
 Code review in practice: A checklist for
 computational reproducibility and collaborative
 research in ecology and evolution

 Friederike Hillemann 1 📧 , Joseph B. Burant 2 , Antica Čulina 3 , Stefan J. G.
 Vriend 4

 1 Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands

 Current address: Department of Psychology, University of Durham, UK

 f.hillemann@ web.de – 📧 Corresponding author

 ORCiD: 0000-0002-8992-0676

 2 Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands

 j.burant@nioo.knaw.nl

 ORCiD: 0000-0002-0713-3100

 3 Ruder Boskovic Institute, Zagreb, Croatia and Department of Animal Ecology, Netherlands

 Institute of Ecology, Wageningen, The Netherlands

 aculina@irb.hr

 ORCiD: 0000-0003-2910-8085

 4 LTER-LIFE and Department of Aquatic Ecology, Netherlands Institute of Ecology, Wageningen,

 The Netherlands

 s.vriend@nioo.knaw.nl

 ORCiD: 0000-0002-9006-5988

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

mailto:f.hillemann@nioo.knaw.nl
mailto:j.burant@nioo.knaw.nl
mailto:aculina@irb.hr
mailto:s.vriend@nioo.knaw.nl

 Data & Code Availability
 This manuscript did not generate or use any data or code.

 Author Contributions
 Conceptualisation: JBB, FH, SJGV, AC

 Writing - Original Draft: FH

 Writing - Review & Editing: all authors

 Visualisation: JBB, FH, SJGV

 Funding acquisition: JBB, AC, SJGV

 Conflicts of Interest
 The authors declare no competing interests, financial or otherwise.

 Acknowledgements
 We are grateful to Amélie Fargevieille and Haneul Jang for helpful feedback to the checklist, and

 to Ed R. Ivimey-Cook, Joel L. Pick, and Saras M. Windecker for their encouragement and early

 conversations that helped shape this work, and for helpful comments on an earlier draft.

 Funding
 FH was funded by the NWO Open Science Fund (2023) from the Dutch Research Council (NWO),
 grant number NWO OSF23.1.025, project title: CoreBirds: Connecting Open Research outputs in
 the Ecology of Birds, awarded to Marcel Visser (applicant), and JBB, AC, SJGV (team members).

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 Abstract

 Ensuring that research, along with its data and code, is credible and accessible is crucial for

 progress especially in ecology and evolutionary biology, especially given that the climate crisis

 and biodiversity loss demand urgent, transparent science. Yet, code is rarely shared alongside

 scientific publications, and when it is, poor documentation and unclear implementation often

 hinder reuse. Targeted code review can improve key aspects of code quality: reusability

 (technical functionality and documentation) and validity (ensuring the code implements the

 intended analyses faithfully). While assessing validity requires domain expertise, reviewing the

 reusability of code can be done by anyone with basic programming knowledge. To make code

 review accessible for researchers with diverse coding experience , we introduce a list of guiding

 questions organised around seven key attributes of reusable scientific code: Reporting, Running,

 Reliability, Reproducibility, Robustness, Readability, and Release. We built an open-source

 companion app with an intuitive, interactive checklist interface that lets users export an editable

 Markdown report with comments for archiving or sharing . By defining and operationalising

 these principles of code review, our tool supports an approachable and systematic yet flexible

 review process, whether for self-assessment or peer review . Informed by best practices in

 software development and community recommendations, the 7Rs-checklist clarifies standards

 for research code quality and promotes reproducible coding, thereby strengthening research

 credibility. It also provides a valuable resource for teaching and training by helping to structure

 conversations around code quality and collaboration in research.

 Keywords

 1. Research Software
 2. Code Quality
 3. Reusable Code
 4. Collaborative Research
 5. Open Science

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 Introduction: Code as scientific output
 Code-based pipelines for scientific data processing and analysis have become standard in the
 Life Sciences, supporting tasks such as file management, statistical modelling, visualisation, and
 generating reproducible reports (Perkel 2016, Abdill et al. 2024). As such, scientific code is not
 only a tool but a core component of the research workflow and output, and should be shared
 and peer-reviewed like other methodological details, to ensure research integrity and
 reproducibility (Ivimey-Cook et al. 2023).

 I n the face of global challenges such as climate change, ensuring that science is transparent and
 cumulative is not only good practice but an ethical obligation, and reusable code and data are
 essential components of this responsibility (Sandve et al. 2013; Bledsoe et al. 2022; Gomes
 2025). At the same time, unverifiable research risks becoming an unstable foundation for future
 research and fuelling the ongoing crisis of confidence in science.

 The Open Science movement has promoted the publication of data and code, shifting norms
 towards treating methods, including data-processing and analysis scripts, as research outputs
 worthy of recognition and review. While several journals now encourage or mandate code
 availability, policies suggested to improve the reproducibility potential (Walters 2020;
 Sánchez-Tójar et al. 2025), compliance remains low (Ivimey-Cook et al. 2025). Most articles do
 not share code, and available code is often poorly documented and unusable (Kellner et al. 2025;
 Culina et al. 2020). Journal policies have largely prioritised transparency, with minimal
 expectations for usability, rather than fostering practices that make code genuinely reusable. Yet,
 the benefits of code sharing and code review extend beyond transparency of methods and
 improved code quality; they promote a culture of cooperation and collaboration, and benefit
 individual researchers by providing opportunities for feedback and professional development
 (Culina et al. 2020), and by increasing citation potential (Maitner et al. 2023).

 Despite these benefits, sharing code publicly and exposing it to scrutiny can feel daunting. Many
 researchers cite concerns about intellectual property, the effort of documentation, or fear of
 critique (Gomes et al. 2022). In fields such as ecology and evolutionary biology, analytical
 pipelines are usually developed by researchers without formal training in software engineering,
 and custom-built to address specific questions, which can lead to code that is difficult to
 interpret and verify without a dedicated review process. In addition to limited familiarity and
 the lack of standards or training in code review, anxiety about giving and receiving feedback on
 code is common and can deter engagement (Lee & Hicks 2024).

 To counter this, we emphasise a shift in expectations: there is no such thing as ‘perfect
 code’—or, as others have put it, your code is good enough to share (Barnes 2010, Wilson et al.
 2017). Coding is a skill that takes time to develop, and opportunities and support for skill
 training remains uneven across institutions and career stages. By reinforcing this mindset, we
 hope to normalise code review as a constructive and collaborative process, a professional
 service to others and a practical necessity for credible science. In doing so, we support a
 research culture where code is valued, improved, and reused, a practice that benefits authors,
 their collaborators, and the wider research community.

 To make code review more approachable across levels of coding experience, we provide a list of

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 guiding questions to assess key dimensions of code quality that affect code reusability. We also
 built a Shiny app that offers a simple interface to work through the checklist, add comments, and
 export the review as a Markdown file that can be edited, archived, or shared. The checklist can
 be used for self-review, to facilitate feedback among collaborators, or during external peer
 review. We also encourage its use in teaching and training, where it can help structure
 conversations around code quality in research contexts.

 Learning from practices in data management and software development
 Code review is a long-standing practice in professional software development and
 computational disciplines such as engineering, where it plays a crucial role in ensuring software
 quality and maintainability. The foundational Fagan Inspection process, developed in the 1970s,
 is a structured multi-step approach that involves distinct process operations (Overview,
 Preparation, Inspection, Rework, and Follow-up) with clear objectives or focused tasks such as
 finding errors, fixing them, and ensuring all fixes are correctly applied (Fagan 1976). This
 method also includes communications and education as part of the inspection, ensuring that the
 team learns from the process. In software developing projects today, systematic code review is
 integrated alongside automated testing, version control, and continuous integration to catch
 errors, improve clarity and efficiency, and maintain good coding standards.

 Although research data and code are deeply interconnected, code is often treated as a mere tool
 rather than a central part of the scientific method and output, and rarely receives the same level
 of scrutiny and standardisation as data. Yet, scientific progress relies on reliable, cumulative
 knowledge, including code (Laurinavichyute et al. 2022), and effective collaboration requires
 shared conventions and quality standards. Large-scale efforts in ecology and evolution
 demonstrate how effective large-scale collaborations can be for global databases and analyses.
 Notable examples include COMADRE for animal demography (Salguero-Gómez et al. 2016),
 SPI-Birds for avian ecology (Culina et al. 2020), bio-logging standardisation frameworks
 (Sequeira et al. 2021), and MacaqueNet for primate behavioural ecology (De Moor et al. 2025).
 These initiatives adhere to established data management principles such as FAIR (Findable,
 Accessible, Interoperable, and Reusable) and TRUST (Transparency, Responsibility, User Focus,
 Sustainability, and Technology), ensuring that data remain reusable.

 Crucially, these initiatives all rely on code-based workflows for data processing and integration,
 and quality control pipelines. Given that these databases already bring together large research
 communities using shared data standards, they provide a strong foundation for extending FAIR
 and TRUST principles to code workflows to foster better documentation, reproducibility, and
 long-term accessibility. Reviewing and sharing code further strengthens collaboration within
 research communities. For instance, researchers from The Norwegian Institute for Nature
 Research (NINA), Norway’s leading institution for applied ecological research, have developed
 community-led approaches to code review (Kolstad et al. 2023).

 Scientific code review, though not yet as formalised as in professional software development,
 serves a similar role in supporting long-term sustainability of code and collaboration.
 Researchers can adopt key practices like thorough documentation, modular design, and

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 structured peer review processes to make code more usable and reliable, both within teams and
 across research communities.

 BOX: Code review in research context — Scope and limits
 Code review is the systematic evaluation of software code. Its primary aim is to identify
 problems and inefficiencies as opportunities to improve code quality. Code quality can broadly
 be assessed in two key aspects: reusability (ensuring the code is functional, modular,
 well-documented, and licensed) and validity (ensuring the code accurately implements the
 reported methods without introducing errors in consecutive steps).

 Code review is a key part of research validity. While manuscript peer review evaluates the
 scientific soundness of a study and its methods, code review ensures that the computational
 steps producing the results are transparent, free of errors, and reproducible. Together, these
 processes contribute to the credibility of research findings.

 Code review is inherently context-specific. Code review primarily strengthens computational
 reproducibility but its focus, depth, and outcomes depend on the expertise of the reviewer, the
 stage at which the review occurs, and the specific goals of the assessment. Some reviews may
 prioritise technical functionality, while others focus on the code being comprehensible to a
 broad audience.

 Code review is a tool for maintaining high research standards. Given that code is part of the
 scientific output, often essential to the methods and results, code review ensures that
 computational workflows are transparent, comprehensible, and appropriately implemented. It
 also promotes ethical data practices, long-term sustainability, and open research.

 Code review fosters collaboration, knowledge exchange, and innovation. Engaging in code
 review can even help researchers refine their own coding skills and adopt or share more
 efficient approaches and better practices.

 Code review is not a guarantee of correctness. Much like manuscript peer review, code peer
 review does not ensure absolute validity (Smith 2006; Drozdz & Ladomery 2024).

 Code review is not an assessment of methodological choices. Depending on the specific aim
 of the review, code reviewers may not be familiar with the research context and instead focus
 solely on computational aspects. Code reviewers check whether the analysis is correctly
 implemented as described in the manuscript but does not determine whether the chosen
 analysis is appropriate for the research question—that usually remains within the scope of
 scientific peer review.

 Code review is not a stylistic critique. Unless a standardised style guide applies, minor
 stylistic choices are not the focus. While consistency is important, clarity, accuracy, and
 documentation take priority over stylistic preferences.

 162

 163

 164

 165

 166

 167

 168

 169

 170

 171

 172

 173

 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

 204

 205

 Code review is not code revision. Reviewers provide feedback, but the responsibility for
 implementing changes typically remains with the code authors.

 Putting code review in practice: A practical checklist

 Code review is increasingly recognised as part of reproducible scientific practice. The
 4Rs-framework (Running, Reporting, Reliability, and Reproducibility; Ivimey-Cook et al. 2023), a
 primer to code review, advocates for integrating review throughout the research process, while
 Rokem (2024) summarises principled advice with emphasis on social etiquette such as inviting
 collaborators, mentors, and students to review, being kind, and reciprocating feedback. While
 conceptually rich, these resources offer limited guidance for day-to-day implementation.

 To bridge this gap, we reviewed existing best-practice guidelines (Sandve et al. 2013; Cooper &
 Hsing 2017; Wilson et al. 2017; Barker et al. 2022; Filazzola & Lortie 2022; Jenkins et al. 2023)
 and developed a practical checklist researchers can use for self-assessment and peer review. We
 extend the 4-R framework to a 7-R guide, introducing additional dimensions of code quality
 (Robustness, Readability, and Release) to support a more comprehensive assessment of
 scientific code reusability.

 The prompts to guide code evaluation are available in an interactive, open-source Shiny app (S1),
 archived at https://doi.org/10.5281/zenodo.15649079 . Additional formats include a PDF
 (S2) and customisable checklist templates in Markdown (.md; S3) and Excel (.xslx; S4), provided
 in the supplementary materials.

 Reporting: Check that it does what it claims.
 Code is used to solve a specific problem or perform tasks, and code review should verify
 whether it does what it is intended to do—or claims to do. In research contexts, this usually
 means assessing whether the code faithfully implements the methods outlined in the associated
 manuscript. All critical steps from data wrangling to specifying statistical models should be
 present in the code as reported—and vice versa , though the focus here is on reviewing code. Any
 discrepancies, as small as applying a different data filter, can undermine the reproducibility of
 the research, and necessary deviations should be documented (e.g., manual steps or unreported
 additional steps). Verifying that the code matches the reported methods eliminates
 misinterpretations due to unreported differences between documentation and implementation.

 Suggested focus to guide the assessment:
 Methods Alignment : Does the code implement the methods as described in the associated
 documentation or research outputs?
 Documentation: Is there sufficient metadata (e.g., in a README file or code header) to
 understand and use the code independently of external documentation?

 206

 207

 208

 209

 210

 211

 212

 213

 214

 215

 216

 217

 218

 219

 220

 221

 222

 223

 224

 225

 226

 227

 228

 229

 230

 231

 232

 233

 234

 235

 236

 237

 238

 239

 240

 241

 242

 243

https://doi.org/10.5281/zenodo.15649079

 Running — Check that it works.
 Reviewers should verify that the code is executable and that it runs from start to finish as
 expected. Common issues that can prevent code from running include typos, missing
 dependencies, or platform incompatibilities. Code that is difficult to install, requires excessive
 manual intervention, or does not perform within reasonable time constraints is not
 user-friendly. To support reliable setup of dependencies and consistency across runs , authors
 may use tools such as the R package groundhog (Simonsohn & Gruson 2025) which loads
 package versions as they existed on a specified date. Similarly, the R packages packrat (Atkins
 et al. 2025) and its successor renv (Ushey & Wickham 2025) , store a snapshot of a project’s
 packages and restore the exact versions of dependencies, helping reviewers replicate the
 computational setup used during code development.

 Suggested focus to guide the assessment:
 Functioning: Does the code run without errors from start to finish?
 Dependencies: Does the code specify all required libraries/packages or install them
 automatically (e.g., via groundhog::groundhog.library() or renv::restore() in R)?
 Cross-Platform Compatibility: Does the code run on a different operating system than the one
 it was developed on?
 Run Time: Does the code provide information on run time to manage user expectations?
 Complete Check: Did you run the entire code?

 Reproducibility — Check that it gives consistent results.
 Independent verification of results is central to scientific integrity, and requires that code
 consistently generates the same outputs when provided with the same input data and
 computational conditions. This applies to both numerical outputs (e.g., statistics summaries,
 simulation results) and visual outputs (e.g., figures, tables). For stochastic processes, such as
 simulations or MCMC methods, reproducibility typically requires setting a random seed (e.g.,
 using set.seed() in R), which ensures that the pseudo-random number generator produces
 the same sequence of values each time. Small numerical discrepancies may still occur due to
 floating-point precision or sampling variability. Hardwicke et al. (2018) quantify numerical
 differences using percentage error (PE), calculated as PE = (|obtained – reported| / reported) ×
 100, and define minor numerical errors as those with PE < 10%. They also identify other sources
 of failure to reproduce results: if reported and obtained p-values fall on opposite sides of an
 inferential threshold (e.g., 0.05), this constitutes a decision error, while incomplete or ambiguous
 analysis specifications are classified as insufficient information errors . Ideally, reproducible
 research involves a fully scripted, self-contained workflow that avoids manual interventions
 such as editing data in external spreadsheets. The code should explicitly document data sources,
 data wrangling steps and analysis choices, and the computational environment to ensure that
 others can follow the same procedures. While base R’s sessionInfo() provides a snapshot
 record of the current software environment, dependency management systems can help
 replicate the software setup (see Running).

 Suggested focus to guide the assessment:
 Numerical Reproducibility: Does the code generate the same functional outputs (e.g.,
 descriptive statistics, model estimates, or predictions) with identical input?

 244

 245

 246

 247

 248

 249

 250

 251

 252

 253

 254

 255

 256

 257

 258

 259

 260

 261

 262

 263

 264

 265

 266

 267

 268

 269

 270

 271

 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

 282

 283

 284

 285

 286

 287

 288

 Visual Reproducibility: Does the code generate consistent visual outputs (e.g., figures, maps)
 across repeated executions with the same input?
 Requirements: Does the code include or clearly specify all necessary data, or provide mock
 data where applicable, to enable independent reproduction?
 Compartmentalisation: Does the code ensure the workflow is self-contained, with all external
 software dependencies documented and accessible for execution in other environments?

 Reliability — Check that it behaves as expected under known conditions.
 Reliability refers to the ability of code to consistently produce correct and expected results when
 given valid, well-defined inputs. The code should be structured to reduce ambiguity and the risk
 of error by verifying internal assumptions of each component. Even code that runs without
 errors or warnings may still yield incorrect results, for example, if the wrong column is selected
 in a dataset or a variable is overwritten. To minimise silent failure and verify intended
 behaviour, simple checks should be included throughout the workflow. These can be manual
 checks and safeguards; for example, the base R function s topifnot() can be used to ensure x is
 numeric: stopifnot(is.numeric(x)) . More formalised checks may include those supported
 by the R package testthat (Wickham 2011), which supports automated unit tests for
 individual functions.

 Suggested focus to guide the assessment:
 Input Validation: Does the code check data formats or value ranges of external inputs or
 internal assumptions, e.g., confirming no negative values where only positives are expected?
 Stepwise Output Checks: Does the code verify that key transformations or computations
 perform as intended, e.g., checking factor levels are preserved after merging?

 Robustness — Check that it remains functional under change and handles
 unexpected inputs gracefully.
 Robustness refers to the ability of code to handle conditions changing to edge cases or invalid
 inputs gracefully, without crashing or producing misleading results. This also includes structural
 resilience, i.e. minimising the risk of failure by avoiding redundancy, using generalisable code,
 and flagging potentially problematic behaviour by producing clear error messages or feedback.
 For example, embedding file paths directly (e.g., with setwd() in R) is fragile, whereas the adapt
 package (Müller 2020) improves portability by using relative paths within projects. Using
 RStudio Projects further reinforces this by providing a consistent root directory, helping to avoid
 issues with local file paths. Robust code is efficient and avoids manual adjustments and
 repetition, and includes only what is necessary for its function. For example, converting
 repeated blocks with functions or loops makes code easier to maintain, adapt, and debug. Such
 functional programming principles support robustness by structuring code into self-contained
 modules. Libraries such as purrr in R (Wickham & Henry 2025) or toolz in Python (Rocklin et
 al. 2023) promote this approach. Comments or custom feedback can help flag unexpected or
 edge-case behaviour, such as issuing a warning message when too few data points remain after
 filtering (if(nrow(df) < 10) warning("Very few observations remaining").

 Suggested focus to guide the assessment:

 289

 290

 291

 292

 293

 294

 295

 296

 297

 298

 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 311

 312

 313

 314

 315

 316

 317

 318

 319

 320

 321

 322

 323

 324

 325

 326

 327

 328

 329

 330

 331

 332

 Parameterisation & Portability: Does the code avoid hard-coding and instead use flexible and
 generalisable solutions, e.g., relative file paths or transferable parameters?
 Efficiency: Does the code include only relevant parts in a streamlined design—reducing clutter,
 minimising the risk of confusion or errors, and improving speed by avoiding redundant
 execution?
 Functional Programming Principles: Does the code use modular components to support
 structural resilience and debugging, e.g., using tidyverse functions and pipelines to process data
 in R?
 Warnings & Error Handling: Does the code provide clear comments, warnings, or error
 messages to flag potential issues, e.g. related to data quality or input constraints?

 Readability — Check that it is clear and clean.
 Code that is effortlessly understandable, is more enjoyable to work with. Not only does it
 simplify collaboration, but writing neat and well-structured code reduces the likelihood of
 errors during the development and is easier to maintain. Readable code is logically structured,
 with each section serving a clear purpose, and any names both within the code as well as file
 names should be informative, allowing users to follow the intended workflow with minimal
 guesswork. Linter tools (e.g., the R package lintr ; Hester et al. 2025), analyse code for style and
 formatting issues, and can enforce consistent formatting automatically, whether following an
 informal style or a guide such as the tidyverse style guide.

 Suggested focus to guide the assessment:
 Organisation: Does the code follow a logical order that clearly conveys its purpose and guides
 users through the workflow?
 Modularity: Does the code consist of manageable sections for different tasks (e.g., functions,
 sections, modular scripts) that together form a coherent workflow?
 Naming Conventions: Does the code use informative names for variables, functions, and
 objects?
 Style Conventions: Does the code consistently apply visual formatting, such as spacing,
 indentation, and naming styles (e.g., snake_case, CamelCase)?

 Release — Check that it’s ready for sharing and reuse
 Now that the code is written and reviewed, authors and contributors may want to prepare it for
 broader use and distribution. Clear instructions encourage responsible reuse and further
 development, fostering collaborative cultures and extending the code’s impact. A licence is
 essential to specify the terms of reuse; it defines how others can use, modify, and share the code.
 Without one, copyright laws such as the Berne Convention (World Intellectual Property
 Organization, 1979) restrict reuse by default, granting exclusive rights to creators. Choosing an
 appropriate licence provides legal clarity while ensuring proper recognition (see Beyond the
 Checklist: Additional Considerations). Metadata should include guidance on citation and how
 users can contact the authors or maintainers to seek support or provide feedback on issues, or
 to engage in collaborative contributions to the code. Assigning a Persistent Identifier (PID), such
 as a Digital Object Identifier (DOI), makes it easier to cite the code. While GitHub is a widely

 333

 334

 335

 336

 337

 338

 339

 340

 341

 342

 343

 344

 345

 346

 347

 348

 349

 350

 351

 352

 353

 354

 355

 356

 357

 358

 359

 360

 361

 362

 363

 364

 365

 366

 367

 368

 369

 370

 371

 372

 373

 374

 375

 used platform for sharing and collaboratively developing code, it does not assign PIDs; these can
 only be obtained by integrating repositories with services that mint DOIs, such as Zenodo or the
 Open Science Framework (OSF) . Linking code to other research outputs (e.g., preregistrations,
 data, manuscripts) further boosts the visibility and credibility of the work, and facilitates
 tracking of its impact.

 Suggested focus to guide the assessment:
 Contact: Do the authors or maintainers provide guidance on how to report feedback or seek
 support?
 Legal Permissions: Does the code include a licence specifying how it can be used, modified, and
 shared?
 Attribution: Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI),
 making it easy to cite and give proper credit in academic and research contexts?

 Flexibility in code review and synergies
 Our practical guide offers a structured approach to reviewing scientific code. While the checklist
 presented here focuses on reviewing the overall reusability of code, along specific domains that
 contribute to it—Running, Reporting, Reliability, Reproducibility, Robustness, Readability, and
 Release—it is not an exhaustive list of criteria, nor is it the only way to categorise them.

 Improvements during code review often have synergistic effects, i.e. they often overlap and
 benefit multiple dimensions of code quality at once:

 ● For example, replacing repeated code with functions or loops strengthens Robustness in
 various ways: modular code is easier to maintain and modify (functional programming
 principles), reduced redundant execution is faster (efficiency), and functions allow for
 flexible reuse instead of hardcoding different inputs in repeated sections
 (parameterisation).

 ● Similarly, using relative file paths instead of hard-coded ones strengthens Robustness by
 ensuring adaptability when file locations change. It also enhances Reliability by reducing
 errors from incorrect paths, and improves Reproducibility by standardising inputs so the
 code runs consistently across different machines.

 ● Writing well-documented code enhances Readability by making it easier to follow and
 understand, while also supporting Reproducibility by removing ambiguity and enabling
 others to replicate results. Not only will collaborators and future users appreciate it—it
 is also a gift to your future self!

 The central role of code review in the code development cycle
 Scientific code development typically progresses through several phases, from initial
 conceptualisation, usually by an individual researcher (create), to distribution among
 collaborators (sharing), to publication alongside other research outputs (release), and eventually
 leading to reuse that may contribute to other projects. We present this process as a cycle to
 emphasise the continuous improvement of code and the incremental nature of building on
 existing work (Fig. 1). Code review is valuable at any and every stage of development and can
 serve as a formal checkpoint before code progresses to the next phase. Ideally, it addresses all

 376

 377

 378

 379

 380

 381

 382

 383

 384

 385

 386

 387

 388

 389

 390

 391

 392

 393

 394

 395

 396

 397

 398

 399

 400

 401

 402

 403

 404

 405

 406

 407

 408

 409

 410

 411

 412

 413

 414

 415

 416

 417

 418

 419

 seven checklist dimensions, each targeting a key aspect of code quality and reusability. In
 practice, however, review priorities will shift depending on the development phase, the context
 of the review, the reviewer’s expertise, and the code’s intended use. A flexible
 approach—focusing on the most relevant dimensions—ensures maximum impact at each stage

 In the ‘create’ phase, code is planned, designed, and written, usually by a single researcher or a
 small team. This phase may consist of several iterations as different approaches are explored to
 prepare the data for analyses, or visualise outputs. At this stage, authors involved in writing
 code may use the checklist as an aide memoire to review good practices and to help ensure that
 the code works as expected (Running) and contains all necessary information and functionality
 for its intended purpose (Reporting). Documentation is key, even if the code does not work as
 expected and even if the code is not yet intended for sharing; stating the purpose of code and
 any known issues is good practice and provides valuable context during future code
 development.

 The ‘share’ phase involves distributing code to others, typically collaborators or lab members .
 When conducting code review at this stage, it is crucial to communicate the purpose of the code
 and the context or focus of the review, as this will shape the focus of the review. Code shared
 within a community context, with lab members or collaborators, may prioritise consistent
 naming conventions that adhere to community standards and practices (Readability), and focus
 on flexible code that can handle a range of different inputs (Reliability, Robustness) to support
 collaborative use and future development with the community. In contrast, code that is shared
 mainly for transparency, as part of a scientific paper, should be reviewed with focus on ensuring
 it aligns with the methods described in the manuscript (Reporting).

 In the ‘publish’ phase, code becomes available to a wide group of users. This may include
 publishing code associated with a scientific paper to an online repository, or the release of a
 package to a library. During this phase, the focus of code review should be on ensuring that the
 purpose and intended functionality of the code are clearly documented for potential users
 (Reporting), and that others can legally use the code, and appropriately cite and credit the
 source and its developers (Release).

 Code development and review should not end when code is published, but often does as a result
 of the short-term research grants that teams rely on (Coelho 2024). Yet, published code requires
 ongoing maintenance to ensure that it continues to achieve its goals as intended despite changes
 to its software dependencies. Whether building on existing code to implement new features or
 accommodating to new versions of dependencies, revisiting the principles and priorities applied
 in the initial iteration of the development cycle can support the long-term usability and
 sustainability of this crucial part of the research output.

 Conclusion
 Sharing and publishing code is a key step towards research transparency—but to maximise its
 impact, shared code must also be reusable. We present a checklist designed to support this goal
 by improving code quality across key domains of reusability.

 420

 421

 422

 423

 424

 425

 426

 427

 428

 429

 430

 431

 432

 433

 434

 435

 436

 437

 438

 439

 440

 441

 442

 443

 444

 445

 446

 447

 448

 449

 450

 451

 452

 453

 454

 455

 456

 457

 458

 459

 460

 461

 462

 463

 464

 Code review can take place at many points throughout the development cycle, with its focus
 shaped by context, i.e., whether the review is conducted by the original author or peers, and
 whether it is reviewed before sharing it with close collaborators or when finalising code for
 publication. We encourage researchers to embrace the flexibility of this approach and engage in
 code review both as developers and as reviewers. Code review is not merely about evaluating
 and improving code—it is a collaborative and rewarding practice that fosters learning and
 contributes to the transparency and reproducibility in research, facilitating long-term
 accessibility of research outputs.

 Beyond the Checklist: Additional Considerations

 Version-controlled workflows
 Version control systems manage and track changes to files and are considered best practice in
 research—from data management to developing analysis code to writing outputs. Git and its
 web interface GitHub are commonly used tools for creating annotated, version-controlled
 workflows (Perkel 2016). Braga et al. (2023) provide an entry-level overview of how GitHub
 features can be used in ecology and evolution research, from tracking of code development to
 collaborative and asynchronous editing, and merging changes into the main project. A next step
 builds on the principle of continuous integration (CI), a standard process in professional
 software, which automates quality control and version-controlled code integration; GitHub
 Actions is GitHub's built-in implementation of CI.

 Tools for automated code review
 While our guide focuses on manual code review, automated tools can streamline the process by
 efficiently detecting common errors and enforcing a predefined style. For example, the R
 package lintr (Hester et al. 2025) checks style consistency, and the package testthat (Wickham
 2011) provides unit tests for technical functionality. Automated review can be integrated into CI
 pipelines. By automating error and style checks, developers and reviewers can focus on more
 complex and nuanced aspects of their code.

 Choosing a software licence
 To select an appropriate licence, code creators can refer to information and comparisons
 provided on choosealicense.com , an open-source project maintained by GitHub. Common
 research licences include the permissive Massachusetts Institute of Technology (MIT) and
 Apache License, which are easy to understand and allow use, modification, and redistribution
 with minimal restrictions. These licences are compatible with others, allowing code to be
 combined with projects under a different licence, including those that might put the code behind
 a paywall. In contrast, restrictive copy-left licences, such as the GNU General Public License
 (GPL), require that any derivative works that use or modify the original code are also adopt the
 same licence term. This protection builds trust within the scientific community by limiting
 concerns about lack of recognition for code developers, and ensuring that the code remains
 open and accessible for future research and development.

 465

 466

 467

 468

 469

 470

 471

 472

 473

 474

 475

 476

 477

 478

 479

 480

 481

 482

 483

 484

 485

 486

 487

 488

 489

 490

 491

 492

 493

 494

 495

 496

 497

 498

 499

 500

 501

 502

 503

 504

 505

https://choosealicense.com/

 Reviewer crediting
 Peer review is essential for validating research methods and outputs, including code. Due to the
 fundamental role of code in data analysis, code review is critical to research integrity.
 Acknowledging reviewers, either by name or anonymously, in the code's documentation or
 connected publications gives credit to their valuable contributions and highlights the
 collaborative nature of research.

 506

 507

 508

 509

 510

 511

 512

 References
 Abdill, R. J., Talarico, E., & Grieneisen, L. (2024). A how-to guide for code sharing in biology. PLoS
 Biology , 22(9), e3002815. https://doi.org/10.1371/journal.pbio.3002815

 Atkins, A., Allen, T., Ushey, K., McPherson, J., Cheng, J., & Allaire, J. (2025). packrat: A dependency
 management system for projects and their R package dependencies. R package version
 0.9.2.9000. Available at https://github.com/rstudio/packrat

 Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A. L., Martinez-Ortiz, C., Psomopoulos, F., … &
 Honeyman, T. (2022). Introducing the FAIR principles for research software. Scientific Data, 9 (1),
 622. https://doi.org/10.1038/s41597-022-01710-x

 Barnes, N. (2010). Publish your computer code: It is good enough. Nature, 467 (7317), 753-753.
 https://doi.org/10.1038/467753a

 Bledsoe, E. K., Burant, J. B., Higino, G. T., Roche, D. G., Binning, S. A., Finlay, K., Pither , J., Pollock , L.
 S., Sunday , J. M., & Srivastava, D. S. (2022). Data rescue: saving environmental data from
 extinction. Proceedings of the Royal Society B , 289(1979), 20220938.
 https://doi.org/10.1098/rspb.2022.0938

 Braga, P. H. P., Hébert, K., Hudgins, E. J., Scott, E. R., Edwards, B. P. M., Sánchez Reyes, L. L.,
 Grainger, M. J., Foroughirad, V., Hillemann, F., Binley, A., Brookson, C., Gaynor, K., Sabet, S. S.,
 Güncan, A., Weierbach, H., Gomes, D. G. E., & Crystal-Ornelas R. (2023). Not just for
 programmers: How GitHub can accelerate collaborative and reproducible research in ecology
 and evolution. Methods in Ecology and Evolution, 14 (6), 1364–1380.
 https://doi.org/10.1111/2041-210X.14108

 Coelho, L.P. (2024). For long-term sustainable software in bioinformatics. PLoS Computational
 Biology , 20(3): e1011920. https://doi.org/10.1371/journal.pcbi.1011920

 Cooper, N., & Hsing, P. (2017). A guide to reproducible code in ecology and evolution. British
 Ecological Society. Retrieved from https://www.britishecologicalsociety.org/publications

 Culina, A., Adriaensen, F., Bailey, L. D., Burgess, M. D., Charmantier, A., Cole, E. F., … & Visser, M. E.
 (2021). Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub.
 Journal of Animal Ecology, 90 (9), 2147-2160. https://doi.org/10.1111/1365-2656.13388

 Culina, A., Van Den Berg, I., Evans, S., & Sánchez-Tójar, A. (2020). Low availability of code in
 ecology: A call for urgent action. PLoS Biology , 18(7), e3000763.
 https://doi.org/10.1371/journal.pbio.3000763

 De Moor, D., Skelton, M., MacaqueNet, Amici, F., Arlet, M. E., Balasubramaniam, K. N., … & Brent, L.
 J. (2025). MacaqueNet: Advancing comparative behavioural research through large-scale
 collaboration. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14223

 Drozdz, J. A., & Ladomery, M. R. (2024). The peer review process: Past, present, and future.
 British Journal of Biomedical Science, 81 , 12054. https://doi.org/10.3389/bjbs.2024.12054

 513

 514

 515

 516

 517

 518

 519

 520

 521

 522

 523

 524

 525

 526

 527

 528

 529

 530

 531

 532

 533

 534

 535

 536

 537

 538

 539

 540

 541

 542

 543

 544

 545

 546

 547

 548

https://doi.org/10.1371/journal.pbio.3002815
https://github.com/rstudio/packrat
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/467753a
https://doi.org/10.1038/467753a
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2022.0938#
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2022.0938#
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2022.0938#
https://doi.org/10.1098/rspb.2022.0938
https://doi.org/10.1111/2041-210X.14108
https://doi.org/10.1111/2041-210X.14108
https://doi.org/10.1371/journal.pcbi.1011920
https://www.britishecologicalsociety.org/publications
https://doi.org/10.1111/1365-2656.13388
https://doi.org/10.1371/journal.pbio.3000763
https://doi.org/10.1371/journal.pbio.3000763
https://doi.org/10.1111/1365-2656.14223
https://doi.org/10.3389/bjbs.2024.12054

 Fagan, M. E. (1976). Design and code inspections to reduce errors in program development. IBM
 Systems Journal, 15 (3), 182–211. https://doi.org/10.1147/sj.153.0182

 Filazzola, A., & Lortie, C. (2022). A call for clean code to effectively communicate science.
 Methods in Ecology and Evolution, 13 , 2119–2128. https://doi.org/10.1111/2041-210X.13961

 Gomes, D. G. (2025). How will we prepare for an uncertain future? The value of open data and
 code for unborn generations facing climate change. Proceedings of the Royal Society B,
 292 (2040), 20241515. https://doi.org/10.1098/rspb.2024.1515

 Gomes, D. G., Pottier, P., Crystal-Ornelas , R., Hudgins , E. J., Foroughirad , V., Sánchez-Reyes , L. L. ,
 Turba , R., Martinez , P. A., Moreau , D., Bertram , M. G. , Smout , C. A. , & Gaynor , K. M. (2022). Why
 don’t we share data and code? Perceived barriers and benefits to public archiving practices.
 Proceedings of the Royal Society B, 289 , 20221113. https://doi.org/10.1098/rspb.2022.1113

 Hardwicke, T. E., Mathur, M. B., MacDonald, K., Nilsonne, G., Banks, G. C., Kidwell, M. C., ... & Frank,
 M. C. (2018). Data availability, reusability, and analytic reproducibility: Evaluating the impact of
 a mandatory open data policy at the journal Cognition. Royal Society Open Science, 5(8),
 180448. https://doi.org/10.1098/rsos.180448

 Hester, J., Angly, F., Hyde, R., Chirico, M., Ren, K., Rosenstock, A., Patil, I. (2025). lintr: A 'Linter' for
 R Code. R package version 3.2.0. Available at: https://github.com/r-lib/lintr ,
 https://lintr.r-lib.org

 Hillemann, F. (2025). fhillemann/code_review_checklist: Code Review Checklist App (v1.0.0).
 Zenodo. https://doi.org/10.5281/zenodo.15649079

 Ivimey-Cook, E. R. , Pick, J.L., Bairos-Novak, K. R., Culina, A., Gould, E., Grainger, M., Marshall, B.
 M., Moreau, D., Paquet, M., Royauté, R., Sánchez-Tójar, A., Silva, I., Windecker, S. M. (2023).
 Implementing code review in the scientific workflow: Insights from ecology and evolutionary
 biology. Journal of Evolutionary Biology, 36 (10), 1347–1356. https://doi.org/10.1111/jeb.14230

 Ivimey-Cook, E. R., Sánchez-Tójar, A., Berberi, I., Culina, A., Roche, D. G., Almeida, R. A., ... & Moran,
 N. P. (2025). From Policy to Practice: Progress towards Data-and Code-Sharing in Ecology and
 Evolution. Preprint, EcoEvoRxiv . https://doi.org/10.32942/X21S7H

 Jenkins, G. B., Beckerman, A. P., Bellard, C., Benítez-López, A., Ellison, A. M., Foote, C. G., … &
 Peres-Neto, P. R. (2023). Reproducibility in ecology and evolution: Minimum standards for data
 and code. Ecology and Evolution, 13 , e9961. https://doi.org/10.1002/ece3.9961

 Kellner, K. F., Doser, J. W., & Belant, J. L. (2025). Functional R code is rare in species distribution
 and abundance papers. Ecology, 106 (1), e4475. https://doi.org/10.1002/ecy.4475

 Lee, C. S., & Hicks, C. M. (2024). Understanding and effectively mitigating code review anxiety.
 Empirical Software Engineering , 29(6), 161. https://doi.org/10.1007/s10664-024-10550-9

 Laurinavichyute, A., Yadav, H., & Vasishth, S. (2022). Share the code, not just the data: A case
 study of the reproducibility of articles published in the Journal of Memory and Language under

 549

 550

 551

 552

 553

 554

 555

 556

 557

 558

 559

 560

 561

 562

 563

 564

 565

 566

 567

 568

 569

 570

 571

 572

 573

 574

 575

 576

 577

 578

 579

 580

 581

 582

 583

 584

https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1111/2041-210X.13961
https://doi.org/10.1098/rspb.2024.1515
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://royalsocietypublishing.org/doi/10.1098/rspb.2022.1113#
https://doi.org/10.1098/rspb.2022.1113
https://doi.org/10.1098/rsos.180448
https://github.com/r-lib/lintr
https://lintr.r-lib.org/
https://doi.org/10.5281/zenodo.15649079
https://doi.org/10.1111/jeb.14230
https://doi.org/10.32942/X21S7H
https://doi.org/10.1002/ece3.9961
https://doi.org/10.1002/ecy.4475

 the open data policy. Journal of Memory and Language , 125, 104332.
 https://doi.org/10.1016/j.jml.2022.104332

 Maitner, B. S., Fitzpatrick, M. C., & Alvarado, A. S. (2023). Code sharing increases citations, but
 remains uncommon. Preprint . Research Square . https://doi.org/10.21203/rs.3.rs-3222221/v1

 Müller, K. (2020). here: A simpler way to find your files. R package version 1.0.1. Available at:
 https://CRAN.R-project.org/package=here

 O’Dea, R. E., Parker, T. H., Chee, Y. E., Culina, A., Drobniak, S. M., Duncan, D. H., Fidler, F., Gould, E.,
 Ihle, M., Kelly, C. D., Lagisz, M., Roche, D. G., Sánchez-Tójar, A., Wilkinson, D. P., Wintle, B. C., &
 Nakagawa, S. (2021). Towards open, reliable, and transparent ecology and evolutionary biology.
 BMC Biology , 19 (1), 68. https://doi.org/10.1186/s12915-021-01006-3

 Perkel, J. M. (2016). Democratic databases: Science on GitHub. Nature, 538 (7623), 127–128.
 https://doi.org/10.1038/538127a

 Rokem, A. (2024). Ten simple rules for scientific code review. PLOS Computational Biology, 20 (9),
 e1012375. https://doi.org/10.1371/journal.pcbi.1012375

 Sánchez-Tójar, A., Bezine, A., Purgar, M., & Culina, A. (2025). Code-sharing policies are associated
 with increased reproducibility potential of ecological findings. Preprint. EcoEvoRxiv ,
 https://doi.org/10.32942/X21S7H

 Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible
 computational research. PLoS Computational Biology , 9(10), e1003285.
 https://doi.org/10.1371/journal.pcbi.1003285

 Ushey, K. & Wickham, H. (2025). renv: Project Environments. R package version 1.1.4. Available
 at: https://CRAN.R-project.org/package=renv

 Walters, W. P. (2020). Code sharing in the open science era. Journal of Chemical Information and
 Modeling , 60(10), 4417-4420. https://doi.org/10.1021/acs.jcim.0c01000

 Wickham. H. (2011). testthat: Get Started with Testing. The R Journal, 3, 5–10.
 ttps://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf .

 Wickham, H. & Henry, L (2023). purrr: Functional programming tools. R package version 1.0.4.
 Available at: https://CRAN.R-project.org/package=purrr

 585

 586

 587

 588

 589

 590

 591

 592

 593

 594

 595

 596

 597

 598

 599

 600

 601

 602

 603

 604

 605

 606

 607

 608

 609

 610

 611

 612

https://doi.org/10.1016/j.jml.2022.104332
https://doi.org/10.21203/rs.3.rs-3222221/v1
https://cran.r-project.org/package=here
https://cran.r-project.org/package=here
https://doi.org/10.1186/s12915-021-01006-3
https://doi.org/10.1038/538127a
https://doi.org/10.1038/538127a
https://doi.org/10.1371/journal.pcbi.1012375
https://doi.org/10.32942/X21S7H
https://doi.org/10.1371/journal.pcbi.1003285
https://cran.r-project.org/package=renv
https://doi.org/10.1021/acs.jcim.0c01000
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://cran.r-project.org/package=purrr

 Figures

 Figure 1. Review of scientific code can occur at different points throughout the code development
 cycle, with focus varying based on the code’s purpose and review context. Reviewing code during
 initial development will prioritise different domains compared to reviews of code shared within
 a smaller research community or lab, or reviewing code before publication. Colours indicate
 different phases in the code development cycle (i.e., create, share, publish). The rings with seven
 wedges correspond to the seven domains of the code review checklist. Shading and wedge size
 indicate priority (grey: no priority, light: low priority, dark: high priority).

 613

 614

 615

 616

 617

 618

 619

 620

 621

 Supplementary Materials

 S1. Shiny app (ZIP archive; available at https://doi.org/10.5281/zenodo.15649079)

 S2. Checklist (PDF format)

 S3. Checklist (editable Markdown file)

 S4. Checklist (editable spreadsheet; available at) Code review checklist - public version

 622

 623

 624

 625

 626

 627

 628

 629

https://docs.google.com/spreadsheets/d/1WgFtbntYqGSibWO4_6UVCzRUGqKYD0MUQwYJ_lyUjVo/edit?gid=1889373605#gid=1889373605
https://doi.org/10.5281/zenodo.15649079

Code review in practice: A checklist for computational reproducibility and collaborative research in ecology and evolution
This checklist guides code review, whether as self-assessment or peer review, across key dimensions of reusability: Reporting, Running, Reproducibility, Reliability, Robustness,
Readability, and Release. Criteria may be marked as YES (met), NO (not met), UNSURE (unclear or not evaluated), or N/A (not applicable). Designed as a flexible template, it can be
tailored to different contexts by modifying, omitting, or adding criteria. Editable versions (.md, .xlsx) are available in the supplementary materials of the accompanying manuscript
(), an app to generate downloadable reports is available via Zenodo (). This checklist is licensed under a
International License, permitting sharing and adaptation for non-commercial use with attribution.

I prefer to stay anonymous in the acknowledgements.

doi.org/10.32942/X26S6P doi.org/10.5281/zenodo.15649079 CC BY-NC 4.0

REVIEW METADATA AND REVIEWER ACKNOWLEDGEMENT GENERAL NOTES

Review by:

QUESTIONS TO GUIDE CODE ASSESSMENT YES NO UNSURE N/A COMMENT

Reporting — Check that it does what it claims.

Methods Alignment

Documentation:

Running — Check that it works.

Functioning

Dependencies:

Cross-Platform Compatibility:

Run Time:

Complete Check:

Reproducibility — Check that it gives consistent results.

Numerical Reproducibility:

Visual Reproducibility:

Requirements:

Compartmentalisation:

Reliability — Check that it behaves as expected under known conditions.

Input Validation:

Stepwise Output Checks:

Robustness — Check that it remains functional under change and handles unexpected inputs gracefully.

Parameterisation & Portability:

Efficiency:

Functional Programming Principles:

Warnings & Error Handling:

Readability — Check that it is clear and clean.

Modularity:

Naming Conventions:

Style Conventions:

Release — Check that it is ready for sharing and reuse.

Contact:

Legal Permissions:

Attribution:

Organisation:

Review of: Code identifier, incl. version if applicable
 Use this space for any general remarks that do not fit into specific checklist items.

DD/MM/YY

Reviewer OS and software version

Name of reviewer

Please clarify decisions or suggest improvements.

Date review completed:

Operating system used:

I agree to be acknowledged as a code reviewer by name.

Code should match the reported methods. Data transformations and analyses should align with the description—missing or altered steps mean the code is not as reported.

: Does the code implement the methods as described in the associated documentation
or research outputs?

Is there sufficient metadata (e.g., in a README file or code header) to understand and
use the code independently of external documentation?

Code should execute on a local machine and run its entirety, even for users with limited coding expertise.

: Does the code run without errors from start to finish?

Does the code specify all required libraries/packages or install them automatically (e.g., via
groundhog::groundhog.library() or renv::restore() in R)?

 Does the code run on a different operating system than the one it was
developed on?

Does the code provide information on run time to manage user expectations?

Did you run the entire code?

Code should produce the same output when run with the same input data and computational conditions (including a random seed for stochastic processes like simulations or MCMC).

Does the code generate the same functional outputs (e.g., descriptive
statistics, model estimates, or predictions) with identical input?

Does the code generate consistent visual outputs (e.g., figures, maps) across
repeated executions with the same input?

 Does the code include or clearly specify all necessary data, or provide mock data where
applicable, to enable independent reproduction?

Does the code ensure the workflow is self-contained, with all external software
dependencies documented and accessible for execution in other environments?

Code should perform as intended under typical use cases, producing expected results and including internal checks for common issues to catch errors early.

 Does the code check data formats or value ranges of external inputs or internal
assumptions, e.g., confirming no negative values where only positives are expected?

Does the code verify that key transformations or computations perform as
intended, e.g., checking factor levels are preserved after merging?

Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback. It should avoid brittle design and support flexible workflows.

Does the code avoid hard-coding and instead use flexible and
generalisable solutions, e.g., relative file paths or transferable parameters?

 Does the code include only relevant parts in a streamlined design—reducing clutter, minimising
the risk of confusion or errors, and improving speed by avoiding redundant execution?

 Does the code use modular components to support structural
resilience and debugging, e.g., using tidyverse functions and pipelines to process data in R?

Does the code provide clear comments, warnings, or error messages to flag
potential issues, e.g. related to data quality or input constraints?

Code should be easy to follow, well-structured and logically organised like a manual, and naming of variables and functions should be easy to understand.

 Does the code consist of manageable sections for different tasks (e.g., functions, sections,
modular scripts) that together form a coherent workflow?

Does the code use informative names for variables, functions, and objects?

Does the code consistently apply visual formatting, such as spacing, indentation, and
naming styles (e.g., snake_case, CamelCase)?

Code should be prepared for sharing, include licensing, citation information, and relevant metadata to support reuse and attribution.

 Do the authors or maintainers provide guidance on how to report feedback or seek support?

Does the code include a licence specifying how it can be used, modified, and shared?

Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI), making it easy to
cite and give proper credit in academic and research contexts?

 Does the code follow a logical order that clearly conveys its purpose and guides users
through the workflow?

Code review in practice: A checklist for computational reproducibility and collaborative
research in ecology and evolution

This checklist guides code review, whether as self-assessment or peer review, across key
dimensions of reusability: Reporting, Running, Reproducibility, Reliability, Robustness,
Readability, and Release. Criteria may be marked as YES (met), NO (not met), UNSURE (unclear
or not evaluated), or N/A (not applicable). Designed as a flexible template, it can be
tailored to different contexts by modifying, omitting, or adding criteria. Editable versions
(.md, .xlsx) are available in the supplementary materials of the accompanying paper. This
checklist is licensed under a [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/)
International License, permitting sharing and adaptation for non-commercial use with
attribution. Please cite the paper (preprint via EcoEvoRxiv, [DOI: 10.32942/X26S6P](https://
doi.org/10.32942/X26S6P)) or the

REVIEW METADATA
Review of: _Unicorn population dynamics v1 05/2025_ <!-- some code identifier -->

Date review completed: _01 Jun 25_ <!-- useful for version tracking and transparency -->

Operating system and software version used: _macOS 13.2, R 4.3.0_ <!-- reviewer OS -->

REVIEWER ACKNOWLEDGEMENT
Review by: _Name of reviewer_ <!-- add name and tick as applicable -->

[] I agree to be acknowledged as a code reviewer by name.

[] I prefer to stay anonymous in the acknowledgements.

GENERAL NOTES
optional <!-- Use this space for any general remarks that do not fit into specific
checklist items. -->

QUESTIONS TO GUIDE CODE ASSESSMENT

Reporting — Check that it does what it claims.
Code should match the reported methods. Data transformations and analyses should align with
the description—missing or altered steps mean the code is not as reported.

- **Methods Alignment:** Does the code implement the methods as described in the associated
documentation or research outputs?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Documentation:** Is there sufficient metadata (e.g., in a README file or code header) to
understand and use the code independently of external documentation?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Running — Check that it works.
Code should execute on a local machine and run its entirety, even for users with limited
coding expertise.

- **Functioning:** Does the code run without errors from start to finish?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Dependencies:** Does the code specify all required libraries/packages or install them
automatically (e.g., via groundhog::groundhog.library() or renv::restore() in R)?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Cross-Platform Compatibility:** Does the code run on a different operating system than
the one it was developed on?

 [] YES

 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Run Time:** Does the code provide information on run time to manage user expectations?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Complete Check:** Did you run the entire code?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Reproducibility — Check that it gives consistent results.
Code should produce the same output when run with the same input data and computational
conditions (including a random seed for stochastic processes like simulations or MCMC).

- **Numerical Reproducibility:** Does the code generate the same functional outputs (e.g.,
descriptive statistics, model estimates, or predictions) with identical input?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Visual Reproducibility:** Does the code generate consistent visual outputs (e.g.,
figures, maps) across repeated executions with the same input?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Requirements:** Does the code include or clearly specify all necessary data, or provide
mock data where applicable, to enable independent reproduction?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Compartmentalisation:** Does the code ensure the workflow is self-contained, with all
external software dependencies documented and accessible for execution in other environments?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Reliability — Check that it behaves as expected under known conditions.
Code should perform as intended under typical use cases, producing expected results and
including internal checks for common issues to catch errors early.

- **Input Validation:** Does the code check data formats or value ranges of external inputs
or other internal assumptions, e.g., confirming no negative values where only positives are
expected?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Stepwise Output Checks:** Does the code verify that key transformations or computations
perform as intended, e.g., checking factor levels are preserved after merging?

 [] YES
 [] NO
 [] UNSURE

 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Robustness — Check that it remains functional under change and handles unexpected inputs
gracefully.
Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback.
It should avoid brittle design and support flexible workflows.

- **Parameterisation & Portability:** Does the code avoid hard-coding and instead use
flexible and generalisable solutions, e.g., relative file paths or transferable parameters?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Efficiency:** Does the code include only relevant parts in a streamlined design—reducing
clutter, minimising the risk of confusion or errors, and improving speed by avoiding
redundant execution?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Functional Programming Principles:** Does the code use modular components to support
structural resilience and debugging, e.g., using tidyverse functions and pipelines to process
data in R?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Warnings & Error Handling:** Does the code provide clear comments, warnings, or error
messages to flag potential issues, e.g. related to data quality or input constraints?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Readability — Check that it is clear and clean.
Code should be easy to follow, well-structured and logically organised like a manual, and
naming of variables and functions should be easy to understand.

- **Organisation:** Does the code follow a logical order that clearly conveys its purpose and
guides users through the workflow?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Modularity:** Does the code consist of manageable sections for different tasks (e.g.,
functions, sections, modular scripts) that together form a coherent workflow?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Naming Conventions:** Does the code use informative names for variables, functions, and
objects?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Style Conventions:** Does the code consistently apply visual formatting, such as spacing,
indentation, and naming styles (e.g., snake_case, CamelCase)?

 [] YES
 [] NO

 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Release — Check that it is ready for sharing and reuse.
Code should be prepared for sharing, include licensing, citation information, and relevant
metadata to support reuse and attribution.

- **Contact:** Do the authors or maintainers provide guidance on how to report feedback or
seek support?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Legal Permissions:** DDoes the code include a licence specifying how it can be used,
modified, and shared?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Attribution:** Does the code have a Persistent Identifier (e.g., Digital Object
Identifier DOI), making it easy to cite and give proper credit in academic and research
contexts?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

<!-- end of review -->

