective or 39 
systematic, meaning that the resulting fossil record is biased in favour of some organisms above 40 
others (Shaw et al. 2020). To what extent the nature of the fossil record is perceived as 41 
“structured” or “biased” depends on how well we understand these filtering processes, and how 42 
systematic we consider them to be (Smith 2007; Holland 2017). Regardless, it is clear that 43 
preservation in the fossil record is uneven, and this manifests in almost any possible analysis 44 
we might want to conduct using it (Kidwell & Holland 2002). For example, fossilisation potential 45 
is highly variable between palaeoenvironments, with some broadly unrepresented (e.g. Shaw et 46 
al. 2020). The soft parts of animals tend not to preserve (Shaw et al. 2020), except in 47 
Lagerstätten, meaning our perception of largely soft-bodied and/or fragile animals is highly 48 
skewed towards windows of exceptional preservation (Dean et al. 2016; Walker et al. 2020). 49 
Bias in the distribution of fossil-bearing rocks across time and space limits our potential to find 50 
fossils (Raup 1972; Smith & McGowan 2007; Wall et al. 2009). A wide range of socio-economic 51 
factors also determine where fossils are found, kept and studied, leading to major inequalities in 52 
data collection worldwide (Raja et al. 2022; Dunne et al. 2025). 53 

As such, it is difficult to quantify diversity in the fossil record, especially to make ‘fair’ 54 
comparisons across space and time, or between clades (e.g. Dunne 2018; Dillon et al. 2023; 55 
Hammer & Harper 2024). A wide range of methods have been developed and applied over the 56 
last 50 years which attempt to do this. With the emergence of conservation paleobiology (Dillon 57 
et al. 2022; Pimiento and Antonelli 2022; Kiessling et al. 2023), and the increasing application of 58 
the fossil record to make informed predictions about current and future extinction risk (Harnik et 59 
al. 2012; Raja et al. 2021; Finnegan et al. 2024), there is particularly strong motivation to 60 
scrutinise our methods for estimating extinction rates in the past. Here, we briefly recap the 61 
main schools of thought behind methods for estimating palaeodiversity, demonstrate how some 62 
of these methods can be applied, and suggest future directions for our efforts to quantify 63 
biodiversity from the fossil record. 64 
 65 
 66 
Inferring biodiversity in deep time 67 
In this paper, we use the terms “diversity” and “richness” to describe the number of discrete 68 
taxonomic units present within the biological system of interest (usually globally). Approaches to 69 
estimating palaeodiversity aim to take into account the fact that we know our fossil sampling to 70 
be incomplete (e.g. Hunt & Slater 2016). They can be placed into two categories, distinguished 71 
by the key metrics(s) they aim to infer: (1) diversity estimators, which seek to infer true or 72 
relative diversity through time, and (2) rate estimators, which seek to infer changes in 73 
diversification rates, origination (or specifically speciation, when data resolution allows) and 74 
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extinction, through time or across lineages (see Table 1). This major distinction determines the 75 
types of hypotheses which these different approaches can be used to test.  76 

Typically, the raw data used to infer biodiversity in deep time are lists of fossil 77 
occurrences, denoting the presence of specific taxa in a particular place, at a particular point in 78 
geological time. Often, these data are sourced from large community databases, such as the 79 
Paleobiology Database (Uhen et al. 2023), Geobiodiversity Database (Fan et al. 2013) or 80 
Neotoma (Williams et al. 2018). The quality of such data can be suboptimal, and it is important 81 
to verify that the data are as correct and clean as possible prior to subsequent analyses (Jones 82 
et al. 2025). Even after data cleaning, the accuracy and precision of taxonomic, spatial and 83 
temporal information can be highly variable (e.g. Hopkins et al. 2018; Buffan et al. 2023) (but 84 
note model-based efforts to increase temporal data resolution, such as CONOP [Sadler & 85 
Cooper, 2008; Fan et al. 2020] and HORSE [Chu et al. 2025]). Alternatively, phylogenies can be 86 
inferred in conjunction with evolutionary rates, or be used as a template from which to estimate 87 
past diversity (e.g. Wright et al. 2022; Mulvey et al. 2025). The occurrence birth-death model 88 
combines both phylogenetic and occurrence data to infer taxonomic richness trajectories 89 
(Andréoletti et al. 2022). 90 

Below, we discuss the philosophy behind each of the main “families” of metrics, as well 91 
as the criticisms that have been levelled against them. 92 
 93 
Range-through analysis 94 
One of the most apparent ways in which fossil occurrence lists are incomplete is the presence 95 
of “gaps” in taxon stratigraphic ranges, sometimes called “ghost ranges”, due to the fact that the 96 
rock record is not continuous across space and time. A simple way to account for gaps in 97 
species ranges is to “range-through” taxon occurrences between their first and last appearance 98 
in the fossil record (Sepkoski et al. 2002; Sepkoski 1984). This method is based on the 99 
fundamental evolutionary assumption that a taxon is highly unlikely to have originated twice and 100 
thus must have been extant during each interval between its first and last occurrence, even if it 101 
is not sampled in all of those time bins. Although ranged-through richness accounts for gaps in 102 
ranges, it does not assess the extent to which first and last occurrences deviate from the true 103 
origination or extinction times, which may well be considerably older or younger than is 104 
preserved in the fossil record (Signor & Lipps 1982; Holland & Patzkowsky 2002) (although see 105 
methods for estimating confidence intervals on first and last occurrences, e.g. Marshall 1990, 106 
1997; Wang et al. 2012). Because the metric relies on a cohesive taxonomic (species) concept, 107 
taxonomic uncertainty and violations of this taxonomic concept (for example, cryptic species) 108 
can lead to errors. It is also vulnerable to the pull of the recent (Raup 1972, 1979), and is 109 
inappropriate for use on regional or local data sets, as it cannot account for regional extinction. 110 
 111 
Fair sampling 112 
One of the first trains of thought concerning the impact of fossil record bias on estimates of 113 
biodiversity relates to “fairness”. If we want to make comparisons of taxonomic diversity across 114 
space, time or clades, we ideally want to be making estimates based on equivalent samples 115 
from each of our groups of interest. The first step in this direction was a simple one: perhaps an 116 
equal number of fossils could be sampled from each time bin, with the number of taxa 117 
represented by those fossils illustrating the relative diversity through time. This approach, first 118 
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implemented using the fossil record by Raup (1975), is now known as “classical rarefaction”, 119 
although the term “subsampling” is also commonly used to refer to methods that purposefully 120 
use less than the total available data. Given that the fossil record is already sparse, the 121 
discarding of data when using these methods has been a major source of criticism in their use. 122 
The opposite approach, extrapolation, has also been implemented, with the idea being that 123 
statistical models can be used to estimate biodiversity by extrapolating from low to higher 124 
sampling levels, such as by Dodson (1990) and Russell (1995). Here, criticism rests on the fact 125 
that extrapolation beyond what we know from data is heavily reliant on the correctness of the 126 
assumptions of the model and data used, which can be difficult to evaluate. 127 

While rarefaction and extrapolation remain a viable approach for estimating past 128 
diversity, ways of determining “fair” samples have become more sophisticated. In particular, 129 
coverage-based approaches use more robust quantifications of sampling effort to determine 130 
equivalent fossil subsamples between which to compare species diversity (Wang & Dodson 131 
2006). Shareholder quorum subsampling (Alroy 2010) uses this approach, with Hill numbers 132 
(Hill 1973) used to evaluate when equivalent levels of sampling effort (or “quorum levels”) have 133 
been sampled from each temporal or spatial bin (see Roswell et al. 2021 for a neontological 134 
review on this topic). Hill numbers are calculated using species abundance distributions, and 135 
therefore this approach utilises the abundance of each taxon, not just its presence. In the R 136 
package iNEXT (Chao & Jost 2012; Hsieh et al. 2016), coverage-based subsampling and 137 
extrapolation can both be used to estimate species diversity at a range of quorum levels. 138 
Although an improvement on simple equal subsamples, coverage-based approaches interpret 139 
the abundance of common versus rare species in taxon samples, and are therefore reliant on a 140 
fairly standardised curve relating abundances to diversity when estimating sampling effort. As a 141 
result, this approach may perform poorly if the true community possessed a relative abundance 142 
distribution which differed from that assumed by the model, or if sampling filters have 143 
substantially skewed relative abundance distributions, both of which are difficult to evaluate 144 
(Close et al. 2018). 145 
 146 
Cohort analysis 147 
Some of the most popular methods for estimating origination and extinction rates in deep time 148 
are those which rely on cohort analysis. First developed by Raup (1978), cohort analysis 149 
considers fossil occurrences within a series of discrete time bins. Any changes in taxonomic 150 
lists between adjacent time bins are used to determine taxon gains or losses across the bin 151 
boundary, and deemed to be indicative of speciation and extinction events. The approach has 152 
particular appeal because it fits well with the natural temporal structure of fossil data: often 153 
occurrences are dated to a named geological interval, rather than a specific numerical age, and 154 
these data are therefore suited to cohort analysis without the need for additional refinement of 155 
fossil ages. A series of metrics have been developed based on these approaches, including the 156 
boundary-crosser (Alroy 1996; Foote 1999), three-timer (Alroy 2008), gap-filler (Alroy 2014) and 157 
second-for-third (Alroy 2015) metrics. Over time, these metrics have been developed to quantify 158 
ghost ranges in increasingly sophisticated ways, and use this information to estimate (and 159 
correct for) incomplete fossil sampling; however, these developments have also resulted in the 160 
discarding of increasing amounts of occurrence data (Warnock et al. 2020). Regardless, there is 161 
large appeal in these methods because they are somewhat intuitive, and because they are 162 
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relatively easy to implement, particularly since their inclusion in the R package divDyn (Kocsis et 163 
al. 2019). 164 
 165 
Residual modelling using sampling proxies 166 
Difficulties in determining how to implement “fair” subsampling methods led to the concept that 167 
additional data could be used to quantify differences in sampling intensity between time bins. A 168 
methodology was proposed by Smith and McGowan (2007), and refined by Lloyd (2012), to use 169 
a sampling proxy, i.e. an indirect measure of sampling effort, to “correct” raw palaeodiversity 170 
curves using a regression model-fitting approach. In this method, the sampling proxy is used to 171 
identify times of relatively poor and good sampling, and a regression model is fitted to determine 172 
how well the sampling signal predicts the biodiversity curve. The residuals of the regression 173 
model indicate periods of time where the model does not perfectly predict biodiversity (hence 174 
the name “residual modelling”), and can be used to highlight time periods that are more diverse 175 
or less diverse than would be expected given the level of sampling for that time interval (Smith & 176 
McGowan 2007; Lloyd 2012). Residual modelling does not require large amounts of occurrence 177 
data, has therefore been particularly popular in vertebrate palaeontology, for exploring the 178 
impact of sampling bias on raw diversity curves (e.g. Barrett et al. 2009; Benson et al. 2010; 179 
Butler et al. 2012). 180 

The most commonly used sampling proxies have focused on geological biases, such as 181 
rock outcrop area (Smith & McGowan 2007; Dunhill et al. 2012, 2013, 2014a). However, it is 182 
unclear whether the close correlation between the amounts of rock preserved and 183 
palaeodiversity through time (Raup 1972; Na et al. 2023; Ye & Peters 2023) result from 184 
geological megabias or “common cause”, whereby Earth system changes drive trends in both 185 
the rock and fossil records simultaneously (Peters 2005; Hannisdal & Peters 2011). The number 186 
of fossiliferous formations has also been a popular proxy (Barrett et al. 2009; Benson et al. 187 
2010; Butler et al. 2012), and has been claimed capture aspects of rock volume, facies 188 
heterogeneity, geographical and temporal dispersion, and research effort (Benson & Upchurch 189 
2013). Despite this, many studies have been critical of the use of formation counts in residual 190 
modelling, particularly when only considering formations that bear the fossil group in question, 191 
due to inherent redundancy between formation counts and the biodiversity signal which it seeks 192 
to correct (Crampton et al. 2003; Benton et al. 2011; Dunhill et al. 2014b; Benton 2015; Dunhill 193 
et al. 2018). It has been demonstrated that “correcting” palaeodiversity curves using residual 194 
modelling based on formation counts can lead to richness estimates that are further from the 195 
truth than the raw fossil record (Brocklehurst 2015; Dunhill et al. 2018). Residual modelling also 196 
performs poorly when both low diversity and poor sampling occur simultaneously, such as after 197 
a mass extinction event. 198 
 199 
Mechanistic model-based approaches 200 
Mechanistic models aim to describe the processes which generated our fossil data, using model 201 
parameters that have a tangible biological or geological interpretation, such as rates of 202 
sampling, origination, and extinction (e.g. Warnock et al. 2020). Each process is defined based 203 
on expectations, also known as assumptions, of how it behaves. Model performance therefore 204 
hinges on (1) whether all of the important processes have been included in the model, and (2) 205 
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whether the processes have been modelled in a way which adequately represents how they 206 
work.  207 

The most straightforward mechanistic modelling approach is to model the fossil sampling 208 
process only, without making any assumptions about the evolutionary processes. For example, 209 
TRiPS (True Richness estimated using Poison Sampling) models sampling using a Poisson 210 
process (Starrfelt & Liow 2016). Per-interval sampling rates are quantified from fossil 211 
occurrence data, then transformed into per-interval probabilities, to extrapolate an estimate of 212 
true richness. A major advantage of modelling the sampling process explicitly is that very sparse 213 
sampling, including singletons, can be an expected outcome of the process, meaning fossil 214 
occurrence data does not have to be subsampled a priori. 215 

More complex models include the demographic or diversification processes, in addition 216 
to sampling. Capture-mark-recapture (CMR) models are a class of models largely used by 217 
ecologists to estimate population size dynamics from incomplete samples of contemporary 218 
populations (Nichols & Pollock 1983; Liow & Nichols 2010). CMR has been adapted for use in 219 
paleobiology, and although not yet widely applied, there have been several model extensions 220 
relevant to fossil data, such as allowing for variation in sampling across time, space and 221 
lineages (Liow & Nichols 2010; Laake 2013). In contrast, the widely used program PyRate 222 
implements a range of birth-death process models (Silvestro et al. 2014; Silvestro et al. 2019). 223 
Birth-death models have a long history in paleobiology (e.g. Raup 1985; Huelsenbeck & Wagner 224 
1996; Foote 2000) and provide an intuitive approach for modelling branching processes 225 
resulting from origination and extinction events. These can also be combined with a model 226 
describing how the evolutionary process has been sampled. In PyRate, origination, extinction 227 
and fossil sampling are considered independent Poisson processes, with parameter values 228 
estimated from fossil occurrence data. PyRate also includes model variants that allow for 229 
different combinations of rate variation. Both CMR and PyRate allow users to test explicitly 230 
whether there has been a change in diversification rates across interval boundaries, making it 231 
easy to compare their results with those generated from simpler cohort models.   232 

Birth-death processes, or closely related approximations, also underpin most recent 233 
phylogenetic approaches used to infer diversification history, since phylogenetic trees directly 234 
capture the inferred branching history (Wright et al. 2022; Morlon et al. 2024). Phylogenetic 235 
approaches for estimating past diversity include the software BAMM, which can be used to 236 
estimate lineage-specific evolutionary rates based on a fixed tree (Rabosky 2014; Mitchell et al. 237 
2019), and the fossilized birth-death (FBD) process family of models (Stadler 2010; Heath et al. 238 
2014), which can be applied in a wide range of simulation and inference contexts (see Mulvey et 239 
al. 2025 for a review of applications). Phylodynamic models can be used to infer the tree and 240 
estimate the parameters associated with the underlying tree-generating processes 241 
simultaneously (e.g. Close et al. 2015, Andréoletti et al. 2022). Being able to estimate the tree 242 
and divergence (origination) times also means we can quantify the extent of ghost lineages 243 
more comprehensively within the same model. Different variants of birth-death process models 244 
can be applied to trees with extant taxa only, trees that combine both extant and extinct taxa, or 245 
trees that include extinct taxa only (see MacPhearson et al. 2022 for an overview of the theory). 246 
While questions have been raised as to whether these models are fully identifiable (Louca & 247 
Pennell 2020, 2021), theoretical work indicates that phylogenies containing fossils should only 248 
be compatible with a single set of evolutionary rate trajectories (Truman et al. 2025). Another 249 
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class of phylodynamic models are coalescent processes, based on a model of branching history 250 
in which lineages coalesce backwards in time, which have only recently been explored in the 251 
context of paleobiology (Allen et al. 2024). While phylodynamic models have mainly been used 252 
to estimate diversification rates, they can also be used to infer richness using an emerging suite 253 
of tools (Vaughan et al. 2019; Andréoletti et al. 2022; Vaughan & Stadler 2024).  254 

Model-based approaches are often straightforward to implement in a Bayesian 255 
framework, allowing uncertainty to be quantified naturally during inference, and allowing us to 256 
take advantage of existing (prior) knowledge (Wright et al. 2022). The use of prior parameter 257 
constraints allows us to include data beyond the fossil occurrences in our models, such as 258 
information about how sampling has varied through time (see section Residual modelling using 259 
sampling proxies). However, these approaches tend to be more computationally expensive than 260 
their non-model-based counterparts, and can be much more difficult to use (e.g. Barido-Sottani 261 
et al. 2024). Any results are sensitive to the model assumptions, meaning that violation could 262 
lead to false conclusions, but the importance of assumptions in mechanistic modelling means 263 
they are more often explicitly stated, and can be scrutinized with more rigor using approaches 264 
like model adequacy (e.g. Duchêne et al. 2019).  265 
 266 
Machine learning 267 
Some of the newest techniques available to computational palaeobiologists use machine 268 
learning. This includes text mining approaches to collate fossil occurrences (e.g. Peters et al. 269 
2014, Kopperud et al. 2019), using decision trees to infer extinction drivers (e.g. Foster et al. 270 
2023), and identifying and discriminating morphological features using image recognition (He et 271 
al. 2024). Deep learning methods also exist for estimating species diversity in deep time. 272 
DeepDive (Cooper et al. 2024a, b) simulates species-through-time curves before and after the 273 
influence of incomplete sampling to emulate the fossil record, and trains a neural network to 274 
understand the relationship between the two. The trained network can then be applied to real 275 
fossil occurrence data, in order to infer the shape of the complete diversity curve. In contrast, 276 
the birth-death neural network (BDNN; Hauffe et al. 2024) model infers trajectories of 277 
speciation, extinction and fossilisation rates through time. The model uses a neural network to 278 
estimate these trajectories in light of a range of time series, such as environmental or sampling 279 
proxy data, providing insight into which were most influential in driving the estimated speciation 280 
and extinction rates. The limitations of these approaches lie in their complexity: they can be 281 
difficult to set up, and require more computational resources than the simpler metrics. Further, 282 
neural networks are reliant on the simulations they are trained on; should the simulations be 283 
substantially incorrect, this will also feed through into the inferred trajectories. In an attempt to 284 
address this latter point, DeepDive conducts autotuning (Cooper et al. 2024b), during which the 285 
parameters used in simulation are iteratively corrected in order to produce sampled diversity 286 
curves more in line with the provided fossil data. 287 
 288 
Understanding geographic biases 289 
Temporal bias has long been considered the main facet of unevenness in the fossil record. 290 
However, recent debate has turned to spatial biases as a major way in which our perception of 291 
diversity in deep time is skewed (e.g. Close et al. 2020a, Jones et al. 2021, Flannery-Sutherland 292 
et al. 2022, Raja et al. 2022, Antell et al. 2024). This includes highlighting that supposedly 293 
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“global” analyses infer metrics using a set of sampled regions, which is unlikely to produce fair 294 
estimates as long as sampling is incomplete (Benson et al. 2021). Russell (1995) made an early 295 
attempt to correct for uneven geographic sampling, by estimating the amount of land area from 296 
which dinosaur fossils had already been collected, and using this information to extrapolate to 297 
the total number of dinosaurs which might have existed, should the whole Earth be sampled 298 
equivalently. 299 

One approach to this problem is subsampling, with equivalent numbers of fossils 300 
selected from different geographic areas in order to more fairly estimate differences in 301 
biodiversity across space (e.g. Close et al. 2020a, b). The R package divvy aims to make this 302 
easier to implement (Antell et al. 2024). Thus far, this approach has been implemented as a 303 
data treatment, with geographic subsampling performed prior to species diversity estimation 304 
using one of the other described metrics. This means that temporal and spatial biases are 305 
typically handled in different steps within an analytical pipeline for inferring palaeodiversity: how 306 
we can consider these biases simultaneously is an important area of future research. 307 

Another useful approach for understanding geographic sampling bias is occupancy 308 
modelling (Foote et al. 2007; Foote 2016; Kiessling & Kocsis 2016; Dean et al. 2025). This 309 
conceptual framework has been developed and applied by neontologists for decades (e.g. 310 
MacKenzie et al. 2002), but is yet to be widely used in palaeontology. Within repeatedly-311 
sampled geographic regions (such as multiple stratigraphic levels or localities in a grid square), 312 
the model aims to differentiate between taxa missing from occurrence lists due to incomplete 313 
sampling, compared to those missing due to true (biological) absence. The model outputs 314 
provide an estimate of relative sampling adequacy between geographic regions. More 315 
sophisticated occupancy models can also be used to determine the relative importance of 316 
different drivers of sampling incompleteness, such as geological versus collection processes 317 
(Dean et al. 2025). Although useful for understanding differences in fossil sampling across 318 
space, there is currently no clear way to translate these insights into improved estimates of 319 
palaeodiversity. 320 
  321 
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Table 1. A list of methods for inferring biodiversity metrics from the fossil record which take 322 
sampling bias into account in some way. Starred citations are the first description, or 323 
application, of the method specifically relating to palaeontological data. 324 
 325 

Name Metric 
type 

Data 
needed 

Citation Description Implementations 

(Classical) 
Rarefaction 

Diversity Taxon 
occurren
ces 

Sanders 
(1968) 
*Raup 
(1975) 

Uses subsampling to 
the size of the smallest 
sample to compare 
species richness 
between samples 

divDyn R package 
(Kocsis et al. 
2019) 

Range-through Diversity Taxon 
occurren
ces 

Raup 
(1972) 

Corrects estimates of 
diversity through time 
by filling in ghost 
ranges (gaps in the 
temporal distribution of 
taxa) 

 

Coalescent model Diversifi
cation 
rates 

Phyloge
ny (or 
cladistic 
matrix) 

Kingman 
(1982) 
*Allen et al. 
(2024) 

Uses the branching (or 
“coalescence”) times 
in a phylogeny to infer 
the diversification rate, 
based on a Wright-
Fisher population 
model of exponential 
growth 

BEAST2 
(Bouckaert et al. 
2019) 

Capture-mark-
recapture (CMR) 

Diversity 
Originati
on/extin
ction 
rates 

Taxon 
occurren
ces 
(Proxy 
data 
optional) 

*Nichols & 
Pollock 
(1983) 

Uses comparison of 
repeated samples from 
the same pool to infer 
sampling probabilities, 
which are used to 
estimate total diversity 

MARK (White & 
Burnham 1999) 
RMark R package 
(Laake 2013) 

(Simple) 
Extrapolation 

Diversity Taxon 
occurren
ces 
Proxy 
data 

Dodson 
(1990) 
Russell 
(1995) 

Uses a metric of 
collection effort to 
estimate the 
asymptote of total 
diversity 

 

Abundance-based 
coverage estimator 
(ACE) 

Diversity Taxon 
occurren
ces 

Chao & Lee 
(1992) 
*Anderson 
et al. (1996) 
Wang & 
Dodson 
(2006) 

Uses the abundance 
counts of rare taxa to 
estimate sampling 
coverage 
(completeness) and 
therefore the total 
number of taxa 

 



 

10 

Boundary-crosser Originati
on/extin
ction 
rates 

Taxon 
ranges 

Alroy (1996) 
Foote 
(1999, 
2000) 

Uses cohort analysis 
(Raup 1978) to count 
the taxa which do and 
do not cross temporal 
boundaries 

divDyn R package 
(Kocsis et al. 
2019) 

Three-timer Originati
on/extin
ction 
rates 

Taxon 
occurren
ces 

Alroy (2008) Builds on boundary-
crosser by correcting 
based on proportion of 
“three-timers” (taxa 
that are present, 
absent, then present 
again) 

divDyn R package 
(Kocsis et al. 
2019) 

Coverage-based 
rarefaction and 
extrapolation, or 
Shareholder quorum 
subsampling (SQS) 

Diversity Taxon 
occurren
ces 

Alroy (2010) 
Chao & Jost 
(2012) 

Uses Hill numbers (Hill 
1973) to estimate 
sampling 
completeness, or 
“quorum”, and uses 
this to subsample or 
extrapolate to a 
consistent level of 
completeness 

iNEXT R package 
(Hsieh et al. 2016) 

Phylogenetic 
generalized linear 
mixed models 

Originati
on/extin
ction 
rates 

Phyloge
ny 
(Proxy 
data 
optional) 

Hadfield 
(2010) 
*Sakamoto 
et al. (2016) 

Estimates speciation 
and extinction rates 
from the branching 
times and tip dates in 
a fixed phylogeny 

MCMCglmm R 
package (Hadfield 
2010) 

Fossilised birth-
death model (FBD) 

Originati
on/extin
ction 
rates 

Phyloge
ny (or 
cladistic 
matrix) 

Stadler 
(2010) 
Stadler et 
al. (2018) 
*Heath et 
al. (2014) 
Gavryushki
na et al. 
(2014) 

Estimates branching 
times and tip dates in 
a phylogeny, in 
concert with constant 
speciation and 
extinction rates, in a 
Bayesian framework 

See review by 
Mulvey et al. 
(2025) 

Gap-filler Originati
on/extin
ction 
rates 

Taxon 
occurren
ces 

Alroy (2014) Builds on three-timer 
by allowing for longer 
gaps between 
occurrences 

divDyn R package 
(Kocsis et al. 
2019) 

Fossilised birth-
death model, skyline 
version 

Originati
on/extin
ction 
rates 

Phyloge
ny (or 
cladistic 
matrix) 

Gavryushki
na et al. 
(2014) 

Estimates branching 
times and tip dates in 
a phylogeny, in 
concert with 
piecewise-constant 
speciation and 

See review by 
Mulvey et al. 
(2025) 
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extinction rates, in a 
Bayesian framework 

PyRate Originati
on/extin
ction 
rates 

Taxon 
occurren
ces 
(Proxy 
data 
optional) 

Silvestro et 
al. (2014) 

Uses a range of 
models describing 
speciation, extinction, 
and fossil sampling, 
that can be used to 
infer rates in a 
Bayesian framework 

PyRate Python 
library (Silvestro et 
al. 2014, 2019) 

Second-for-third Originati
on/extin
ction 
rates 

Taxon 
occurren
ces 

Alroy (2015) Builds on gap-filler by 
quantifying specific 
temporal gaps 
separately 

divDyn R package 
(Kocsis et al. 
2019) 

True Richness 
estimated using 
Poison Sampling 
(TRiPS) 

Diversity Taxon 
occurren
ces 

Starrfelt & 
Liow (2016) 

Models fossil sampling 
using a Poisson 
process to extrapolate 
estimates of total 
diversity 

Supplemental R 
code from Starrfelt 
& Liow (2016) 

Squares Diversity Taxon 
occurren
ces 

Alroy (2018) 
*Allen et al. 
(2020) 

Uses abundance 
structure within 
samples to determine 
how to extrapolate 
total diversity 

Supplemental R 
code from Allen et 
al. (2020) 

Fossilised birth-
death model, 
treeless version 

Originati
on/extin
ction 
rates 

Taxon 
occurren
ces 

Stadler et 
al. (2018) 
*Warnock et 
al. (2020) 

Estimates speciation, 
extinction, and fossil 
sampling rates, 
accounting for the 
underlying 
phylogenetic 
branching process  

DPPDiv (Heath et 
al. 2012; Warnock 
et al. 2020) 

Fossil Bayesian 
Analysis of 
Macroevolutionary 
Mixtures (BAMM) 

Speciati
on/Extin
ction 
rates 

Phyloge
ny 

Mitchell et 
al. (2019) 

Estimates speciation 
and extinction rates 
from the branching 
times and tip dates in 
a fixed phylogeny, 
within a Bayesian 
framework 

BAMM (Rabosky 
2014) 
BAMMtools R 
package (Rabosky 
et al. 2014) 

Occurrence birth-
death model 

Diversity 
Originati
on/extin
ction 
rates 

Phyloge
ny (or 
cladistic 
matrix) 
Taxon 
occurren
ces 

Andréoletti 
et al. (2022) 

Estimates branching 
times and tip dates in 
a phylogeny, in 
concert with 
piecewise-constant 
speciation and 
extinction rates, plus a 

OBD model in 
RevBayes (Höhna 
et al. 2016; 
Andréoletti et al. 
2022) 
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species richness 
trajectory through time, 
in a Bayesian 
framework 

DeepDive Diversity Taxon 
occurren
ces 

Cooper et 
al. (2024) 

Trains a neural 
network on simulated 
data matching the real 
data, to infer total 
diversity 

DeepDive Python 
library (Cooper et 
al. 2024a) 
DeepDiveR R 
package (Cooper 
et al. 2024b) 

Birth-Death Neural 
Network (BDNN) 

Speciati
on/extin
ction 
rates 

Taxon 
occurren
ces 
Proxy 
data 

Hauffe et al. 
(2024) 

Trains a neural 
network on simulated 
data matching the real 
data, alongside proxy 
time series, to infer 
speciation and 
extinction rates, and 
their drivers 

PyRate Python 
library (Silvestro et 
al. 2014) 
Simulations in 
BDNNsim Python 
library (Hauffe et 
al. 2024) 

Fossilised birth-
death model, multi-
type version 

Originati
on/extin
ction 
rates 

Phyloge
ny (or 
cladistic 
matrix) 

Barido-
Sottani & 
Morlon 
(2025) 

Estimates branching 
times and tip dates in 
a phylogeny, in 
concert with per-
branch speciation and 
extinction rates, in a 
Bayesian framework 

MSBD package in 
BEAST2 (Barido-
Sottani et al. 
2020a; Barido-
Sottani & Morlon 
2025) 

Fossilised birth-
death diffusion 
model 

Diversifi
cation 
rates 

Phyloge
ny 

Quintero et 
al. (2025) 

Uses data 
augmentation to infer 
viable complete trees, 
allowing per-branch 
diversification rates to 
be estimated, using a 
model where these 
rates evolve along the 
tree under a diffusion 
process 

Tapestree Julia 
package (Quintero 
& Landis 2020; 
Quintero et al. 
2025) 

  326 
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Case study: brachiopod diversity in the Permian and Triassic 327 
Methods 328 
To illustrate the differences between diversity estimates generated by the different metrics 329 
described here, we applied a range of them to the fossil record of brachiopods across the 330 
Permian and Early/Middle Triassic. Brachiopod occurrences from this time interval identified to 331 
the species level were downloaded from the Paleobiology Database (Uhen et al. 2023). 332 
Occurrences were placed into stage-level bins, with any dated to a coarser temporal resolution 333 
discarded. Collections allocated to the same stage and location (matching modern-day latitude 334 
and longitude to two decimal places) were pooled into a single “locality”. The resulting dataset 335 
included 25,678 occurrences across 4,404 pooled collections, containing 4,710 species within 336 
948 genera. 337 

The different metrics were then calculated in R (R Core Team, 2024), on a per-stage 338 
basis, at both species and genus levels, using the following approaches: 339 

1) Raw. A raw diversity curve was calculated by counting the number of unique taxa 340 
sampled within each stage bin. 341 

2) Range-through. The R package palaeoverse (Jones et al. 2023) was used to calculate 342 
ranged-through diversity. First, the function tax_range_time() was used to convert the 343 
occurrence data into stratigraphic ranges for each unique taxon. Then, the function 344 
tax_expand_time() was used to create pseudo-occurrences for each taxon within each 345 
stage of their temporal range. The total number of pseudo-occurrences for each stage 346 
was then counted. 347 

3) Simple rarefaction. Simple rarefaction was conducted by calculating diversity within an 348 
equal number of pooled collections for each stage bin. First, the stage with the smallest 349 
number of collections was identified: this was the Olenekian, with 93 collections. For 350 
each stage bin, 93 pooled collections were sampled (without replacement), and the 351 
taxonomic diversity within this sample was quantified; this was repeated 100 times for 352 
each stage. 353 

4) Squares. Diversity within each stage bin was estimated using the Squares extrapolator 354 
(Alroy, 2018) based on the code of Allen et al. (2020). 355 

5) Coverage-based rarefaction and extrapolation. The function estimateD() in the R 356 
package iNEXT (Hsieh et al. 2016) was used to estimate diversity, at a quorum level of 357 
0.8, for each stage bin. Hsieh et al. (2016) recommend that extrapolated values above 358 
twice the observed sample size are discarded; 0.8 was the highest quorum level at 359 
which this was not necessary. 360 

6) Residual modelling. The number of geological formations included within the occurrence 361 
dataset for each stage was counted, for use as the sampling proxy for residual 362 
modelling. Code from Lloyd (2012) was then used to calculate residual diversity between 363 
the raw taxon curve and the number of formations through time. 364 

For each metric (except residual modelling), the proportional change in diversity across each 365 
stage boundary was also calculated. 366 
 367 
Results 368 
The different metrics produce comparable trends at the broad scale, showing roughly constant 369 
diversity throughout the Permian, followed by a steep drop at the end of the Permian, with some 370 



 

14 

limited recovery during the Middle Triassic (Figure 1). However, the timing, strength, and even 371 
direction of diversity fluctuations varies considerably based on the metric chosen. All metrics 372 
show a comparably-severe mass extinction at the end of the Permian (species losses of 92% 373 
for raw data, 92% for range-through, 86% for rarefied, 90% for Squares, and 92% for coverage-374 
based estimates; see Table 2). By contrast, the metrics vary considerably in their estimates of 375 
diversity trends at the end of the Capitanian (species gains of 32% for raw data, losses of 51% 376 
for range-through, gains of 1% for rarefied, gains of 2% for Squares, and losses of 25% for 377 
coverage-based estimates; see Table 2). The curve produced by residual modelling also shows 378 
comparable diversity loss between the Early and Middle Triassic, and across the Permian-379 
Triassic boundary (Figure 1). These overall trends are observable at both species and genus 380 
level (Figure 1, 2). Clapham et al. (2009) also reported that sampling standardisation of fossil 381 
occurrences resulted in observing a gradual diversity decline from the Wordian to the Induan for 382 
marine invertebrates, due to reduced origination rates in the Capitanian and Wuchiapingian. 383 
 384 
 385 
Figure 1. Brachiopod diversity through the Permian and Triassic estimated using different 386 
methods. Black (or dark grey) lines show the species-level data, while grey (or light grey) lines 387 
show the genus-level data. Panels show (a) raw diversity, (b) range-through diversity, (c) 388 
diversity rarefied using locality counts, with line showing median values and error envelope 389 
showing full range across 100 repetitions, (d) diversity estimates using the Squares 390 
extrapolator, (e) diversity estimated using coverage-based rarefaction and extrapolation, to a 391 
quorum level of 0.8, with 95% confidence intervals, and (f) model-detrended diversity based on 392 
the number of formations sampled through time, with error envelope showing standard 393 
deviation. The geological timescale axis was added using deeptime (Gearty, 2024). 394 
 395 
Figure 2. Brachiopod generic diversity through the Permian and Triassic estimated using 396 
different methods. See caption for Figure 1 for panel details. 397 
  398 
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Table 2. Change in diversity estimates across stage boundaries, as a percentage of diversity in 401 
the older stage. 402 
 403 

Stages Level Raw 
Range-
through Rarefied Squares 

Coverage-
based 

Asselian 
to Sakmarian 

genera 11.32 37.74 -15.38 -1.73 4.94 

species 17.85 39.35 -21.21 -1.44 15.91 

Sakmarian 
to Artinskian 

genera 26.69 27.4 17.42 41.24 16.81 

species 33.03 34.41 15.1 62.22 23.9 

Artinskian 
to Kungurian 

genera 22.41 37.1 26.45 10.16 0.95 

species 49.38 109.07 52.09 25.17 5.55 

Kungurian 
to Roadian 

genera -10.93 -18.24 -1.28 -13.31 -5.31 

species -13.68 -37.78 4.38 -27.27 -1.95 

Roadian 
to Wordian 

genera 1.23 16.07 1.29 2.48 12.28 

species 13.62 52.43 -0.24 21.42 31.45 

Wordian 
to Capitanian 

genera -19.39 3.51 -12.24 -14.25 -22.18 

species -34.74 17.49 -19.33 -17.01 -34.77 

Capitanian 
to 
Wuchiapingian 

genera 4.14 -38.32 -13.95 -5.95 -20.86 

species 31.85 -50.62 0.74 1.86 -25.18 

Wuchiapingian 
to 
Changhsingian 

genera -14.8 -22.33 13.85 -18.99 8.29 

species -19.48 -25.95 19.65 -22.6 14.23 

Changhsingian 
to Induan 

genera -86.02 -84.58 -81.01 -84.1 -84.16 

species -91.89 -91.78 -85.68 -90.44 -91.87 

Induan 
to Olenekian 

genera -18.18 -5.41 -15.62 -2.43 -18.11 

species -38.33 -36.07 -36.21 -24.28 -39.75 

Olenekian 
to Anisian 

genera 251.85 182.86 153.7 176.73 216.48 

species 508.11 479.49 240.54 458.62 477.88 

Anisian 
to Ladinian 

genera -34.74 -37.37 -29.93 75.53 -26.29 

species -57.78 -57.96 -45.63 44.88 -37.99 
  404 
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The future of palaeobiodiversity metrics 405 
Utilising simulations 406 
Although all of the aforementioned methods and metrics were proposed with a logical basis, a 407 
major barrier to reliable inference of past biodiversity is that we have a poor understanding of 408 
whether any of these methods work well, i.e. we do not know if they bring us closer to the truth 409 
than the raw data. An increasing number of studies have attempted to compare the 410 
performance of different biodiversity metrics (e.g. Lane et al. 2005; Warnock et al. 2017; Close 411 
et al. 2018; Smiley, 2018; Alroy 2020), but it is clear that there is scope for much more rigorous 412 
testing. 413 

While we might not know how true biodiversity changed over deep time as a marker 414 
against which to test our metric performance, we can use the next best thing, which is 415 
simulations (Barido-Sottani et al. 2020b). Simulations enable us to generate believable 416 
biodiversity data, often using a mechanistic model describing hypothesised evolutionary 417 
processes, that can then be compared to trends in empirical data (e.g. Saupe et al. 2019, 2020; 418 
Dunne et al. 2023). We can also subsample this data, illustrating how the fossil record may 419 
obscure our view (Liow et al. 2010; Dunhill et al. 2014; Brocklehurst 2015; Barido-Sottani et al. 420 
2019). We can then apply our metrics to the simulated fossil data, and compare the inferences 421 
to the true values used in simulation. As well as generally enabling us to quantify how correct 422 
our metrics are, a particular advantage of this approach is that simulations can be designed to 423 
emulate data from different clades or preservational systems, allowing us to investigate the 424 
contexts in which different metrics perform better or more poorly (e.g. Allen et al. 2023). In fact, 425 
tuning simulations to replicate specific empirical datasets, prior to or within analyses, can be a 426 
powerful tool for exploring uncertainty (e.g. Cooper et al. 2024b; Quintero et al. 2025). 427 
 428 
Acknowledging and embracing uncertainty 429 
Methods which provide an estimate of uncertainty around their average value should ultimately 430 
be preferred over those which do not. Such error bars or confidence intervals are essential for 431 
making informed interpretations concerning the reliability of our diversity estimates. All methods 432 
that involve subsampling data can be repeated on multiple samples, producing a range of 433 
estimates which can then be summarised. Methods that use a Bayesian approach produce 434 
posterior distributions for each model parameter, describing the range of values obtained over 435 
the course of a Markov chain Monte Carlo (MCMC) inference (Barido-Sottani et al. 2024). 436 
 Estimates of uncertainty can be interpreted in many useful ways. First, they can be used 437 
to understand the range of values obtained across an analysis. A wide range might suggest a 438 
low amount of certainty in a mean or median value, and cast doubt on the fact that this average 439 
should be interpreted at face value. However, the range of values can also be viewed as a way 440 
of excluding extremes. For example, if we assume that our model is performing well, we can 441 
have relatively high certainty that the true diversity does not lie outside of our confidence 442 
interval. Second, particularly for Bayesian analyses, we can interpret the shape of the posterior 443 
distribution obtained for our focal parameters. Closer investigation might reveal a multimodal 444 
distribution, in which case a mean or median might be a poor representation of the distribution 445 
as a whole, instead placing considerable likelihood on two or more different values. Such 446 
distributions may result from nonidentifiability, meaning that the priors and data are insufficient 447 
to be able to determine a single best-fitting mode (e.g. Louca & Pennell 2020). In this case, 448 
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further analysis with a larger dataset and/or an alternative model may converge on a single 449 
mode (Barido-Sottani et al. 2024). 450 
 451 
Having a clear, testable hypothesis 452 
Sometimes deep time diversity is investigated in a manner closer to an open question, e.g. 453 
“What was the diversity of my clade through time?” Answering such a question requires diversity 454 
estimates that are both accurate and precise, across a large number of data points, which is 455 
ambitious given the sparsity of data we have available to us. However, most computational 456 
analyses aim to either support or disprove a given hypothesis concerning the system which the 457 
data describe (e.g. Hammer & Harper 2024), and adhering to this in the case of diversity 458 
estimation is also a good idea. For example, we can investigate whether diversification was 459 
positive (net speciation) or negative (net extinction) within a given interval (e.g. Allen et al. 460 
2024). Although our exact estimate of the diversification rate might be inaccurate, or vary across 461 
different methods, our conclusion will only be incorrect if this inaccuracy means that the point 462 
crosses the zero line. Using methods which provide an estimate of uncertainty can also help us 463 
to evaluate the probability with which diversification was positive or negative, including whether 464 
one of these solutions is fully excluded from the posterior. 465 

Comparison can also be a useful approach: for example, we could test whether our 466 
clade was more diverse in interval X or interval Y. Although sampling incompleteness affects the 467 
known fossil record in both intervals, any bias only becomes concerning if it substantially differs 468 
between the two time bins. If desired, we can also interpret this further, such as considering that 469 
the larger the difference between estimates for the two intervals, the more certainty we might 470 
have in which was more diverse. 471 
 472 
Improving the quality and volume of data 473 
Ultimately, having more data will give us more statistical power for estimating diversity in deep 474 
time. Alongside simply collecting more fossils, we also need these fossils to be described and 475 
identified, before being entered in global databases (Alroy 2003, Marshall et al. 2018). Text 476 
mining shows promise as a method for facilitating biodiversity data collation more rapidly (e.g. 477 
Peters et al. 2014, Kopperud et al. 2019). However, it is important that we maximise efforts to 478 
collate data from across the world, but also that researchers in every country have access to, 479 
and stakeholdership in, this data (Dunne et al. 2025). 480 

At present, data limitations are a major influence on the methodologies used to estimate 481 
palaeodiversity. For example, many studies focus on generic diversity, as such patterns are 482 
perceived to be more robust in comparison with the sparser data available for individual species 483 
(Hendricks et al. 2016). However, we cannot assume that generic and species-level patterns 484 
are related or a proxy for one another, and this must be considered when making comparisons 485 
between clades, and with present-day diversity. Further, differences in data availability 486 
contribute to the preferential use of occurrence-based methods for invertebrate studies, and 487 
phylogenetic methods for vertebrates (e.g. Mulvey et al. 2025). This contributes to difficulties 488 
comparing studies across this divide. In future, increased volumes of vertebrate occurrence 489 
data, alongside the development of more morphological matrices for invertebrates, may help to 490 
close the gap. 491 
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Integration with modern data, for extant organisms, is also an area which can be further 492 
developed (Dillon et al. 2023; Liow et al. 2023). The use of modern diversity estimates to 493 
condition inferred diversity curves can have a large impact on richness estimates through time, 494 
particularly in the recent past (e.g. Cooper et al. 2024b). Although modern and fossil occurrence 495 
data have their own nuances and biases, these can be modelled separately in order to account 496 
for any discrepancies: for example, in the fossilized birth-death model, Ѱ describes fossil 497 
sampling, while ⍴ describes extant sampling, allowing these two ways of observing the 498 
evolutionary process to be incorporated fairly into the model (Mulvey et al. 2025). In addition, 499 
modern data can prove useful as a template through which we can investigate the potential 500 
influences of sampling bias on diversity estimates (e.g. Barr & Wood 2024, Krone et al. 2024). 501 
 502 
 503 
Conclusions 504 
In the absence of a time machine, it is difficult for us to have complete faith in our estimates of 505 
biodiversity in deep time. However, a long history of methodological development has provided 506 
us with an abundance of ideas and approaches for attempting to estimate palaeodiversity. 507 
Choosing a metric to use depends on the hypothesis being tested, the data available, and the 508 
computational resources available. It is not guaranteed that different metrics will agree with 509 
each other, but we do have tools available to us to make an informed choice about which 510 
metrics to use, and comparison between metrics should be conducted where possible. 511 
Collecting more data, testing methods with simulations, and being careful about how to interpret 512 
our results, can all contribute to making better inferences of palaeodiversity. The future 513 
development of new methods may also yet provide more accurate and precise estimates. Such 514 
approaches may allow us to address a wide range of questions in macroevolution with 515 
increased confidence in our results. 516 
 517 
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