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 Abstract 

 Ensuring  that  research,  along  with  its  data  and  code,  is  credible  and  accessible  is  crucial  for 

 progress  especially  in  ecology  and  evolutionary  biology,  especially  given  that  the  climate  crisis 

 and  biodiversity  loss  demand  urgent,  transparent  science.  Yet,  code  is  rarely  shared  alongside 

 scientific  publications,  and  when  it  is,  poor  documentation  and  unclear  implementation  often 

 hinder  reuse.  Targeted  code  review  can  improve  key  aspects  of  code  quality:  reusability 

 (technical  functionality  and  documentation)  and  validity  (ensuring  the  code  implements  the 

 intended  analyses  faithfully).  While  assessing  validity  requires  domain  expertise,  reviewing  the 

 reusability  of  code  can  be  done  by  anyone  with  basic  programming  knowledge.  To  make  code 

 review  accessible  for  researchers  with  diverse  coding  experience  ,  we  introduce  a  list  of  guiding 

 questions  organised  around  seven  key  attributes  of  reusable  scientific  code:  Reporting,  Running, 

 Reliability,  Reproducibility,  Robustness,  Readability,  and  Release.  We  built  an  open-source 

 companion  app  with  an  intuitive,  interactive  checklist  interface  that  lets  users  export  an  editable 

 Markdown  report  with  comments  for  archiving  or  sharing  .  By  defining  and  operationalising 

 these  principles  of  code  review,  our  tool  supports  an  approachable  and  systematic  yet  flexible 

 review  process,  whether  for  self-assessment  or  peer  review  .  Informed  by  best  practices  in 

 software  development  and  community  recommendations,  the  7Rs-checklist  clarifies  standards 

 for  research  code  quality  and  promotes  reproducible  coding,  thereby  strengthening  research 

 credibility.  It  also  provides  a  valuable  resource  for  teaching  and  training  by  helping  to  structure 

 conversations around code quality and  collaboration  in research. 

 Keywords 

 1.  Research Software 
 2.  Code Quality 
 3.  Reusable Code 
 4.  Collaborative Research 
 5.  Open Science 
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 Introduction: Code as scientific output 
 Code-based  pipelines  for  scientific  data  processing  and  analysis  have  become  standard  in  the 
 Life  Sciences,  supporting  tasks  such  as  file  management,  statistical  modelling,  visualisation,  and 
 generating  reproducible  reports  (Perkel  2016,  Abdill  et  al.  2024).  As  such,  scientific  code  is  not 
 only  a  tool  but  a  core  component  of  the  research  workflow  and  output,  and  should  be  shared 
 and  peer-reviewed  like  other  methodological  details,  to  ensure  research  integrity  and 
 reproducibility (Ivimey-Cook et al. 2023). 

 I  n  the  face  of  global  challenges  such  as  climate  change,  ensuring  that  science  is  transparent  and 
 cumulative  is  not  only  good  practice  but  an  ethical  obligation,  and  reusable  code  and  data  are 
 essential  components  of  this  responsibility  (Sandve  et  al.  2013;  Bledsoe  et  al.  2022;  Gomes 
 2025).  At  the  same  time,  unverifiable  research  risks  becoming  an  unstable  foundation  for  future 
 research and fuelling the ongoing crisis of confidence in science. 

 The  Open  Science  movement  has  promoted  the  publication  of  data  and  code,  shifting  norms 
 towards  treating  methods,  including  data-processing  and  analysis  scripts,  as  research  outputs 
 worthy  of  recognition  and  review.  While  several  journals  now  encourage  or  mandate  code 
 availability,  policies  suggested  to  improve  the  reproducibility  potential  (Walters  2020; 
 Sánchez-Tójar  et  al.  2025),  compliance  remains  low  (Ivimey-Cook  et  al.  2025).  Most  articles  do 
 not  share  code,  and  available  code  is  often  poorly  documented  and  unusable  (Kellner  et  al.  2025; 
 Culina  et  al.  2020).  Journal  policies  have  largely  prioritised  transparency,  with  minimal 
 expectations  for  usability,  rather  than  fostering  practices  that  make  code  genuinely  reusable.  Yet, 
 the  benefits  of  code  sharing  and  code  review  extend  beyond  transparency  of  methods  and 
 improved  code  quality;  they  promote  a  culture  of  cooperation  and  collaboration,  and  benefit 
 individual  researchers  by  providing  opportunities  for  feedback  and  professional  development 
 (Culina et al. 2020), and by increasing citation potential (Maitner et al. 2023). 

 Despite  these  benefits,  sharing  code  publicly  and  exposing  it  to  scrutiny  can  feel  daunting.  Many 
 researchers  cite  concerns  about  intellectual  property,  the  effort  of  documentation,  or  fear  of 
 critique  (Gomes  et  al.  2022).  In  fields  such  as  ecology  and  evolutionary  biology,  analytical 
 pipelines  are  usually  developed  by  researchers  without  formal  training  in  software  engineering, 
 and  custom-built  to  address  specific  questions,  which  can  lead  to  code  that  is  difficult  to 
 interpret  and  verify  without  a  dedicated  review  process.  In  addition  to  limited  familiarity  and 
 the  lack  of  standards  or  training  in  code  review,  anxiety  about  giving  and  receiving  feedback  on 
 code is common and can deter engagement (Lee & Hicks 2024). 

 To  counter  this,  we  emphasise  a  shift  in  expectations:  there  is  no  such  thing  as  ‘perfect 
 code’—or,  as  others  have  put  it,  your  code  is  good  enough  to  share  (Barnes  2010,  Wilson  et  al. 
 2017).  Coding  is  a  skill  that  takes  time  to  develop,  and  opportunities  and  support  for  skill 
 training  remains  uneven  across  institutions  and  career  stages.  By  reinforcing  this  mindset,  we 
 hope  to  normalise  code  review  as  a  constructive  and  collaborative  process,  a  professional 
 service  to  others  and  a  practical  necessity  for  credible  science.  In  doing  so,  we  support  a 
 research  culture  where  code  is  valued,  improved,  and  reused,  a  practice  that  benefits  authors, 
 their collaborators, and the wider research community. 

 To  make  code  review  more  approachable  across  levels  of  coding  experience,  we  provide  a  list  of 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 



 guiding  questions  to  assess  key  dimensions  of  code  quality  that  affect  code  reusability.  We  also 
 built  a  Shiny  app  that  offers  a  simple  interface  to  work  through  the  checklist,  add  comments,  and 
 export  the  review  as  a  Markdown  file  that  can  be  edited,  archived,  or  shared.  The  checklist  can 
 be  used  for  self-review,  to  facilitate  feedback  among  collaborators,  or  during  external  peer 
 review.  We  also  encourage  its  use  in  teaching  and  training,  where  it  can  help  structure 
 conversations around code quality in research contexts. 

 Learning from practices in data management and software development 
 Code  review  is  a  long-standing  practice  in  professional  software  development  and 
 computational  disciplines  such  as  engineering,  where  it  plays  a  crucial  role  in  ensuring  software 
 quality  and  maintainability.  The  foundational  Fagan  Inspection  process,  developed  in  the  1970s, 
 is  a  structured  multi-step  approach  that  involves  distinct  process  operations  (Overview, 
 Preparation,  Inspection,  Rework,  and  Follow-up)  with  clear  objectives  or  focused  tasks  such  as 
 finding  errors,  fixing  them,  and  ensuring  all  fixes  are  correctly  applied  (Fagan  1976).  This 
 method  also  includes  communications  and  education  as  part  of  the  inspection,  ensuring  that  the 
 team  learns  from  the  process.  In  software  developing  projects  today,  systematic  code  review  is 
 integrated  alongside  automated  testing,  version  control,  and  continuous  integration  to  catch 
 errors, improve clarity and efficiency, and maintain good coding standards. 

 Although  research  data  and  code  are  deeply  interconnected,  code  is  often  treated  as  a  mere  tool 
 rather  than  a  central  part  of  the  scientific  method  and  output,  and  rarely  receives  the  same  level 
 of  scrutiny  and  standardisation  as  data.  Yet,  scientific  progress  relies  on  reliable,  cumulative 
 knowledge,  including  code  (Laurinavichyute  et  al.  2022),  and  effective  collaboration  requires 
 shared  conventions  and  quality  standards.  Large-scale  efforts  in  ecology  and  evolution 
 demonstrate  how  effective  large-scale  collaborations  can  be  for  global  databases  and  analyses. 
 Notable  examples  include  COMADRE  for  animal  demography  (Salguero-Gómez  et  al.  2016), 
 SPI-Birds  for  avian  ecology  (Culina  et  al.  2020),  bio-logging  standardisation  frameworks 
 (Sequeira  et  al.  2021),  and  MacaqueNet  for  primate  behavioural  ecology  (De  Moor  et  al.  2025). 
 These  initiatives  adhere  to  established  data  management  principles  such  as  FAIR  (Findable, 
 Accessible,  Interoperable,  and  Reusable)  and  TRUST  (Transparency,  Responsibility,  User  Focus, 
 Sustainability, and Technology), ensuring that data remain reusable. 

 Crucially,  these  initiatives  all  rely  on  code-based  workflows  for  data  processing  and  integration, 
 and  quality  control  pipelines.  Given  that  these  databases  already  bring  together  large  research 
 communities  using  shared  data  standards,  they  provide  a  strong  foundation  for  extending  FAIR 
 and  TRUST  principles  to  code  workflows  to  foster  better  documentation,  reproducibility,  and 
 long-term  accessibility.  Reviewing  and  sharing  code  further  strengthens  collaboration  within 
 research  communities.  For  instance,  researchers  from  The  Norwegian  Institute  for  Nature 
 Research  (NINA),  Norway’s  leading  institution  for  applied  ecological  research,  have  developed 
 community-led approaches to code review (Kolstad et al. 2023). 

 Scientific  code  review,  though  not  yet  as  formalised  as  in  professional  software  development, 
 serves  a  similar  role  in  supporting  long-term  sustainability  of  code  and  collaboration. 
 Researchers  can  adopt  key  practices  like  thorough  documentation,  modular  design,  and 
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 structured  peer  review  processes  to  make  code  more  usable  and  reliable,  both  within  teams  and 
 across research communities. 

 BOX: Code review in research context — Scope and limits 
 Code  review  is  the  systematic  evaluation  of  software  code.  Its  primary  aim  is  to  identify 
 problems  and  inefficiencies  as  opportunities  to  improve  code  quality.  Code  quality  can  broadly 
 be  assessed  in  two  key  aspects:  reusability  (ensuring  the  code  is  functional,  modular, 
 well-documented,  and  licensed)  and  validity  (ensuring  the  code  accurately  implements  the 
 reported methods without introducing errors in consecutive steps). 

 Code  review  is  a  key  part  of  research  validity.  While  manuscript  peer  review  evaluates  the 
 scientific  soundness  of  a  study  and  its  methods,  code  review  ensures  that  the  computational 
 steps  producing  the  results  are  transparent,  free  of  errors,  and  reproducible.  Together,  these 
 processes contribute to the credibility of research findings. 

 Code  review  is  inherently  context-specific.  Code  review  primarily  strengthens  computational 
 reproducibility  but  its  focus,  depth,  and  outcomes  depend  on  the  expertise  of  the  reviewer,  the 
 stage  at  which  the  review  occurs,  and  the  specific  goals  of  the  assessment.  Some  reviews  may 
 prioritise  technical  functionality,  while  others  focus  on  the  code  being  comprehensible  to  a 
 broad audience. 

 Code  review  is  a  tool  for  maintaining  high  research  standards.  Given  that  code  is  part  of  the 
 scientific  output,  often  essential  to  the  methods  and  results,  code  review  ensures  that 
 computational  workflows  are  transparent,  comprehensible,  and  appropriately  implemented.  It 
 also promotes ethical data practices, long-term sustainability, and open research. 

 Code  review  fosters  collaboration,  knowledge  exchange,  and  innovation.  Engaging  in  code 
 review  can  even  help  researchers  refine  their  own  coding  skills  and  adopt  or  share  more 
 efficient approaches and better practices. 

 Code  review  is  not  a  guarantee  of  correctness.  Much  like  manuscript  peer  review,  code  peer 
 review does not ensure absolute validity (Smith 2006; Drozdz & Ladomery 2024). 

 Code  review  is  not  an  assessment  of  methodological  choices.  Depending  on  the  specific  aim 
 of  the  review,  code  reviewers  may  not  be  familiar  with  the  research  context  and  instead  focus 
 solely  on  computational  aspects.  Code  reviewers  check  whether  the  analysis  is  correctly 
 implemented  as  described  in  the  manuscript  but  does  not  determine  whether  the  chosen 
 analysis  is  appropriate  for  the  research  question—that  usually  remains  within  the  scope  of 
 scientific peer review. 

 Code  review  is  not  a  stylistic  critique.  Unless  a  standardised  style  guide  applies,  minor 
 stylistic  choices  are  not  the  focus.  While  consistency  is  important,  clarity,  accuracy,  and 
 documentation take priority over stylistic preferences. 
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 Code  review  is  not  code  revision.  Reviewers  provide  feedback,  but  the  responsibility  for 
 implementing changes typically remains with the code authors. 

 Putting code review in practice: A practical checklist 

 Code  review  is  increasingly  recognised  as  part  of  reproducible  scientific  practice.  The 
 4Rs-framework  (Running,  Reporting,  Reliability,  and  Reproducibility;  Ivimey-Cook  et  al.  2023),  a 
 primer  to  code  review,  advocates  for  integrating  review  throughout  the  research  process,  while 
 Rokem  (2024)  summarises  principled  advice  with  emphasis  on  social  etiquette  such  as  inviting 
 collaborators,  mentors,  and  students  to  review,  being  kind,  and  reciprocating  feedback.  While 
 conceptually rich, these resources offer limited guidance for day-to-day implementation. 

 To  bridge  this  gap,  we  reviewed  existing  best-practice  guidelines  (Sandve  et  al.  2013;  Cooper  & 
 Hsing  2017;  Wilson  et  al.  2017;  Barker  et  al.  2022;  Filazzola  &  Lortie  2022;  Jenkins  et  al.  2023) 
 and  developed  a  practical  checklist  researchers  can  use  for  self-assessment  and  peer  review.  We 
 extend  the  4-R  framework  to  a  7-R  guide,  introducing  additional  dimensions  of  code  quality 
 (Robustness,  Readability,  and  Release)  to  support  a  more  comprehensive  assessment  of 
 scientific code reusability. 

 The  prompts  to  guide  code  evaluation  are  available  in  an  interactive,  open-source  Shiny  app  (S1), 
 archived  at  https://doi.org/10.5281/zenodo.15649079  .  Additional  formats  include  a  PDF 
 (S2)  and  customisable  checklist  templates  in  Markdown  (.md;  S3)  and  Excel  (.xslx;  S4),  provided 
 in the supplementary materials. 

 Reporting:  Check that it does what it claims. 
 Code  is  used  to  solve  a  specific  problem  or  perform  tasks,  and  code  review  should  verify 
 whether  it  does  what  it  is  intended  to  do—or  claims  to  do.  In  research  contexts,  this  usually 
 means  assessing  whether  the  code  faithfully  implements  the  methods  outlined  in  the  associated 
 manuscript.  All  critical  steps  from  data  wrangling  to  specifying  statistical  models  should  be 
 present  in  the  code  as  reported—and  vice  versa  ,  though  the  focus  here  is  on  reviewing  code.  Any 
 discrepancies,  as  small  as  applying  a  different  data  filter,  can  undermine  the  reproducibility  of 
 the  research,  and  necessary  deviations  should  be  documented  (e.g.,  manual  steps  or  unreported 
 additional  steps).  Verifying  that  the  code  matches  the  reported  methods  eliminates 
 misinterpretations due to unreported differences between documentation and implementation. 

 Suggested focus to guide the assessment: 
 Methods  Alignment  :  Does  the  code  implement  the  methods  as  described  in  the  associated 
 documentation or research outputs? 
 Documentation:  Is  there  sufficient  metadata  (e.g.,  in  a  README  file  or  code  header)  to 
 understand and use the code independently of external documentation? 
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 Running — Check that it works. 
 Reviewers  should  verify  that  the  code  is  executable  and  that  it  runs  from  start  to  finish  as 
 expected.  Common  issues  that  can  prevent  code  from  running  include  typos,  missing 
 dependencies,  or  platform  incompatibilities.  Code  that  is  difficult  to  install,  requires  excessive 
 manual  intervention,  or  does  not  perform  within  reasonable  time  constraints  is  not 
 user-friendly.  To  support  reliable  setup  of  dependencies  and  consistency  across  runs  ,  authors 
 may  use  tools  such  as  the  R  package  groundhog  (Simonsohn  &  Gruson  2025)  which  loads 
 package  versions  as  they  existed  on  a  specified  date.  Similarly,  the  R  packages  packrat  (Atkins 
 et  al.  2025)  and  its  successor  renv  (  Ushey  &  Wickham  2025  )  ,  store  a  snapshot  of  a  project’s 
 packages  and  restore  the  exact  versions  of  dependencies,  helping  reviewers  replicate  the 
 computational setup used during code development. 

 Suggested focus to guide the assessment: 
 Functioning:  Does the code run without errors from  start to finish? 
 Dependencies:  Does  the  code  specify  all  required  libraries/packages  or  install  them 
 automatically (e.g., via groundhog::groundhog.library() or renv::restore() in R)? 
 Cross-Platform  Compatibility:  Does  the  code  run  on  a  different  operating  system  than  the  one 
 it was developed on? 
 Run Time:  Does the code provide information on run  time to manage user expectations? 
 Complete Check:  Did you run the entire code? 

 Reproducibility — Check that it gives consistent results. 
 Independent  verification  of  results  is  central  to  scientific  integrity,  and  requires  that  code 
 consistently  generates  the  same  outputs  when  provided  with  the  same  input  data  and 
 computational  conditions.  This  applies  to  both  numerical  outputs  (e.g.,  statistics  summaries, 
 simulation  results)  and  visual  outputs  (e.g.,  figures,  tables).  For  stochastic  processes,  such  as 
 simulations  or  MCMC  methods,  reproducibility  typically  requires  setting  a  random  seed  (e.g., 
 using  set.seed()  in  R),  which  ensures  that  the  pseudo-random  number  generator  produces 
 the  same  sequence  of  values  each  time.  Small  numerical  discrepancies  may  still  occur  due  to 
 floating-point  precision  or  sampling  variability.  Hardwicke  et  al.  (2018)  quantify  numerical 
 differences  using  percentage  error  (PE),  calculated  as  PE  =  (|obtained  –  reported|  /  reported)  × 
 100,  and  define  minor  numerical  errors  as  those  with  PE  <  10%.  They  also  identify  other  sources 
 of  failure  to  reproduce  results:  if  reported  and  obtained  p-values  fall  on  opposite  sides  of  an 
 inferential  threshold  (e.g.,  0.05),  this  constitutes  a  decision  error,  while  incomplete  or  ambiguous 
 analysis  specifications  are  classified  as  insufficient  information  errors  .  Ideally,  reproducible 
 research  involves  a  fully  scripted,  self-contained  workflow  that  avoids  manual  interventions 
 such  as  editing  data  in  external  spreadsheets.  The  code  should  explicitly  document  data  sources, 
 data  wrangling  steps  and  analysis  choices,  and  the  computational  environment  to  ensure  that 
 others  can  follow  the  same  procedures.  While  base  R’s  sessionInfo()  provides  a  snapshot 
 record  of  the  current  software  environment,  dependency  management  systems  can  help 
 replicate the software setup (see  Running  ). 

 Suggested focus to guide the assessment: 
 Numerical  Reproducibility:  Does  the  code  generate  the  same  functional  outputs  (e.g., 
 descriptive statistics, model estimates, or predictions) with identical input? 
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 Visual  Reproducibility:  Does  the  code  generate  consistent  visual  outputs  (e.g.,  figures,  maps) 
 across repeated executions with the same input? 
 Requirements:  Does  the  code  include  or  clearly  specify  all  necessary  data,  or  provide  mock 
 data where applicable, to enable independent reproduction? 
 Compartmentalisation:  Does  the  code  ensure  the  workflow  is  self-contained,  with  all  external 
 software dependencies documented and accessible for execution in other environments? 

 Reliability —  Check that it behaves as expected under known conditions. 
 Reliability  refers  to  the  ability  of  code  to  consistently  produce  correct  and  expected  results  when 
 given  valid,  well-defined  inputs.  The  code  should  be  structured  to  reduce  ambiguity  and  the  risk 
 of  error  by  verifying  internal  assumptions  of  each  component.  Even  code  that  runs  without 
 errors  or  warnings  may  still  yield  incorrect  results,  for  example,  if  the  wrong  column  is  selected 
 in  a  dataset  or  a  variable  is  overwritten.  To  minimise  silent  failure  and  verify  intended 
 behaviour,  simple  checks  should  be  included  throughout  the  workflow.  These  can  be  manual 
 checks  and  safeguards;  for  example,  the  base  R  function  s  topifnot()  can  be  used  to  ensure  x  is 
 numeric:  stopifnot(is.numeric(x))  .  More  formalised  checks  may  include  those  supported 
 by  the  R  package  testthat  (Wickham  2011),  which  supports  automated  unit  tests  for 
 individual functions. 

 Suggested focus to guide the assessment: 
 Input  Validation:  Does  the  code  check  data  formats  or  value  ranges  of  external  inputs  or 
 internal assumptions, e.g., confirming no negative values where only positives are expected? 
 Stepwise  Output  Checks:  Does  the  code  verify  that  key  transformations  or  computations 
 perform as intended, e.g., checking factor levels are preserved after merging? 

 Robustness  —  Check  that  it  remains  functional  under  change  and  handles 
 unexpected inputs gracefully. 
 Robustness  refers  to  the  ability  of  code  to  handle  conditions  changing  to  edge  cases  or  invalid 
 inputs  gracefully,  without  crashing  or  producing  misleading  results.  This  also  includes  structural 
 resilience,  i.e.  minimising  the  risk  of  failure  by  avoiding  redundancy,  using  generalisable  code, 
 and  flagging  potentially  problematic  behaviour  by  producing  clear  error  messages  or  feedback. 
 For  example,  embedding  file  paths  directly  (e.g.,  with  setwd()  in  R)  is  fragile,  whereas  the  adapt 
 package  (Müller  2020)  improves  portability  by  using  relative  paths  within  projects.  Using 
 RStudio  Projects  further  reinforces  this  by  providing  a  consistent  root  directory,  helping  to  avoid 
 issues  with  local  file  paths.  Robust  code  is  efficient  and  avoids  manual  adjustments  and 
 repetition,  and  includes  only  what  is  necessary  for  its  function.  For  example,  converting 
 repeated  blocks  with  functions  or  loops  makes  code  easier  to  maintain,  adapt,  and  debug.  Such 
 functional  programming  principles  support  robustness  by  structuring  code  into  self-contained 
 modules.  Libraries  such  as  purrr  in  R  (Wickham  &  Henry  2025)  or  toolz  in  Python  (Rocklin  et 
 al.  2023)  promote  this  approach.  Comments  or  custom  feedback  can  help  flag  unexpected  or 
 edge-case  behaviour,  such  as  issuing  a  warning  message  when  too  few  data  points  remain  after 
 filtering (  if(nrow(df) < 10) warning("Very few observations  remaining"  ). 

 Suggested focus to guide the assessment: 
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 Parameterisation  &  Portability:  Does  the  code  avoid  hard-coding  and  instead  use  flexible  and 
 generalisable solutions, e.g., relative file paths or transferable parameters? 
 Efficiency:  Does  the  code  include  only  relevant  parts  in  a  streamlined  design—reducing  clutter, 
 minimising  the  risk  of  confusion  or  errors,  and  improving  speed  by  avoiding  redundant 
 execution? 
 Functional  Programming  Principles:  Does  the  code  use  modular  components  to  support 
 structural  resilience  and  debugging,  e.g.,  using  tidyverse  functions  and  pipelines  to  process  data 
 in R? 
 Warnings  &  Error  Handling:  Does  the  code  provide  clear  comments,  warnings,  or  error 
 messages to flag potential issues, e.g. related to data quality or input constraints? 

 Readability — Check that it is clear and clean. 
 Code  that  is  effortlessly  understandable,  is  more  enjoyable  to  work  with.  Not  only  does  it 
 simplify  collaboration,  but  writing  neat  and  well-structured  code  reduces  the  likelihood  of 
 errors  during  the  development  and  is  easier  to  maintain.  Readable  code  is  logically  structured, 
 with  each  section  serving  a  clear  purpose,  and  any  names  both  within  the  code  as  well  as  file 
 names  should  be  informative,  allowing  users  to  follow  the  intended  workflow  with  minimal 
 guesswork.  Linter  tools  (e.g.,  the  R  package  lintr  ;  Hester  et  al.  2025),  analyse  code  for  style  and 
 formatting  issues,  and  can  enforce  consistent  formatting  automatically,  whether  following  an 
 informal style or a guide such as the  tidyverse  style  guide. 

 Suggested focus to guide the assessment: 
 Organisation:  Does  the  code  follow  a  logical  order  that  clearly  conveys  its  purpose  and  guides 
 users through the workflow? 
 Modularity:  Does  the  code  consist  of  manageable  sections  for  different  tasks  (e.g.,  functions, 
 sections, modular scripts) that together form a coherent workflow? 
 Naming  Conventions:  Does  the  code  use  informative  names  for  variables,  functions,  and 
 objects? 
 Style  Conventions:  Does  the  code  consistently  apply  visual  formatting,  such  as  spacing, 
 indentation, and naming styles (e.g., snake_case, CamelCase)? 

 Release — Check that it’s ready for sharing and reuse 
 Now  that  the  code  is  written  and  reviewed,  authors  and  contributors  may  want  to  prepare  it  for 
 broader  use  and  distribution.  Clear  instructions  encourage  responsible  reuse  and  further 
 development,  fostering  collaborative  cultures  and  extending  the  code’s  impact.  A  licence  is 
 essential  to  specify  the  terms  of  reuse;  it  defines  how  others  can  use,  modify,  and  share  the  code. 
 Without  one,  copyright  laws  such  as  the  Berne  Convention  (World  Intellectual  Property 
 Organization,  1979)  restrict  reuse  by  default,  granting  exclusive  rights  to  creators.  Choosing  an 
 appropriate  licence  provides  legal  clarity  while  ensuring  proper  recognition  (see  Beyond  the 
 Checklist:  Additional  Considerations  ).  Metadata  should  include  guidance  on  citation  and  how 
 users  can  contact  the  authors  or  maintainers  to  seek  support  or  provide  feedback  on  issues,  or 
 to  engage  in  collaborative  contributions  to  the  code.  Assigning  a  Persistent  Identifier  (PID),  such 
 as  a  Digital  Object  Identifier  (DOI),  makes  it  easier  to  cite  the  code.  While  GitHub  is  a  widely 
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 used  platform  for  sharing  and  collaboratively  developing  code,  it  does  not  assign  PIDs;  these  can 
 only  be  obtained  by  integrating  repositories  with  services  that  mint  DOIs,  such  as  Zenodo  or  the 
 Open  Science  Framework  (OSF)  .  Linking  code  to  other  research  outputs  (e.g.,  preregistrations, 
 data,  manuscripts)  further  boosts  the  visibility  and  credibility  of  the  work,  and  facilitates 
 tracking of its impact. 

 Suggested focus to guide the assessment: 
 Contact:  Do the authors or maintainers provide guidance  on how to report feedback or seek 
 support? 
 Legal Permissions:  Does the code include a licence  specifying how it can be used, modified, and 
 shared? 
 Attribution:  Does the code have a Persistent Identifier  (e.g., Digital Object Identifier DOI), 
 making it easy to cite and give proper credit in academic and research contexts? 

 Flexibility in code review and synergies 
 Our  practical  guide  offers  a  structured  approach  to  reviewing  scientific  code.  While  the  checklist 
 presented  here  focuses  on  reviewing  the  overall  reusability  of  code,  along  specific  domains  that 
 contribute  to  it—Running,  Reporting,  Reliability,  Reproducibility,  Robustness,  Readability,  and 
 Release—it is not an exhaustive list of criteria, nor is it the only way to categorise them. 

 Improvements  during  code  review  often  have  synergistic  effects,  i.e.  they  often  overlap  and 
 benefit multiple dimensions of code quality at once: 

 ●  For  example,  replacing  repeated  code  with  functions  or  loops  strengthens  Robustness  in 
 various  ways:  modular  code  is  easier  to  maintain  and  modify  (functional  programming 
 principles),  reduced  redundant  execution  is  faster  (efficiency),  and  functions  allow  for 
 flexible  reuse  instead  of  hardcoding  different  inputs  in  repeated  sections 
 (parameterisation). 

 ●  Similarly,  using  relative  file  paths  instead  of  hard-coded  ones  strengthens  Robustness  by 
 ensuring  adaptability  when  file  locations  change.  It  also  enhances  Reliability  by  reducing 
 errors  from  incorrect  paths,  and  improves  Reproducibility  by  standardising  inputs  so  the 
 code runs consistently across different machines. 

 ●  Writing  well-documented  code  enhances  Readability  by  making  it  easier  to  follow  and 
 understand,  while  also  supporting  Reproducibility  by  removing  ambiguity  and  enabling 
 others  to  replicate  results.  Not  only  will  collaborators  and  future  users  appreciate  it—it 
 is also a gift to your future self! 

 The central role of code review in the code development cycle 
 Scientific  code  development  typically  progresses  through  several  phases,  from  initial 
 conceptualisation,  usually  by  an  individual  researcher  (  create  ),  to  distribution  among 
 collaborators  (  sharing  ),  to  publication  alongside  other  research  outputs  (  release  ),  and  eventually 
 leading  to  reuse  that  may  contribute  to  other  projects.  We  present  this  process  as  a  cycle  to 
 emphasise  the  continuous  improvement  of  code  and  the  incremental  nature  of  building  on 
 existing  work  (  Fig.  1  ).  Code  review  is  valuable  at  any  and  every  stage  of  development  and  can 
 serve  as  a  formal  checkpoint  before  code  progresses  to  the  next  phase.  Ideally,  it  addresses  all 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 



 seven  checklist  dimensions,  each  targeting  a  key  aspect  of  code  quality  and  reusability.  In 
 practice,  however,  review  priorities  will  shift  depending  on  the  development  phase,  the  context 
 of  the  review,  the  reviewer’s  expertise,  and  the  code’s  intended  use.  A  flexible 
 approach—focusing on the most relevant dimensions—ensures maximum impact at each stage 

 In  the  ‘create’  phase,  code  is  planned,  designed,  and  written,  usually  by  a  single  researcher  or  a 
 small  team.  This  phase  may  consist  of  several  iterations  as  different  approaches  are  explored  to 
 prepare  the  data  for  analyses,  or  visualise  outputs.  At  this  stage,  authors  involved  in  writing 
 code  may  use  the  checklist  as  an  aide  memoire  to  review  good  practices  and  to  help  ensure  that 
 the  code  works  as  expected  (Running)  and  contains  all  necessary  information  and  functionality 
 for  its  intended  purpose  (Reporting).  Documentation  is  key,  even  if  the  code  does  not  work  as 
 expected  and  even  if  the  code  is  not  yet  intended  for  sharing;  stating  the  purpose  of  code  and 
 any  known  issues  is  good  practice  and  provides  valuable  context  during  future  code 
 development. 

 The  ‘share’  phase  involves  distributing  code  to  others,  typically  collaborators  or  lab  members  . 
 When  conducting  code  review  at  this  stage,  it  is  crucial  to  communicate  the  purpose  of  the  code 
 and  the  context  or  focus  of  the  review,  as  this  will  shape  the  focus  of  the  review.  Code  shared 
 within  a  community  context,  with  lab  members  or  collaborators,  may  prioritise  consistent 
 naming  conventions  that  adhere  to  community  standards  and  practices  (Readability),  and  focus 
 on  flexible  code  that  can  handle  a  range  of  different  inputs  (Reliability,  Robustness)  to  support 
 collaborative  use  and  future  development  with  the  community.  In  contrast,  code  that  is  shared 
 mainly  for  transparency,  as  part  of  a  scientific  paper,  should  be  reviewed  with  focus  on  ensuring 
 it aligns with the methods described in the manuscript (Reporting). 

 In  the  ‘publish’  phase,  code  becomes  available  to  a  wide  group  of  users.  This  may  include 
 publishing  code  associated  with  a  scientific  paper  to  an  online  repository,  or  the  release  of  a 
 package  to  a  library.  During  this  phase,  the  focus  of  code  review  should  be  on  ensuring  that  the 
 purpose  and  intended  functionality  of  the  code  are  clearly  documented  for  potential  users 
 (Reporting),  and  that  others  can  legally  use  the  code,  and  appropriately  cite  and  credit  the 
 source and its developers (Release). 

 Code  development  and  review  should  not  end  when  code  is  published,  but  often  does  as  a  result 
 of  the  short-term  research  grants  that  teams  rely  on  (Coelho  2024).  Yet,  published  code  requires 
 ongoing  maintenance  to  ensure  that  it  continues  to  achieve  its  goals  as  intended  despite  changes 
 to  its  software  dependencies.  Whether  building  on  existing  code  to  implement  new  features  or 
 accommodating  to  new  versions  of  dependencies,  revisiting  the  principles  and  priorities  applied 
 in  the  initial  iteration  of  the  development  cycle  can  support  the  long-term  usability  and 
 sustainability of this crucial part of the research output. 

 Conclusion 
 Sharing  and  publishing  code  is  a  key  step  towards  research  transparency—but  to  maximise  its 
 impact,  shared  code  must  also  be  reusable.  We  present  a  checklist  designed  to  support  this  goal 
 by improving code quality across key domains of reusability. 
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 Code  review  can  take  place  at  many  points  throughout  the  development  cycle,  with  its  focus 
 shaped  by  context,  i.e.,  whether  the  review  is  conducted  by  the  original  author  or  peers,  and 
 whether  it  is  reviewed  before  sharing  it  with  close  collaborators  or  when  finalising  code  for 
 publication.  We  encourage  researchers  to  embrace  the  flexibility  of  this  approach  and  engage  in 
 code  review  both  as  developers  and  as  reviewers.  Code  review  is  not  merely  about  evaluating 
 and  improving  code—it  is  a  collaborative  and  rewarding  practice  that  fosters  learning  and 
 contributes  to  the  transparency  and  reproducibility  in  research,  facilitating  long-term 
 accessibility of research outputs. 

 Beyond the Checklist: Additional Considerations 

 Version-controlled workflows 
 Version  control  systems  manage  and  track  changes  to  files  and  are  considered  best  practice  in 
 research—from  data  management  to  developing  analysis  code  to  writing  outputs.  Git  and  its 
 web  interface  GitHub  are  commonly  used  tools  for  creating  annotated,  version-controlled 
 workflows  (Perkel  2016).  Braga  et  al.  (2023)  provide  an  entry-level  overview  of  how  GitHub 
 features  can  be  used  in  ecology  and  evolution  research,  from  tracking  of  code  development  to 
 collaborative  and  asynchronous  editing,  and  merging  changes  into  the  main  project.  A  next  step 
 builds  on  the  principle  of  continuous  integration  (CI),  a  standard  process  in  professional 
 software,  which  automates  quality  control  and  version-controlled  code  integration;  GitHub 
 Actions is GitHub's built-in implementation of CI. 

 Tools for automated code review 
 While  our  guide  focuses  on  manual  code  review,  automated  tools  can  streamline  the  process  by 
 efficiently  detecting  common  errors  and  enforcing  a  predefined  style.  For  example,  the  R 
 package  lintr  (Hester  et  al.  2025)  checks  style  consistency,  and  the  package  testthat  (Wickham 
 2011)  provides  unit  tests  for  technical  functionality.  Automated  review  can  be  integrated  into  CI 
 pipelines.  By  automating  error  and  style  checks,  developers  and  reviewers  can  focus  on  more 
 complex and nuanced aspects of their code. 

 Choosing a software licence 
 To  select  an  appropriate  licence,  code  creators  can  refer  to  information  and  comparisons 
 provided  on  choosealicense.com  ,  an  open-source  project  maintained  by  GitHub.  Common 
 research  licences  include  the  permissive  Massachusetts  Institute  of  Technology  (MIT)  and 
 Apache  License,  which  are  easy  to  understand  and  allow  use,  modification,  and  redistribution 
 with  minimal  restrictions.  These  licences  are  compatible  with  others,  allowing  code  to  be 
 combined  with  projects  under  a  different  licence,  including  those  that  might  put  the  code  behind 
 a  paywall.  In  contrast,  restrictive  copy-left  licences,  such  as  the  GNU  General  Public  License 
 (GPL),  require  that  any  derivative  works  that  use  or  modify  the  original  code  are  also  adopt  the 
 same  licence  term.  This  protection  builds  trust  within  the  scientific  community  by  limiting 
 concerns  about  lack  of  recognition  for  code  developers,  and  ensuring  that  the  code  remains 
 open and accessible for future research and development. 
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 Reviewer crediting 
 Peer  review  is  essential  for  validating  research  methods  and  outputs,  including  code.  Due  to  the 
 fundamental  role  of  code  in  data  analysis,  code  review  is  critical  to  research  integrity. 
 Acknowledging  reviewers,  either  by  name  or  anonymously,  in  the  code's  documentation  or 
 connected  publications  gives  credit  to  their  valuable  contributions  and  highlights  the 
 collaborative nature of research. 
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 Figures 

 Figure  1.  Review  of  scientific  code  can  occur  at  different  points  throughout  the  code  development 
 cycle,  with  focus  varying  based  on  the  code’s  purpose  and  review  context.  Reviewing  code  during 
 initial  development  will  prioritise  different  domains  compared  to  reviews  of  code  shared  within 
 a  smaller  research  community  or  lab,  or  reviewing  code  before  publication.  Colours  indicate 
 different  phases  in  the  code  development  cycle  (i.e.,  create,  share,  publish).  The  rings  with  seven 
 wedges  correspond  to  the  seven  domains  of  the  code  review  checklist.  Shading  and  wedge  size 
 indicate priority (grey: no priority, light: low priority, dark: high priority). 
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QUESTIONS TO GUIDE CODE ASSESSMENT YES NO UNSURE N/A COMMENT

Reporting — Check that it does what it claims.

Methods Alignment
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Running — Check that it works.

Functioning

Dependencies: 

Cross-Platform Compatibility:

Run Time: 

Complete Check: 

Reproducibility — Check that it gives consistent results.

Numerical Reproducibility: 

Visual Reproducibility: 

Requirements: 

Compartmentalisation: 

Reliability — Check that it behaves as expected under known conditions.

Input Validation:

Stepwise Output Checks: 

Robustness — Check that it remains functional under change and handles unexpected inputs gracefully.

Parameterisation & Portability: 

Efficiency:

Functional Programming Principles:

Warnings & Error Handling: 

Readability — Check that it is clear and clean.

Modularity:

Naming Conventions: 

Style Conventions: 

Release — Check that it is ready for sharing and reuse.

Contact:

Legal Permissions: 

Attribution: 

Organisation:

Review of: Code identifier, incl. version if applicable
 Use this space for any general remarks that do not fit into specific checklist items.

DD/MM/YY

Reviewer OS and software version

Name of reviewer

Please clarify decisions or suggest improvements.

Date review completed: 

Operating system used: 

 

I agree to be acknowledged as a code reviewer by name.

Code should match the reported methods. Data transformations and analyses should align with the description—missing or altered steps mean the code is not as reported.

: Does the code implement the methods as described in the associated documentation
or research outputs?

Is there sufficient metadata (e.g., in a README file or code header) to understand and
use the code independently of external documentation?

Code should execute on a local machine and run its entirety, even for users with limited coding expertise.

: Does the code run without errors from start to finish?

Does the code specify all required libraries/packages or install them automatically (e.g., via
groundhog::groundhog.library() or renv::restore() in R)?

 Does the code run on a different operating system than the one it was
developed on?

Does the code provide information on run time to manage user expectations?

Did you run the entire code?

Code should produce the same output when run with the same input data and computational conditions (including a random seed for stochastic processes like simulations or MCMC).

Does the code generate the same functional outputs (e.g., descriptive
statistics, model estimates, or predictions) with identical input?

Does the code generate consistent visual outputs (e.g., figures, maps) across
repeated executions with the same input?

 Does the code include or clearly specify all necessary data, or provide mock data where
applicable, to enable independent reproduction?

Does the code ensure the workflow is self-contained, with all external software
dependencies documented and accessible for execution in other environments?

Code should perform as intended under typical use cases, producing expected results and including internal checks for common issues to catch errors early.

 Does the code check data formats or value ranges of external inputs or internal
assumptions, e.g., confirming no negative values where only positives are expected?

Does the code verify that key transformations or computations perform as
intended, e.g., checking factor levels are preserved after merging?

Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback. It should avoid brittle design and support flexible workflows.

Does the code avoid hard-coding and instead use flexible and
generalisable solutions, e.g., relative file paths or transferable parameters?

 Does the code include only relevant parts in a streamlined design—reducing clutter, minimising
the risk of confusion or errors, and improving speed by avoiding redundant execution?

 Does the code use modular components to support structural
resilience and debugging, e.g., using tidyverse functions and pipelines to process data in R?

Does the code provide clear comments, warnings, or error messages to flag
potential issues, e.g. related to data quality or input constraints?

Code should be easy to follow, well-structured and logically organised like a manual, and naming of variables and functions should be easy to understand.

 Does the code consist of manageable sections for different tasks (e.g., functions, sections,
modular scripts) that together form a coherent workflow?

Does the code use informative names for variables, functions, and objects?

Does the code consistently apply visual formatting, such as spacing, indentation, and
naming styles (e.g., snake_case, CamelCase)?

Code should be prepared for sharing, include licensing, citation information, and relevant metadata to support reuse and attribution.

 Do the authors or maintainers provide guidance on how to report feedback or seek support?

Does the code include a licence specifying how it can be used, modified, and shared?

Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI), making it easy to
cite and give proper credit in academic and research contexts?

 Does the code follow a logical order that clearly conveys its purpose and guides users
through the workflow?
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dimensions of reusability: Reporting, Running, Reproducibility, Reliability, Robustness, 
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## REVIEW METADATA
Review of: _Unicorn population dynamics v1 05/2025_ <!-- some code identifier --> <br>
Date review completed: _01 Jun 25_ <!-- useful for version tracking and transparency --> <br>
Operating system and software version used: _macOS 13.2, R 4.3.0_ <!-- reviewer OS -->

## REVIEWER ACKNOWLEDGEMENT
Review by: _Name of reviewer_ <!-- add name and tick as applicable --> <br>
[  ] I agree to be acknowledged as a code reviewer by name. <br> 
[  ] I prefer to stay anonymous in the acknowledgements. <br>

## GENERAL NOTES
_optional_  <!-- Use this space for any general remarks that do not fit into specific 
checklist items. -->

## QUESTIONS TO GUIDE CODE ASSESSMENT 

### Reporting — Check that it does what it claims.
Code should match the reported methods. Data transformations and analyses should align with 
the description—missing or altered steps mean the code is not as reported. <br> 
   

- **Methods Alignment:** Does the code implement the methods as described in the associated 
documentation or research outputs? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Documentation:** Is there sufficient metadata (e.g., in a README file or code header) to 
understand and use the code independently of external documentation? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Running — Check that it works.
Code should execute on a local machine and run its entirety, even for users with limited 
coding expertise. <br>

- **Functioning:** Does the code run without errors from start to finish? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Dependencies:** Does the code specify all required libraries/packages or install them 
automatically (e.g., via groundhog::groundhog.library() or renv::restore() in R)? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Cross-Platform Compatibility:** Does the code run on a different operating system than 
the one it was developed on? <br>
    [ ] YES



    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Run Time:** Does the code provide information on run time to manage user expectations? 
<br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Complete Check:** Did you run the entire code? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Reproducibility — Check that it gives consistent results.  
Code should produce the same output when run with the same input data and computational 
conditions (including a random seed for stochastic processes like simulations or MCMC). <br>

- **Numerical Reproducibility:**  Does the code generate the same functional outputs (e.g., 
descriptive statistics, model estimates, or predictions) with identical input? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Visual Reproducibility:** Does the code generate consistent visual outputs (e.g., 
figures, maps) across repeated executions with the same input? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Requirements:** Does the code include or clearly specify all necessary data, or provide 
mock data where applicable, to enable independent reproduction? <br> 
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Compartmentalisation:** Does the code ensure the workflow is self-contained, with all 
external software dependencies documented and accessible for execution in other environments? 
<br> 
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Reliability — Check that it behaves as expected under known conditions.
Code should perform as intended under typical use cases, producing expected results and 
including internal checks for common issues to catch errors early. <br>

- **Input Validation:** Does the code check data formats or value ranges of external inputs 
or other internal assumptions, e.g., confirming no negative values where only positives are 
expected? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Stepwise Output Checks:** Does the code verify that key transformations or computations 
perform as intended, e.g., checking factor levels are preserved after merging?<br>
    [ ] YES
    [ ] NO
    [ ] UNSURE



    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

--- 
     
### Robustness — Check that it remains functional under change and handles unexpected inputs 
gracefully.
Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback. 
It should avoid brittle design and support flexible workflows. <br>

- **Parameterisation & Portability:** Does the code avoid hard-coding and instead use 
flexible and  generalisable solutions, e.g., relative file paths or transferable parameters? 
<br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Efficiency:** Does the code include only relevant parts in a streamlined design—reducing 
clutter, minimising the risk of confusion or errors, and improving speed by avoiding 
redundant execution?<br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Functional Programming Principles:** Does the code use modular components to support 
structural resilience and debugging, e.g., using tidyverse functions and pipelines to process 
data in R? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Warnings & Error Handling:** Does the code provide clear comments, warnings, or error 
messages to flag potential issues, e.g. related to data quality or input constraints? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

---
    
### Readability — Check that it is clear and clean.      
Code should be easy to follow, well-structured and logically organised like a manual, and 
naming of variables and functions should be easy to understand. <br>

- **Organisation:** Does the code follow a logical order that clearly conveys its purpose and 
guides users through the workflow? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Modularity:** Does the code consist of manageable sections for different tasks (e.g., 
functions, sections, modular scripts) that together form a coherent workflow? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Naming Conventions:** Does the code use informative names for variables, functions, and 
objects? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Style Conventions:** Does the code consistently apply visual formatting, such as spacing, 
indentation, and naming styles (e.g., snake_case, CamelCase)? <br>
    [ ] YES
    [ ] NO



    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Release — Check that it is ready for sharing and reuse.
Code should be prepared for sharing, include licensing, citation information, and relevant 
metadata to support reuse and attribution. <br>

- **Contact:** Do the authors or maintainers provide guidance on how to report feedback or 
seek support? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Legal Permissions:** DDoes the code include a licence specifying how it can be used, 
modified, and shared? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Attribution:** Does the code have a Persistent Identifier (e.g., Digital Object 
Identifier DOI), making it easy to cite and give proper credit in academic and research 
contexts? <br>
    [ ] YES
    [ ] NO
    [ ] UNSURE
    [ ] N/A
    Comment: <!-- Enter any clarifications or recommendations here -->

---
---
<!-- end of review -->


