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 Abstract 

 Ensuring  that  research,  along  with  its  data  and  code,  is  credible  and  remains  accessible  is  crucial 

 for  advancing  scientific  knowledge—especially  in  ecology  and  evolutionary  biology,  where  the 

 climate  crisis  and  biodiversity  loss  accelerate  and  demand  urgent,  transparent  science.  Yet,  code 

 is  rarely  shared  alongside  scientific  publications,  and  when  it  is,  unclear  implementation  and 

 insufficient  documentation  often  make  it  difficult  to  use.  Code  review  —  whether  as 

 self-assessment  or  peer  review  —  can  improve  key  aspects  of  code  quality:  reusability,  i.e., 

 ensuring  technical  functionality  and  that  the  code  is  well-documented,  and  validity,  i.e.,  ensuring 

 the  code  implements  the  intended  analyses  faithfully.  While  assessing  validity  requires  domain 

 expertise  for  methodological  assessment,  code  review  for  reusability  can  be  conducted  by 

 anyone  with  basic  understanding  of  programming  practices.  Here,  we  introduce  a 

 checklist-based,  customisable  approach  to  code  review  that  focuses  on  reusability.  Informed  by 

 best  practices  in  software  development  and  recommendations  from  commentary  pieces  and 

 blog  posts,  the  checklist  organises  specific  review  prompts  around  seven  key  attributes  of 

 high-quality  reusable  scientific  code:  Reporting,  Running,  Reliability,  Reproducibility, 

 Robustness,  Readability,  and  Release.  By  defining  and  structuring  these  principles  of  code 

 review  and  turning  them  into  a  practical  tool,  our  template  guides  through  a  systematic 

 evaluation  that  is  also  flexible  to  be  tailored  to  specific  needs.  This  includes  providing 

 researchers  with  a  clear  path  to  proactively  improve  their  own  code.  Ultimately,  this  approach 

 to  code  review  aims  to  reinforce  reproducible  coding  practices,  and  strengthens  both  the 

 credibility and collaborative potential of research. 
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 Introduction: Code as scientific output 

 Code-based  pipelines  for  scientific  data  processing  and  analysis  have  become  standard  in  the 
 Life  Sciences,  supporting  tasks  such  as  file  management,  statistical  modelling,  visualisation,  and 
 generating  reproducible  reports  (Perkel  2016,  Abdill  et  al.  2024).  As  such,  scientific  code  is  not 
 only  a  tool  but  a  core  component  of  the  research  workflow  and  output,  and  should  be  shared 
 and  peer-reviewed  like  other  methodological  details,  to  ensure  research  integrity  and 
 reproducibility (Ivimey-Cook et al. 2023). 

 I  n  the  face  of  global  challenges  such  as  climate  change,  ensuring  that  science  is  transparent  and 
 cumulative  is  not  only  good  practice  but  an  ethical  obligation,  and  reusable  code  and  data  are 
 essential  components  of  this  responsibility  (Sandve  et  al.  2013;  Bledsoe  et  al.  2022;  Gomes  2025).  At 
 the  same  time,  unverifiable  research  risks  becoming  an  unstable  foundation  for  future  research 
 and fuelling the ongoing crisis of confidence in science. 

 The  Open  Science  movement  has  promoted  the  publication  of  data  and  code,  shifting  norms 
 towards  treating  methods,  including  data-processing  and  analysis  scripts,  as  research  outputs 
 worthy  of  recognition  and  review.  While  several  journals  now  encourage  or  mandate  code 
 availability,  policies  suggested  to  improve  the  reproducibility  potential  (Walters  2020; 
 Sánchez-Tójar  et  al.  2025),  compliance  remains  low  (Ivimey-Cook  et  al.  2025).  Most  articles  do 
 not  share  code,  and  available  code  is  often  poorly  documented  and  unusable  (Kellner  et  al.  2025; 
 Culina  et  al.  2020).  Journal  policies  have  largely  prioritised  transparency,  with  minimal 
 expectations  for  usability,  rather  than  fostering  practices  that  make  code  genuinely  reusable.  Yet, 
 the  benefits  of  code  sharing  and  code  review  extend  beyond  transparency  of  methods  and 
 improved  code  quality;  they  promote  a  culture  of  cooperation  and  collaboration,  and  benefit 
 individual  researchers  by  providing  opportunities  for  feedback  and  professional  development 
 (Culina et al. 2020), and by increasing citation potential (Maitner et al. 2023). 

 Still,  sharing  code  publicly—and  especially  for  review—can  be  daunting.  Many  researchers 
 hesitate,  citing  concerns  about  intellectual  property,  the  additional  effort  of  documentation,  or 
 fear  of  critique  (Gomes  et  al.  2022).  In  fields  such  as  ecology  and  evolutionary  biology,  analytical 
 pipelines  are  often  custom-built  to  address  specific  questions.  These  scripts  are  usually 
 developed  by  researchers  without  formal  training  in  software  engineering  and  vary 
 considerably  in  style  and  documentation.  Coding  is  a  skill  that  takes  time  to  develop,  and 
 support  for  training  remains  uneven  across  institutions  and  career  stages.  Researchers  who  are 
 self-taught may feel especially vulnerable when exposing their code to scrutiny. 

 This  apprehension  often  extends  to  the  review  process  itself.  Anxiety  about  giving  and  receiving 
 feedback  on  code  is  common,  and  can  deter  engagement  (Lee  &  Hicks  2024).  To  counter  this,  we 
 emphasise  a  shift  in  expectations:  there  is  no  such  thing  as  ‘perfect  code’—or,  as  others  have  put 
 it,  your  code  is  good  enough  to  share  (Barnes  2010,  Wilson  et  al.  2017).  By  reinforcing  this 
 mindset,  we  hope  to  normalise  code  review  as  a  constructive  and  collaborative  process,  a 
 professional  service  to  others  and  a  practical  necessity  for  credible  science,  rather  than  an 
 exercise  in  intimidating  scrutiny.  In  doing  so,  we  support  a  research  culture  where  code  is 
 valued,  improved,  and  reused,  a  practice  that  benefits  authors,  their  collaborators,  and  the  wider 
 research community. 



 Learning from practices in data management and software development 

 Although  research  data  and  code  are  deeply  interconnected,  code  is  often  treated  as  a  mere  tool 
 rather  than  a  central  part  of  the  scientific  method  and  output,  and  rarely  receives  the  same  level 
 of  scrutiny  and  standardisation  as  data.  However,  c  ollaborations  require  community  conventions 
 and  quality  standards.  G  lobal  databases  in  ecology  and  evolution  demonstrate  their  power  for 
 large-scale  collaboration;  notable  examples  include  COMADRE  for  animal  demography 
 (Salguero-Gómez  et  al.  2016),  SPI-Birds  for  avian  ecology  (Culina  et  al.  2020),  bio-logging 
 standardisation  frameworks  (Sequeira  et  al.  2021),  and  MacaqueNet  for  primate  behavioural 
 ecology  (De  Moor  et  al.  2025).  These  initiatives  adhere  to  established  data  management 
 principles  such  as  FAIR  (Findable,  Accessible,  Interoperable,  and  Reusable)  and  TRUST 
 (Transparency,  Responsibility,  User  Focus,  Sustainability,  and  Technology),  ensuring  that  data 
 remain reusable. 

 Crucially,  these  initiatives  all  rely  on  code-based  workflows  for  data  processing  and  integration, 
 and  quality  control  pipelines.  Given  that  these  databases  already  bring  together  large  research 
 communities  using  shared  data  standards,  they  provide  a  strong  foundation  for  extending  FAIR 
 and  TRUST  principles  to  code  workflows  to  foster  better  documentation,  reproducibility,  and 
 long-term  accessibility.  Reviewing  and  sharing  code  further  strengthens  collaboration  within 
 research  communities.  For  instance,  researchers  from  The  Norwegian  Institute  for  Nature 
 Research  (NINA),  Norway’s  leading  institution  for  applied  ecological  research,  have  developed 
 community-led approaches to code review (Kolstad et al. 2023). 

 While  still  emerging  in  scientific  research,  code  review  is  a  long-standing  practice  in 
 professional  software  development  and  computational  disciplines  such  as  engineering,  where  it 
 plays  a  crucial  role  in  ensuring  software  quality  and  maintainability.  The  foundational  Fagan 
 Inspection  process,  developed  in  the  1970s,  is  a  structured  multi-step  approach  that  involves 
 distinct  process  operations  (Overview,  Preparation,  Inspection,  Rework,  and  Follow-up)  with 
 clear  objectives  or  focused  tasks  such  as  finding  errors,  fixing  them,  and  ensuring  all  fixes  are 
 correctly  applied  (Fagan  1976).  This  method  also  includes  communications  and  education  as 
 part  of  the  inspection,  ensuring  that  the  team  learns  from  the  process.  In  software  developing 
 projects  today,  systematic  code  review  is  integrated  alongside  automated  testing,  version 
 control,  and  continuous  integration  to  catch  errors,  improve  clarity  and  efficiency,  and  maintain 
 good coding standards. 

 Scientific  code  review,  though  not  yet  as  formalised,  serves  a  similar  role  in  supporting 
 long-term  sustainability  of  code  and  collaboration.  Researchers  can  adopt  key  practices  from 
 software  development,  including  thorough  documentation,  modular  design,  and  structured 
 review processes. 

 BOX: Code review in research context — Scope and limits 

 Code  review  is  the  systematic  evaluation  of  software  code.  The  aim  is  to  identify  errors  and 
 improve  the  code  quality.  Code  quality  can  broadly  be  assessed  in  two  key  aspects:  reusability 



 (ensuring  the  code  is  functional,  modular,  well-documented,  and  licensed)  and  validity 
 (ensuring  the  code  accurately  implements  the  reported  methods  without  introducing  errors  in 
 consecutive steps). 

 Code  review  is  a  key  part  of  research  validity.  While  manuscript  peer  review  evaluates  the 
 scientific  soundness  of  a  study  and  its  methods,  code  review  ensures  that  the  computational 
 steps  producing  the  results  are  transparent,  free  of  errors,  and  reproducible.  Together,  these 
 processes contribute to the credibility of research findings. 

 Code  review  is  inherently  context-specific.  Code  review  primarily  strengthens  computational 
 reproducibility  but  its  focus,  depth,  and  outcomes  depend  on  the  expertise  of  the  reviewer,  the 
 stage  at  which  the  review  occurs,  and  the  specific  goals  of  the  assessment.  Some  reviews  may 
 prioritise  technical  functionality,  while  others  focus  on  the  code  being  comprehensible  to  a 
 broad audience. 

 Code  review  is  a  tool  for  maintaining  high  research  standards.  Given  that  code  is  part  of  the 
 scientific  output,  often  essential  to  the  methods  and  results,  code  review  ensures  that 
 computational  workflows  are  transparent,  comprehensible,  and  appropriately  implemented.  It 
 also promotes ethical data practices, long-term sustainability, and open research. 

 Code  review  is  a  means  of  fostering  collaboration,  knowledge  exchange,  and  innovation. 
 Engaging  in  code  review  can  even  help  researchers  refine  their  own  coding  skills  and  adopt  or 
 share more efficient approaches and better practices. 

 Code  review  is  not  a  guarantee  of  correctness.  Much  like  manuscript  peer  review,  code  peer 
 review does not ensure absolute validity (Smith 2006; Drozdz & Ladomery 2024). 

 Code  review  is  not  an  assessment  of  methodological  choices.  Depending  on  the  specific  aim 
 of  the  review,  code  reviewers  may  not  be  familiar  with  the  research  context  and  instead  focus 
 solely  on  computational  aspects.  Code  reviewers  check  whether  the  analysis  is  correctly 
 implemented  as  described  in  the  manuscript  but  does  not  determine  whether  the  chosen 
 analysis  is  appropriate  for  the  research  question—that  usually  remains  within  the  scope  of 
 scientific peer review. 

 Code  review  is  not  a  stylistic  critique.  Unless  a  standardised  style  guide  applies,  minor 
 stylistic  choices  are  not  the  focus.  While  consistency  is  important,  clarity,  accuracy,  and 
 documentation take priority over stylistic preferences. 

 Code  review  is  not  code  revision.  Reviewers  provide  feedback,  but  responsibility  for 
 implementing changes remains with the code’s authors. 

 Putting code review in practice: A practical checklist 

 Existing  primers  to  code  review—such  as  the  ‘4-Rs’  framework  (Running,  Reporting,  Reliability, 
 and  Reproducibility;  Ivimey-Cook  et  al.  2023)—advocate  for  integrating  code  review  into 



 reproducible  scientific  practice.  Others  highlight  the  value  of  kind,  community-oriented  review, 
 providing  principled  advice  for  code  review  with  emphasis  on  social  etiquette  such  as  inviting 
 collaborators,  mentors,  and  students  to  review,  being  kind,  and  reciprocating  feedback  (Rokem 
 2024).  While  conceptually  rich,  these  resources  offer  limited  guidance  for  day-to-day 
 implementation. 

 To  bridge  this  gap,  we  reviewed  existing  best-practice  guidelines  (Sandve  et  al.  2013;  Cooper  & 
 Hsing  2017;  Wilson  et  al.  2017;  Barker  et  al.  2022;  Filazzola  &  Lortie  2022;  Jenkins  et  al.  2023) 
 and  developed  a  practical  checklist  researchers  can  use  for  self-assessment  and  peer  review.  We 
 extend  the  4-R  framework  to  a  7-R  guide,  introducing  additional  dimensions  of  code  quality 
 (Robustness,  Readability,  and  Release)  to  support  a  more  comprehensive  assessment  of 
 scientific code reusability. 

 The  checklist  provides  structured  but  flexible  prompts  to  guide  reflection  and  evaluation, 
 helping  code  developers  and  reviewers  to  identify  areas  for  improvement.  Though 
 comprehensive,  it  is  aligned  with  common,  attainable  standards.  By  making  peer  review  more 
 accessible,  systematic,  and  standardised,  we  aim  to  help  researchers  improve  the  quality  and 
 impact of their code, and to contribute to collaborative Open research practices. 

 User-friendly  and  customisable  versions  of  the  checklist,  including  a  PDF  and  a  Markdown 
 template, are available in the supplementary materials. 

 Reporting:  Check that it does what it claims. 
 Code  is  used  to  solve  a  specific  problem  or  perform  tasks,  and  code  review  should  verify 
 whether  it  does  what  it  is  intended  to  do—or  claims  to  do.  In  research  contexts,  this  usually 
 means  assessing  whether  the  code  faithfully  implements  the  methods  outlined  in  the  associated 
 manuscript.  All  critical  steps  from  data  wrangling  to  specifying  statistical  models  should  be 
 present  in  the  code  as  reported—and  vice  versa  ,  though  the  focus  here  is  on  reviewing  code.  Any 
 discrepancies,  as  small  as  applying  a  different  data  filter,  can  undermine  the  reproducibility  of 
 the  research,  and  necessary  deviations  should  be  documented  (e.g.,  manual  steps  or  unreported 
 additional  steps).  Verifying  that  the  code  matches  the  reported  methods  eliminates 
 misinterpretations due to unreported differences between documentation and implementation. 

 Suggested focus to guide the assessment: 
 Methods Alignment  : Does the code implement the methods  as described in the associated 
 documentation or research outputs? 

 Documentation:  Is there sufficient metadata (e.g.,  in a README file or code header) to understand 
 and use the code independently of external documentation? 

 Running — Check that it works. 
 From  typo  to  missing  dependencies,  to  platform  incompatibilities—various  factors  can  prevent 
 code  from  running.  A  key  aspect  of  assessing  code  is  verifying  that  it  is  executable  and  that  it 
 runs  as  expected.  Code  that  is  difficult  to  install,  requires  excessive  manual  intervention,  or  does 
 not  perform  within  reasonable  time  constraints  is  not  user-friendly.  To  help  with  successful 



 setup  of  dependencies,  tools  like  the  groundhog  R  package  (Simonsohn  &  Gruson  2025)  can  lock 
 package versions, ensuring that the same versions are loaded each time a script is run. 

 Suggested focus to guide the assessment: 

 Functioning  : Does the code run without errors from  start to finish? 

 Dependencies:  Does the code specify all required libraries/packages  or is set to install automatically? 

 Cross-Platform Compatibility:  Does the code run on  a different operating system than the one it 
 was developed on? 

 Run Time:  Does the code provide information on run  time to manage user expectations? 

 Complete Check:  Did you run the entire code? 

 Reproducibility — Check that it gives consistent results. 
 Ensuring  reproducibility  allows  findings  to  be  verified  independently,  which  is  a  key  aspect  to 
 scientific  integrity.  For  code  to  be  considered  reproducible,  it  must  consistently  generate  the 
 claimed  functional  outputs  when  provided  with  the  same  input  data  and  computational 
 conditions.  This  applies  to  both  numerical  outputs  (e.g.,  statistical  summaries,  simulation 
 results)  and  visual  outputs  (e.g.,  figures,  tables).  Ideally  and  conveniently,  though  not  the  only 
 way  to  achieve  reproducible  research,  the  entire  workflow  is  scripted  and  self-contained, 
 avoiding  manual  interventions  such  as  editing  data  in  external  spreadsheets.  The  code  should 
 explicitly  document  data  sources,  data  wrangling  steps,  and  analysis  choices,  to  ensure  that 
 others  can  follow  the  same  procedures.  Dependency  management  extends  to  the  computational 
 setup.  In  R,  running  sessionInfo()  provides  a  snapshot  record  of  the  current  software 
 environment,  while  the  packrat  package  (Atkins  et  al.,  2025)  stores  package  copies,  creating  a 
 local library of package dependencies directly within a specified analysis directory. 

 Suggested focus to guide the assessment: 
 Numerical Reproducibility:  Does the code generate  the same functional outputs, i.e., statistical or 
 simulation results, when provided with identical data and parameters? 

 Visual Reproducibility:  Does the code generate consistent  visual outputs (e.g., figures, maps) 
 across repeated executions with the same input? 

 Requirements:  Does the code include or clearly specify  all necessary data, or provide mock data 

 Compartmentalisation:  Does the code ensure the workflow  is self-contained, with all external 
 software dependencies documented and accessible for execution in other environments? 



 where applicable, to enable independent reproduction? 

 Reliability —  Check that it is built to minimise potential errors. 
 Reliability  refers  to  the  ability  of  code  to  consistently  produce  correct  and  expected  results  when 
 given  valid,  well-defined  inputs.  However,  errors  can  propagate  through  seemingly  error-free 
 code;  code  that  runs  without  warnings  and  produces  an  output  may  still  yield  incorrect  results. 
 For  example,  this  could  happen  when  the  wrong  column  is  selected  in  a  dataset  or  when  a 
 variable  is  inadvertently  overwritten.  To  minimise  these  risks,  code  should  include  input 
 validation  and  rigorous  testing  to  ensure  it  works  as  intended.  Implementing  unit  tests,  for 
 example,  can  help  identify  issues  early  by  validating  individual  steps.  By  focusing  on  minimising 
 potential  errors  and  verifying  that  it  works  as  intended,  throughout  the  workflow,  the  likelihood 
 of undetected issues that could compromise results is reduced. 

 Suggested focus to guide the assessment: 
 Expected Results  : Does the code produce the correct  type of output for each step, e.g., correct data 
 transformations or statistical results? 

 Validation & Internal Checks:  Does the code include  safeguards such as assertions, unit tests, or 
 manual checks to verify that key steps are performed as intended? 

 Warning & Error Handling:  Does the code anticipate  limitations related to data quality or input 
 constraints and provide comments, warnings, or error messages? 

 Robustness — Check that it handles unexpected or invalid inputs gracefully. 
 Robustness  refers  to  the  ability  of  code  to  handle  unexpected  edge  cases  or  invalid  inputs 
 gracefully,  avoiding  crashes  or  misleading  results.  Robust  code  anticipates  potential  problems  by 
 minimising  redundancy,  using  generalisable  structures  ensuring  adaptability,  and  producing 
 clear  error  messages  where  needed.  For  example,  in  R,  embedding  file  paths  directly  is  fragile 
 (e.g.,  setting  the  working  directory  with  setwd()  )  whereas  the  here  package  (Müller  2020) 
 improves  portability  by  using  relative  paths  within  projects.  Similarly,  replacing  repeated  blocks 
 with  functions  or  loops  makes  code  modular  and  therefore  easier  to  debug  and  maintain. 
 Functional  programming  principles  further  support  robustness  by  structuring  code  into 
 self-contained  steps  that  do  not  modify  global  states,  ensuring  independent  testing,  or  reuse  and 
 extending.  Libraries  such  as  purrr  in  R  (Wickham  &  Henry  2025)  and  toolz  in  Python  (Rocklin  et 
 al.  2023)  promote  this  approach.  Robust  code  is  efficient;  everything  in  it  should  be  necessary 
 for its function. 

 Suggested focus to guide the assessment: 

 Feedback  : Does the code provide clear, interpretable  comments/messages on potential issues? 

 Parameterisation:  Does the code avoid hard-coding?  For instance, does it use relative file paths 
 instead of absolute ones? 

 Efficiency:  Does the code efficiently avoid redundancy  and include only what is necessary? 

 Functional Programming  Principles:  Does the code minimise  global state changes using functions 
 and pipelines (e.g., R tidyverse packages)? 



 Readability — Check that it is clear and clean. 
 Code  that  is  effortlessly  understandable,  is  fun  to  work  with.  Not  only  does  it  simplify 
 collaboration,  but  writing  neat  and  well-structured  code  is  easier  to  maintain  and  reduces  the 
 likelihood  of  errors  during  the  development.  Code  should  be  organised  logically,  with  a  clear 
 structure  of  segments  that  reflect  a  specific  purpose,  and  any  names  both  within  the  code  as  well 
 as  file  names  should  be  informative,  allowing  users  to  follow  the  intended  workflow  with 
 minimal guesswork. 

 Suggested focus to guide the assessment: 
 Organisation:  Does the code follow a logical order,  guiding users through the workflow and clearly 
 conveying its function? 

 Modularity:  Does the code consist of manageable, logical  sections (e.g., functions, sections, modular 
 scripts) that together form a coherent workflow? 

 Naming Conventions:  Does the code use informative  names for variables, functions, and objects? 

 Style Conventions:  Does the code consistently follow  a style guide, such as tidyverse style for R? 

 Release — Check that it’s ready for sharing and reuse 
 Now  that  the  code  is  written  and  reviewed,  authors  and  contributors  want  others  to  use  it.  Clear 
 instructions  encourage  responsible  reuse  and  further  development,  fostering  collaborative 
 cultures  and  extending  code  impact.  A  licence  is  essential  to  specify  terms  for  reuse;  it  defines 
 how  others  can  use,  modify,  and  distribute  the  code.  Without  one,  copyright  laws  automatically 
 restrict  reuse  under  agreements  like  the  Berne  Convention  (World  Intellectual  Property 
 Organization,  1979),  which  grants  creators  exclusive  rights  by  default.  A  well-chosen  licence 
 provides  legal  clarity  while  ensuring  contributors  receive  appropriate  recognition  (see 
 paragraph  on  selecting  a  software  licence  under  Beyond  the  Checklist:  Additional 
 Considerations).  Guidelines  on  citation,  and  how  users  can  contribute  to,  or  seek  support  for  the 
 code  should  be  provided  in  the  metadata,  along  with  instructions  for  feedback,  issue  reporting, 
 and  collaboration.  Assigning  a  Persistent  Identifier  (PID),  such  as  a  Digital  Object  Identifier 
 (DOI),  makes  it  easier  to  cite  the  code.  Further,  connecting  the  code  to  other  research  outputs  via 
 a  enhances the visibility and credibility of the work, and facilitates tracking of its impact. 

 Suggested focus to guide the assessment: 
 Contact:  Do the authors or maintainers provide guidance  on how to report feedback or obtain 
 support? 

 Legal Permissions:  Does the code include a licence  specifying how it can be used, modified, 
 shared? 

 Attribution:  Does the code have a Persistent Identifier  (e.g., Digital Object Identifier DOI), making it 
 easy to cite and give proper credit in academic and research contexts? 



 Flexibility in code review and synergies 

 Our  practical  guide  offers  a  structured  approach  to  reviewing  scientific  code.  While  the  checklist 
 presented  here  focuses  on  reviewing  the  overall  reusability  of  code,  along  specific  domains  that 
 contribute  to  it—Running,  Reporting,  Reliability,  Reproducibility,  Robustness,  Readability,  and 
 Release—it is not an exhaustive list of questions, nor is it the only way to categorise questions. 

 Improvements  during  code  review  often  have  synergistic  effects,  i.e.  they  often  overlap  and 
 benefit multiple dimensions of code quality: 

 ●  Replacing  repeated  code  with  functions  or  loops  strengthens  Robustness  in  various 
 ways:  modular  code  is  easier  to  maintain  and  modify  (functional  programming 
 principles),  reduced  redundant  execution  is  faster  (efficiency),  and  functions  allow  for 
 flexible  reuse  instead  of  hardcoding  different  inputs  in  repeated  sections 
 (parameterisation). 

 ●  Using  relative  file  paths  instead  of  hard-coded  ones  improves  Robustness  by  ensuring 
 adaptability  when  file  locations  change.  It  also  enhances  Reliability  by  reducing  errors 
 from  incorrect  paths,  and  strengthens  Reproducibility  by  standardising  inputs  so  the 
 code runs consistently across different machines. 

 ●  Writing  well-documented  code  enhances  Readability  by  making  it  easier  to  understand 
 and  improves  Reproducibility  by  removing  guesswork,  making  findings  easier  to 
 replicate.  Not  only  will  collaborators  and  future  users  appreciate  it—it’s  also  a  gift  to 
 your future self! 

 The central role of code review in the code development cycle 

 Scientific  code  development  typically  progresses  through  several  phases,  from  initial 
 conceptualisation,  usually  by  an  individual  researcher  (  create  ),  to  distribution  among 
 collaborators  (  sharing  ),  to  publication  alongside  other  research  outputs  (  release  ),  and  eventually 
 leading  to  reuse  that  may  contribute  to  other  projects.  We  present  this  process  as  a  cycle  to 
 emphasise  the  continuous  improvement  of  code  and  the  incremental  nature  of  building  on 
 existing  work  (  Fig.  1  ).  Code  review  is  valuable  at  any  and  every  stage  of  development  and  can 
 serve  as  a  formal  checkpoint  before  code  progresses  to  the  next  phase.  Ideally,  it  addresses  all 
 seven  checklist  dimensions,  each  targeting  a  key  aspect  of  code  quality  and  reusability.  In 
 practice,  however,  review  priorities  will  shift  depending  on  the  development  phase,  the  context 
 of  the  review,  the  reviewer’s  expertise,  and  the  code’s  intended  use.  A  flexible 
 approach—focusing  on  the  most  relevant  checklist  dimensions—ensures  maximum  impact  at 
 each stage 

 In  the  ‘create’  phase,  code  is  planned,  designed,  and  written,  usually  by  a  single  researcher  or  a 
 small  team.  This  phase  may  consist  of  several  iterations  as  different  approaches  are  explored  to 
 prepare  the  data  for  analyses,  or  visualise  outputs.  At  this  stage,  authors  involved  in  writing 
 code  may  use  the  checklist  as  an  aide  memoire  to  review  good  practices  and  to  help  ensure  that 
 the  code  works  as  expected  (Running)  and  contains  all  necessary  information  and  functionality 
 for  its  intended  purpose  (Reporting).  Documentation  is  key,  even  if  the  code  does  not  work  as 



 expected  and  even  if  the  code  is  not  yet  intended  for  sharing;  stating  the  purpose  of  code  and 
 any  known  issues  is  good  practice  and  provides  valuable  context  during  future  code 
 development. 

 The  ‘share’  phase  involves  distributing  code  to  others,  typically  collaborators  or  lab  members  . 
 When  conducting  code  review  at  this  stage,  it  is  crucial  to  communicate  the  purpose  of  the  code 
 and  the  context  or  focus  of  the  review,  as  this  will  shape  the  focus  of  the  review.  Code  shared 
 within  a  community  context,  with  lab  members  or  collaborators,  may  prioritise  consistent 
 naming  conventions  that  adhere  to  community  standards  and  practices  (Readability),  and  focus 
 on  flexible  code  that  can  handle  a  range  of  different  inputs  (Reliability,  Robustness)  to  support 
 collaborative  use  and  future  development  with  the  community.  In  contrast,  code  that  is  shared 
 mainly  for  transparency,  as  part  of  a  scientific  paper,  should  be  reviewed  with  focus  on  ensuring 
 it aligns with the methods described in the manuscript (Reporting). 

 In  the  ‘publish’  phase,  code  becomes  available  to  a  wide  group  of  users.  This  may  include 
 publishing  code  associated  with  a  scientific  paper  to  an  online  repository,  or  the  release  of  a 
 package  to  a  library.  During  this  phase,  the  focus  of  code  review  should  be  on  ensuring  that  the 
 purpose  and  intended  functionality  of  the  code  are  clearly  documented  for  potential  users 
 (Reporting),  and  that  others  can  legally  use  the  code,  and  appropriately  cite  and  credit  the 
 source and its developers (Release). 

 Code  development  and  review  should  not  end  when  code  is  published,  but  often  does  as  a  result 
 of  the  short-term  research  grants  that  teams  rely  on  (Coelho  2024).  Yet,  published  code  requires 
 ongoing  maintenance  to  ensure  that  it  continues  to  achieve  its  goals  as  intended  despite  changes 
 to  its  software  dependencies.  Whether  building  on  existing  code  to  implement  new  features  or 
 accommodating  to  new  versions  of  dependencies,  revisiting  the  principles  and  priorities  applied 
 in  the  initial  iteration  of  the  development  cycle  can  support  the  long-term  usability  and 
 sustainability of this crucial part of the research output. 

 Conclusion 

 Sharing  and  publishing  code  is  a  key  step  towards  research  transparency—but  to  maximise  its 
 impact,  shared  code  must  also  be  reusable.  We  present  a  checklist  designed  to  support  this  goal 
 by improving code quality across key domains of reusability. 

 Code  review  can  take  place  at  many  points  throughout  the  development  cycle,  with  its  focus 
 shaped  by  context,  i.e.,  whether  the  review  is  conducted  by  the  original  author  or  peers,  and 
 whether  it  is  reviewed  before  sharing  it  with  close  collaborators  or  when  finalising  code  for 
 publication.  We  encourage  researchers  to  embrace  the  flexibility  of  this  approach  and  engage  in 
 code  review  both  as  developers  and  as  reviewers.  Code  review  is  not  merely  about  evaluating 
 and  improving  code—it  is  a  collaborative  and  rewarding  practice  that  fosters  learning  and 
 contributes  to  the  transparency  and  reproducibility  in  research,  facilitating  long-term 
 accessibility of research outputs. 



 Beyond the Checklist: Additional Considerations 

 Version-controlled workflows 
 Version  control  systems  manage  and  track  changes  to  files  and  are  considered  best  practice  in 
 research—from  data  management  to  developing  analysis  code  to  writing  outputs.  Git  and  its 
 web  interface  GitHub  are  commonly  used  tools  for  creating  annotated,  version-controlled 
 workflows  (Perkel  2016).  Braga  et  al.  (2023)  provide  an  entry-level  overview  of  how  GitHub 
 features  can  be  used  in  ecology  and  evolution  research,  from  tracking  of  code  development  to 
 collaborative  and  asynchronous  editing,  and  merging  changes  into  the  main  project.  A  next  step 
 builds  on  the  principle  of  continuous  integration  (CI),  a  standard  process  in  professional 
 software,  which  automates  quality  control  and  version-controlled  code  integration;  GitHub 
 Actions is GitHub's built-in implementation of CI. 

 Tools for automated code review 
 While  our  guide  focuses  on  manual  code  review,  automated  tools  can  streamline  the  process  by 
 efficiently  detecting  common  errors  and  enforcing  a  predefined  style.  For  example,  the  R 
 package  lintr  (Hester  et  al.  2025)  checks  style  consistency,  and  the  package  testthat  (Wickham 
 2011)  provides  unit  tests  for  technical  functionality.  Automated  review  can  be  integrated  into  CI 
 pipelines.  By  automating  error  and  style  checks,  developers  and  reviewers  can  focus  on  more 
 complex and nuanced aspects of their code. 

 Choosing a software licence 
 To  select  an  appropriate  licence,  code  creators  can  refer  to  information  and  comparisons 
 provided  on  choosealicense.com  ,  an  open-source  project  maintained  by  GitHub.  Common 
 research  licences  include  the  permissive  Massachusetts  Institute  of  Technology  (MIT)  and 
 Apache  License,  which  are  easy  to  understand  and  allow  use,  modification,  and  redistribution 
 with  minimal  restrictions.  These  licences  are  compatible  with  others,  allowing  code  to  be 
 combined  with  projects  under  a  different  licence,  including  those  that  might  put  the  code  behind 
 a  paywall.  In  contrast,  restrictive  copy-left  licences,  such  as  the  GNU  General  Public  License 
 (GPL),  require  that  any  derivative  works  that  use  or  modify  the  original  code  are  also  adopt  the 
 same  licence  term.  This  protection  builds  trust  within  the  scientific  community  by  limiting 
 concerns  about  lack  of  recognition  for  code  developers,  and  ensuring  that  the  code  remains 
 open and accessible for future research and development. 

 Reviewer crediting 
 Peer  review  is  essential  for  validating  research  methods  and  outputs,  including  code.  Due  to  the 
 fundamental  role  of  code  in  data  analysis,  code  review  is  critical  to  research  integrity. 
 Acknowledging  reviewers,  either  by  name  or  anonymously,  in  the  code's  documentation  or 
 connected  publications  gives  credit  to  their  valuable  contributions  and  highlights  the 
 collaborative nature of research. 

https://choosealicense.com/
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 Figure  1.  Review  of  scientific  code  can  occur  at  different  points  throughout  the  code  development 
 cycle,  with  focus  varying  based  on  the  code’s  purpose  and  review  context.  Reviewing  code  during 
 initial  development  will  prioritise  different  domains  compared  to  reviews  of  code  shared  within 
 a  smaller  research  community  or  lab,  or  reviewing  code  before  publication.  Colours  indicate 
 different  phases  in  the  code  development  cycle  (i.e.,  create,  share,  publish).  The  rings  with  seven 
 wedges  correspond  to  the  seven  domains  of  the  code  review  checklist.  Shading  and  wedge  size 
 indicate priority (grey: no priority, light: low priority, dark: high priority). 



Code review in practice: A checklist for computational reproducibility and collaborative research in ecology and evolution
This checklist guides code review, whether as self-assessment or peer review, across key dimensions of reusability: Reporting, Running, Reproducibility, Reliability, Robustness,
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Expected Results
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Code should match the reported methods. Data transformations and analyses should align with the description—missing or altered steps mean the code is not as reported.

: Does the code implement the methods as described in the associated
documentation or research outputs?

Is there sufficient metadata (e.g., in a README file or code header) to understand
and use the code independently of external documentation?

Code should execute on a local machine and run its entirety, even for users with limited coding expertise.

: Does the code run without errors from start to finish?

Does the code specify all required libraries/packages or is set to install automatically?

 Does the code run on a different operating system than the one it was
developed on?

Does the code provide information on run time to manage user expectations?

Did you run the entire code?

Code should produce the same results when run with the same input—ideally, results that match expected or claimed outputs

Does the code generate the same functional outputs, i.e., statistical or
simulation results, when provided with identical data and parameters?

Does the code generate consistent visual outputs (e.g., figures, maps) across
repeated executions with the same input?

 Does the code include or clearly specify all necessary data, or provide mock data
where applicable, to enable independent reproduction?

Does the code ensure the workflow is self-contained, with all external software
dependencies documented and accessible for execution in other environments?

Code should perform as intended under typical use cases, producing expected results and including internal checks for common issues to catch errors early.

: Does the code produce the correct type of output for each step, e.g., correct data
transformations or statistical results?

Does the code include safeguards such as assertions, unit tests, or
manual checks to verify that key steps are performed as intended?

 Does the code anticipate limitations related to data quality or input
constraints and provide comments, warnings, or error messages?

Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback. It should avoid brittle design and support flexible workflows.

: Does the code provide clear, interpretable comments/messages on potential issues?

 Does the code avoid hard-coding? For instance, does it use relative file paths
instead of absolute ones?

  Does the code efficiently avoid redundancy and include only what is necessary?

  Does the code minimise global state changes using functions
and pipelines (e.g., R tidyverse packages)?

Code should be easy to follow, well-structured and logically organised like a manual, and naming of variables and functions should be easy to understand.

 Does the code follow a logical order, guiding users through the workflow and clearly
conveying its function?

Does the code use informative names for variables, functions, and objects?

Does the code consistently follow a style guide, such as tidyverse style for R?

Code should be prepared for sharing, include licensing, citation information, and relevant metadata to support reuse and attribution.

 Do the authors or maintainers provide guidance on how to report feedback or obtain support?

Does the code include a licence specifying how it can be used, modified, shared?

Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI), making it
easy to cite and give proper credit in academic and research contexts?

 Does the code consist of manageable, logical sections (e.g., functions, sections, modular
scripts) that together form a coherent workflow?



# Code review in practice: A checklist for computational reproducibility and collaborative research in ecology and evolution

This checklist guides code review, whether as self-assessment or peer review, across key dimensions of reusability: Reporting, Running, Reproducibility, Reliability, Robustness, Readability, and 
Release. Criteria may be marked as YES (met), NO (not met), UNSURE (unclear or not evaluated), or N/A (not applicable). Designed as a flexible template, it can be tailored to different contexts by 
modifying, omitting, or adding criteria. This checklist is licensed under a [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License, permitting sharing and adaptation for 
non-commercial use with attribution. Editable versions (.md, .xlsx) are available in the supplementary materials of the accompanying paper. Please cite the paper for attribution: ADD PAPER/PREPRINT/
DOI

## REVIEW METADATA
Review of: _Code identifies/name/author_ <!-- some code identifier, incl. version if applicable --> <br>
Date review completed: _mm YY_ <!-- month and year is fine --> <br>
Operating system and software version used: _..._ <!-- reviewer OS -->

## REVIEWER ACKNOWLEDGEMENT
Review by: _Code reviewer name_ <!-- add name and tick as applicable --> <br>
[  ] I agree to be acknowledged as a code reviewer by name. <br>
[  ] I prefer to stay anonymous in the acknowledgements. <br>

## GENERAL NOTES
_optional_  <!-- Use this space for any general remarks that do not fit into specific checklist items. -->

## QUESTIONS TO GUIDE CODE ASSESSMENT

### Reporting — Check that it does what it claims.
Code should match the reported methods. Data transformations and analyses should align with the description—missing or altered steps mean the code is not as reported. <br>

- **Methods Alignment:** Does the code implement the methods as described in the associated documentation or research outputs? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Documentation:** Is there sufficient metadata (e.g., in a README file or code header) to understand and use the code independently of external documentation? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Running — Check that it works.
Code should execute on a local machine and run its entirety, even for users with limited coding expertise. <br>

- **Functioning:** Does the code run without errors from start to finish? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Dependencies:** Does the code specify all required libraries/packages or is set to install automatically? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Cross-Platform Compatibility:** Does the code run on a different operating system than the one it was developed on? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Run Time:** Does the code provide information on run time to manage user expectations? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Complete Check:** Did you run the entire code? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->



---

### Reproducibility — Check that it gives consistent results.
Code should produce the same results when run with the same input—ideally, results that match expected or claimed outputs. <br>

- **Numerical Reproducibility:** Does the code generate the same functional outputs, i.e., statistical or simulation results, when provided with identical data and parameters? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Visual Reproducibility:** Does the code generate consistent visual outputs (e.g., figures, maps) across repeated executions with the same input? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Requirements:** Does the code include or clearly specify all necessary data, or provide mock data where applicable, to enable independent reproduction? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Compartmentalisation:** Does the code ensure the workflow is self-contained, with all external software dependencies documented and accessible for execution in other environments? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Reliability — Check that it is built to minimise potential errors.
Code should perform as intended under typical use cases, producing expected results and including internal checks for common issues to catch errors early. <br>

- **Expected Results:** Does the code produce the correct type of output for each step, e.g., correct data transformations or statistical results? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Validation & Internal Checks:** Does the code include safeguards such as assertions, unit tests, or manual checks to verify that key steps are performed as intended? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

- **Warning & Error Handling:** Does the code anticipate limitations related to data quality or input constraints and provide comments, warnings, or error messages? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Robustness — Check that it handles the unexpected.
Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback. It should avoid brittle design and support flexible workflows. <br>

- **Feedback:** Does the code provide clear, interpretable comments/messages on potential issues? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Parameterisation:** Does the code avoid hard-coding? For instance, does it use relative file paths instead of absolute ones? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Efficiency:** Does the code efficiently avoid redundancy and include only what is necessary? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->



    
- **Functional Programming Principles:** Does the code minimise global state changes using functions and pipelines (e.g., R tidyverse packages)? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Readability — Check that it is clear and clean.
Code should be easy to follow, well-structured and logically organised like a manual, and naming of variables and functions should be easy to understand. <br>

- **Organisation:** Does the code follow a logical order, guiding users through the workflow and clearly conveying its function? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Modularity:** Does the code consist of manageable, logical sections (e.g., functions, sections, modular scripts) that together form a coherent workflow? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Naming Conventions:** Does the code use informative names for variables, functions, and objects? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Style Conventions:** Does the code consistently follow a style guide, such as tidyverse style for R? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

---

### Release — Check that it is ready for sharing and reuse.
Code should be prepared for sharing, include licensing, citation information, and relevant metadata to support reuse and attribution. <br>

- **Contact:** Do the authors or maintainers provide guidance on how to report feedback or obtain support? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Legal Permissions:** Does the code include a licence specifying how it can be used, modified, shared? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->
    
- **Attribution:** Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI), making it easy to cite and give proper credit in academic and research contexts? <br>
    [ ] YES  
    [ ] NO  
    [ ] UNSURE  
    [ ] N/A  
    Comment: <!-- Enter any clarifications or recommendations here -->

---
---
<!-- end of review -->


