
 Code review in practice: A checklist for
 computational reproducibility and collaborative
 research in ecology and evolution
 Friederike Hillemann 1 , Joseph B. Burant 2 , Antica Čulina 3 , Stefan J. G.
 Vriend 4

 1 Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands

 f.hillemann@ web.de

 ORCiD: 0000-0002-8992-0676

 2 Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands

 j.burant@nioo.knaw.nl

 ORCiD: 0000-0002-0713-3100

 3 Ruder Boskovic Institute, Zagreb, Croatia and Department of Animal Ecology, Netherlands

 Institute of Ecology, Wageningen, The Netherlands

 aculina@irb.hr

 ORCiD: 0000-0003-2910-8085

 4 LTER-LIFE and Department of Aquatic Ecology, Netherlands Institute of Ecology, Wageningen,

 The Netherlands

 s.vriend@nioo.knaw.nl

 ORCiD: 0000-0002-9006-5988

mailto:f.hillemann@nioo.knaw.nl
mailto:j.burant@nioo.knaw.nl
mailto:aculina@irb.hr
mailto:s.vriend@nioo.knaw.nl

 Data & Code Availability
 This manuscript did not generate or use any data or code.

 Author Contributions
 Conceptualisation: JBB, FH, SJGV, AC

 Writing - Original Draft: FH

 Writing - Review & Editing: all authors

 Visualisation: JBB, FH, SJGV

 Funding acquisition: JBB, AC, SJGV

 Conflicts of Interest
 The authors declare no competing interests, financial or otherwise.

 Acknowledgements
 We are grateful to Amélie Fargevieille and Haneul Jang for helpful feedback to the checklist, and

 to Ed R. Ivimey-Cook, Joel L. Pick, and Saras M. Windecker for their encouragement and early

 conversations that helped shape this work.

 Funding
 FH was funded by the NWO Open Science Fund (2023) from the Dutch Research Council (NWO),
 grant number NWO OSF23.1.025, project title: CoreBirds: Connecting Open Research outputs in
 the Ecology of Birds, awarded to Marcel Visser (applicant), and JBB, AC, SJGV (team members).

 Abstract

 Ensuring that research, along with its data and code, is credible and remains accessible is crucial

 for advancing scientific knowledge—especially in ecology and evolutionary biology, where the

 climate crisis and biodiversity loss accelerate and demand urgent, transparent science. Yet, code

 is rarely shared alongside scientific publications, and when it is, unclear implementation and

 insufficient documentation often make it difficult to use. Code review — whether as

 self-assessment or peer review — can improve key aspects of code quality: reusability, i.e.,

 ensuring technical functionality and that the code is well-documented, and validity, i.e., ensuring

 the code implements the intended analyses faithfully. While assessing validity requires domain

 expertise for methodological assessment, code review for reusability can be conducted by

 anyone with basic understanding of programming practices. Here, we introduce a

 checklist-based, customisable approach to code review that focuses on reusability. Informed by

 best practices in software development and recommendations from commentary pieces and

 blog posts, the checklist organises specific review prompts around seven key attributes of

 high-quality reusable scientific code: Reporting, Running, Reliability, Reproducibility,

 Robustness, Readability, and Release. By defining and structuring these principles of code

 review and turning them into a practical tool, our template guides through a systematic

 evaluation that is also flexible to be tailored to specific needs. This includes providing

 researchers with a clear path to proactively improve their own code. Ultimately, this approach

 to code review aims to reinforce reproducible coding practices, and strengthens both the

 credibility and collaborative potential of research.

 Keywords

 1. Research Software
 2. Code Quality
 3. Computational Reproducibility
 4. Open Science
 5. Collaborative Research

 Introduction: Code as scientific output

 Code-based pipelines for scientific data processing and analysis have become standard in the
 Life Sciences, supporting tasks such as file management, statistical modelling, visualisation, and
 generating reproducible reports (Perkel 2016, Abdill et al. 2024). As such, scientific code is not
 only a tool but a core component of the research workflow and output, and should be shared
 and peer-reviewed like other methodological details, to ensure research integrity and
 reproducibility (Ivimey-Cook et al. 2023).

 I n the face of global challenges such as climate change, ensuring that science is transparent and
 cumulative is not only good practice but an ethical obligation, and reusable code and data are
 essential components of this responsibility (Sandve et al. 2013; Bledsoe et al. 2022; Gomes 2025). At
 the same time, unverifiable research risks becoming an unstable foundation for future research
 and fuelling the ongoing crisis of confidence in science.

 The Open Science movement has promoted the publication of data and code, shifting norms
 towards treating methods, including data-processing and analysis scripts, as research outputs
 worthy of recognition and review. While several journals now encourage or mandate code
 availability, policies suggested to improve the reproducibility potential (Walters 2020;
 Sánchez-Tójar et al. 2025), compliance remains low (Ivimey-Cook et al. 2025). Most articles do
 not share code, and available code is often poorly documented and unusable (Kellner et al. 2025;
 Culina et al. 2020). Journal policies have largely prioritised transparency, with minimal
 expectations for usability, rather than fostering practices that make code genuinely reusable. Yet,
 the benefits of code sharing and code review extend beyond transparency of methods and
 improved code quality; they promote a culture of cooperation and collaboration, and benefit
 individual researchers by providing opportunities for feedback and professional development
 (Culina et al. 2020), and by increasing citation potential (Maitner et al. 2023).

 Still, sharing code publicly—and especially for review—can be daunting. Many researchers
 hesitate, citing concerns about intellectual property, the additional effort of documentation, or
 fear of critique (Gomes et al. 2022). In fields such as ecology and evolutionary biology, analytical
 pipelines are often custom-built to address specific questions. These scripts are usually
 developed by researchers without formal training in software engineering and vary
 considerably in style and documentation. Coding is a skill that takes time to develop, and
 support for training remains uneven across institutions and career stages. Researchers who are
 self-taught may feel especially vulnerable when exposing their code to scrutiny.

 This apprehension often extends to the review process itself. Anxiety about giving and receiving
 feedback on code is common, and can deter engagement (Lee & Hicks 2024). To counter this, we
 emphasise a shift in expectations: there is no such thing as ‘perfect code’—or, as others have put
 it, your code is good enough to share (Barnes 2010, Wilson et al. 2017). By reinforcing this
 mindset, we hope to normalise code review as a constructive and collaborative process, a
 professional service to others and a practical necessity for credible science, rather than an
 exercise in intimidating scrutiny. In doing so, we support a research culture where code is
 valued, improved, and reused, a practice that benefits authors, their collaborators, and the wider
 research community.

 Learning from practices in data management and software development

 Although research data and code are deeply interconnected, code is often treated as a mere tool
 rather than a central part of the scientific method and output, and rarely receives the same level
 of scrutiny and standardisation as data. However, c ollaborations require community conventions
 and quality standards. G lobal databases in ecology and evolution demonstrate their power for
 large-scale collaboration; notable examples include COMADRE for animal demography
 (Salguero-Gómez et al. 2016), SPI-Birds for avian ecology (Culina et al. 2020), bio-logging
 standardisation frameworks (Sequeira et al. 2021), and MacaqueNet for primate behavioural
 ecology (De Moor et al. 2025). These initiatives adhere to established data management
 principles such as FAIR (Findable, Accessible, Interoperable, and Reusable) and TRUST
 (Transparency, Responsibility, User Focus, Sustainability, and Technology), ensuring that data
 remain reusable.

 Crucially, these initiatives all rely on code-based workflows for data processing and integration,
 and quality control pipelines. Given that these databases already bring together large research
 communities using shared data standards, they provide a strong foundation for extending FAIR
 and TRUST principles to code workflows to foster better documentation, reproducibility, and
 long-term accessibility. Reviewing and sharing code further strengthens collaboration within
 research communities. For instance, researchers from The Norwegian Institute for Nature
 Research (NINA), Norway’s leading institution for applied ecological research, have developed
 community-led approaches to code review (Kolstad et al. 2023).

 While still emerging in scientific research, code review is a long-standing practice in
 professional software development and computational disciplines such as engineering, where it
 plays a crucial role in ensuring software quality and maintainability. The foundational Fagan
 Inspection process, developed in the 1970s, is a structured multi-step approach that involves
 distinct process operations (Overview, Preparation, Inspection, Rework, and Follow-up) with
 clear objectives or focused tasks such as finding errors, fixing them, and ensuring all fixes are
 correctly applied (Fagan 1976). This method also includes communications and education as
 part of the inspection, ensuring that the team learns from the process. In software developing
 projects today, systematic code review is integrated alongside automated testing, version
 control, and continuous integration to catch errors, improve clarity and efficiency, and maintain
 good coding standards.

 Scientific code review, though not yet as formalised, serves a similar role in supporting
 long-term sustainability of code and collaboration. Researchers can adopt key practices from
 software development, including thorough documentation, modular design, and structured
 review processes.

 BOX: Code review in research context — Scope and limits

 Code review is the systematic evaluation of software code. The aim is to identify errors and
 improve the code quality. Code quality can broadly be assessed in two key aspects: reusability

 (ensuring the code is functional, modular, well-documented, and licensed) and validity
 (ensuring the code accurately implements the reported methods without introducing errors in
 consecutive steps).

 Code review is a key part of research validity. While manuscript peer review evaluates the
 scientific soundness of a study and its methods, code review ensures that the computational
 steps producing the results are transparent, free of errors, and reproducible. Together, these
 processes contribute to the credibility of research findings.

 Code review is inherently context-specific. Code review primarily strengthens computational
 reproducibility but its focus, depth, and outcomes depend on the expertise of the reviewer, the
 stage at which the review occurs, and the specific goals of the assessment. Some reviews may
 prioritise technical functionality, while others focus on the code being comprehensible to a
 broad audience.

 Code review is a tool for maintaining high research standards. Given that code is part of the
 scientific output, often essential to the methods and results, code review ensures that
 computational workflows are transparent, comprehensible, and appropriately implemented. It
 also promotes ethical data practices, long-term sustainability, and open research.

 Code review is a means of fostering collaboration, knowledge exchange, and innovation.
 Engaging in code review can even help researchers refine their own coding skills and adopt or
 share more efficient approaches and better practices.

 Code review is not a guarantee of correctness. Much like manuscript peer review, code peer
 review does not ensure absolute validity (Smith 2006; Drozdz & Ladomery 2024).

 Code review is not an assessment of methodological choices. Depending on the specific aim
 of the review, code reviewers may not be familiar with the research context and instead focus
 solely on computational aspects. Code reviewers check whether the analysis is correctly
 implemented as described in the manuscript but does not determine whether the chosen
 analysis is appropriate for the research question—that usually remains within the scope of
 scientific peer review.

 Code review is not a stylistic critique. Unless a standardised style guide applies, minor
 stylistic choices are not the focus. While consistency is important, clarity, accuracy, and
 documentation take priority over stylistic preferences.

 Code review is not code revision. Reviewers provide feedback, but responsibility for
 implementing changes remains with the code’s authors.

 Putting code review in practice: A practical checklist

 Existing primers to code review—such as the ‘4-Rs’ framework (Running, Reporting, Reliability,
 and Reproducibility; Ivimey-Cook et al. 2023)—advocate for integrating code review into

 reproducible scientific practice. Others highlight the value of kind, community-oriented review,
 providing principled advice for code review with emphasis on social etiquette such as inviting
 collaborators, mentors, and students to review, being kind, and reciprocating feedback (Rokem
 2024). While conceptually rich, these resources offer limited guidance for day-to-day
 implementation.

 To bridge this gap, we reviewed existing best-practice guidelines (Sandve et al. 2013; Cooper &
 Hsing 2017; Wilson et al. 2017; Barker et al. 2022; Filazzola & Lortie 2022; Jenkins et al. 2023)
 and developed a practical checklist researchers can use for self-assessment and peer review. We
 extend the 4-R framework to a 7-R guide, introducing additional dimensions of code quality
 (Robustness, Readability, and Release) to support a more comprehensive assessment of
 scientific code reusability.

 The checklist provides structured but flexible prompts to guide reflection and evaluation,
 helping code developers and reviewers to identify areas for improvement. Though
 comprehensive, it is aligned with common, attainable standards. By making peer review more
 accessible, systematic, and standardised, we aim to help researchers improve the quality and
 impact of their code, and to contribute to collaborative Open research practices.

 User-friendly and customisable versions of the checklist, including a PDF and a Markdown
 template, are available in the supplementary materials.

 Reporting: Check that it does what it claims.
 Code is used to solve a specific problem or perform tasks, and code review should verify
 whether it does what it is intended to do—or claims to do. In research contexts, this usually
 means assessing whether the code faithfully implements the methods outlined in the associated
 manuscript. All critical steps from data wrangling to specifying statistical models should be
 present in the code as reported—and vice versa , though the focus here is on reviewing code. Any
 discrepancies, as small as applying a different data filter, can undermine the reproducibility of
 the research, and necessary deviations should be documented (e.g., manual steps or unreported
 additional steps). Verifying that the code matches the reported methods eliminates
 misinterpretations due to unreported differences between documentation and implementation.

 Suggested focus to guide the assessment:
 Methods Alignment : Does the code implement the methods as described in the associated
 documentation or research outputs?

 Documentation: Is there sufficient metadata (e.g., in a README file or code header) to understand
 and use the code independently of external documentation?

 Running — Check that it works.
 From typo to missing dependencies, to platform incompatibilities—various factors can prevent
 code from running. A key aspect of assessing code is verifying that it is executable and that it
 runs as expected. Code that is difficult to install, requires excessive manual intervention, or does
 not perform within reasonable time constraints is not user-friendly. To help with successful

 setup of dependencies, tools like the groundhog R package (Simonsohn & Gruson 2025) can lock
 package versions, ensuring that the same versions are loaded each time a script is run.

 Suggested focus to guide the assessment:

 Functioning : Does the code run without errors from start to finish?

 Dependencies: Does the code specify all required libraries/packages or is set to install automatically?

 Cross-Platform Compatibility: Does the code run on a different operating system than the one it
 was developed on?

 Run Time: Does the code provide information on run time to manage user expectations?

 Complete Check: Did you run the entire code?

 Reproducibility — Check that it gives consistent results.
 Ensuring reproducibility allows findings to be verified independently, which is a key aspect to
 scientific integrity. For code to be considered reproducible, it must consistently generate the
 claimed functional outputs when provided with the same input data and computational
 conditions. This applies to both numerical outputs (e.g., statistical summaries, simulation
 results) and visual outputs (e.g., figures, tables). Ideally and conveniently, though not the only
 way to achieve reproducible research, the entire workflow is scripted and self-contained,
 avoiding manual interventions such as editing data in external spreadsheets. The code should
 explicitly document data sources, data wrangling steps, and analysis choices, to ensure that
 others can follow the same procedures. Dependency management extends to the computational
 setup. In R, running sessionInfo() provides a snapshot record of the current software
 environment, while the packrat package (Atkins et al., 2025) stores package copies, creating a
 local library of package dependencies directly within a specified analysis directory.

 Suggested focus to guide the assessment:
 Numerical Reproducibility: Does the code generate the same functional outputs, i.e., statistical or
 simulation results, when provided with identical data and parameters?

 Visual Reproducibility: Does the code generate consistent visual outputs (e.g., figures, maps)
 across repeated executions with the same input?

 Requirements: Does the code include or clearly specify all necessary data, or provide mock data

 Compartmentalisation: Does the code ensure the workflow is self-contained, with all external
 software dependencies documented and accessible for execution in other environments?

 where applicable, to enable independent reproduction?

 Reliability — Check that it is built to minimise potential errors.
 Reliability refers to the ability of code to consistently produce correct and expected results when
 given valid, well-defined inputs. However, errors can propagate through seemingly error-free
 code; code that runs without warnings and produces an output may still yield incorrect results.
 For example, this could happen when the wrong column is selected in a dataset or when a
 variable is inadvertently overwritten. To minimise these risks, code should include input
 validation and rigorous testing to ensure it works as intended. Implementing unit tests, for
 example, can help identify issues early by validating individual steps. By focusing on minimising
 potential errors and verifying that it works as intended, throughout the workflow, the likelihood
 of undetected issues that could compromise results is reduced.

 Suggested focus to guide the assessment:
 Expected Results : Does the code produce the correct type of output for each step, e.g., correct data
 transformations or statistical results?

 Validation & Internal Checks: Does the code include safeguards such as assertions, unit tests, or
 manual checks to verify that key steps are performed as intended?

 Warning & Error Handling: Does the code anticipate limitations related to data quality or input
 constraints and provide comments, warnings, or error messages?

 Robustness — Check that it handles unexpected or invalid inputs gracefully.
 Robustness refers to the ability of code to handle unexpected edge cases or invalid inputs
 gracefully, avoiding crashes or misleading results. Robust code anticipates potential problems by
 minimising redundancy, using generalisable structures ensuring adaptability, and producing
 clear error messages where needed. For example, in R, embedding file paths directly is fragile
 (e.g., setting the working directory with setwd()) whereas the here package (Müller 2020)
 improves portability by using relative paths within projects. Similarly, replacing repeated blocks
 with functions or loops makes code modular and therefore easier to debug and maintain.
 Functional programming principles further support robustness by structuring code into
 self-contained steps that do not modify global states, ensuring independent testing, or reuse and
 extending. Libraries such as purrr in R (Wickham & Henry 2025) and toolz in Python (Rocklin et
 al. 2023) promote this approach. Robust code is efficient; everything in it should be necessary
 for its function.

 Suggested focus to guide the assessment:

 Feedback : Does the code provide clear, interpretable comments/messages on potential issues?

 Parameterisation: Does the code avoid hard-coding? For instance, does it use relative file paths
 instead of absolute ones?

 Efficiency: Does the code efficiently avoid redundancy and include only what is necessary?

 Functional Programming Principles: Does the code minimise global state changes using functions
 and pipelines (e.g., R tidyverse packages)?

 Readability — Check that it is clear and clean.
 Code that is effortlessly understandable, is fun to work with. Not only does it simplify
 collaboration, but writing neat and well-structured code is easier to maintain and reduces the
 likelihood of errors during the development. Code should be organised logically, with a clear
 structure of segments that reflect a specific purpose, and any names both within the code as well
 as file names should be informative, allowing users to follow the intended workflow with
 minimal guesswork.

 Suggested focus to guide the assessment:
 Organisation: Does the code follow a logical order, guiding users through the workflow and clearly
 conveying its function?

 Modularity: Does the code consist of manageable, logical sections (e.g., functions, sections, modular
 scripts) that together form a coherent workflow?

 Naming Conventions: Does the code use informative names for variables, functions, and objects?

 Style Conventions: Does the code consistently follow a style guide, such as tidyverse style for R?

 Release — Check that it’s ready for sharing and reuse
 Now that the code is written and reviewed, authors and contributors want others to use it. Clear
 instructions encourage responsible reuse and further development, fostering collaborative
 cultures and extending code impact. A licence is essential to specify terms for reuse; it defines
 how others can use, modify, and distribute the code. Without one, copyright laws automatically
 restrict reuse under agreements like the Berne Convention (World Intellectual Property
 Organization, 1979), which grants creators exclusive rights by default. A well-chosen licence
 provides legal clarity while ensuring contributors receive appropriate recognition (see
 paragraph on selecting a software licence under Beyond the Checklist: Additional
 Considerations). Guidelines on citation, and how users can contribute to, or seek support for the
 code should be provided in the metadata, along with instructions for feedback, issue reporting,
 and collaboration. Assigning a Persistent Identifier (PID), such as a Digital Object Identifier
 (DOI), makes it easier to cite the code. Further, connecting the code to other research outputs via
 a enhances the visibility and credibility of the work, and facilitates tracking of its impact.

 Suggested focus to guide the assessment:
 Contact: Do the authors or maintainers provide guidance on how to report feedback or obtain
 support?

 Legal Permissions: Does the code include a licence specifying how it can be used, modified,
 shared?

 Attribution: Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI), making it
 easy to cite and give proper credit in academic and research contexts?

 Flexibility in code review and synergies

 Our practical guide offers a structured approach to reviewing scientific code. While the checklist
 presented here focuses on reviewing the overall reusability of code, along specific domains that
 contribute to it—Running, Reporting, Reliability, Reproducibility, Robustness, Readability, and
 Release—it is not an exhaustive list of questions, nor is it the only way to categorise questions.

 Improvements during code review often have synergistic effects, i.e. they often overlap and
 benefit multiple dimensions of code quality:

 ● Replacing repeated code with functions or loops strengthens Robustness in various
 ways: modular code is easier to maintain and modify (functional programming
 principles), reduced redundant execution is faster (efficiency), and functions allow for
 flexible reuse instead of hardcoding different inputs in repeated sections
 (parameterisation).

 ● Using relative file paths instead of hard-coded ones improves Robustness by ensuring
 adaptability when file locations change. It also enhances Reliability by reducing errors
 from incorrect paths, and strengthens Reproducibility by standardising inputs so the
 code runs consistently across different machines.

 ● Writing well-documented code enhances Readability by making it easier to understand
 and improves Reproducibility by removing guesswork, making findings easier to
 replicate. Not only will collaborators and future users appreciate it—it’s also a gift to
 your future self!

 The central role of code review in the code development cycle

 Scientific code development typically progresses through several phases, from initial
 conceptualisation, usually by an individual researcher (create), to distribution among
 collaborators (sharing), to publication alongside other research outputs (release), and eventually
 leading to reuse that may contribute to other projects. We present this process as a cycle to
 emphasise the continuous improvement of code and the incremental nature of building on
 existing work (Fig. 1). Code review is valuable at any and every stage of development and can
 serve as a formal checkpoint before code progresses to the next phase. Ideally, it addresses all
 seven checklist dimensions, each targeting a key aspect of code quality and reusability. In
 practice, however, review priorities will shift depending on the development phase, the context
 of the review, the reviewer’s expertise, and the code’s intended use. A flexible
 approach—focusing on the most relevant checklist dimensions—ensures maximum impact at
 each stage

 In the ‘create’ phase, code is planned, designed, and written, usually by a single researcher or a
 small team. This phase may consist of several iterations as different approaches are explored to
 prepare the data for analyses, or visualise outputs. At this stage, authors involved in writing
 code may use the checklist as an aide memoire to review good practices and to help ensure that
 the code works as expected (Running) and contains all necessary information and functionality
 for its intended purpose (Reporting). Documentation is key, even if the code does not work as

 expected and even if the code is not yet intended for sharing; stating the purpose of code and
 any known issues is good practice and provides valuable context during future code
 development.

 The ‘share’ phase involves distributing code to others, typically collaborators or lab members .
 When conducting code review at this stage, it is crucial to communicate the purpose of the code
 and the context or focus of the review, as this will shape the focus of the review. Code shared
 within a community context, with lab members or collaborators, may prioritise consistent
 naming conventions that adhere to community standards and practices (Readability), and focus
 on flexible code that can handle a range of different inputs (Reliability, Robustness) to support
 collaborative use and future development with the community. In contrast, code that is shared
 mainly for transparency, as part of a scientific paper, should be reviewed with focus on ensuring
 it aligns with the methods described in the manuscript (Reporting).

 In the ‘publish’ phase, code becomes available to a wide group of users. This may include
 publishing code associated with a scientific paper to an online repository, or the release of a
 package to a library. During this phase, the focus of code review should be on ensuring that the
 purpose and intended functionality of the code are clearly documented for potential users
 (Reporting), and that others can legally use the code, and appropriately cite and credit the
 source and its developers (Release).

 Code development and review should not end when code is published, but often does as a result
 of the short-term research grants that teams rely on (Coelho 2024). Yet, published code requires
 ongoing maintenance to ensure that it continues to achieve its goals as intended despite changes
 to its software dependencies. Whether building on existing code to implement new features or
 accommodating to new versions of dependencies, revisiting the principles and priorities applied
 in the initial iteration of the development cycle can support the long-term usability and
 sustainability of this crucial part of the research output.

 Conclusion

 Sharing and publishing code is a key step towards research transparency—but to maximise its
 impact, shared code must also be reusable. We present a checklist designed to support this goal
 by improving code quality across key domains of reusability.

 Code review can take place at many points throughout the development cycle, with its focus
 shaped by context, i.e., whether the review is conducted by the original author or peers, and
 whether it is reviewed before sharing it with close collaborators or when finalising code for
 publication. We encourage researchers to embrace the flexibility of this approach and engage in
 code review both as developers and as reviewers. Code review is not merely about evaluating
 and improving code—it is a collaborative and rewarding practice that fosters learning and
 contributes to the transparency and reproducibility in research, facilitating long-term
 accessibility of research outputs.

 Beyond the Checklist: Additional Considerations

 Version-controlled workflows
 Version control systems manage and track changes to files and are considered best practice in
 research—from data management to developing analysis code to writing outputs. Git and its
 web interface GitHub are commonly used tools for creating annotated, version-controlled
 workflows (Perkel 2016). Braga et al. (2023) provide an entry-level overview of how GitHub
 features can be used in ecology and evolution research, from tracking of code development to
 collaborative and asynchronous editing, and merging changes into the main project. A next step
 builds on the principle of continuous integration (CI), a standard process in professional
 software, which automates quality control and version-controlled code integration; GitHub
 Actions is GitHub's built-in implementation of CI.

 Tools for automated code review
 While our guide focuses on manual code review, automated tools can streamline the process by
 efficiently detecting common errors and enforcing a predefined style. For example, the R
 package lintr (Hester et al. 2025) checks style consistency, and the package testthat (Wickham
 2011) provides unit tests for technical functionality. Automated review can be integrated into CI
 pipelines. By automating error and style checks, developers and reviewers can focus on more
 complex and nuanced aspects of their code.

 Choosing a software licence
 To select an appropriate licence, code creators can refer to information and comparisons
 provided on choosealicense.com , an open-source project maintained by GitHub. Common
 research licences include the permissive Massachusetts Institute of Technology (MIT) and
 Apache License, which are easy to understand and allow use, modification, and redistribution
 with minimal restrictions. These licences are compatible with others, allowing code to be
 combined with projects under a different licence, including those that might put the code behind
 a paywall. In contrast, restrictive copy-left licences, such as the GNU General Public License
 (GPL), require that any derivative works that use or modify the original code are also adopt the
 same licence term. This protection builds trust within the scientific community by limiting
 concerns about lack of recognition for code developers, and ensuring that the code remains
 open and accessible for future research and development.

 Reviewer crediting
 Peer review is essential for validating research methods and outputs, including code. Due to the
 fundamental role of code in data analysis, code review is critical to research integrity.
 Acknowledging reviewers, either by name or anonymously, in the code's documentation or
 connected publications gives credit to their valuable contributions and highlights the
 collaborative nature of research.

https://choosealicense.com/

 References
 Abdill, R. J., Talarico, E., & Grieneisen, L. (2024). A how-to guide for code sharing in biology. PLoS
 Biology , 22(9), e3002815. https://doi.org/10.1371/journal.pbio.3002815

 Atkins, A., Allen, T., Ushey, K., McPherson, J., Cheng, J., & Allaire, J. (2025). packrat: A dependency
 management system for projects and their R package dependencies . R package version 0.9.2.9000.
 Retrieved from https://github.com/rstudio/packrat

 Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A. L., Martinez-Ortiz, C., Psomopoulos, F., … &
 Honeyman, T. (2022). Introducing the FAIR principles for research software. Scientific Data, 9 (1),
 622. https://doi.org/10.1038/s41597-022-01710-x

 Barnes, N. (2010). Publish your computer code: It is good enough. Nature, 467 (7317), 753-753.
 https://doi.org/10.1038/467753a

 Bledsoe, E. K., Burant, J. B., Higino, G. T., Roche, D. G., Binning, S. A., Finlay, K., Pither , J., Pollock , L.
 S., Sunday , J. M., & Srivastava, D. S. (2022). Data rescue: saving environmental data from
 extinction. Proceedings of the Royal Society B, 289(1979), 20220938.
 https://doi.org/10.1098/rspb.2022.0938

 Braga, P. H. P., Hébert, K., Hudgins, E. J., Scott, E. R., Edwards, B. P. M., Sánchez Reyes, L. L.,
 Grainger, M. J., Foroughirad, V., Hillemann, F., Binley, A., Brookson, C., Gaynor, K., Sabet, S. S.,
 Güncan, A., Weierbach, H., Gomes, D. G. E., & Crystal-Ornelas R. (2023). Not just for
 programmers: How GitHub can accelerate collaborative and reproducible research in ecology
 and evolution. Methods in Ecology and Evolution, 14 (6), 1364–1380.
 https://doi.org/10.1111/2041-210X.14108

 Coelho, L.P. (2024). For long-term sustainable software in bioinformatics. PLoS Computational
 Biology , 20(3): e1011920. https://doi.org/10.1371/journal.pcbi.1011920

 Cooper, N., & Hsing, P. (2017). A guide to reproducible code in ecology and evolution. British
 Ecological Society. Retrieved from https://www.britishecologicalsociety.org/publications

 Culina, A., Adriaensen, F., Bailey, L. D., Burgess, M. D., Charmantier, A., Cole, E. F., … & Visser, M. E.
 (2021). Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub.
 Journal of Animal Ecology, 90 (9), 2147-2160. https://doi.org/10.1111/1365-2656.13388

 Culina, A., Ivimey-Cook, E. R., Pick, J. L., Bairos-Novak, K. R., Gould, E., Grainger, M., Windecker, S.
 M., & others. (2020). Low availability of code in ecology: A call for urgent action. PLoS Biology .
 https://doi.org/10.1371/journal.pbio.3000763

 De Moor, D., Skelton, M., MacaqueNet, Amici, F., Arlet, M. E., Balasubramaniam, K. N., … & Brent, L.
 J. (2025). MacaqueNet: Advancing comparative behavioural research through large-scale
 collaboration. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14223

 Drozdz, J. A., & Ladomery, M. R. (2024). The peer review process: Past, present, and future.
 British Journal of Biomedical Science, 81 , 12054. https://doi.org/10.3389/bjbs.2024.12054

https://doi.org/10.1371/journal.pbio.3002815
https://github.com/rstudio/packrat
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/467753a
https://doi.org/10.1038/467753a
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2022.0938#
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2022.0938#
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2022.0938#
https://doi.org/10.1098/rspb.2022.0938
https://doi.org/10.1111/2041-210X.14108
https://doi.org/10.1111/2041-210X.14108
https://doi.org/10.1371/journal.pcbi.1011920
https://www.britishecologicalsociety.org/publications
https://doi.org/10.1111/1365-2656.13388
https://doi.org/10.1371/journal.pbio.3000763
https://doi.org/10.1371/journal.pbio.3000763
https://doi.org/10.1111/1365-2656.14223
https://doi.org/10.3389/bjbs.2024.12054

 Fagan, M. E. (1976). Design and code inspections to reduce errors in program development. IBM
 Systems Journal, 15 (3), 182–211. https://doi.org/10.1147/sj.153.0182

 Filazzola, A., & Lortie, C. (2022). A call for clean code to effectively communicate science.
 Methods in Ecology and Evolution, 13 , 2119–2128. https://doi.org/10.1111/2041-210X.13961

 Gomes, D. G. (2025). How will we prepare for an uncertain future? The value of open data and
 code for unborn generations facing climate change. Proceedings of the Royal Society B,
 292 (2040), 20241515. https://doi.org/10.1098/rspb.2024.1515

 Gomes, et al. (2022). Why don’t we share data and code? Perceived barriers and benefits to
 public archiving practices. Proceedings of the Royal Society B, 289 , 20221113.
 https://doi.org/10.1098/rspb.2022.1113

 Hester J, Angly F, Hyde R, Chirico M, Ren K, Rosenstock A, Patil I (2025). lintr: A 'Linter' for R
 Code. R package version 3.2.0, https://github.com/r-lib/lintr , https://lintr.r-lib.org .

 Ivimey-Cook, E. R. , Pick, J.L., Bairos-Novak, K. R., Culina, A., Gould, E., Grainger, M., Marshall, B.
 M., Moreau, D., Paquet, M., Royauté, R., Sánchez-Tójar, A., Silva, I., Windecker, S. M. (2023).
 Implementing code review in the scientific workflow: Insights from ecology and evolutionary
 biology. Journal of Evolutionary Biology, 36 (10), 1347–1356. https://doi.org/10.1111/jeb.14230

 Ivimey-Cook, E. R., Sánchez-Tójar, A., Berberi, I., Culina, A., Roche, D. G., Almeida, R. A., ... & Moran,
 N. P. (2025). From Policy to Practice: Progress towards Data-and Code-Sharing in Ecology and
 Evolution. Preprint, EcoEvoRxiv . https://doi.org/10.32942/X21S7H

 Jenkins, G. B., Beckerman, A. P., Bellard, C., Benítez-López, A., Ellison, A. M., Foote, C. G., … &
 Peres-Neto, P. R. (2023). Reproducibility in ecology and evolution: Minimum standards for data
 and code. Ecology and Evolution, 13 , e9961. https://doi.org/10.1002/ece3.9961

 Kellner, K. F., Doser, J. W., & Belant, J. L. (2025). Functional R code is rare in species distribution
 and abundance papers. Ecology, 106 (1), e4475. https://doi.org/10.1002/ecy.4475

 Lee, C. S., & Hicks, C. M. (2024). Understanding and effectively mitigating code review anxiety.
 Empirical Software Engineering, 29(6), 161. https://doi.org/10.1007/s10664-024-10550-9

 Maitner, B. S., Fitzpatrick, M. C., & Alvarado, A. S. (2023). Code sharing increases citations, but
 remains uncommon. Preprint . Research Square . https://doi.org/10.21203/rs.3.rs-3222221/v1

 Müller, K. (2020). here: A simpler way to find your files. R package version 1.0.1. Retrieved from
 https://CRAN.R-project.org/package=here

 O’Dea, R. E., Parker, T. H., Chee, Y. E., Culina, A., Drobniak, S. M., Duncan, D. H., Fidler, F., Gould, E.,
 Ihle, M., Kelly, C. D., Lagisz, M., Roche, D. G., Sánchez-Tójar, A., Wilkinson, D. P., Wintle, B. C., &
 Nakagawa, S. (2021). Towards open, reliable, and transparent ecology and evolutionary biology.
 BMC Biology , 19 (1), 68.

 Perkel, J. M. (2016). Democratic databases: Science on GitHub. Nature, 538 (7623), 127–128.
 https://doi.org/10.1038/538127a

https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1111/2041-210X.13961
https://doi.org/10.1098/rspb.2024.1515
https://doi.org/10.1098/rspb.2022.1113
https://doi.org/10.1098/rspb.2022.1113
https://github.com/r-lib/lintr
https://lintr.r-lib.org/
https://doi.org/10.1111/jeb.14230
https://doi.org/10.32942/X21S7H
https://doi.org/10.1002/ece3.9961
https://doi.org/10.1002/ecy.4475
https://doi.org/10.21203/rs.3.rs-3222221/v1
https://cran.r-project.org/package=here
https://cran.r-project.org/package=here
https://doi.org/10.1038/538127a
https://doi.org/10.1038/538127a

 Rokem, A. (2024). Ten simple rules for scientific code review. PLOS Computational Biology, 20 (9),
 e1012375. https://doi.org/10.1371/journal.pcbi.1012375

 Sánchez-Tójar, A., Bezine, A., Purgar, M., & Culina, A. (2025). Code-sharing policies are associated
 with increased reproducibility potential of ecological findings. Preprint. EcoEvoRxiv ,
 https://doi.org/10.32942/X21S7H

 Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible
 computational research. PLoS Computational Biology , 9(10), e1003285.
 https://doi.org/ 10.1371/journal.pcbi.1003285

 Walters, W. P. (2020). Code sharing in the open science era. Journal of Chemical Information and
 Modeling , 60(10), 4417-4420. https://doi.org/10.1021/acs.jcim.0c01000

 Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3, 5–10.
 ttps://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf .

 Wickham, H. & Henry, L (2023). purrr: Functional programming tools . R package version 1.0.4.
 Available at: https://CRAN.R-project.org/package=purrr

https://doi.org/10.1371/journal.pcbi.1012375
https://doi.org/10.32942/X21S7H
https://doi.org/10.1098/rspb.2024.1515
https://doi.org/10.1021/acs.jcim.0c01000
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://cran.r-project.org/package=purrr

 Figure 1. Review of scientific code can occur at different points throughout the code development
 cycle, with focus varying based on the code’s purpose and review context. Reviewing code during
 initial development will prioritise different domains compared to reviews of code shared within
 a smaller research community or lab, or reviewing code before publication. Colours indicate
 different phases in the code development cycle (i.e., create, share, publish). The rings with seven
 wedges correspond to the seven domains of the code review checklist. Shading and wedge size
 indicate priority (grey: no priority, light: low priority, dark: high priority).

Code review in practice: A checklist for computational reproducibility and collaborative research in ecology and evolution
This checklist guides code review, whether as self-assessment or peer review, across key dimensions of reusability: Reporting, Running, Reproducibility, Reliability, Robustness,
Readability, and Release. Criteria may be marked as YES (met), NO (not met), UNSURE (unclear or not evaluated), or N/A (not applicable). Designed as a flexible template, it can
be tailored to different contexts by modifying, omitting, or adding criteria. This checklist is licensed under a International License, permitting sharing and adaptation for
non-commercial use with attribution. Editable versions (.md, .xlsx) are available in the supplementary materials of the accompanying paper. Please cite the paper for attribution:

I prefer to stay anonymous in the acknowledgements.

CC BY-NC 4.0
ADD

PAPER and DOI

REVIEW METADATA AND REVIEWER ACKNOWLEDGEMENT GENERAL NOTES

Review by:

QUESTIONS TO GUIDE CODE ASSESSMENT YES NO UNSURE N/A COMMENT

Reporting — Check that it does what it claims.

Methods Alignment

Documentation:

Running — Check that it works.

Functioning

Dependencies:

Cross-Platform Compatibility:

Run Time:

Complete Check:

Reproducibility — Check that it gives consistent results.

Numerical Reproducibility:

Visual Reproducibility:

Requirements:

Compartmentalisation:

Reliability — Check that it is built to minimise potential errors.

Expected Results

Validation & Internal Checks:

Warning & Error Handling:

Robustness — Check that it handles the unexpected.

Feedback

Parameterisation:

Efficiency:

Functional Programming Principles:

Readability — Check that it is clear and clean.

Organisation:

Naming Conventions:

Style Conventions:

Release — Check that it is ready for sharing and reuse.

Contact:

Legal Permissions:

Attribution:

Modularity:

Review of: Code identifier, incl. version if applicable
 Use this space for any general remarks that do not fit into specific checklist items.

Month and year

Reviewer OS and software version

Reviewer name

Please clarify decisions or suggest improvements.

Date review completed:

Operating system used:

I agree to be acknowledged as a code reviewer by name.

Code should match the reported methods. Data transformations and analyses should align with the description—missing or altered steps mean the code is not as reported.

: Does the code implement the methods as described in the associated
documentation or research outputs?

Is there sufficient metadata (e.g., in a README file or code header) to understand
and use the code independently of external documentation?

Code should execute on a local machine and run its entirety, even for users with limited coding expertise.

: Does the code run without errors from start to finish?

Does the code specify all required libraries/packages or is set to install automatically?

 Does the code run on a different operating system than the one it was
developed on?

Does the code provide information on run time to manage user expectations?

Did you run the entire code?

Code should produce the same results when run with the same input—ideally, results that match expected or claimed outputs

Does the code generate the same functional outputs, i.e., statistical or
simulation results, when provided with identical data and parameters?

Does the code generate consistent visual outputs (e.g., figures, maps) across
repeated executions with the same input?

 Does the code include or clearly specify all necessary data, or provide mock data
where applicable, to enable independent reproduction?

Does the code ensure the workflow is self-contained, with all external software
dependencies documented and accessible for execution in other environments?

Code should perform as intended under typical use cases, producing expected results and including internal checks for common issues to catch errors early.

: Does the code produce the correct type of output for each step, e.g., correct data
transformations or statistical results?

Does the code include safeguards such as assertions, unit tests, or
manual checks to verify that key steps are performed as intended?

 Does the code anticipate limitations related to data quality or input
constraints and provide comments, warnings, or error messages?

Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback. It should avoid brittle design and support flexible workflows.

: Does the code provide clear, interpretable comments/messages on potential issues?

 Does the code avoid hard-coding? For instance, does it use relative file paths
instead of absolute ones?

 Does the code efficiently avoid redundancy and include only what is necessary?

 Does the code minimise global state changes using functions
and pipelines (e.g., R tidyverse packages)?

Code should be easy to follow, well-structured and logically organised like a manual, and naming of variables and functions should be easy to understand.

 Does the code follow a logical order, guiding users through the workflow and clearly
conveying its function?

Does the code use informative names for variables, functions, and objects?

Does the code consistently follow a style guide, such as tidyverse style for R?

Code should be prepared for sharing, include licensing, citation information, and relevant metadata to support reuse and attribution.

 Do the authors or maintainers provide guidance on how to report feedback or obtain support?

Does the code include a licence specifying how it can be used, modified, shared?

Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI), making it
easy to cite and give proper credit in academic and research contexts?

 Does the code consist of manageable, logical sections (e.g., functions, sections, modular
scripts) that together form a coherent workflow?

Code review in practice: A checklist for computational reproducibility and collaborative research in ecology and evolution

This checklist guides code review, whether as self-assessment or peer review, across key dimensions of reusability: Reporting, Running, Reproducibility, Reliability, Robustness, Readability, and
Release. Criteria may be marked as YES (met), NO (not met), UNSURE (unclear or not evaluated), or N/A (not applicable). Designed as a flexible template, it can be tailored to different contexts by
modifying, omitting, or adding criteria. This checklist is licensed under a [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License, permitting sharing and adaptation for
non-commercial use with attribution. Editable versions (.md, .xlsx) are available in the supplementary materials of the accompanying paper. Please cite the paper for attribution: ADD PAPER/PREPRINT/
DOI

REVIEW METADATA
Review of: _Code identifies/name/author_ <!-- some code identifier, incl. version if applicable -->

Date review completed: _mm YY_ <!-- month and year is fine -->

Operating system and software version used: _..._ <!-- reviewer OS -->

REVIEWER ACKNOWLEDGEMENT
Review by: _Code reviewer name_ <!-- add name and tick as applicable -->

[] I agree to be acknowledged as a code reviewer by name.

[] I prefer to stay anonymous in the acknowledgements.

GENERAL NOTES
optional <!-- Use this space for any general remarks that do not fit into specific checklist items. -->

QUESTIONS TO GUIDE CODE ASSESSMENT

Reporting — Check that it does what it claims.
Code should match the reported methods. Data transformations and analyses should align with the description—missing or altered steps mean the code is not as reported.

- **Methods Alignment:** Does the code implement the methods as described in the associated documentation or research outputs?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Documentation:** Is there sufficient metadata (e.g., in a README file or code header) to understand and use the code independently of external documentation?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Running — Check that it works.
Code should execute on a local machine and run its entirety, even for users with limited coding expertise.

- **Functioning:** Does the code run without errors from start to finish?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Dependencies:** Does the code specify all required libraries/packages or is set to install automatically?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Cross-Platform Compatibility:** Does the code run on a different operating system than the one it was developed on?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Run Time:** Does the code provide information on run time to manage user expectations?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Complete Check:** Did you run the entire code?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Reproducibility — Check that it gives consistent results.
Code should produce the same results when run with the same input—ideally, results that match expected or claimed outputs.

- **Numerical Reproducibility:** Does the code generate the same functional outputs, i.e., statistical or simulation results, when provided with identical data and parameters?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Visual Reproducibility:** Does the code generate consistent visual outputs (e.g., figures, maps) across repeated executions with the same input?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Requirements:** Does the code include or clearly specify all necessary data, or provide mock data where applicable, to enable independent reproduction?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Compartmentalisation:** Does the code ensure the workflow is self-contained, with all external software dependencies documented and accessible for execution in other environments?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Reliability — Check that it is built to minimise potential errors.
Code should perform as intended under typical use cases, producing expected results and including internal checks for common issues to catch errors early.

- **Expected Results:** Does the code produce the correct type of output for each step, e.g., correct data transformations or statistical results?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Validation & Internal Checks:** Does the code include safeguards such as assertions, unit tests, or manual checks to verify that key steps are performed as intended?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Warning & Error Handling:** Does the code anticipate limitations related to data quality or input constraints and provide comments, warnings, or error messages?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Robustness — Check that it handles the unexpected.
Code should handle invalid inputs gracefully and fail safely, providing meaningful feedback. It should avoid brittle design and support flexible workflows.

- **Feedback:** Does the code provide clear, interpretable comments/messages on potential issues?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Parameterisation:** Does the code avoid hard-coding? For instance, does it use relative file paths instead of absolute ones?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Efficiency:** Does the code efficiently avoid redundancy and include only what is necessary?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Functional Programming Principles:** Does the code minimise global state changes using functions and pipelines (e.g., R tidyverse packages)?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Readability — Check that it is clear and clean.
Code should be easy to follow, well-structured and logically organised like a manual, and naming of variables and functions should be easy to understand.

- **Organisation:** Does the code follow a logical order, guiding users through the workflow and clearly conveying its function?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Modularity:** Does the code consist of manageable, logical sections (e.g., functions, sections, modular scripts) that together form a coherent workflow?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Naming Conventions:** Does the code use informative names for variables, functions, and objects?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Style Conventions:** Does the code consistently follow a style guide, such as tidyverse style for R?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

Release — Check that it is ready for sharing and reuse.
Code should be prepared for sharing, include licensing, citation information, and relevant metadata to support reuse and attribution.

- **Contact:** Do the authors or maintainers provide guidance on how to report feedback or obtain support?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Legal Permissions:** Does the code include a licence specifying how it can be used, modified, shared?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

- **Attribution:** Does the code have a Persistent Identifier (e.g., Digital Object Identifier DOI), making it easy to cite and give proper credit in academic and research contexts?

 [] YES
 [] NO
 [] UNSURE
 [] N/A
 Comment: <!-- Enter any clarifications or recommendations here -->

<!-- end of review -->

