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Abstract6

1. This study introduces a flexible framework for epidemiological profiling of7

insect-borne plant pathogens (IBPPs), utilizing readily available experimental8

data. The framework is applicable to most IBPPs transmitted by insects feeding9

on plant veins, with particular relevance to whitefly-borne viruses that impact10

cassava production in sub-Saharan Africa. The goal of the study is to provide11

an approach to estimate critical parameters for IBPP epidemics and use these12

estimates to assess epidemic risk in the field.13

2. The study employs analyses of access period experimental data to estimate14

three key parameters underlying IBPP epidemics: (i) the rate of pathogen15

acquisition by insects, (ii) the rate of plant inoculation by pathogen-carrying16

insects, and (iii) the rate of loss of infectiousness for pathogen-carrying insects.17

These parameters are incorporated into models that allow for the inference18

of epidemic risk following inoculum introduction in the field. The methods are19

packaged into the EpiPv R package, which facilitates rapid implementation and20

analysis.21
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3. The EpiPv R package was applied to analyze whitefly-transmitted cassava22

viruses. The results show that a critical whitefly density of approximately23

greater than 4 per plant is needed for sustained spread of the CBSI ipomovirus24

from infected planting material. In contrast, CBSI introductions in whitefly are25

liable to go extinct even in high-density whitefly populations. A different pic-26

ture is uncovered for CMB begomovirus - whereby introductions in both plants27

and whitefly are found to be viable even at very low whitefly densities. This28

demonstrates significant, actionable, differences in the transmission attributes29

of these viruses - as uncovered by the EpiPv package.30

4. These findings highlight the utility of the EpiPv framework for predicting the31

outcome of pathogen introductions and for guiding targeted disease manage-32

ment strategies. The ability to estimate key parameters and predict epidemic33

risk enables more informed decision-making for the control of insect-transmitted34

plant diseases, with broader applications for managing plant pests globally in35

both natural and cultivated systems.36
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1 INTRODUCTION37

Global productivity from the cultivation of crops like cassava is severely limited by insect-38

borne plant pathogens (henceforth IBPPs) (Colvin et al., 2006). For instance, cassava39

provides more than half of the dietary calories for over 200 million people in East and40

Central Africa (Alene et al., 2013; FAO and IFAD., 2005; Reincke et al., 2018; Mwebaze et41

al., 2018), but African cassava production has been severely impacted by whitefly-borne42

viruses resulting in food insecurity (Mwebaze et al., 2018) and > $1.25 billion in annual43

crop losses (Legg et al., 2006; Macfadyen et al., 2021; Mwebaze et al., 2018). Researchers44

in insect-borne plant virology typically use a set of laboratory experiments referred to here45

as access period assays to confirm, and to investigate, virus transmission by putative insect46

vectors (Chant, 1958; Dubern, 1994; Maruthi et al., 2020). In this paper we introduce47

a framework for epidemiological profiling of IBPPs using access period data and collect48

the functions in the dedicated R package, EpiPV. By epidemiological profiling we mean49

estimation of virus transmission parameters and subsequent inference of epidemic risk.50

This paper describes the functions of the EpiPV package and applies them to profile two51

whitefly-transmitted viruses: cassava mosaic begomovirus (CMB) and cassava brown streak52

ipomovirus (CBSI).53

The epidemiology of IBPP transmission is influenced by the rates of virus acquisition54

and inoculation and the retention period in the insect also plays an important role. Indeed,55

retention duration is a common means of classifying plant viruses as persistently transmit-56

ted (long retention, PT) and semi- or non-persistently transmitted (short retention, SPT57

or NPT) (Eigenbrode et al., 2018; Hogenhout et al., 2008) - with latent period relevant58

for PT but not for SPT or NPT viruses (Hogenhout et al., 2008). Note that true non-59

persistently transmitted viruses are acquired from epidermal plant cells by aphids (Carr et60

al., 2018) - it is important to note that at present our framework does not apply to these61
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viruses which require separate treatment (Donnelly et al., 2019), and instead applies to the62

majority of IBPPs that are acquired from the phloem of plants (Carr et al., 2018). Among63

these phloem-restricted viruses are semi-persistently transmitted viruses like CBSI and64

persistently-transmitted viruses like CMB. The functions in EpiPv provide a user-friendly65

means to estimate the rates of virus acquisition and inoculation from access period data66

provided by the user.67

Our approach is built around simple probability theory, which is central to modern68

epidemiology because of its dual utility in parameter estimation and statistical inference69

(Keeling and Rohani, 2011). In the first of these dual uses, probability models for epi-70

demiological scenarios can be combined with epidemiological data to estimate parameters71

(Bolker, 2008). In the EpiPv package simple probability models for access period assays72

are combined with access period assay data to estimate acquisition and inoculation rates.73

In the second of these dual uses, probability models based upon parameter estimates can74

be used to make inferences. In the EpiPv package virus parameter estimates are used to75

infer the epidemic risk from inoculum introductions in the field.76

For cassava viruses, and viruses of roots and tubers in general, the propagation of77

infected planting material for new growth constitutes an additional transmission mode in78

the field. This mode of transmission is influential in large-scale spatio-temporal dynamics79

of IBPPs, but is not a factor in the question of whether or not introduction of an infected80

plant or an infected insect vector into a population of host plants will result in an epidemic81

apart from as an epidemic seeding event. This is because in the absence of preferential82

selection of infected plant material propagation alone cannot lead to epidemic growth83

at a given location - but rather propagation plays an important role in the persistence of84

infection across growing seasons as well as virus movement to new locations. Note, however,85

that the initial introduction of an infected plant can be thought of as representing a single86

transmission event based on introduction of propagated infected material.87
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For insect-borne plant pathogens additional modes of transmission may exist. For88

instance, viruses of roots and tubers are transmitted when infected planting material is89

propagated for new growth. However once inoculum has been introduced - potentially90

through vegetative propagation - the risk of a local epidemic is a consequence of insect-91

borne transmission. This is because infected plant material propagation alone cannot lead92

to epidemic growth at a given location in the absence of preferential selection of infected93

material. This is why experiments in insect-borne transmission are important, yet there has94

been no way to translate laboratory data into epidemic risk. In this paper we provide this95

missing link. The paper is structured as follows: we first introduce the key epidemiological96

processes for phloem-limited IBPPs. We then describe the estimation of virus parameters97

using models based on these processes from access period data using Bayesian analysis.98

We next introduce the inference of local epidemic risk from the viral parameter estimates99

and several additional local parameters. We show how to apply the methods to published100

data as illustrated by whitefly-borne cassava viruses. The EpiPv package enables rapid101

adoption of the epidemiological profiling to analyse and identify effective strategies for102

disease management.103
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2 MATERIALS AND METHODS104

Access period experiments are an essential means to study insect vector transmission of105

plant pathogens in the laboratory (Figure 1). In these experiments insect vector cohorts are106

provided feeding access to pathogen-infected plants, and are then transferred to healthy test107

plants. This article introduces a framework that makes use of access period experimental108

data to produce epidemiological profiles of plant pathogens. Two steps lie at the heart of109

the framework: parameter estimation from experimental data (step A) and the subsequent110

inference of field epidemic probabilities (step B) (together referred to as epidemiological111

profiling). Both steps (laboratory vs field model) are based on a quantitative description112

of the insect-borne plant pathogen (IBPP) interaction. In the first step we tailor a simple113

version of the quantitative model (referred to as a laboratory model) to generic access114

period assays for the estimation of virus transmission parameters. In the second step we115

use the parameter estimates with a probability model of field introductions (field model)116

to make inferences relating to epidemic risk.117

How insects transmit the virus118

For phloem-restricted plant viruses like the cassava viruses CMB and CBSI, the larger the119

period of feeding the greater the rate of virus acquisition and inoculation (Figure 2A). This120

means that the rates of acquisition and inoculation for a given host plant are proportional121

to the number of uninfected and infected insect vectors respectively feeding on the phloem122

of the plant,123

Acquisition (models: field; lab.) IFj
(F−j)α−−−−→ IFj+1 (1.1)

Inoculation (models: field; lab.) SF
j

jβ−→ EF
j (1.2)

124

where α and β in expressions 1.1-1.2 denote the acquisition and inoculation rates, and where125

XF
j denotes a plant state (see Figure 1 and Table S1.1 for complete list of parameters) with126
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X ∈ {S,E, I} (susceptible, S, virus expose, E, or infectious, I), with a number of phloem-127

feeding insect vectors on the plant (integer-valued superscript F ), of which a number are128

virus-carrying (integer-valued subscript j ≤ F ). For instance, expression 1.1 represents129

the population transition from an infected plant with j infected insect vectors (i.e., IFj ) to130

an infected plant with j + 1 infected insect vectors (i.e., IFj+1) due to a virus acquisition131

event which occurs at rate (F − j)α. Note that the event rates (expressions 1.1-1.2) are132

in units of per plant per day and are applicable when modelling both laboratory access133

period assays and field situations.134

How insects disperse the virus135

For phloem-restricted viruses like CMB and CBSI, the virus is acquired when an uninfected136

insect feeds on infected phloem (Figure 2B) and movement of an infected insect from ‘birth’137

(i.e. acquisition) to ‘death’ (i.e., insect death or viral clearance) depends on the following138

life-history events with associated rates,139

140

Infected insect dispersal (models: field) XF
j

jθ−→ XF
j−1, S

F
0

jθ−→ SF
1 (1.3)

Infected insect death (models: field, by=l; lab., by=f ) XF
j

jby−→ XF
j−1 (1.4)

Infected insect recovery (models: field; lab.) XF
j

jµ−→ XF
j−1 (1.5)

141

where θ, bf , bl and µ are the per-insect rates of dispersal, field mortality, laboratory142

mortality and virus clearance, respectively, and where X ∈ {S,E, I}. Note that infected143

insect dispersal results in changes to both source and destination plant states. At invasion144

all plants other than the inoculum, which itself originally arose from external means (i.e.,145

through vegetative propagation or through infected insect migration into the field), are146

assumed to be free of infection. For this reason, the destination plant is assumed to have147

state SF
0 prior to infected insect dispersal. After dispersal has occurred the population148
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may consist of two sets of inoculum (this occurs if the initial inoculum state was IFj or149

EF
j with j ≥ 1 or if it was SF

j with j > 1). In addition, a number of events influence the150

infectiousness of plants, The event rates 1.3-1.5 are per plant per day, with the transitions151

as described in the previous section.152

Exposed plant progression (models: field) EF
j

ν−→ IFj (1.6)

Exposed plant harvest (models: field) EF
j

h−→ SF
j (1.7)

Infected plant removal (models: field) IFj
r−→ SF

j (1.8)

Infected plant harvest (models: field) IFj
h−→ SF

j (1.9)

153

where ν, r are the per-plant rates of onset of infection and infected plant removal, and h154

is the rate that plants are harvested (see Table S1.1 for complete list of parameters). The155

event rates (expressions 1.3-1.9) are in units of per plant per day. Note also that expressions156

1.6-1.9 reflect an assumption of re-planting with susceptible material for simplicity. Note157

that a number of these events (1.3 and 1.6-1.9) apply only to field situations, i.e., they are158

not relevant to the laboratory context.159

Step A, estimating viral transmission in the lab160

Two parameters, α (acquisition rate) and β (inoculation rate), play a central role in IBPP161

transmission in the field as well as in laboratory access period assays, and a third, µ162

(insect virus clearance rate) is critical to IBPP epidemiology (Eqs 1.1-1.2). Estimating163

these parameters is a key task. It is also important to account for virus latent period in164

the insect where relevant in order to ensure reliable parameter estimation (through the165

rate with which virus-exposed insects become infectious, γ). A simplified representation of166

access period assays is shown in Figure 3A. For PT viruses the assay is frequently extended167

to include a latent access period (e.g., Dubern (1994)’s PT virus assay with - cf. Maruthi168

et al. (2020)’s SPT virus assay without - latent access period). As outlined in Figure 3A,169
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parameter estimation from access period data requires calculation of the probability of the170

data given a probability model of the assay. In effect, the model calculates how likely171

the observed data is for different values of the underlying parameters given assay access172

durations (see Supporting Information S1-S2 for details). In this way sources of variation173

(assay variation and natural variation) that underlie access period data can be harnessed174

to estimate event rates such as α, β, µ and γ using Bayesian analysis.175

Step B, inferring epidemic probability in the field176

In step B the virus parameter estimates for α, β and µ from step A are used to produce177

estimates for the epidemic probability (when 1 infected plant or 1 infected insect vector178

is introduced into a population of susceptible host plants). Note that additional user-179

inputted local parameters are also required: the number of insects per plant (F ), the180

insect dispersal (θ) and natural mortality (bf ) rates, the harvesting rate (h) and the rate181

that infected plants are removed (r), and, in addition, the rate that exposed plants become182

infectious (ν). The field model therefore assumes that a particular location or situation183

is associated with a constant insect-burden such that all plants have F phloem-feeding184

insects. This assumption is highly suitable when plant pathologists have associated a185

location or situation with a given insect burden - or where the aim is to investigate the186

impact of the magnitude of vector density on epidemic risk. We now briefly indicate how187

the epidemic probability is calculated for IBPPs.188

The strategy is to condition the epidemic probability from a given inoculum state on189

possible future events (Keeling and Rohani, 2011) (Figure 3B, Supporting Information S3).190

By inoculum state we mean the infection state of a single plant unit of infection. This may191

correspond to infection or latent infection of the plant and/or infection of any of the insects192

feeding on the plant. Furthermore, the number of possible inoculum states depends on the193

local insect burden, F : there are 2 × (F + 1) + F states (IF0 ..I
F
F , E

F
0 ..E

F
F and SF

1 ..S
F
F ).194
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The calculation involves relating the extinction probability for a given inoculum state to195

the extinction probabilities for other inoculum states. This is achieved by examining the196

inoculum states produced by the events that may occur and accounting for the extinction197

probabilities from these new states. This process leads to a set of simultaneous equations198

that can be solved for the extinction probabilities associated with each inoculum state (and199

hence for epidemic probability i.e. 1− the probability of extinction).200

In the following example, for illustration, we ask what is the fate of a single introduced201

infected plant P (IF0 )? The possible future events for the inoculum state are as follows:202

the infected plant may be rogued (i.e., transition from IF0 to SF
0 ) with rate r, or it may be203

harvested (i.e., transition from IF0 to SF
0 ) with rate h, or a phloem-feeding insect on the204

plant may acquire the virus (i.e., a transition from IF0 to IF1 ) with rate Fα. Conditioning205

on these possible events leads to P (IF0 ) = (r/(r+h+Fα))P (SF
0 )+(h/(r+h+Fα))P (SF

0 )+206

(Fα/(r + h+ Fα))P (IF1 ) in which the coefficients are the relative probabilities of a given207

event and the multiplicative terms are the probabilities of extinction for the ensuing in-208

oculum states. Each of the inoculation states can be related to other inoculum states in209

the above manner. This leads to a set of simultaneous equations which can be solved for210

the extinction (hence epidemic) probabilities (Figure 3B).211

The EpiPv R package212

The EpiPv R package has two main uses. The first is the Bayesian estimation of virus213

transmission rates from access period data (step A in previous section). The second is214

the inference of epidemic probability based upon virus rate estimates and several local215

parameters (step B in previous section). In what follows we list the functions that are216

available in the EpiPv R package,217

1. The estimate virus parameters PT function receives AP data for a given vector-PT218
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virus-plant combination as user input together with assay configuration (i.e., AP219

feeding durations TA TL TI and the number of insect vectors used X0) and returns220

posterior parameter distributions for the transmission rates µ, α, β, and γ (see Sup-221

porting Information S1 for details).222

2. The estimate virus parameters SPT function receives AP data for a given vector-223

SPT virus-plant combination as user input together with assay configuration (i.e.,224

AP feeding durations TA TI and the number of insect vectors used X0) and returns225

posterior parameter distributions for the rates transmission rates µ, α, and β (see226

Supporting Information S2 for details).227

3. The calculate epidemic probability function receives event rate parameters for virus228

transmission (µ, α, β) as well as local parameters F , θ, r, h and bf as user input, and229

returns epidemic probability for different types of inoculum state (see Supporting230

Information S3 for details).231

4. The AP data simulator function receives event rate parameters for virus transmission232

(µ, α, β) as well as assay feeding durations and returns simulated access period data233

(see Supporting Information S4 for details of the statistical simulation process).234
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3 RESULTS235

In what follows we describe the epidemiological profiling of the whitefly-borne CMB and236

CBSI cassava viruses (cassava mosaic begomovirus; cassava brown streak ipomovirus). We237

first report the viral parameter estimates, and then the risk inferences, as described in the238

methods section.239

Profiling whitefly-borne cassava viruses240

When we applied the laboratory-scale model (materials and methods) to the Dubern (1994)241

CMB dataset (Supporting Information S1) and the Maruthi et al. (2020) CBSI dataset242

(Supporting Information S2), we obtained 95% credible intervals for CMB and CBSI ac-243

quisition, inoculation and insect clearance rates (Table 1 A-B). In addition, we estimated244

latent progression rate for the persistently-transmitted CMB virus - but note that use of245

an alternative plant for the LAP meant that we were unable to utilise the latent period246

varying sub-assay from Dubern (1994) in our model fitting exercise (see subsection ’The247

latent period varying sub-assay in Dubern (1994)’ Supporting Information S1).248

Model convergence was assessed by examining potential scale reduction factors (Rhat ≤249

1.01 for all parameters for both CMB and CBSI), effective sample sizes (neff > no. iterations250

for all parameters for both CMB and CBSI), and the absence of divergent transitions or251

tree depth exceedences. Absence of strong correlations among the estimated parameters252

was confirmed by examination of parameter pairs plots and mixing of chains confirmed by253

the earlier reported effective sample sizes. Excellent agreement between observed data and254

forward simulation from the estimated parameters is evident from figure S2.1 for CBSI and255

good agreement for CMB (figure S1.3). Excellent model fit, as evaluated through Bayesian256

R2, was confirmed for CBSI (70% of variance explained by model) and good model fit for257

CMB (≈ 50% of variance explained by model). Note that CMB modelling, though good,258

12



was not as strong as for CBSI - this likely relates to the use of an alternative plant (Chi-259

nese lantern rather than cassava) for the intermediate LAP phase in the CMB AP data of260

Dubern (1994), as discussed in Supporting Information S1.261

Viral parameter estimates (full posterior distributions) were then taken forward for262

both viruses to calculate local epidemic probability (summarised in table 2) corresponding263

to set levels of insect burden. The epidemic probabilities that result are summarised in264

Table 2 (posterior credible intervals for epidemic probability vs. insect burden for viral265

introduction in plants, A, and insects in B). In addition, full posterior distributions are266

shown in Figure 4 focusing on plant vs insect inocula (plant and insect forms of inoculum267

for selected values of insect burden: F=1 v F=3 for CMB in A v C, and, F=4 v F=10 for268

CBSI in B v D). Full posterior distributions are also shown in Figure 5 focusing on insect269

burden variation. We collate these findings as epidemiological profiles for CBSI and then270

for CMB.271

Cassava brown streak ipomovirus:272

a feeble inoculator that hides in plain sight273

• highly ephemeral retention in B. tabaci insect vector. 95% credible interval for virus274

clearance per hour, 0.406−1.468h−1 (Table 1A iv); median virus retention 0.807−1 =275

1.24h.276

• is highly transmissible from infected cassava to uninfected B. tabaci. 95% credible in-277

terval for acquisition rate per hour, 0.088−1.735h−1 (Table 1A i); median probability278

of acquisition per insect in a 24h feeding period ≈ 1.279

• has low transmissibility from infected B. tabaci to uninfected cassava. 95% credible280

interval for inoculation rate per hour, 0.019 − 0.475h−1 (Table 1A ii). Thus, while281

median probability of inoculation per virus-bearing insect in a 24h feeding period is282
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≈ 0.7, median inoculation probability per insect infection is only ≈ 0.07 - when we283

take account of median retention time.284

• low epidemic risk from insect inocula, high epidemic risk from plant inocula requires285

high local insect burden. High likelihood of local epidemics given infected plant intro-286

duction but only for moderate-high B. tabaci insect burden (95% epidemic probability287

credible interval 0.133− 0.442 for 4 whitefly per top 5 leaves, cf. 0.695− 0.816 for 10288

whitefly, Table 2A iv cf, vi). Low likelihood of local epidemics given infected insect289

introduction (95% credible interval for epidemic probability, 0.027 − 0.238 even for290

10 whitefly per top 5 leaves, Table 2B vi);291

• low symptom detectability in plants Beyond the scope of access period experiments -292

CBSI is notoriously difficult to identify in over-ground biomass. As such, there is a293

high tendency for human-mediated propagation to new seasons and new locations of294

cassava cultivation. Thus it has the ability to persist beyond the growth period of a295

cassava population.296

Cassava mosaic begomovirus:297

an all-rounder that is hard to miss298

• is weak- to moderate-ly transmissible from infected cassava to uninfected B. tabaci.299

95% credible interval for acquisition rate per hour, 0.012 − 0.016h−1 (Table 1B i);300

median probability of acquisition per uninfected insect in a 24h feeding period ≈301

0.285.302

• is highly transmissible from infected B. tabaci to uninfected cassava. 95% credible303

interval for inoculation rate per hour, 2.219− 3.995h−1 (Table 1B ii); median prob-304

ability of at least one inoculation per infected insect in a 24h feeding period ≈ 1.305
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• sustained retention in the B. tabaci insect vector. 95% credible interval for loss of306

insect infectiousness per hour, 0.0001 − 0.019h−1 (Table 1B iv) (corresponding to307

between 2.2d and > 100d). This is supported by the finding of no evidence for308

whitefly clearance of CMB in Donnelly and Gilligan (2023).309

• very high risk from plant and insect introductions. High likelihood of local epidemics310

given inoculum introductions in plant or in insect for even relatively low B. tabaci311

insect burdens. 95% credible interval for epidemic probability, 0.710 − 0.810 (plant312

inoculum) and 0.758− 0.865 for 1 whitefly per top 5 leaves (Table 2A i, B i).313

• high symptom detectability in plants Beyond the scope of access period experiments314

- CMB disease is highly visible in over-ground biomass. As such, there is greater315

scope for managing human-mediated propagation to new seasons and new locations316

of cassava cultivation. The release of CMB-tolerant varieties, however, in recent317

decades may have lead to chronic and less visible CMB disease incidence.318

Computational validation of epidemic risk319

For comprehensiveness, we also used individual-based simulation to compare predicted320

values of epidemic probability (calculate epidemic probability() function, EpiPv package)321

with the outcome of a large number of simulations. By individual-based simulation we322

mean the reproduction of the events that occur (on a per insect, per plant, basis) when323

inoculum is introduced into a field, with events simulated in proportion to event rates that324

are update each time an event occurs. Correspondence between prediction methods and325

simulation is achieved by introducing an infected host into a field of susceptible hosts at326

the start of a season - with fields evaluated at the end of the season for epidemic growth or327

extinction of the inoculum. This procedure provides a baseline for verifying the accuracy328

of our methods.329
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In brief, we found that the predicted epidemic probability matched the outcomes of330

simulations across a range of parameter value sets (Figure S5.1, blue crosses for predicted331

epidemic probabilities match circles for simulated epidemic probabilities by). The exercise332

also demonstrated that infrequent removal of infectious plants (> 2weeks longevity of333

symptomatic plants) are associated with high epidemic probabilities, that low whitefly334

dispersal (< 1 dispersal per day per whitefly) lead to rapid declines in epidemic probability,335

that epidemic probability was less than 0.5 only for very rapid loss of insect infectiousness336

(< 2h retention), and that epidemic probability was less than 0.5 only for very few whitefly337

per top 5 leaves (Figure S5.1 A,B,C,D respectively).338
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4 DISCUSSION339

We have introduced a framework to estimate virus parameters and to predict the outcomes340

of virus introductions in the field. The framework utilises laboratory access period studies341

to estimate virus transmission parameters. Such studies are central to establishing insect342

transmission but say little about how transmissibility translates into epidemic risk. The343

framework that we introduce provides the missing link. Laboratory researchers can now344

extrapolate from their data to the consequences for insect-borne epidemics in field situ-345

ations. We applied the methods to laboratory studies for CBSI and CMB showing that346

CBSI is characterised by high virus acquisition rates but is hindered by a combination347

of moderate inoculation rate and highly ephemeral retention in the insect, while CMB is348

characterised by a high virus inoculation rate and a relatively low acquisition rate.349

The sustained retention of CMB in B. tabaci relative to CBSI makes its ability to cause350

epidemics at low whitefly abundances far more favorable than for CBSI. This is consistent351

with claims that high regional whitefly abundance was needed for CBSI expansion in sub-352

Saharan Africa to occur (Donnelly and Gilligan, 2020). The combination of moderate353

inoculation and ephemeral retention leads to strikingly lower risk associated with CBSI-354

infected vector introductions than from CBSI-infected plant introductions. This is a key355

finding emerging from this work that is important for epidemic management. For CMB356

epidemic risk is high from both types of introductions.357

Plant pathologists use laboratory experiments in insect access to host plants to inves-358

tigate IBPPs. The data from these experiments can be used to parameterise epidemic359

models. The wealth of published laboratory data from such experiments for a wide range360

of plant pathogens constitutes a valuable resource for epidemiologists - but they remain361

a relatively untapped resource. We encoded simple analyses of access period data - the362

proportion of infected test plants in acquisition and inoculation varying sub-assays - in a363
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dedicated R package - EpiPv. The package estimates the main parameters of insect-borne364

transmission and then uses the estimates for an epidemiological profiling of the IBPP. As365

such the package offers a means for plant pathologists to complement experimental investi-366

gations with quantitative results that facilitate inter-species and inter-strain pathogen and367

insect vector comparisons of epidemic risk.368

Cassava viruses, management, and future versions of the EpiPv R package369

Cassava is produced by smallholder farmers whose average cultivated area is less than one370

hectare (Masamha et al., 2018) and is already mainly grown under inter-cropping systems371

(with crops such as maize, legumes, and bananas). It is important to understand the372

relationship of cassava inter-cropping and epidemics.373

In general, epidemic growth is due to secondary transmission of insect-borne infection374

and this can be directly linked to the basic reproduction number, with sufficient insect-375

borne spread for epidemic growth occurring when the basic reproduction number R0 > 1,376

which corresponds to non-zero epidemic probability. Our results show that the probability377

of CBSI epidemics is already relatively low in susceptible monocultures for infected insect378

introductions. This raises the possibility that CBSI epidemics arising from infected insect379

introductions could be entirely prevented using cultivar mixtures. A combination of strict380

control of the planting material that is propagated together with wide-spread intercropping381

of susceptible and resistant cultivars could entirely suppress landscape CBSI epidemics. A382

priority for future iterations of the EpiPv R package will be the calculation of epidemic383

probability for crop mixtures.384

While the analyses of access period assays in the EpiPv package take account of the385

assay insect density, the inference of epidemic probability in the field requires user input386

of insect abundance per plant. For plant pathologists using the package this is likely387
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to be an acceptable requirement. Field plant pathologists, for instance, are likely to have388

typical abundances per plant in mind for specific locations. We aim to extend the methods,389

however, in future package version to include functions that can predict insect abundance390

and hence epidemic probability based simply on temperature data for a given location -391

where this is the decisive environmental factor for the insect vector in question. In addition,392

the remaining non-cultural local parameters, bf (field insect mortality rate) and θ (dispersal393

rate) that currently require user input could also be calculated from temperature data.394

This will require insect vector life-history data according to temperature which is already395

available for insect vectors of plant pathogens like whitefly (Aregbesola et al., 2019, 2020).396

Uses of the EpiPv package397

A critical facet of managing cassava virus epidemics at the landscape scale is the classi-398

fication of cassava varieties in terms of their susceptibility to the virus in question. Such399

classification can be considered one of relative susceptibility i.e. classification will typically400

take account of a reference susceptible cultivar. The functions of the EpiPv package can401

estimate virus transmission parameters from AP assays for a reference susceptible cultivar,402

and also for a cultivar of interest. Comparison of these parameter estimates alone can pro-403

vide a quantitative means of classifying cultivars in terms of susceptibility and resistance.404

In addition, MCMC methods can then provide a statistical test of relative susceptibility405

or resistance by accounting for variability in both sets of parameter estimates. Ultimately,406

relative susceptibility should be established in field trials - but such trials tend to be multi-407

year, resource intensive, and can often produce ambiguous results. Therefore, analysis of408

candidate cultivar AP assays with the EpiPv package could play a key role in streamlin-409

ing and interpreting field trials, and crucially can show breeders the impact of a level of410

resistance of susceptibility in terms of epidemic risk.411
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A second facet of managing cassava virus risk is the establishment of virus transmis-412

sion for alternative virus and/or vector strains. While AP assays have historically been413

important for this objective - the functions of the EpiPv package in combination with these414

assays provides a means to quantify the parameters which was not previously possible and415

to translate these experiments into local epidemic risk. Therefore, where strain transmis-416

sion has been demonstrated in the laboratory - but where it is unclear how this relates417

to effective risk in the field - the EpiPv package can be used to quantify the relative risk418

involved.419

Modelling risk in a changing climate420

Finally, where there is a risk of arrival of a plant virus that was not previous present421

in a region, the the EpiPv package provides a means to quantify local epidemic risk. This422

exercise is widely conducted by countries and regions as a part of pest risk assessment423

under WTO rules. The risk inference part of the EpiPv package is particularly suitable424

for modelling the risk of pest establishment - a key stage in pest risk assessments (Leung,425

2012; World Trade Organization., 1995).426

Conclusions427

In summary, we provide a framework to harness the wealth of published access period data428

that is available for IBPPs. The methods are assembled in an R package for direct use by429

epidemiologists and by the plant pathologists who produce these datasets. The package430

estimates IBPP transmission rates from access period data and also uses inference of local431

epidemic probability upon introduction of infected material - which together we refer to as432
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epidemiological profiling. The methods provide actionable findings relating to management433

of cassava virus invasions, for instance by calculating the risk of local epidemics for a given434

level of the insect vector. While other crops are projected to face significant adaptation435

challenges in Africa to changing climates, cassava is resilient to climate change because436

of its drought tolerance (Mwebaze et al., 2018) and may therefore undergo an increase in437

production in the decades ahead. Bemisia tabaci life-histories are also favoured by high438

temperature. For these reasons the problem of cassava virus disease in SSA may increase439

even further. The tools introduced in this paper and future extensions will provide a means440

to quantify changing epidemic threats to food security from cassava viruses, and for IBPPs441

in general, in a changing world.442
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In access period experiments, insect vector cohorts are provided feeding 
access to pathogen-infected plants, and are then transferred to healthy test 
plants. Ultimately, the proportion of test plants becoming infected is measured. 

Access period experiments and EpiPV terminology

infected plant healthy plant

ACQUISITION ACCESS INOCULATION ACCCESS

𝑇𝐼𝑻𝒋
𝑨0

Time (hours)

0

insect vector 
cohort

𝑻𝒋
𝑰𝑇 

𝐴0 0

Access period experiments consist of two or more sub-assays. Each assay of 
the experiment shares a common structure: an acquisition access period (AAP) 
followed by an inoculation access period (IAP) (above schematic). For 
persistently-transmitted pathogens (PT) an intermediate feeding period is also 
provided to allow for insect progression through a latent infected state (LAP)

Acquisition varying sub-assay: in which 𝑇𝐴 is varied (𝑻𝒋
𝑨 above) and 𝑇𝐼 is fixed. 

Inoculation varying sub-assay: in which 𝑇𝐼 is varied (𝑻𝒋
𝑰 above) and 𝑇𝐴 is fixed. 

Acquisition 
varying sub-assay

Inoculation 
varying sub-assay

Figure 1. Important EpiPv terminology
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A) HOW INSECT VECTORS TRANSMIT PLANT VIRUSES

Local movement of phloem-limited plant viruses

Rate per plant:

• 𝐹 insects per plant

• 𝑗 out of 𝐹 are pathogen-bearing

inoculation

j𝜷

ii)acquisitioni)

(F − j)𝜶

𝛾, insect latency 
progression

𝜈, plant latency 
progression

B) HOW INSECT VECTORS DISPERSE PLANT VIRUSES

pathogen-free vector pathogen-carrying vectori) ii)

pathogen-exposed vector

pathogen-bearing vector

healthy plant

exposed plant

infected plant

𝜃, dispersal

𝜇, clearance

𝜃, dispersal

𝑏, death 𝑏, death

Legend

pathogen-free vector

Figure 2. The processes by which phloem-restricted insect-borne plant pathogens undergo
transmission and dispersal. In A, virus acquisition (by virus-free insects from virus-infected
plants) and virus inoculation (of healthy plants by virus-bearing insects) occur when insects
feed on host plant phloem. The overall acquisition rate (see Ai) is proportional to the
number of virus-free insects that are feeding on virus-infected plants and the per-insect
rate of virus acquisition, α. The overall inoculation rate (see Aii) is proportional to the
number of virus-bearing insects that are feeding on healthy plants and the per-insect rate
of virus inoculation, β. Note that virus-exposed insects become infectious at rate γ (see
Ai inset) and virus-exposed plants become infectious at rate ν (see Aii inset). In B, insect
life-history events alter the distribution of phloem-restricted insect-borne plant pathogens
with virus-free and virus-bearing insects dispersing to new host plants at rate θ and with
insect mortality loss occurring at rate b. In addition, virus-infected insects can clear the
virus at rate µ becoming virus-free.
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A) LABORATORY

B) FIELD

𝑌0 
uninfected 

insects

INFECTED PLANT HEALTHY TEST PLANT

acquisition access inoculation access

end of assaystart of assay
𝑇𝐼𝑇𝐴0t

𝐹 insects per plant

2 example inoculum states

𝐼 ∼ 𝐵 𝑛, 𝑞 ,  𝑞 = 𝑞(𝑌0, 𝜶, 𝜷, 𝝁, 𝜸) A.1

In access period assays 𝑌0 insects may acquire and inoculate a pathogen during 
acquisition and subsequent inoculation access periods. The assays produce 𝐼 out of 𝑛 
test plants that become symptomatic, which we model as a binomial distribution (∼𝐵) 
with success parameter 𝑞 depending on, 𝑌0, and on acquisition (𝛼), inoculation (𝛽) and 
virus clearance (𝜇) rates, as well as the rate that exposed insects become infectious (𝛾), 

Access 
period data

Virus parameter 
distributions

 𝜶, 𝜷, 𝝁, 𝜸

virus parameters 𝜶, 𝜷, 𝝁

local epidemic risk

𝒔 = 𝑻Ԧ𝒔 + 𝒘 B.1

𝑭, 𝒃, 𝜽, 𝒓, 𝒉

We use the statistical theory of branching processes to infer local epidemic probability 
for the set of states pertaining to inoculum introductions. States are associated with 
extinction probabilities (Ԧ𝑠). They are calculated from the inter-state transition rates 
(matrix 𝑇) that apply during pathogen invasions, see equation B.1. Transition rates and 
hence local epidemic probability (1 −extinction prob.) depends on virus parameters 
and local environmental parameters: #vectors per plant (𝐹), vector mortality (𝑏) and 
dispersal (𝜃) rates, roguing (𝑟) and harvesting (ℎ) rates, and plant latency progression 𝜈.

Probability models of the EpiPv package

𝒑𝑰, from plant
      introduction
𝒑𝒗, from vector
       introduction

local parameter values 

Figure 3. Probability models of the EpiPV package.
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A) CBSIa B) CMB

rate parameter median 2.5% 97.5% median 2.5% 97.5%

i) acquisition α 0.638h−1 0.088h−1 1.735h−1 0.014h−1 0.012h−1 0.016h−1

ii) inoculation β 0.056h−1 0.019h−1 0.475h−1 3.01h−1 2.219h−1 3.995h−1

iii) latency γ − − − 0.85h−1 0.317h−1 2.053h−1

iv) insect clearance µ 0.807h−1 0.406h−1 1.468h−1 0.005h−1 0.0001h−1 0.019h−1

Table 1. Parameter estimates for viral transmission rates using the esti-
mate virus parameters SPT (A) and estimate virus parameters PT (B) functions. Param-
eter estimates are shown for: whitefly-borne CBSI as calculated from the acquisition and
inoculation access period assay datasets of Maruthi et al. (2020) (A), and for whitefly-borne
CBSI as calculated from the acquisition and inoculation access period assay datasets of
Dubern (1994) (B) (see Supporting Information S1-S2 for further details).
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A) plant inoculum B) insect inoculum

median 2.5% 97.5% median 2.5% 97.5%

CMB i) F = 1 0.774 0.710 0.810 0.835 0.758 0.865

ii) F = 2 0.916 0.896 0.929 0.927 0.904 0.936

iii) F = 3 0.933 0.912 0.945 0.920 0.896 0.930

CBSI iv) F = 4 0.297 0.133 0.442 0.020 0.006 0.092

v) F = 7 0.629 0.534 0.710 0.040 0.021 0.197

vi) F = 10 0.761 0.695 0.816 0.048 0.027 0.238

Table 2. Epidemiological field inferences for whitefly-borne CMB and CBSI using the epi-
demic probability function (materials and methods, step B), illustrated with CBSI (top)
and CMB (bottom). See Table 1 for parameter estimates representing virus transmission
that were passed as arguments to the epidemic probability function together with the fol-
lowing local parameter values: θ = 0.45 d−1, r = 1/28 d−1, h = 1/365 d−1, b = 1/14 d−1,
ν = 1/14 d−1 (see Table S1.1 for a list of parameters).
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Figure 4. Risk inference for cassava viruses depending on form of inoculum. Posterior
distributions for the epidemic probability parameter for CMB (left) and CBSI (right) when
inoculum arrives in the form of an infected plant or insect for different background levels of
insect burden, F . Posterior distributions are presented for a single level of insect abundance
(F = 1, top; F = 2, bottom). See Supporting Information S1, S2 and S3 for further
details of the model fitting and see Table S1.1 for a list of parameters. Figure data-points
were obtained using a combination of the function calls estimate virus parameters SPT,
estimate virus parameters PT and calculate epidemic probability functions.
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Figure 5. Risk inference for cassava viruses depending on insect burden. Posterior distri-
butions for the epidemic probability parameter for CMB (left) and CBSI (right) for various
background levels of insect burden, F ∈ 1, 3, 5. Posterior distributions are presented for
inoculum arriving in the form of an infected plant (top) or in the form of an infected insect
(bottom). See Supporting Information S1, S2 and S3 for further details of the model fitting
and see Table S1.1 for a list of parameters. Figure data-points were obtained using a combi-
nation of the function calls estimate virus parameters SPT, estimate virus parameters PT
and calculate epidemic probability functions.
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Supporting Information S1, the estimate virus parameters PT529

function530

In the following sets of Supporting Information, we describe and document the EpiPV531

R package. The first 3 Supporting Information sections are derivations of the probability532

models used in the main EpiPV functions. Subsequent Supporting Information then further533

describe package functions and datasets and we also include package documentation.534

1. In Supporting Information S1 we derive the probability model that is the basis of the535

estimate virus parameters PT function.536

2. In Supporting Information S2 we derive the probability model that is the basis of the537

estimate virus parameters SPT function.538

3. In Supporting Information S3 we derive the probability model that is the basis of the539

calculate epidemic probability function.540

4. In Supporting Information S4 we describe the statistical simulation process that541

underlies the AP data simulator function.542

5. In Supporting Information S5 we provide brief validation of calculate epidemic probability.543

6. In Supporting Information S6 we briefly describe the obligatory structure of AP544

datasets in the EpiPv package (as required in the arguments of estimate virus pa-545

rameters functions), and we show how to produce this from AP data simulator.546

7. In Supporting Information S7 we include the EpiPv package manual and vignettes.547
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The estimate virus parameters PT function548

In access period (AP) experiments, individuals of a cohort of insects may acquire a pathogen549

when the cohort is provided feeding access to a donor infected plant. When the cohort550

moves to a healthy test plant, the cohort individuals that acquired the pathogen can551

now inoculate the test plant. This procedure is followed in a variety of assay sets in552

order to produce data that reveal the length of access periods required for transmission to553

occur. We focus on the most common assay structure which is based upon two sets: the554

acquisition varying and the inoculation varying sub-assays. When the pathogen is question555

is persistently-transmitted, this is likely to also be accompanied by an assay in which the556

duration of latent access period on an intermediate plant is varied, i.e., where a latent557

period is expected for the given pathogen.558

We derive a probability model that is tailored to the structure of this set of assays.559

When actual access period data are combined with the model using Bayesian analysis,560

investigators can estimate the following epidemiological rates: α, the rate of acquisition561

of the pathogen by insects, γ, the rate of progress of insects from virus exposed to virus562

infectious, µ, the rate that infectiousness is lost, and, β, the rate of pathogen inoculation563

of plants by insects. In addition, the mortality rate of insects, b, influences the effective564

duration of the experiment - and this is also estimated by conditioning the model on insect565

survival duration.566

In this Supporting Information,567

• We describe the probability model underlying parameter estimation.568

• We demonstrate the accuracy of the parameter estimation.569

• We reproduce data and summarise results for two plant virus assays.570

• we list the relevant function calls from the package EpiPv.571
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Probability model underlying parameter estimation572

Parameter estimation is applied here to the most commonly performed assay within access573

period experiments - which performs replications of infected plant to healthy plant transfers574

of insect cohorts for variable durations of the acquisition access period (AAP), and then575

separately for variable durations of the latent access period (LAP) and the inoculation576

access period (IAP) (while in each case the alternative periods are held fixed). We will577

henceforth refer to this trio of assays as the AP experiment. In addition, we denote the578

three phases of plant transfer by A (acquire), L (latency), I (inoculate).579

While there is a trio of sub-assays (as defined by which phase in the sequence of 3580

phases is varied) each assay replicate has the same structure based on access durations in581

each of the 3 phases: δTA, δTL, δT I . For clarity we represent the acquisition varying sub-582

assay therefore as having j subgroups with N replicates each having the phase durations583

δTA
j , δT

L, δT I (and similarly the latent period and inoculation varying sub-assay have the584

durations δTA, δTL
j , δT

I and δTA, δTL, δT I
j , respectively). In terms of formulating the585

model, however, for the moment we simply drop the j subscript and consider the general586

assay replicate with durations δTA, δTL, δT I . Therefore the probability of ultimate test587

plant infection for a single insect after the durations in each phase δTA, δTL, δT I , is denoted588

by P (δTA, δTL, δT I). The probability can be expressed using integrals that condition the589

overall probability of test plant infection on the time that acquisition, latent progression,590

and recovery events occur - denoted by tA, tL, tI ,591

There is an additional factor that may play a role in these experiments: if insect survival592

is shorter than the length of the IAP, then it may be important to additionally account for593

mortality. It is important also to note that in AP experiments, the insect number in the594

cohort is the number which are placed on the healthy test plants: therefore the AAP and595

LAP are already conditioned on insect survival, so it is only in the IAP that mortality is596

a potential factor. Our approach to this is to omit insect survival from the main part of597

35



the model - but then to condition the probability of test plant infection on values of IAP598

duration that are in part determined by discrete levels of insect survival (which depends on599

the mortality rate). Specifically we assume that TI = TL +min(X, δTI) where X is insect600

survival, so that the effective IAP an insect experiences is bounded period given by the601

experimenter or the insect’s mortality time - whichever comes first. Thus, insect mortality602

rate is estimated in the model as a nuisance parameter that is unlikely to significantly603

influence the dynamics, but can be ignored in the initial stages of model derivation.604

p(δTA, δTL, δT I |X) =

TA∫
tA=0

αe−αtAdtA

[ early latent progression: full potential IAP

TL−tA∫
tL=0

γe−γtLdtLe−µ(TL−tA+L)ψ(τ = δT I) (S1.1)

+

T I−tA∫
tL=TL−tA

γe−γtLdtLψ(τ = T I − tL+A)

late latent progression: reduced potential IAP

]

in which,

ψ(τ) =

τ∫
tR=0

µe−µtR(1− e−βtR)dtR, (S1.2)

T I = TL +min(X, δT I), (S1.3)

TL = TA + δTL,

TA = δTA,

X ∼ exp(b) (S1.4)

in which p(δTA, δTL, δT I |X) (equation S1.1) is the probability of test plant infection from605

1 insect given the insect survival duration X, where X ∼ exp(b) (depending on the rate of606

insect mortality, b). Equation S1.1 calculates the overall probability of test plant infection607
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for a single insect - as determined by the time of the acquisition, latent progression and608

recovery events and then all possible such times and their probabilities are accounted for609

through the integrals. We do all this in order to calculate the full probability of inoculation610

by the insect (final part in parentheses, equation S1.2). See subsection below (sequential611

events in AP assays) for further details of how these events are constrained in the AP612

experiment and in equation S1.1.613

Finally, then the unconditioned expression for the probability of ultimate test plant

infection for a single insect is,

P (δTA, δTL, δT I) =

∫ X=LS

X=0

p(δTA, δTL, δT I |X)P (X)dX

≈
∑
j

p(δTA, δTL, δT I |Xj)P (Xj) (S1.5)

≈
∑
j

p

(
δTA, δTL, δT I

∣∣∣∣Xj =
Tj−1 + Tj

2

)(
e−bTj − e−bTj−1

)
, (S1.6)

for j = 1..N such that probability with X1 = 0 and XN = LS, where LS denotes assumed614

maximum insect lifespan. Since we are allowing for a distribution for the parameter b,615

however, LS simply defines an upper bound for the discretisation. In addition, P (Xj) =616

e−bTj − e−bTj−1 is probability of insect mortality between time Tj−1 and Tj, or equivalently,617

insect survival up until the above time window. Note also that Xj = (Tj−1 + Tj)/2 assigns618

a survival value that is mid-point with respect to the time window - that is survival is619

discretised such that the survival at the mid-point of a time window has corresponding620

probability related to the probability of mortality at any point in the window with mortality621

assumed to follow an exponential distribution with rate b. Finally, note that at the upper622

bound XN = TN , P (XN) = 1 − e−bTN . In the estimate virus parameters PT function the623

user supplies LS in days and the number of time points per day tp, so that N = LS ∗ tp,624

and by default tp = 1.625
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So far we have derived the probability of test plant infection from 1 insect vector. We626

now need to combine this expression with the number of insect vectors in the cohort and627

the number of experimental replicates to describe the distribution of the data. The first628

step is to take account of theW0 insect vectors in each replicate: the operation 1−(1−P )W0
629

transforms the probability of test plant infection from 1 insect into probability of test plant630

infection from any insect in the cohort. The ensuing quantity is in fact binomial probability631

when we consider the number of replicates N as corresponding to the number of Bernoulli632

trials, and therefore the distribution of the data i.e. the probability of test plant infection,633

TPI, is,634

TPI ∼ Bin

(
N, 1−

(
1− p(δTA, δTL, δT I)

)W0

)
(S1.7)

In summary, equation S1.1 represents the probability of test plant infection from a635

single insect - as conditioned by the time of insect survival X. Equation S2.34 then636

represents the unconditioned probability of test plant infection from 1 insect. Equation637

S2.35 represents the approximation of the unconditioned probability by evaluating the638

insect survival probabilities for discrete windows rather than integrating over all possible639

survival values. Equation S1.7 represents the probability of test plant infection for AP640

experiment replicates.641

Sequential events in AP assays642

Figure S1.1 is a visual depiction of the events represented in the integral equation S1.1. It643

can be summarised as follows, acquisition can occur at any time (tA) between 0 and TA (left644

most integral equation S1.1, first part of timeline arrow and blue example event time line645

#1, Figure S1.1). Latent progression can occur at any time (tL) between tA and the end of646
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end of assay

𝑇𝐼𝑇𝐿𝑇𝐴

start of assay

Fixed assay time points:

Sample event time points: 𝑡𝐴

𝑡𝐿

𝑡𝑅

𝑇𝐼𝑇𝐿 inoculation period
vs effective inoculation duration𝑇𝐴

𝑇𝐿

𝑇𝐼

acquisition period ends 
latent period ends 
inoculation period ends 

𝑡𝐴

𝑡𝐿

𝑡𝑅

acquisition time ~𝐸𝑥𝑝(𝛼) 

latent progression time ~𝐸𝑥𝑝(𝛾) 

loss of infectiousness time ~𝐸𝑥𝑝(𝜇) 

AAP
{𝛼, 𝛾, 𝜇}

LAP
{𝛾, 𝜇}

IAP
{𝛾, 𝜇, 𝛽, 𝑏}

𝛼, acquisition rate
𝛾, latency progression rate
𝜇, rate of loss of infectiousness

𝛽, inoculation rate
𝑏, mortality rate

Figure S1.1. Structure of access period assay experiments in relation to the acquisition,
inoculation, latency progression and recovery of insect vectors for persistently transmitted
plant viruses.

the experiment T I (up to end of third part of timeline arrow and blue example event time647

line #2, Figure S1.1). Once an insect passes the latent stage it may lose infectiousness.648

Loss of infectiousness can occur at any time (tR) between tL and the end of the experiment649

T I (up to end of third part of timeline arrow and blue example event time line #3, Figure650

S1.1). In addition, in the AP experiments that we have seen insect mortality is a factor651

in the IAP phase only - this is because a set number of alive insects are transferred at the652

end of the acquisition and latent phases while in the inoculation phase it is by no means653

certain that all insects will be alive at the end of the period and moreover experimenters654

may define the IAP phase as lasting until the death of all insects. As such mortality in655

the IAP phase must also be incorporated as we have done here through the probability of656

insect survival expression P (Xj) (equation S2.34 and IAP event set, Figure S1.1).657

Finally, if tA + tL < TL then the potential period for plant inoculation is the full658

IAP T I − TL. On the other hand, if tA + tL > TL then the potential period for plant659

inoculation is the T I − TL − (tA + tL − TL) = T I − (tA + tL). These 2 cases are the660
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main expressions in equation S2.34 and the effective inoculation periods are reflected in661

the respective probability inoculation terms ψ(T I − TL) and ψ(T I − (tA + tL)) therein.662

Solution663

The integral equation equation S1.1 has the solution p(TA, TL, T I) (see the additional664

supplementary document S5 for workings),665

p(TA, TL, T I |X)

= αβ
γ

γ − µ

(e(µ+β)(TL−T I) − 1

µ+ β

)(
e−γTL

(e(γ−α)TA − 1

γ − α

)
− e−µTL

(e(µ−α)TA − 1

µ− α

))
(S1.8)

+ αγ
β

µ+ β

(e(γ−α)TA − 1)

γ − α
e−γT I

(eγ(T I−TL) − 1

γ
− e(γ−(µ+β))(T I−TL) − 1

γ − (µ+ β)

))

= αβF
(µ
γ

)
H(µ+ β, TL − T I)

(
e−γTL

H(γ − α, TA)− e−µTL

H(µ− α, TA)
)

(S1.9)

+
αγβ

µ+ β
e−γT I

H(γ − α, TA)
(
H(γ, T I − TL)−H(γ − (µ+ β), T I − TL)

)

Note that terms such as (exp((γ − α)TA) − 1)/(γ − α) correspond to a well-known666

probability distribution (the two parameter hypo-exponential e.g., hypo(α, γ;TA)) and as667

such are equal to values from the unit interval ([0, 1]). In Bayesian model-fitting, however,668

there is a risk that if the sampled points for α and γ are equal then the computational669

expression will be undefined due to the singularity that would be present. To circumvent670

this, in the implementation of the probability model, we replace all such terms with their671

Maclaurin expansion to the nth degree, denoted by H in equation S1.9, e.g.,672
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H(γ − α, TA) =
(e(γ−α)TA − 1)

γ − α
(S1.10)

≈ TA
∑
j=0

((γ − α)TA)j

j!
. (S1.11)

In addition, another expression in equation S1.8 represents the convolution of 2 hypo-

exponential distributions and in principal could also be expressed in terms of H functions.

For simplicity, however, we simply replace the coefficient term γ/(γ−µ) with its geometric

expansion (equation S1.9) denoted here by F ,

F
(µ
γ

)
=

1

1− µ
γ

(S1.12)

≈
∑
j=0

(µ
γ

)j
. (S1.13)

Summary673

In summary, the statistical model of the AP experiment is given by equations S1.7 and this674

forms the basis of the R function ‘estimate AP parameters PT’. In typical acquisition and675

inoculation varying sub-assay there is sufficient data to estimate posterior distributions for676

each α, β, γ, µ, using Bayesian analysis. We now demonstrate this capability using first sim-677

ulated data where the task is to recover the original parameters from which the simulated678

data was produced. We then present results for CMB based upon AP experimental data.679

Finally, insect mortality rate b is also estimated for completeness - we set an uninformative680

uniform prior for mortality rate, between 0.1h and DLS, where DLS can be provided by the681

user but otherwise defaults to 50d. In fact, DLS merely helps to structure the discretisation682

of insect survival and is not expected to impact the outcome. For B. tabaci, for example,683

we used the natural survival for DLS, since laboratory survival is expected to be far less, so684
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it is therefore a reasonable upper bound. Note that in our experience b, has little influence685

on AP dynamics, and is effectively a nuisance parameter that is estimated in the modelling686

for thoroughness - the prior therefore is uninformative on a reasonable interval and in the687

model-fitting exercise it tends to remain uninformative.688

A note on the latent period varying sub-assay in Dubern (1994)689

The latent period varying sub-assay was conducted with Physalis alkekinge (Chinese lantern)690

as the intermediate plant (LAP) rather than the cassava host plant which was used in all691

other parts of the assay (AAP and IAP) in Dubern (1994). It is evident, however, on close692

inspection of the AP data that the intermediate plant has exerted an influence on white-693

fly behavior. To see this, we compare the acquisition varying sub-assay (values of AAP694

ranging from 2-8h followed by IAP on healthy cassava until insect death) and the latent695

period varying sub-assay (values of LAP ranging from 0.5-8h, preceded by 5h AAP and696

followed by IAP on healthy cassava until insect death). As such, it is clear that in the limit697

of LAP approaching 0 hours (latent period varying sub-assay) the assay becomes identi-698

cal to that of 5h AAP in the acquisition varying sub-assay. Yet, while in the acquisition699

varying sub-assay when the AAP was 5h there was already 16/30 test plants that became700

infected, nevertheless in the latent period varying sub-assay no infection of test plants at701

all were recorded until there was at least 4h LAP (i.e., 0/12 test plants became infected702

for 0.5 and 1h LAP, 0/22 for 2 and 3 h LAP - and then 3/34 became infected for 4h LAP703

rising to 23/34 infected after 8h LAP). In other words, the intermediate plant in the latent704

period varying sub-assay has exerted an influence on insect behavior. For this reason, we705

omitted the latent period varying sub-assay from our analyses of the Dubern (1994) CMB706

AP dataset. Future experimenters should bear in mind that LAP on intermediate plants707

that are different from the host plant, may exert unexpected transient effects on insect708

behavior.709
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A) Notation Parameters & principal variables Units/labelling

S susceptible plant plant type

E latent-infected plant plant type

I infectious plant plant type

α pathogen acquisition rate rate h−1

β pathogen inoculation rate rate h−1

µ rate of loss of insect infectiousness rate h−1

P (Xj
F ) extinction prob plant type Xj

F probability

Xj
F plant type X with j from F infected insects inoculum state

B) Laboratory model only

W0 # insects in cohort integer

n # experimental replicates integer

γ rate of onset of insect infectiousness rate h−1

C) Field model only

F #insect vectors per plant integer

ν = 1/14 rate of onset of plant infectiousnessa rate d−1

r=1/21 rate of infected plant removalb rate d−1

θ = 0.45 rate of insect dispersalc rate d−1

b = 1/21 rate of insect mortalityd rate d−1

h = 1/365 harvesting ratee rate d−1

Table S1.1. Parameter definitions for the laboratory and field models. C are representative
choices of local parameters for calculate epidemic probability and θ = 0.45 is the median
value from the posterior dispersal distribution in Ferris et al. (2020) – but note that all
values to some extent will vary with locality. Note that all results in the main text that
relate to epidemic probability use these values. Note also that whatever the appropriate
choice of values for these parameters these should not differ for CMB and CBSI except
for the rate of onset of plant infectiousness (ν), which is likely to be similar for CMB and
CBSI but depends on the cultivars in question.
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Parameter estimation from simulated and experimental datasets710

In this section of the Supporting Information we present AP data for a PT virus that711

was simulated with the AP data simulator (Supporting Information S4) and the results712

of analysing that data with the estimate virus parameters PT function (table S1.3). The713

benefit of analysing data is that the estimated parameters can be compared with the714

original parameters (see original, median and credible interval columns of S1.3 B). In715

addition we present the published AP data and the parameter estimates (from analysing716

the data with the estimate virus parameters PT function) for the PT CMB virus in table717

S1.4.718
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A) Model 1 Parameter to be fitted Prior distribution

α acquisition rate per hour ∼ half − normal(0, 1)

β inoculation rate per hour ∼ half − normal(0, 1)

γ latency progression rate per hour ∼ half − normal(0, 1)

µ/γ rate per hour of loss of infectiousness (µ) ∼ beta(1, 5)

B) Data variables

nRepsAj # experimental reps jth AAP assay data

nRepsLj # experimental reps jth LAP assay data

nRepsIj # experimental reps jth IAP assay data

δTA
j access period length jth AAP assay data

δTL
j access period length jth LAP assay data

δT I
j access period length jth IAP assay data

TPIAj # infected test plants jth AAP assay data

TPILj # infected test plants jth LAP assay data

TPIIj # infected test plants jth IAP assay data

Table S1.2. Parameter definitions, and prior distributions, for the model-based Bayesian
analysis. Derived parameters are combinations of fitted parameters in A). All prior distri-
butions were chosen to be non-informative - smooth model-fitting was aided by estimating
the ratio parameter µ/γ with a beta prior as is appropriate for the ratio of rate events -
and with prior parameterisation (beta(1, 5)) to reflect the magnitude difference expected
for these parameters for PT viruses (1/µ is expected to be on the order of days and 1/γ
on the order of hours - see Table 2 of Hogenhout et al. (2008)
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Simulated AP dataset, PT virus

A) AAP length 2h 3h 3.5h 4h 4.5h 5h 6h 8h

i) no. reps 30 30 30 30 30 30 30 30

ii) test plant infections 0 0 9 13 11 16 21 16

LAP length 0.5h 1h 2h 3h 4h 5h 6h 7h 8h

iii) no. reps 30 30 30 30 30 30 30 30 30

iv) test plant infections 30 30 30 30 30 30 30 30 30

IAP length 5m 10m 15m 20m 25m 30m 40m 50m 60m

v) no. reps 30 30 30 30 30 30 30 30 30

vi) test plant infections 13 17 17 23 27 28 30 30 30

B mean 2.5% 97.5% original simulation values

i) acquisition α 0.139h−1 0.098h−1 0.207h−1 0.1h−1

ii) latency γ 0.652h−1 0.169h−1 1.949h−1 0.5h−1

iii) inoculation β 0.882h−1 0.547h−1 1.464h−1 1.0h−1

iii) duration of infectiousness µ 0.044h−1 0.003h−1 0.099h−1 0.01h−1

Table S1.3. Simulated PT virus AP data and analysis. A: Simulated acquisition vary-
ing sub-assay (A), latent period varying sub-assay (B) and inoculation varying sub-assay
(C) assay results for a representative plant virus. Simulations consisted of sampling
random times of acquisition, progression through latency and loss of pathogen for indi-
vidual whitefly from exponential distributions with intensity values based on the ’orig-
inal’ parameter values given in B. B: Parameter estimates for insect-borne transmis-
sion resulting from analysis of the simulated access period assay data in A using the
estimate virus parameters PT() function. Posterior parameter distributions were obtained
using Hamiltonian Monte Carlo, RStan version 2.21.0 (Stan Development Team, 2022),
R version 3.6.3 (Core team, 2014). Additional rStan settings were: warmup = 1000,
chains = 4, iterations = 2000, max(treedepth) = 10, adapt delta = 0.95).
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Figure S1.2. Simulated AP data analysis validation figure for a simulated PT virus. For-
ward simulation of the access period dataset (Table S1.3 A) using the estimate parameters
(Table S1.3 B). We show curves for the 95% forward simulated credible interval and we
superimpose the orginal simulated dataset (empty circles). This process is repeated for
each of the three sub-assays in the experiment (acquisition varying sub-assay, latent access
varying sub-assay and inoculation varying sub-assay).
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Empirical AP dataset, CMB

A) AAP length 2h 3h 3.5h 4h 4.5h 5h 6h 8h

i) test plant infections 0 0 9 13 11 16 21 16

ii) no. reps 30 30 30 30 30 30 30 30

IAP length 5m 10m 15m 20m 25m 30m 40m 50m 60m

iii) test plant infections 0 8 11 10 16 17 19 8 9

iv) no. reps 12 36 36 36 36 24 24 12 12

B mean 2.5% 97.5%

i) acquisition α 0.014h−1 0.012h−1 0.016h−1

ii) inoculation β 3.01h−1 2.219h−1 3.995h−1

iii) latency γ 0.85h−1 0.317h−1 2.053h−1

iii) duration of infectiousness µ 0.005h−1 0.0001h−1 0.019h−1

Table S1.4. CMB AP data and analysis. A: The acquisition varying sub-assay (A), and
inoculation varying sub-assay period (B) data from Dubern (1994), in which B. tabaci
transmission of CMB in cassava was studied. In the acquisition varying sub-assay in-
sect cohorts consisting of 10 insects were moved from infected source plants (for variable
duration) to healthy test plants (for the remainder of their lives) with no intermediate
plant supplied. In the inoculation varying sub-assay insect cohorts consisting of 10 in-
sects were moved from infected source plants (5h feeding access), to healthy test plants
(for variable duration) via a feeding period of 6h on an uninfected intermediate plant. B:
CMB parameter estimates for insect-borne transmission generated from the access period
assay data in A using the estimate virus parameters SPT() function. Posterior param-
eter distributions were obtained using Hamiltonian Monte Carlo, RStan version 2.21.0
(Stan Development Team, 2022), R version 3.6.3 (Core team, 2014). Additional rStan
settings were: warmup = 1000, chains = 4, iterations = 2000, max(treedepth) = 10,
adapt delta = 0.95.
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Figure S1.3. Simulated AP data analysis validation figure for the CMB virus. Forward
simulation of the CMB access period dataset (Table S1.4 A) using the estimated parameters
(Table S1.5 B). We show curves for the 95% forward simulated credible interval and we
superimpose the orginal CMB dataset (empty circles). This process is repeated for the two
sub-assays (acquisition varying sub-assay and inoculation varying sub-assay).
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Supporting Information S2, the estimate virus parameters SPT719

function720

Probability model underlying parameter estimation721

For the SPT variant of the assay we take a different approach to deriving the probability722

model. This is because the probability model has already been derived in Donnelly and723

Gilligan (2020) where it was used to produce point estimates (the method of matching724

gradients). In this work, in contrast, the probability model is used in a Bayesian analysis725

to estimate posterior parameter distributions. In what follows we repeat the steps taken in726

the derivation (Supporting Information S1-S2 in Donnelly et al. (2020); note that several727

typos are corrected here), and we add additional steps relating to parameter estimation.728

In addition, note that for SPT viruses latent periods are assumed to be insignificant - see729

Table 2 of Hogenhout et al. (2008) - and therefore SPTs assays are not expected to feature730

LAPs nor latent period varying sub-assays, and accordingly in our modelling we do not731

attempt to estimate a rate of progression through latency (γ).732

Note, as per Supporting Information S1, insect mortality is an additional factor that733

may play a role in these experiments. We omit insect survival from the main model deriva-734

tion - but then condition the final probability model on discrete levels of insect survival,735

i.e., for comprehensiveness we estimate insect mortality rate as a nuisance parameter that736

is unlikely to significantly influence the dynamics.737
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Model of acquisition access period738

The equations governing the feeding dynamics of insect vectors in an acquisition access

period (AAP) are,

Joint probability dynamics of virus-free and virus-bearing vectors PX,Y (t+ δt)

= PX,Y (t)+ (S2.1)(
Virus loss

µ(Y + 1)PX−1,Y+1(t)− µY PX,Y (t)+
Acquisition loss

α(X + 1)PX+1,Y−1(t)− αXPX,Y (t)

)
δt,

where X and Y represent the number of virus-free and virus-bearing insect vectors. System739

S2.1 has the initial condition: X(0) = X0, Y (0) = 0 (i.e., PX0,0(0) = 1). Insects acquire740

the virus at rate α per hour and lose the virus at per capita rate µ per hour (as per main741

text).742

System S2.1 can be rewritten as a partial differential equation (PDE) in which the de-743

pendent variable is the probability generating function, denoted g(z1, z2, t), of the variables744

X and Y from system S2.1, i.e., g(z1, z2, t) =
∑
X,Y

zX1 z
Y
2 PX,Y (t). The strategy is to solve the745

PDE and hence to recover the distribution of either population variable by manipulating746

the system’s probability generating function. Multiplying both the left hand side and right747

hand terms of the stochastic process in system S2.1 by
∑
X,Y

zX1 z
Y
2 and rearranging, produces748

the PDE:749

∂g

∂t
=

∂g

∂z1
(αz2 − α)z1 +

∂g

∂z2
(µz1 − µz2) (S2.2)

The PDE in equation S2.2 is linear and can be solved along characteristic curves (curves on750

which the solution g(z1, z2, t) is constant). This involves forming a linear system of ODEs751

from the PDE. They are given by,752
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dz1
dt

= −(αz2 − αz1)

dz2
dt

= −(µz1 − µz2) (S2.3)

This linear ODE system can be solved by first solving it as a homogeneous system with753

coefficient matrix,754

A =

 α −α

−µ µ



which has the eigenvalues: λ1 = 0, λ2 = α + µ. The problem is homogeneous and the755

homogeneous solution is a linear combination based on the e-values, i.e.,756

ẑ(t) = c1v̂1e
λ1t + d1v̂2e

λ2t, (S2.4)

where the vectors v̂1 and v̂2 are the eigen-vectors for the corresponding eigen-values. Cal-757

culating the eigen-vectors leads to v̂1 = (1 1)T and v̂2 = (−α µ)T . Which can be written758

as,759

z1(t) = c1 − c2αe
(α+µ)t

z2(t) = c1 + c2µe
(α+µ)t. (S2.5)
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Then letting z1(0) = z01 and z2(0) = z02 we find that c1 = z01 + (α/(α + µ))(z02 − z01) and760

c2 = (z02 − z01)/(α + µ)). Then using the relation,761

z01 = (z1(t)− z2(t))e
−(α+µ)t + z02 , (S2.6)

we can express the solutions with the constant terms on the left hand side in accordance762

with the method of characteristics,763

z01 = (z1(t)− z2(t))e
−(α+µ)t(

α

µ+ α
+

µ

µ+ α
e−(α+µ)t) + z2(t) (S2.7)

z02 = z2(t)−
µ

µ+ α
(z1(t)− z2(t))(e

−(α+µ)t − 1) (S2.8)

By the method of characteristics (which finds solutions of the PDE along curves where764

solutions are constant), the PDE solution, and hence the generating function, is some765

function of the right hand sides, i.e.,766

g(z1, z2, t) = F (z10 , z
2
0) (S2.9)

All that remains is to find the function F and this is achieved by using the generating767

function’s initial condition, i.e. g(z1, z2, 0) = zX0
1 (to see this note that at t = 0: X = X0768

and Y = 0) so that,769

53



F (z10 , z
2
0)

∣∣∣∣
t=0

= zX0
1

∣∣∣∣
t=0

(S2.10)

=⇒ g(z1, z2, t) =

(
(z1(t)− z2(t))e

−(α+µ)t(
α

µ+ α
+

µ

µ+ α
e−(α+µ)t) + (z2(t)− 1) + 1

)X0

.

(S2.11)

Next we recall that we are interested chiefly in Y (i.e., the number of virus-bearing insects),770

and hence we reduce equation S2.11 to a generating function in Y only (that is marginalising771

over the number without virus, X), i.e.,772

G(z, t) = g(1, z2, t) =

(
1 + (z(t)− 1 +

µ

µ+ α
(1− z(t)) +

α

µ+ α
(1− z(t))e−(µ+α)t

)X0

=

(
1 + (z(t)− 1)(

α

µ+ α
)(1− e−(µ+α)t)

)X0

(S2.12)

Finally, taking the kth derivative over z of G(z, t) and evaluating at z = 0 (which produces773

the probability that Y = k), we see that the underlying distribution for the variable Y774

after t hours of acquisition access has the binomial form,775

dG(k)(0, t)

dz
=
X0(X0 − 1)...(X0 − k + 1)

k!
p(t)k(1− p(t))x0−k

=
∑
k

(
X0

k

)
p(t)k(1− p(t))X0−k (S2.13)

where p(t) = α
α+µ

(1− e−(α+µ)t) and 1− p(t) equal to the term within the large parantheses776

in equation S2.12.777
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Model of inoculation access period778

The equations describing vector dynamics in an inoculation access period (IAP) are gov-

erned by,

Joint dynamics of infected plants and virus-bearing vectors QM,N(t+ δt) = QM,N(t)

+

( Virus loss

µ(N + 1)QM,N+1(t)− µNQM,N(t)+

Inoculation

βNQM−1,N(t)− βNQM,N(t)

)
δt

(S2.14)

with initial conditions: N(0) = 0,M(0) = y0 (i.e., Q0,y0(0) = 1). The system can be779

rewritten as a partial differential equation (PDE) in which the dependent variable is the780

probability generating function, denoted w(s1, s2, t), of the variables M and N from equa-781

tion S2.14, i.e., w(s1, s2, t) =
∑
M,N

sM1 s
N
2 QM,N(t). Multiplying both the left hand side and782

right hand terms of the process in equation S2.14 by
∑
M,N

sM1 s
N
2 and rearranging, produces783

the PDE,784

∂w

∂t
=
∂w

∂s1
0 +

∂w

∂s2
(µ(1− s2)− βs2(1− s1)) (S2.15)

The PDE given by equation S2.15 is linear and can be solved along characteristic curves785

(curves on which the solution w(s1, s2, t) is constant). This involves forming a linear system786

of ODEs from the PDE. They are given by,787

ds1
dt

= 0

ds2
dt

= (βs2(1− s1))− (µ(1− s2) (S2.16)
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Thus s1 is constant with respect to time - henceforth s1 = σ for clarity, and s2 is governed788

by a linear ODE which can be solved for homogeneous and inhomogeneous parts, and789

letting s2(0) = s20, leads to,790

s20 = s2e
−(β(1−σ)+µ)t +

µ

β(1− σ) + µ
(1− e−(β(1−σ)+µ)t) (S2.17)

and hence,791

w(s1, s2, t) = H(s10, s
2
0)

= H(s1, s2e
−(β(1−σ)+µ)t +

µ

β(1− σ) + µ
(1− e−(β(1−σ)+µ)t)) (S2.18)

All that remains is to find the function H and this is achieved by using the generating792

function’s initial condition, i.e. w(s1, s2, 0) = sy02 so that,793

H(s10, s
2
0)

∣∣∣∣
t=0

= sy02

∣∣∣∣
t=0

(S2.19)

⇔ H(s10, s
2
0) = s20

y0 (S2.20)

leading to,794

w(s1 = σ, s2, t) =

(
s2e

−(β(1−σ)+µ)t +
µ

β(1− σ) + µ
(1− e−(β(1−σ)+µ)t)

)y0

(S2.21)

Next we recall that we are interested chiefly in N (i.e., the number of plant inoculations),795

and hence we reduce equation S2.21 to a generating function in N only, i.e.,796
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W (s, t) = w(s1, 1, t) =

(
µ+ β(1− s1)e

−β(1−s1)+µ)t

β(1− s1) + µ

)y0

. (S2.22)

since w(1, s2, t) =
∑

M,N 1MsN2 PM,N(t) = w(s2, t) by the definition of generating functions.797

Since we are interested in the probability of plant infection, denoted S(t), we can finally798

convert equation S2.22 to a simpler form by calculating the probability that N ≥ 1. This799

leads to,800

S(t) = 1−W (0, t) = 1−
(
µ+ βe−(β+µ)t

β + µ

)y0

. (S2.23)

Parameter estimation from the combined access period model801

The preceding models are combined by noting that equation S2.23 has the exponent y0802

which is the number of infected insects at the end of the AAP (equation S2.13). Together803

they correspond to the probability of test plant infection, PTPI , at the end of the IAP,804

PTPI =
∑
k

(
X0

k

)
q(δTA)

k(1− q(δTA))
X0−k

(
1−

(
µ+ βe−(β+µ)δTI

β + µ

)k
)

(S2.24)

where q(t) = α
α+µ

(e−bt−e−(α+µ)t) and where δTA and δTI are the acquisition and inoculation805

durations respectively.806

Using binomial expansion this can be written as,

PTPI = 1− (1− α

α + µ

β

β + µ
(1− e−(α+µ)δTA)(1− e−(β+µ)δTI ))X0 (S2.25)

= 1− (1− c1(1− e−c2δTA)(1− e−c3δTI ))X0 , (S2.26)
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where c1 =
α

α+µ
β

β+µ
, c2 = α + µ and c3 = β + µ.807

Finally,

TPIAj ∼ Bin(nRepsAj , 1− (1− c1(1− e−c2δTA)(1− e−c3δTI ))X0) (S2.27)

TPIIj ∼ Bin(nRepsIj , 1− (1− c1(1− e−c2δTA)(1− e−c3δTI ))X0). (S2.28)

where δTA and δT I denote the fixed acquisition and inoculation access duration portions808

of the inoculation and acquisition access assays respectively. In addition, δTA
j and δT I

j809

denote the particular durations from the portions of the inoculation and acquisition access810

assays with variable duration.811

Note that in practice the access period data may often specify X0 as the number of

insects at the start of the IAP rather than at the start of the AAP (as was done for the CBSI

dataset of Maruthi et al. (2020)). This means that insect mortality is only relevant during

the IAP (effectively the acquisition varying sub-assay data already conditions on insect

survival because only living insects are taken forward to form the X0 insects at the start

of the IAP). This appears to be the most common situation and therefore, henceforth, for

simplicity, taking a similar approach to Supporting Information S1, we set b = 0 throughout

the model (zero insect mortality) - but we set δT eff
I = min(δTI , X) (effective duration of

the IAP for a given insect is the smaller of the length of the IAP and insect survival, X).

As with Supporting Information S1, we condition the probability of test plant infection for
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a single insect on the discretised length of survival, X(b)j. This situation corresponds to,

TPIAj ∼ Bin

(
nRepsAj , 1−

(
1− P (δTAj, δT

eff
I )

)X0
)

(S2.29)

TPIIj ∼ Bin

(
nRepsIj , 1−

(
1− P (δTA, δT

eff
Ij

)
)X0
)
, (S2.30)

p(δTA, δT
eff
I |X) = c1(1− e−c2δTA)(1− e−c3δTI ) (S2.31)

δT eff
I = min(δTI , X) (S2.32)

X ∼ exp(b). (S2.33)

where c1 =
α

α+µ
β

β+µ
, c2 = α+µ and c3 = β+µ. Finally, then the unconditioned expression

for the probability of ultimate test plant infection for a single insect is,

P (δTA, δT I) =

∫ X=LS

X=0

p(δTA, δT I |X)P (X)dX

≈
∑
j

p(δTA, δT I |Xj)P (Xj) (S2.34)

≈
∑
j

p

(
δTA, δT I

∣∣∣∣Xj =
Tj−1 + Tj

2

)(
e−bTj − e−bTj−1

)
, (S2.35)

for j = 1..N such that probability with X1 = 0 and XN = LS, where LS denotes assumed812

maximum insect lifespan. Since we are allowing for a distribution for the parameter b,813

however, LS simply defines an upper bound for the discretisation. In addition, P (Xj) =814

e−bTj − e−bTj−1 is probability of insect mortality between time Tj−1 and Tj, or equivalently,815

insect survival up until the above time window. Note also that Xj = (Tj−1 + Tj)/2 assigns816

a survival value that is mid-point with respect to the time window - that is survival is817

discretised such that the survival at the mid-point of a time window has corresponding818

probability related to the probability of mortality at any point in the window with mortality819

assumed to follow an exponential distribution with rate b. Finally, note that at the upper820

bound XN = TN , P (XN) = 1− e−bTN . In the estimate virus parameters SPT function the821

59



user supplies LS in days and the number of time points per day tp, so that N = LS ∗ tp,822

and by default tp = 1.823
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Parameter estimation from simulated and experimental datasets824

Firstly, note that we can unpack the estimated composite parameters c1, c2, c3 (equations825

S2.29-S2.33) as follows. Since c1 =
α

α+µ
β

β+µ
, c2 = α + µ and c3 = β + µ,826

c2 − c3 = XX = α− β (S2.36)

c1c2c2 = Y Y = αβ (S2.37)

=⇒ β2 +XXβ − Y Y = 0 (S2.38)

=⇒ β+ =
−XX +

√
XX2 + 4Y Y

2
, (S2.39)

where it is straightforward to see that there will always be a negative and a positive root827

β. Therefore, proceeding with the positive root only (β+), it then follows that,828

α = XX + beta+ (S2.40)

µ = c3 − beta+, (S2.41)

and posterior parameter distributions can accordingly be produced using MCMC for α,829

β+ and µ from the main estimated composite parameters c1, c2 and c3 (this is achieved in830

rstan using the generated quantities block of the stan file).831

In this Supporting Information section we present simulated AP data and parameter es-832

timates that emerge from analysing the simulated data with estimate virus parameters SPT833

function (Table S2.2 A-B). We also present the published empirical AP data and the param-834

eter estimates (from analysing the data with the estimate virus parameters SPT function)835

for the SPT CBSI virus in tables S2.3. For comparison we show the point estimates for836

CBSI reported in Donnelly et al. (2020) (tables S2.3 ‘math estimate’ column). In general837
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the correspondence is good, but that the rate of virus acquisition is somewhat overesti-838

mated in Donnelly et al. (2020). Finally, as per Supporting Information 1, insect mortality839

rate b is also estimated for completeness - we set an uninformative uniform prior for mor-840

tality rate, between 0.1h and DLS, where DLS can be provided by the user but otherwise841

defaults to 50d. In fact, DLS merely helps to structure the discretisation of insect survival842

and is not expected to impact the outcome. Note that we find that b, has little influence843

on AP dynamics, and is effectively a nuisance parameter that is estimated in the modelling844

for thoroughness.845

Simulated test dataset846

A) Model 1 Parameter to be fitted Prior distribution

c1 =
α

α+µ
β

β+µ
composite parameter ∼ half − normal(0, 1)

c2 = α + µ composite parameter ∼ half − normal(0, 1)

c3 = β + µ composite parameter ∼ half − normal(0, 1)

B) Data variables

nRepsAj # experimental reps jth AAP assay data

nRepsLj # experimental reps jth LAP assay data

nRepsIj # experimental reps jth IAP assay data

δTA
j access period length jth AAP assay data

δTL
j access period length jth LAP assay data

δT I
j access period length jth IAP assay data

TPIAj # infected test plants jth AAP assay data

TPILj # infected test plants jth LAP assay data

TPIIj # infected test plants jth IAP assay data

Table S2.1. Parameter definitions, and prior distributions, for the model-based Bayesian
analysis. Composite parameters involve parameters defined in Table S1.1. All prior distri-
butions were chosen to be non-informative.
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Simulated AP dataset, SPT virus

A) AAP length 2h 3h 3.5h 4h 4.5h 5h 6h 8h

i) no. test plant infections 16 19 16 23 15 15 18 18

ii) no. reps 30 30 30 30 30 30 30 30

IAP length 5m 10m 15m 20m 25m 30m 40m 50m 60m

iii) test plant infections 3 8 14 11 12 13 13 18 19

iv) no. reps 30 30 30 30 30 30 30 30 30

B median 2.5% 97.5% original simulation values

i) acquisition α 0.085h−1 0.027h−1 2.194h−1 0.1 h−1

ii) inoculation β 1.149h−1 0.267h−1 2.194h−1 1.0 h−1

iii) latency γ − − −

iii) duration of infectiousness µ 0.920h−1 0.378h−1 1.750h−1 1.0 h−1

Table S2.2. Simulated SPT virus AP data and analysis. A: Simulated acquisition varying
sub-assay and inoculation varying sub-assay assay results for a representative SPT plant
virus. See B ’original’ column for the underlying viral parameter values. Simulations con-
sisted of sampling random times of acquisition and loss of pathogen for individual whitefly
from exponential distributions with intensity values based on the ’original’ parameter values
given in B. B: SPT viral parameter estimates for insect-borne transmission generated from
the simulated access period assay data in A using the estimate virus parameters SPT()
function. Posterior parameter distributions were obtained using Hamiltonian Monte Carlo,
RStan version 2.21.0 (Stan Development Team, 2022), R version 3.6.3 (Core team, 2014).
Additional rStan settings were: warmup = 4500, chains = 4, iterations = 6000,
max(treedepth) = 10, adapt delta = 0.95.
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Figure S2.1. Simulated AP data analysis validation figure for a simulated SPT virus. For-
ward simulation of the access period dataset (Table S2.2 A) using the estimate parameters
(Table S2.2 B). We show curves for the 95% forward simulated credible interval and we su-
perimpose the original simulated dataset (empty circles). This process is repeated for each
of the two sub-assays in the experiment (acquisition and inoculation varying sub-assays).
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Empirical AP dataset, CBSI

A) AAP length 0.13h 0.5h 1h 4h 24h 48h

i) test plant infections 4 8 10 6 9 6

ii) no. reps 25 25 25 15 20 15

iAP length 0.13h 0.5h 1h 4h 24h 48h

iii) test plant infections 6 7 8 13 29 6

iv) no. reps 31 33 39 35 48 15

B median 2.5% 97.5% Donnelly et al. (2020) estimates

i) acquisition α 0.638h−1 0.088h−1 1.735h−1 1.818 h−1

ii) inoculation β 0.056h−1 0.019h−1 0.475h−1 0.021 h−1

iii) latency γ − − −

iii) duration of infectiousness µ 0.807h−1 0.406h−1 1.468h−1 0.632 h−1

Table S2.3. CBSI AP data and analysis. A: The acquisition varying sub-assay (A) and
inoculation varying sub-assay (B) assay results from Maruthi et al. (2020). In the ac-
quisition varying sub-assay insect cohorts consisting of 20-25 insects were moved from
infected source plants (for variable duration) to healthy test plants (for 48h). In the in-
oculation varying sub-assay insect cohorts consisting of 20-25 insects were moved from
infected source plants (48h feeding access), to healthy test plants (for variable duration).
Note that for out analyses we assumed a value of 23 insects in place of the reported 20-25
insects. B: CBSI parameter estimates for insect-borne transmission generated from access
period assay data using the estimate virus parameters SPT() function. Posterior param-
eter distributions were obtained using Hamiltonian Monte Carlo, RStan version 2.21.0
(Stan Development Team, 2022), R version 3.6.3 (Core team, 2014). Additional rStan
settings were: warmup = 4500, chains = 4, iterations = 6000, max(treedepth) = 10,
adapt delta = 0.95.

847
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Figure S2.2. Simulated AP data analysis validation figure for the CBSI virus. Forward
simulation of the CBSI access period dataset (Table S2.3 A) using the estimated parameters
(Table S2.3 B). We show curves for the 95% forward simulated credible interval and we
superimpose the original CBSI dataset (empty circles). This process is repeated for the
two sub-assays (acquisition and inoculation varying sub-assays).
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Supporting Information S3, the calculate epidemic probability848

function849

4.0.1 The processes determining inoculum extinction850

We begin by asking what is the fate of one introduced infected plant i.e., what is the851

extinction probability, denoted P (IF0 ) (with notation as listed in Table S3.1)? This then852

requires consideration of all the possible future events for one infected plant with 0 infected853

insects. Note that the set of inoculum states depends on the number of insects per plant854

which is assumed constant and is denoted F . For a simple example, when F = 2 there are855

8 inoculum states, they are I20 , I
2
1 , I

2
2 , E

2
0 , E

2
1 , E

2
2 , S

2
1 , S

2
2 . More generally, there are exactly856

3×F−1 inoculum states: the −1 accounts for the state SF
0 which corresponds to extinction.857

For instance, the infected plant may be rogued (i.e., a transition from IF0 to SF
0 ) with

rate r, or it may be harvested (i.e., a transition from IF0 to SF
0 ) with rate h, or, alternatively,

one of the phloem-feeding insects on the plant may acquire the virus (i.e., a transition from

IF0 to IF1 ) with rate Fα. Conditioning extinction probabilities on future events one can

write,

P (I0) =
r

r + (F − 0)α
P (S0) +

(F − 0)α

r + (F − 0)α
P (I1). (S3.1)

Conditioning equations can be written too for P (IF1 ), and in turn for the extinction prob-

abilities downstream of P (IF1 ), noting, however, that P (S
F
0 ) = 1. When the extinction

probabilities in each inoculum state have been related to each other in this way together

they form semi-linear systems of equations. Writing these now using general notation the
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systems are of the form,

s⃗i =

(∑
j ̸=i

δij s⃗j

)
+ w⃗, (S3.2)

⇔ T s⃗+ w⃗ = 0, (S3.3)

where s⃗ is a vector of length L = 3× (F +1)− 1 containing the extinction probabilities for858

each state, and T is a square matrix of dimension L consisting of transition rates between859

the states - with Ti=j = −1. Finally w⃗ is a vector of length L containing the rates of860

transition that result in direct extinction from each state.861

4.0.2 The calculate epidemic probability function862

The transition rates for the matrix T are shown in Table S3.2 for the simple case F =863

1. The general case, however, can be constructed in a similar way. The elements of864

the vector w⃗ are also shown in Table S3.2 - they are the events that result in a post-865

transition extinction probability of 1. The semi-linear system 4.0.3 has the fixed point866

solution vector ⃗̂s which represents the extinction probability for each possible inoculum867

state (recalling that we equate inoculum with a single plant and its resident insects). The868

calculate epidemic probability function constructs the semi-linear system based on the869

number of insects per plant and it returns 1 minus the fixed points of the system (i.e., the870

epidemic probability from each starting inoculum state). This involves numerical solving871

of system with the standard base R function.872

Propagation of inoculum foci873

It is important to note that system takes account of the generation of new inocula plants874

implicitly - this occurs through insect dispersal which results in a product of extinction875

probabilities for the relevant inoculum state (see e.g. event 2.13 in Table S3.2). In other876
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words, when there is dispersal of an infected insect the extinction probability in the first877

instance increases to that of the same inoculum state but with 1 fewer infected insect (for878

instance, from P (I11 ) to P (I
F
0 )). But this is not the end of the story, the assumption that879

the dispersing infected insect alights elsewhere on an uninfected plant (since all other plants880

are assumed uninfected) means that the extinction probability is instead the product of881

the first inoculum plant state and the new one, i.e., P (IF0 )P (S
F
1 ), so that the probability882

of extinction has in fact decreased significantly after the infected insect dispersal.883

Finally, note that for convenience the algorithm models insect dispersal as an insect884

exchange between two plants. This allows the number of insects per plant to remain885

constant across all plants. Note that in practice this means that rate of insect dispersal is886

exactly doubled in the algorithm and therefore when we report the results we report them887

as the natural dispersal rate (i.e., twice the algorthim dispersal rate). Note that future888

versions of the EpiPv package will allow for dynamic insect abundance.889

4.0.3 Calculation of epidemic probability using an iterative approach890

System has multiple solutions because it contains a (weak) non-linearity - though there891

is typically only one viable solution. In fact, constraints inherent in the branching process892

mean that one can simply take the smallest fixed point for each state across the multiple893

extinction probability solutions.894

Nevertheless, an alternative approach works by iterating extinction probability over895

time so that the extinction probabilities depend on the starting point and time t s⃗ =896

s⃗(t0, t). When run to an asymptote in s⃗ this is equivalent to the smallest extinction897

probability solutions across the fixed points of the semi-linear system . The iterative898

approach, however, has several advantages: it is a natural way to calculate extinction899

probability with respect to a finite season, and it is straightforward to incorporate time-900

dependent rates (see final subsection in this Supporting Information).901
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We iterate the equivalent of system 4.0.3 from initial conditions representing initial902

invasion (i.e., s⃗(t0) = 0 since at the point where inoculum has been introduced the local903

epidemic is definitely not extinct) until a solution (asymptote) has been reached s⃗(tasymp)904

or the season-end has been reached. We now briefly summarise the iterative algorithm905

which is encoded in the calculate epidemic probability function of the EpiPv package.906

Just as T and w⃗ determined the solution of system 4.0.3, the iterative extinction proba-907

bility vector s⃗(t) is updated using transition and fertility matrices t̃ and f (Caswell, 2000).908

The entries of t̃ are the probabilities that a transition occurs in a given time step.909

In addition, t̃ includes an (L + 1)th row for direct extinction (i.e, equivalent to w⃗ in910

system 4.0.3), making t̃ of dimension L+1×L. We must also allow for no event occurrence911

in the fixed time step: t̃i,i = 1−
∑

i ̸=j t̃i,j. In addition, calculate epidemic probability selects912

the biggest interval δt such that
∑

i t̃i,j < 1 for all j. The fertility matrix f (dimension913

L×L) is zero apart from the row corresponding to the inoculum state SF
1 (the L−(F−1)th914

row. This row of f contains the probabilities of infected insect dispersal from the various915

inoculum states to a new plant in the given time step (positive only for the states XF
j with916

j ≥ 1 and X ∈ S,E, I). These values are the same as the entries corresponding to infected917

insect dispersal in t̃.918

The EpiPv R package function calculate epidemic probability outputs the epidemic prob-919

ability for each inoculum state for a location with user-input F insect burden per plant920

and local parameters ν, r, θ, b, h. In addition the function takes the virus parameters α, β,921

µ as arguments and these can be estimated from access period experiment data using the922

estimate virus parameters SPT and estimate virus parameters PT functions. A precision923

value which is used to identify when an asymptote has been reached in the iterative process924

or alternatively, the user can specify when a growing season ends. Users of the function925

will typically be interested in the solution elements s⃗(tasymp)1 (probability of extinction926

for a single infected plant introduction) and s⃗(tasymp)L−(F−1) (probability of extinction for927
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a single infected insect vector introduction). Note that 1− the extinction probability in928

question results in the epidemic probability output.929

A single iteration of the algorithm updates s⃗(t) to s⃗(t + 1) for each inoculum state i930

using the set of calculations,931

gb = 1− f(ν, :) + f(ν, :)s⃗ν(t)

gt = t̃′ ∗ [s⃗(t); 1]

s⃗(t+ 1) = gt.∗gb

We now provide explanation for each step of the iteration, note also that in the above ∗932

denotes matrix multiplication, and where .∗ denotes element-wise vector multiplication.933

First, gb scales extinction probability by the probability that a new foci is produced.934

This is needed because spread to new foci leads to a proportional reduction in extinction935

probability. This corresponds to a multiplication of extinction probability from the current936

state with extinction probability for the new expanded state. The algorithm is written937

above to reflect that new foci correspond to a the S1 inoculum state only (i.e., ν = L −938

(F − 1), the ’birth state’ corresponding to SF
1 ). Note that gb is simply 1 when there is no939

foci spread from an inoculum state (scaled by the probability of no foci spread), otherwise it940

is P (SF
1 ) (scaled by the probability of foci spread). In this way the gb calculation produces941

a container column vector of length n.942

Second, gt computes the transitions between the inoculum states. Note that t̃ is an943

(n+1)xn matrix where the final row is the probability of direct extinction. The transpose944

of this matrix is multiplied by the vector of inoculum states with the value 1 appended,945

i.e., an column vector of length n+ 1. In this way the gt calculation produces a container946

column vector of length n.947
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Finally, the element-wise multiplication of the gb and gt vectors produces updated948

extinction probabilities from each inoculum state.949

4.0.4 Incorporating dynamic insect abundance using an iterative approach950

As a final note, though intuitive to field pathologists and convenient given frequent asso-951

ciations of whitefly burden with location, assuming a single level of whitefly abundance952

per plant at a location is unrealistic. The iterative approach, however, means that one953

can readily incorporate dynamic insect abundance. One way to achieve this is for the954

algorithm to be constructed for the maximum number of insects per plant in a season.955

The iteration would then commence as usual with extinction probability equal to 1 for956

all inoculum states except the one corresponding to inoculum introduction. The dynamic957

level of abundance F ′(t) is then incorporated only in the rate of virus acquisition. Where958

previously this was α(F − j) for the inoculum state IFj this would now become α(F ′(t)− j)959

- but note that the notation for the inoculum states retain their previous form e.g. IFj with960

F here referring to the maximum insect abundance per plant over the season (cf. F ′(t) in961

the total acquisition rate which denotes actual dynamic abundance at time t).962

72



A) Notation Parameters & principal variables Units/labelling

S susceptible plant plant type

E latent-infected plants plant type

I infectious plants plant type

P (Xj
F ) extinction prob plant type Xj

F probability

Xj
F plant type X with j from F infected insects inoculum state

α pathogen acquisition rate rate h−1

β pathogen inoculation rate rate h−1

B) Field model

ν rate of onset of plant infectiousness rate h−1

µ rate of loss of insect infectiousness rate h−1

r rate of infected plant removal rate h−1

F #insect insects per plant integer

θ rate of insect dispersal rate h−1

h harvesting rate rate h−1

b rate of insect mortality rate h−1

Table S3.1. Parameter definitions for the laboratory and field models.
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pre-transition probability post-transition probability

P (I10 ) Infected plant rogue I10 → S1
0

r
r+h+α

(S3.4) 1

Infected plant harvest I10 → S1
0

h
r+h+α

(S3.5) 1

Insect acquisition I10 → I11
α

r+h+α
(S3.6) P (I11 )

P (I11 ) Infected insect dispersal I11 → I10
θ

θ+µ+b+r+h
(S3.7) P (I10 )P (S

1
1)

Infected insect recovery I11 → I10
µ

θ+µ+b+r+h
(S3.8) P (I10 )

Infected insect death I11 → I10
b

θ+µ+b+r+h
(S3.9) P (I10 )

Infected plant rogue I11 → S1
1

r
θ+µ+b+r+h

(S3.10) P (S1
1)

Infected plant harvest I11 → S1
1

h
θ+µ+b+r+h

(S3.11) P (S1
1)

P (E1
0) Exposed plant harvest E1

0 → S1
0

h
ν+h

(S3.12) 1

Exposed plant progression E1
0 → I10

ν
ν+h

(S3.13) P (I10 )

P (E1
1) Infected insect dispersal E1

1 → E1
0

θ
θ+µ+b+ν+h

(S3.14) P (E1
0)P (S

1
1)

Infected insect recovery E1
1 → E1

1
µ

θ+µ+b+ν+h
(S3.15) P (E1

0)

Infected insect death E1
1 → E1

1
b

θ+µ+b+ν+h
(S3.16) P (E1

0)

Exposed plant harvest E1
1 → S1

1
h

θ+µ+b+ν+h
(S3.17) P (S1

1)

Exposed plant progression E1
1 → I11

ν
θ+µ+b+ν+h

(S3.18) P (I11 )

P (S1
1) Infected insect dispersal S1

1 → S1
0

θ
θ+µ+b+h

(S3.19) P (S1
1)

Infected insect recovery S1
1 → S1

0
µ

θ+µ+b+h
(S3.20) 1

Infected insect death S1
1 → S1

0
b

θ+µ+b+h
(S3.21) 1

Susceptible plant harvest S1
1 → S1

1
h

θ+µ+b+h
(S3.22) P (S1

1)

Table S3.2. Table of transition rates, with pre- and post-transition extinction probabilities,
for the case of F = 1, which can be generalised for any insect burden F .
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Supporting Information S4, the AP data simulator func-963

tion964

We additionally include a function for simulating AP data given underlying assay structure965

(TA, TL and TI , number of replicates n and number of insect vectors used W0). It is also966

necessary to specify virus transmission parameters from which to simulate virus acquisition,967

inoculation, latency progression and clearance (i.e. the user must provide values for α, β,968

γ and µ).969

The AP assay simulator R function (EpiPv package) then draws n samples from ex-970

ponential distributions for each the following virus transmission parameters, α, β and γ.971

The AP assay simulator function calls AP insect simulator (to simulate random times of972

acquisition, inoculation, loss of infectiousness, progression through latency on a per insect973

basis). This in turns calls the inoc durtn calculator function which calculates the effective974

duration of inoculation for each set of samples, T eff
I : this is the intersection of the IAP975

period and the period when a given insect was infectious. Finally the probability of test976

plant infection is calculated by sampling from an exponential distribution with rate β and977

testing whether the sample is less than T eff
I (i.e., whether or not an inoculation event978

occurred within the effective inoculation window).979

The AP assay simulator R function performs these calculations for each insect of W0980

initial insects, to produce n experimental replicates of an AP assay.981
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Supporting Information S5, Validation of virus param-982

eter estimates983

We here describe the exercise of comparing individual-based simulation of epidemic data984

with predicted epidemic risk. By individual-based simulation we mean the reproduction of985

the events that occur when inoculum is introduced into a field. The events are simulated986

in proportion to expected statistical distributions which are updated each time an event987

occurs. We perform this computationally complex procedure as a baseline with which988

to compare our calculations of epidemic probability (i.e., if they agree then accuracy of989

the calculations are verified). When we ran the calculate epidemic probability function990

for a range of values for four focal parameters (with remaining values held constant), we991

found that the predicted epidemic probability matched the outcomes of individual-based992

computer simulations for the same underlying sets of parameter values. An infected plant993

introduction at the start of a season was simulated with fields evaluated at the end of the994

season to assess whether or not a local epidemic had occurred (a value of 1 was assigned if995

there was > 1 infected plant after 1yr of simulated events, otherwise 0).996

In figure S5.1 stochastic simulations were conducted in batches of 50 (i.e. an epidemic997

probability sensitivity of 1/50 per batch) for a representative plant virus. For each param-998

eter value there were 20 batches (i.e. 20 data points per parameter value). Grey circles999

denote individual batch outcomes, black circles denote the mean over the batches and blue1000

crosses denote the predicted value (A-D). This process was repeated for four underlying1001

epidemiological parameters: the rate of roguing (A), the dispersal rate (B), the rate of1002

pathogen clearance from the insect (C) and the number of insects per plant (per top 51003

leaves) (D). Figure data-points for predicted epidemic probability were obtained using the1004

calculate epidemic probability function. Note that the individual-based simulation is for1005

manuscript validation only and is not provided in the EpiPv function.1006
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Figure S5.1. Validation of predicted epidemic probabilities using individual-based simu-
lations. In A-D we plot the epidemic outcome of stochastic simulations of infected plant
introductions against the predicted values.
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Supporting Information S6, AP dataset structure in1007

the EpiPv package1008

AP datasets have an obligatory structure in the EpiPv package. This structure is required1009

in the arguments of the estimate virus parameters package functions. In vignette B, assay1010

simulation script - we show how to produce this structure using the AP data simulator.1011

Experimenters with empirical data should first determine whether they are analysing1012

an SPT virus or a PT virus (see e.g. Carr et al. (2018); Hogenhout et al. (2008) and note1013

that non-persistently aphid-transmitted viruses should not be analysed with this package1014

due to their unique transmission mode see e.g. ).1015

They are then advised to load the corresponding example dataset that is available in1016

the package: either load(ap data sim PT) or load(ap data sim SPT) as appropriate. They1017

can then edit the ensuing list (i.e. dataset object in r) and assign it to a dedicated list:1018

ap data myVirus PT=ap data sim PT. They should then replace the elements of the list1019

with their data.1020

We now show the list elements using ap data sim PT for reference:1021

$d_AAP1022

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]1023

T_vec 1 1.5 1.75 2 2.25 2.5 3 41024

R_vec 30 30.0 30.00 30 30.00 30.0 30 301025

I_vec 15 17.0 21.00 27 25.00 27.0 24 301026

1027

$d_LAP1028

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]1029

T_vec 0.5 1 2 3 4 5 6 7 81030

R_vec 30.0 30 30 30 30 30 30 30 301031
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I_vec 26.0 28 28 29 24 27 26 25 281032

1033

$d_IAP1034

[,1] [,2] [,3] [,4] [,5] [,6] [,7]1035

T_vec 0.08333333 0.1666667 0.25 0.3333333 0.4166667 0.5 0.66666671036

R_vec 30.00000000 30.0000000 30.00 30.0000000 30.0000000 30.0 30.00000001037

I_vec 4.00000000 7.0000000 12.00 17.0000000 14.0000000 18.0 18.00000001038

[,8] [,9]1039

T_vec 0.8333333 11040

R_vec 30.0000000 301041

I_vec 21.0000000 251042

1043

$d_durations1044

[,1] [,2] [,3]1045

AAPfixedComponent -1 0.5 11046

LAPfixedComponent 2 -1.0 11047

IAPfixedComponent 2 0.5 -11048

1049

$d_vectorspp1050

[1] 201051

1052

$d_virusType1053

[1] "PT"1054

1055

attr(,"alpha")1056

[1] 0.11057
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attr(,"beta")1058

[1] 11059

attr(,"gamma")1060

[1] 0.51061

attr(,"mu")1062

[1] 0.011063

And the list elements using ap data sim SPT for reference:1064

$d_AAP1065

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]1066

T_vec 2 3 3.5 4 4.5 5 6 81067

R_vec 30 30 30.0 30 30.0 30 30 301068

I_vec 19 15 20.0 17 20.0 23 18 201069

1070

$d_IAP1071

[,1] [,2] [,3] [,4] [,5] [,6] [,7]1072

T_vec 0.08333333 0.1666667 0.25 0.3333333 0.4166667 0.5 0.66666671073

R_vec 30.00000000 30.0000000 30.00 30.0000000 30.0000000 30.0 30.00000001074

I_vec 3.00000000 7.0000000 5.00 12.0000000 14.0000000 12.0 16.00000001075

[,8] [,9]1076

T_vec 0.8333333 11077

R_vec 30.0000000 301078

I_vec 15.0000000 161079

1080

$d_durations1081

[,1] [,2]1082
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[1,] -1 61083

[2,] 4 -11084

1085

$d_vectorspp1086

[1] 201087

1088

$d_virusType1089

[1] "SPT"1090

1091

attr(,"alpha")1092

[1] 0.11093

attr(,"beta")1094

[1] 11095

attr(,"mu")1096

[1] 11097
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