
 

Foliar spectral signatures reveal adaptive divergence in live oaks (Quercus 1 

section Virentes) across species and environmental niches 2 

Mariana S. Hernández-Leal1*, J. Antonio Guzmán Q.1, Antonio González Rodríguez2, Jeannine 3 

Cavender-Bares1*     4 
1 Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., 5 

Cambridge, MA 02138, USA. 6 
2 Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional 7 

Autónoma de México, Antigua Carretera a Pátzcuaro No.8701, Morelia, 58190, México 8 

 9 

*Authors for correspondence:  10 

Mariana S. Hernández-Leal:  11 

Orcid Id 0000-0002-2042-3882 12 

Email mshernandez@fas.harvard.edu,  13 

Tel: 612-477-7861  14 

Jeannine Cavender-Bares: 15 

Email jcavender@fas.harvard.edu 16 

Tel: 612-624-6337  17 

Orcid Id 0000-0003-3375-9630 18 

 19 
Total word count (excluding summary, 
references and legends) 

7243 Acknowledgmen
t 

53 

Summary 218 No. of Fig.s 7 (Figs 1- 7 in color) 

Introduction 1113 No of supporting 

Information Files 

3 (Supporting 

information.docx; 

pRDA_Results.xlxs, 

PST_Results.xlxs) 

Materials and Methods 1974   

Results 1635   

Discussion 2276   

Conclusion 245   

 20 

 21 

 22 

https://orcid.org/0000-0002-2042-3882
https://orcid.org/0000-0003-3375-9630


1 

Summary 23 

1. Genomic tools have transformed our understanding of species and population 24 

genetic structure in landscapes. However, discerning the impacts of neutral and 25 

adaptive evolutionary forces remains challenging, largely due to the scarcity of 26 

tools capable of measuring a broad spectrum of phenotypic traits. 27 

2. We used spectroscopic data from preserved leaves to test for adaptive 28 

divergence among populations of live oaks (Quercus section Virentes) across 29 

genetic and phylogenetic levels. The monophyletic lineage includes seven 30 

species that diversified under sympatric, parapatric and allopatric speciation 31 

modes. We used 427 individuals to test for isolation-by-distance (IBD) and 32 

isolation-by-environment (IBE), as well as the influences of selection and 33 

phylogenetic inertia on traits. Finally  and to examine how phylogenetic signals 34 

are distributed across their foliar reflectance spectra.  35 

3. Partial redundancy analyses (pRDA) revealed that (IBE explains more 36 

phenotypic variation than (IBD among sympatric species, particularly in certain 37 

spectral regions and traits derived from spectra. Across the phylogeny, 38 

phylogenetic generalized least squares (PGLS) models show that environmental 39 

variables—including minimum temperature of the coldest month and annual 40 

precipitation—predict traits related to stress tolerance across climatic gradients, 41 

such as lignin content and anthocyanin levels. 42 

4. These results demonstrate that leaf reflectance spectra can be used to capture 43 

adaptive differentiation and evolutionary history across scales, offering a 44 

powerful, non-destructive tool for linking phenotype, environment, and 45 

evolutionary processes in long-lived plant lineages. 46 

 47 

  48 
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Introduction 49 

In heterogeneous landscapes, selection processes act on populations, generating 50 

genetic differentiation and local adaptation, while gene flow—a neutral evolutionary 51 

force—limits divergence between populations (Haldane, 1948; Slatkin, 1987; Manel et 52 

al., 2003; Storfer et al., 2007). When gene flow is reduced, genetic drift plays a more 53 

significant role, especially in small and isolated populations. Thus, biodiversity arises 54 

from both adaptive and non-adaptive processes and understanding the spatial and 55 

temporal scales at which these processes operate is one of the main challenges in 56 

evolutionary biology (Bernatchez, 2016; Wellenreuther & Hansson, 2016; Luikart et al., 57 

2018). 58 

Advances in genomics have helped clarify the relationships between genetic 59 

diversity, spatial structure, and environmental factors (e.g., Kanaka et al. 2023, Hipp et 60 

al. 2020, Deschepper et al. 2017). However, genomic data alone are not sufficient to 61 

explain phenotypic diversity, which arises through a combination of genetic variation, 62 

natural selection, and plastic responses to the environment (Miner et al., 2015, Wood et 63 

al. 2021, Svenson et al. 2021). Phenotypes are subject to selection and influence an 64 

organism's performance in different environments driving diversification. In contrast, the 65 

genetic structure of neutral genes mainly reflects demographic processes such as 66 

genetic drift and changes in effective population size, which are the result from historical 67 

biotic and abiotic conditions throughout a species´ evolutionary history (Leoninen et al., 68 

2013). By comparing the degree of divergence between neutral markers and 69 

quantitative traits, it is possible to test for selection to achieve a broader perspective on 70 

how populations respond to environmental change (Mackay et al., 2009; Hill & 71 

Kirkpatrick 2010). Leaf reflectance spectra provide a new opportunity to describe plant 72 

phenotypes and to test selection in comparison with neutral genetic variation. Previous 73 

studies have shown tight coupling between leaf or canopy optical properties of plants 74 

and their evolutionary relationships (Asner & Martin 2011; Cavender-Bares et al., 2016; 75 

Meireles et al., 2020; Anderegg et al., 2023). In recent decades, the use of leaf 76 

spectroscopy to quantify biological diversity as a non-invasive method has been 77 

intensified providing rapid and reliable information of leaf optical properties (Asner & 78 
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Martin, 2016; Cavender-Bares et al., 2016; Meireles et al., 2020). Leaf optical 79 

properties, such as reflectance, transmittance, and absorbance, are determined by 80 

structural and biochemical components that reflect the energy acquisition and resource 81 

allocation of plants (Ustin & Gamon, 2010; Cavender-Bares et al., 2017; Kothari & 82 

Schweiger, 2022). Spectral phenotypes have been demonstrated to evolve like 83 

quantitative traits, with some regions under strong selection and others shaped by 84 

neutral processes (Meireles et al., 2020).  85 

This study employs leaf spectroscopy from pressed leaves and existing genetic 86 

data to investigate neutral and adaptive evolution in Quercus section Virentes, a group 87 

of seven live oak species spanning from the southeastern U.S. to Costa Rica, including 88 

Baja California Sur and Cuba populations (Q. virginiana, Q. geminata, Q. minima, Q. 89 

brandegeei, Q. fusiformis, Q. oeloides, and Q. sagraeana) (Nixon & Muller 1997; Manos 90 

et al., 1997; Cavender-Bares et al., 2011). These species inhabit low-elevation 91 

temperate zones with mild winters or seasonally dry tropical climates (Muller, 1961a; 92 

Boucher, 1983; Nixon, 1985; Cavender-Bares et al., 2015) (Fig. 1). Their broad 93 

distribution across diverse climates, hydrology, and fire regimes has driven ecological 94 

divergence through both allopatric and sympatric processes (Cavender-Bares, 2019). 95 

Phylogenetic studies (Cavender-Bares et al., 2015; Hipp et al., 2020) reveal two main 96 

clades within the lineage—one with Q. fusiformis and Q. brandegeei, and another with 97 

the other five species. Within the latter clade, Q. minima, Q. virginiana, and Q. geminata 98 

coexist sympatrically, while Q. oeloides and Q. sagraeana are allopatric. Divergence 99 

between Q. virginiana and Q. geminata is maintained by differences in flowering 100 

phenology, but Q. geminata and Q. minima have overlapping flowering periods, 101 

promoting introgression (Cavender-Bares & Pahlich, 2009). Despite indications of 102 

genetic similarity based on nuclear microsatellite and chloroplast data, differences in 103 

habitat linked to leaf function, including fire dependency and leaf traits, distinguish these 104 

species (Kurz & Godfrey, 1962; Cavender-Bares et al., 2004b, 2015). Given the large 105 

climatic gradients that live oaks collectively span, natural selection is likely to have 106 

shaped leaf functional traits within and across species. 107 
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Here, we evaluate the extent to which leaf reflectance spectra from leaves of 108 

preserved samples can detect divergence and adaptive evolution between genetic 109 

groups at different hierarchical levels. Our goals are three-fold: First, evaluate the role of 110 

isolation-by-distance and isolation-by-environment (Wright, 1943; Wang & Bradburd, 111 

2014) in driving phenotypic divergence among sympatric species (Q. virginiana, Q. 112 

geminata, and Q. minima), with a focus on trait-environment relationships and gene 113 

flow. Second we investigate the association of ecological variables and phenotypic 114 

variation among closely related species that have been separated into distinct abiotic 115 

environments for millions of years (Q. fusiformis vs. Q. brandegeei and Q. oleoides vs. 116 

Q. sagraeana) to assess the relative influence of adaptive trait evolution (selection) and 117 

shared evolutionary history (phylogenetic inertia) on functional leaf traits. Finally, we 118 

seek to identify regions of the electromagnetic spectrum (i.e., 400-2500 nm)  capable of 119 

capturing the phylogenetic signals within the section Virentes, and evaluate how the 120 

strength and distribution of this signal vary across the phylogeny. We specifically 121 

compare regions of the spectrum that are strongly linked with pigments such as the 122 

visible region (i.e., 400-700 nm), to those mostly influenced by structure in the near 123 

infrared region (i.e., 700-1200 nm, NIR), and the concentration of chemical compounds 124 

in the short-wave infrared region (i.e., 1200-2500 nm, SWIR). 125 

We test three hypotheses about adaptive differentiation in ecological niches at 126 

different biological and geographic scales within the live oaks based on foliar spectral 127 

signatures in relation to neutral molecular markers and phylogenetic information. First, 128 

we hypothesize that closely related sympatric species (Q. virginiana, Q. minima, and Q. 129 

geminata) exhibit distinct leaf phenotypes that are adaptive to contrasting hydrologic 130 

microhabitats, despite gene flow (Cavender-Bares et al. 1999, Cavender-Bares and 131 

Holbrook 2001), as evidenced by greater foliar phenotypic variation than can be 132 

explained by distance alone. Across all live oak populations, we further expect that traits 133 

such as anthocyanin content, lignin content, and leaf mass per area (LMA), along with 134 

spectral features tied to leaf structure, will covary with source environmental variation in 135 

directions that support the hypothesis of habitat-driven adaptations. Second, we 136 

hypothesize that phenotypic divergence between pairs of closely related allopatric 137 
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species (Q. fusiformis and Q. brandegeei or between Q. oleoides and Q. sagraeana) 138 

are a consequence of adaptive evolution associated with ecological divergence 139 

enforced by vicariance. Finally, we hypothesize that across the Virentes phylogeny, 140 

spectral bands in the visible region—where selection to conserve the photosynthetic 141 

machinery is strong—will show less lability and greater phylogenetic signal than in the 142 

NIR or SWIR, where spectral bands are linked to chemical and structural aspect that we 143 

expect to be labile and to vary with divergent evolutionary pathways.  144 

 145 
Fig. 1. Species occurrence and sample locations of seven species of Quercus section Virentes. The 146 
bottom-left panel represents the mean leaf spectral reflectance of dried, pressed samples (± standard 147 
deviation) for each species. Shown are visible (VIS), near-infrared (NIR), and first and second short-wave 148 
infrared (SWIR1 and SWIR2) spectral regions. 149 
 150 
 151 
 152 
 153 
 154 
 155 
 156 
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Material and Methods 157 

 158 

Sample collection 159 

Individual trees of each Virentes species were sampled throughout their occurrence 160 

ranges and within common gardens between 2003 and 2016 for DNA extraction and 161 

leaf phenotyping (Fig. 1). In natural populations, identification of species was based on 162 

leaf, bark and stem height characters following Muller (1961), Nixon & Muller (1997) and 163 

Kurz & Godfrey (1962). Multiple leaves from each tree were pressed and stored in a dry 164 

cabinet in the laboratory, with representative voucher specimens housed in the 165 

University of Minnesota Bell Museum of Natural History. Common garden experiments 166 

were established at the University of Minnesota Plant Growth Facilities from seeds 167 

collected in natural populations. Leaves from individual saplings from the common 168 

gardens were pressed, dried and stored in a dry cabinet (Supporting Table S1). 169 

Additional traits, like freezing and drought tolerance and differences in growth form, 170 

further reinforce reproductive isolation. (description of environment for each species can 171 

be found in Supporting Methods S1). 172 

 173 

Neutral genetic variation and genetic structure 174 

We used eleven nuclear simple sequence repeats (nSSR) loci previously employed for 175 

assessing neutral genetic variation in other studies (Cavender-Bares & Pahlich 2009; 176 

Cavender-Bares et al., 2011; Gugger et al., 2013; Cavender-Bares et al., 2015). We 177 

selected 427 individuals that represented the entire geographic range of the seven 178 

species and for which leaf material was well-preserved and molecular data were 179 

available. We applied a Bayesian clustering analysis to disentangle the genetic groups 180 

among the seven Virentes populations and among the Q. oleoides populations. This 181 

analysis was conducted using STRUCTURE v. 2.3.4 (Pritchard et al., 2000) with an 182 

admixture model, excluding location as prior information (Hubisz et al., 2009). Further 183 

details on genetic clustering analysis are provided in the Supporting Information 184 

(Methods S2). We calculated pairwise genetic differentiation between species and 185 

genetic groups with FST estimators using hierfstat Package in R (Goudet, J. 2005). 186 

 187 
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Dried leaf reflectance spectra measurements and preprocessing 188 

Pressed samples are stored at the Harvard University Herbaria. Leaf reflectance was 189 

measured on the adaxial surface of three fully expanded leaves in each of the 427 190 

individuals using a leaf-clip with an internal light source attached to a high-spectral 191 

resolution field spectroradiometer SVC HR-1024i (Spectra Vista Corp., Poughkeepsie, 192 

NY, USA). Leaf reflectance spectra were corrected for the splice in bands near 990 and 193 

1900 nm using the Spectrolab package in R (Miereles et al., 2017). Subsequently, 194 

spectra were resampled to 3 nm and transformed using continuous wavelet 195 

transformation (CWT). CWT was used as a method to isolate and enhance spectral 196 

features to improve discrimination among species and phenotypes (White et al. 2025). 197 

This transformation was computed based on a second-order derivative of Gaussian 198 

using scales 22, 24, and 26. Wavelet scales were then summed for further analyses. 199 

Bands at the edge of the spectrometer range (< 400 nm and > 2450 nm) were excluded 200 

for further analysis due to low signal-to-noise ratios or transformation artifacts. The 201 

CWT was performed using the “wavCWT” function in the 'wmtsa' package of R 202 

(Constantine & Percival, 2016). Details on CTW spectra transformation are provided in 203 

the Supporting Information (Methods S3). 204 

 205 

Estimation of leaf traits from spectra 206 

We predicted leaf reflectance spectra functional traits using previous measurements of 207 

dried-leaf reflectance spectra. Specifically, we focused on six leaf structural traits: leaf 208 

mass per area (LMA; kg m-2), leaf dry thickness (LDT; mm), content of cellulose (CEL; 209 

%), hemicellulose (HEM; %), soluble cell contents (SOL; %), and lignin (LIG; %). 210 

Estimations of leaf traits were performed excluding petioles from herbarium samples. 211 

The concentration of carbon fractions, including solubles (non-structural carbohydrates, 212 

cell contents like carbohydrates, lipids, pectin, starch, soluble proteins and non-protein 213 

nitrogen). hemicellulose, cellulose, and lignin (%) were obtained from sequential 214 

digestion (Fiber Analyzer 200; ANKOM Technology). 215 

We used a common Partial least squares regression (PLSR) modeling framework 216 

to predict leaf traits from dried-leaf reflectance spectra across the full range (400-2450 217 

nm). This framework involves three main steps: i) split the data into training and testing 218 
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datasets, ii) selection of the optimal number of components, and iii) assessment of the 219 

models. A detailed description of the employed framework is presented in Supporting 220 

(Methods S4). 221 

 222 

Partial least-squares discriminant analysis for species classification 223 
 224 
We employed a Partial Least Squares Discriminant Analysis (PLS-DA) model to classify 225 

dried-leaf wavelet spectra among the seven species in Virentes. Each species was 226 

represented by a minimum of 20 samples. The dataset was divided into 70% training 227 

(calibration) and 30% testing (validation) subsets based on the species-genetic group 228 

level. We first conducted an iterative PLS-DA analysis (50 iterations) using the 229 

bootstrap method to control sample size to determine the optimal number of 230 

components. After selecting the optimal number of components, a final PLS-DA model 231 

was generated based on 50 iterations. We assessed the classification performance 232 

using confusion matrices between species and genetic groups. PLS-DA modeling was 233 

conducted using the caret R package (Khun et al., 2020). 234 

 235 

Bayesian clustering based on spectrally predicted traits  236 

In order to compare species phenotypic structure, we used the unsupervised Bayesian 237 

clustering algorithm GENELAND v 4.0.9.(Guillot et al., 2009). The six traits spectrally 238 

predicted from reflectance spectra were used together with the geographic location of 239 

the populations to delimit phenotypic clusters among the seven Virentes species and 240 

among populations of Q. oleoides. To explore the possible number of phenotypic 241 

clusters, we carried out 11 independent runs with K ranging from 1 to 10 with 2 × 106 242 

MCMC iterations and a thinning value of 1000. We subsequently fixed the K value at 6 243 

to estimate individual probabilities of membership in each cluster for the seven species 244 

of Virentes and K value of 5 for Q. oleoides. We ran 20 additional independent runs and 245 

chose those that had the highest mean logarithmic posterior probability and post-246 

processed them using a burn-in equivalent of 10%; each cell was about 10 km2. 247 

Individuals with a membership probability of less than 0.6 were considered admixed. To 248 

visualize the results in GENELAND, runs of the most probable K value were 249 

summarized using CLUMPP v 1.1.2 (Jakobsson & Rosenberg, 2007).  250 
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Comparing phenotypic vs genotypic divergence 251 

Analyzing the relationship between phenotypic and genetic variation offers valuable 252 

insights into the presence of selection, particularly through PST - FST comparisons 253 

(McKay & Latta, 2002; Merilä & Crnokrak, 2001). The nSSR-derived genetic distances 254 

(FST ) were compared with quantitative trait distances (PST ) for each pairwise species.  255 

Phenotypic distances were derived considering the six traits spectrally predicted from 256 

the PLSR spectral modelling, and the three main spectral regions: Visible (400-700 nm), 257 

near infrared (NIR, 700-1200 nm) and short-wave infrared (SWIR, 1200-2500 nm). 258 

From these regions we selected—as phenotypic traits—wavelengths that had high 259 

values of Variables of Importance in Projection (VIP) from the PLS-DA analysis to 260 

discriminate seven species using CWT wavelet spectra. First, we selected all 261 

wavelengths with VIP values higher than 0.8; subsequently, to have a broader selection 262 

of traits, we included bands with values higher or close to 0.4 (Wold et al., 2001). We 263 

refer to these selected wavelengths as spectral traits thereafter. Detailed methods for 264 

calculating PST using spectrally predicted traits and the full spectra are provided in the 265 

Supporting Information (Method S5). 266 

 267 

Spatial and environmental drivers of population divergence. 268 

To determine whether trait differentiation among species follow patterns of isolation-by-269 

distance (IBD) or isolation-by-environment (IBE), we used Redundancy Analysis (RDA) 270 

to compare genetic, spatial, and phenotypic variation to variation in environmental 271 

variables. The comparison provides a means to test whether environmental variables 272 

drive phenotypic differences beyond spatial distance effects. To select the 273 

environmental variables  274 

For each pair of species, partial redundancy analysis was conducted to partition 275 

the explainable phenotypic variation, into those attributable to spatial 276 

(SPACE), genetic (GEN), environmental factors (ENV), and their combined effect. The 277 

full, partial and joint contributions of SPACE, ENV and GEN to the explainable 278 

phenotypic variations were estimated and tested for significance, and the most 279 

influential single explanatory variables were identified. (Supporting pRDA_results.xlsx). 280 
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For more detailed explanation of pRDA models see Supporting Information (Methods 281 

S6) 282 

 283 

Testing for phylogenetic signal 284 

We use phylogenetic least squares regression (PGLS) to analyze phylogenetic signals 285 

in phenotypes while simultaneously examining how these traits derived data relate to 286 

environmental variation. The analysis was conducted using the phylogenetic tree 287 

derived from RADseq data (Cavender-Bares et al. 2015) as a framework with 17 288 

samples of different populations of the 7 different species. To obtain the variation in 289 

phenotypic characters. The mean of the individuals belonging to these populations was 290 

calculated.Spectral traits were analyzed separately for each region of the spectrum: 291 

Visible (VIS), Near-Infrared (NIR), and Short-Wave Infrared (SWIR), as well as for six 292 

key leaf traits derived from leaf spectroscopy. To gain a broader perspective, the same 293 

method was also applied to various vegetation indices that characterize features 294 

associated with biophysical and chemical properties. The indices selected were 295 

Chlorophyll Index Red Edge (CI= 750nm/710nm) as a descriptor of the chlorophyll 296 

concentration (Gitelson et al. 2003), Normalized Difference Water Index (NDWI= 297 

(835nm - 1610nm)/(835nm + 1610) as a descriptor of the leaf water content (Quemada 298 

et al. 2021), and the Anthocyanin Reflectance Index (ARI = (1 / 550nm) - (1 / 700nm)) 299 

as a descriptor of the anthocyanins concentration (Li  et al. 2023). Overall, this approach 300 

allowed us to assess the phylogenetic structure and environmental associations for 301 

each spectral region, vegetation index, and predicted leaf trait independently, providing 302 

insights into how evolutionary and environmental factors shape spectral variation. Most 303 

common environmental variables used in pRDA analysis were used after removing 304 

highly correlated variables (based on Pearson's correlation |r| ≤ 0.60) to control for 305 

multicollinearity for each pairwise species. To evaluate the correlation between 306 

environmental variables and the traits of 427 samples, and to complement the 307 

information and gain a better understanding of how environmental variables relate to the 308 

traits, a Pearson correlation was performed, as opposed to the PGLS which only used 309 

17 individuals. The phylogenetic signal was quantified using Blomberg’s K to determine 310 

the extent to which spectral data were conserved along the phylogeny (Blomberg et 311 
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al.,2003) implemented in Phytools (Revell, 2012). Blomberg’s K measures the degree to 312 

which trait variance lies within clades vs among clades as compared to a Brownian 313 

expectation. Significance was assessed using 999 tip-swap randomizations. The 314 

package phylosig in R (Revell, 2012), was chosen because it incorporates standard 315 

errors (SE) in its calculations and allows flexibility in estimating Blomberg’s K with 316 

different settings. A value of K=0 indicates no phylogenetic signal, 317 

while K>1 suggests that closely related species exhibit stronger trait similarities than 318 

expected under a Brownian motion model of evolution (Blomberg et al., 2003). 319 

To evaluate the significance of the observed K values, we compared them to null 320 

distributions generated under two models. First, a white noise (WN) model was used, 321 

where trait values were randomly permuted across the phylogeny’s tips 1000 times. 322 

Second, a Brownian motion (BM) model simulated trait evolution under BM across the 323 

phylogeny 1000 times. K values falling below the 95% distribution of the simulated BM 324 

values suggest traits are less phylogenetically structured than expected under Brownian 325 

motion (Blomberg et al., 2003). 326 

 327 

Accounting for environmental influence on phenotypes using spectral variation in leaves 328 

from a common garden 329 

We assessed the phenotypic differences among species independently of 330 

environmental effects by using pressed leaf samples from a common garden. To do so, 331 

we measured reflectance spectra from pressed leaves from 22 individuals of each of 332 

four species (Q. fusiformis, Q. geminata, Q. oleoides, Q. virginiana). These individuals 333 

were grown in a common garden in a controlled environment at the Plant Growth 334 

Facility on the St. Paul campus of the University of Minnesota. Phenotypic distances 335 

(PST) from spectrally derived trait values were calculated in the same way as for wild 336 

populations (VIP wavelengths were not used in this case). All pairwise estimates of PST, 337 

their confidence intervals (CI) and the comparison with FST genetic distances were 338 

calculated using the package Pstat in R (Blondeau & Da Silva, 2018). FST (and CI) were 339 

estimated using the boot.ppfst function in hierstat R package. 340 

 341 

 342 



12 

Results 343 

Neutral genetic variation  344 

Pairwise genetic differentiation values using FST for nSSRs were statistically significant 345 

(p < 0.05) for all species pairs and ranged between 0.012 and 0.25. The highest value 346 

was found between Q. brandegeei vs Q. geminata  (Supporting Table S2). Pairwise 347 

genetic differentiation using genetic groups identified by STRUCTURE for FST showed 348 

similar trends to those obtained at the species level (Supporting Table S2).  349 

  350 

Functional traits from spectra 351 

The PLSR models for estimating traits using the internal validation dataset show high to 352 

moderate accuracy and precision. The best spectrally predicted traits were LMA (R2 = 353 

0.88, RMSEP = 17.6), cellulose (R2 = 0.72, RMSEP = 3.37), and thickness (R2 = 0.65, 354 

RMSEP =0.8) Table S4, Supporting Fig. S2. Variable importance in projection (VIP) was 355 

used to identify which regions of the spectrum were important in predicting leaf traits 356 

(Supporting Fig. S3). For all spectrally predicted traits, the ranges between 660-680 and 357 

750-780 nm (visible) (Supporting Fig. S3 a, c) showed the highest importance in 358 

predicting traits. SWIR range was important to predict lignin and soluble cell contents 359 

(carbohydrates, lipids, pectin, starch, soluble proteins and non-protein nitrogen). around 360 

1920-2050 nm (Supporting Fig. S3 b, d). The NIR and much of the SWIR region (i.e., 361 

1400–1850 nm) were less important for predicting leaf traits. 362 

 363 

Bayesian clustering based on genetic data and phenotypic traits 364 

Using the nSSRs from 427 individuals, the clustering analysis suggested seven (K = 7) 365 

most probable genetic groups with a mean lnP(K) = -3337.23 and ΔK = 96.93. This 366 

result is like those obtained in Cavender-Bares et al. (2015), indicating that the reduced 367 

sample size did not meaningfully change the genetic clustering. As before, Q. geminata 368 

and Q. minima formed a unique genetic group 1 (Fig.. 2a). Using the GENELAND 369 

algorithm, the most probable number of clusters obtained based on all spectrally 370 

predicted traits (i.e., phenotypes) was K= 6. Phenotypic group 2 combines individuals 371 

from five different species, showing similar phenotypic characteristics in Q. geminata, Q. 372 

minima, Q. virginiana, Q. sagraeana, and Central America populations of Q. oleoides 373 
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(Fig. 2b). Clustering within Q. oleoides using nSSR data showed four major genetic 374 

groups (K= 4) with a mean lnP(K) = -7935.1 and ΔK = 13.02. This analysis describes 375 

genetic groups divided into major geographical regions: Northeastern Mexico (N. MX), 376 

Southeastern Mexico (S. MX.), Central America (BZ and HND), and Costa Rica (CR). 377 

Phenotypic clustering using GENELAND showed five distinct phenotypic groups, 378 

suggesting differences with respect to genetic groups (Supporting Information Fig S4). 379 

 380 
 381 
Fig. 2. Spatial distribution of genetic and phenotypic variation of seven oak (Quercus) species of the 382 
section Virentes. a), Seven genetic groups identified by STRUCTURE from 56 populations. b), Six 383 
phenotypic groups identified by GENELAND using six leaf traits derived from reflectance spectra from the 384 
same 56 populations. The percentage assignment to genetic or phenotypic groups is represented at both 385 
the individual tree level (upper bar plots) and subpopulation level (pie charts). Colors outlining the pie 386 
charts represent species of sample origin. Colors inside the pie charts represent genetic (a) or phenotypic 387 
(b) groups. GE= Q. geminata, MN= Q. minima, VI= Q. virginiana, SA= Q. sagraeana, OL= Q. oleoides, 388 
BR= Q. brandegeei, FU= Q. fusiformis. 389 
 390 

Partial least-squares discriminant analysis for species classification 391 

In contrast to the unsupervised Bayesian clustering algorithm GENELAND where Q. 392 

geminata and Q. minima were clustered in the same genetic group, the PLS-DA 393 

classification model using spectra from pressed leaves showed high performance for 394 

discriminating individuals among the seven species of Virentes.This analysis correctly 395 

predicted the taxonomic identity of 295 out of 302 samples in the training dataset (Fig. 396 

3).The model performed well in discriminating individuals among species with sympatric 397 
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distributions. For example, it achieved 85% classification accuracy for Q. geminata, 398 

84% for Q. minima, and 85% for Q. virginiana.When using the SSR data (Fig. 2a), the 399 

analysis revealed high rates of admixture between individuals of Q. geminata and Q. 400 

minima. 401 

This analysis correctly predicted the taxonomic identity of 295 of 302 samples in 402 

the training dataset (Fig. 3), showing good results discriminating individuals among 403 

species that have sympatric distributions. For example, it achieved 85% classification 404 

accuracy for Q. geminata, 84% for Q. minima, and 85% for Q. virginiana (85%). 405 

Accuracy, kappa, sensitivity, and specificity using 20 PLS components results are in  406 

Supporting information Table S3. 407 

 408 

  409 
Fig. 3. Confusion matrices from PLS-DA analysis for seven Quercus species of section Virentes. 410 
Columns represent the observed identities, while rows indicate the predicted identities and phylogenetic 411 
relations among species. Values along the diagonals show the percentage of individuals accurately 412 
classified within each group, while values above or below diagonals show the percentage of 413 
misclassification.Left side phylogeny to show species relations. GE= Q. geminata, MN= Q. minima, VI= 414 
Q. virginiana, SA= Q. sagraeana, OL= Q. oleoides, BR= Q. brandegeei, FU= Q. fusiformis.  415 
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 416 

Comparing phenotypic vs genotypic divergence 417 

Using leaf traits derived from spectra, sympatric species (i.e., Q. geminata vs Q. 418 

virginiana) showed significant differences in their PST pairwise distances (c/h2 > 0.25) for 419 

almost all traits compared to FST except for cellulose. Q. minima vs Q. virginiana had 420 

significant differences in their PST pairwise distances for LMA, thickness, solubles and 421 

hemicellulose (c/h2 > 0.25) and cellulose and lignin when (c/h2 > 0.5). For the pairwise 422 

comparison between Q. geminata and Q. minima, only cellulose showed significantly 423 

higher values of PST (0.86) than FST (0.011).  424 

Significant differences between PST -FST for sister species Q. oleoides and Q. 425 

sagraeana (FST = 0.073) showed evidence for phenotypic selection on three leaf traits: 426 

LMA (PST = 0.8), thickness (PST = 0.88), and lignin (PST = 0.93). Differentiation measures 427 

between Q. brandegeei and Q. fusiformis (FST = 0.153) were also significantly different 428 

on four traits: thickness (PST = 0.96), solubles (PST = 0.92), cellulose (PST = 0.93), and 429 

lignin (PST = 0.9). Fig. 4a shows trait difference for pairwise comparisons among 430 

species with c/h2 values of 0.25, 0.5 and 0.75.  431 

Using bands with high importance in discriminating species (i.e., VIP) from the 432 

PLS-DA species classification model, we found that closely related species tended to be 433 

more spectrally similar in the visible region than more distantly related species. Given 434 

that our main objective is to focus on adaptive differentiation in ecological niches at 435 

different biological and geographic scales, we only present pairwise comparisons values 436 

of phenotypic significant PST > FST  among sympatric species (Q. geminata, Q. 437 

virginiana, and Q. minima), allopatric sister species (Q. fusiformis and Q. brandegeei or 438 

Q. oleoides and Q. sagraeana), and widely distributed species with parapatric 439 

populations (Q. oleoides and Q. fusiformis; Q. virginiana) are shown in Fig. 4b. Detailed 440 

results for all pairwise comparisons values of phenotypic PST-FST obtained from 441 

spectrally derived traits, and their confidence intervals can be found in the Supporting 442 

Fig. S5 and Supporting information (PST_Results.xlsx). 443 
 444 
 445 
 446 
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 447 
 448 
 449 
Fig. 4. Pairwise PST comparisons: Matrices represent PST plotted as a function of c/h2 values 450 
selected at 0.25 (orange), 0.5 (pink) and 0.75 (blue). The optimal value of c/h2 at which the lower 451 
confidence limit of PST is higher than the upper confidence limit of FST. Panel a) spectrally 452 
predicted traits (LMA: Leaf mass area; THI: thickness; SOL: solubles; HEM: hemicellulose; CEL: 453 
cellulose; LIG: lignin) LEFT shows a simplified phylogenetic tree inferred from RADseq data for 17 454 
Virentes individuals using RAXML (Cavender-Bares et al., 2015) with the pairwise comparisons among 455 
species that were conducted using the six spectrally predicted traits. Colored pairs represent sister 456 
relationships, historical introgression between specie pairs, and/or sympatric geographic associations 457 
within the Virentes: Red, sympatric sister species; Blue, sister but not sympatric species; Green, 458 
historically introgressing populations; Purple, parapatric species with introgression. RIGHT Means and 459 
variance are shown with box and whisker plots for each species for the six predicted traits. Colours are 460 
associated with species means, and different letters indicate significant Student’s t-test species--level 461 
differentiation (P < 0.05). Panel  b) Variable Importance of Projection (VIP) spectral bands selected 462 
within the Visible, near infrared (NIR) and short-wave infrared (SWIR) regions based on 463 
importance in discrimination among species using PLSDA, represents plotted VIP values obtained 464 
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from the PLS-DA classification model using wavelet spectra: orange vertical lines represent wavelengths 465 
that were used as traits to calculate PST pairwise distances. Matrices are divided into Visible, NIR, and 466 
SWIR spectral regions.phylogenetic/geographic relations. GE= Q. geminata, MN= Q. minima, VI= Q. 467 
virginiana, SA= Q. sagraeana, OL= Q. oleoides, BR= Q. brandegeei, FU= Q. fusiformis. Only 468 
phylogenetically and geographically meaningful pairwise comparisons are shown Leaf mass area, 469 
thickness, solubles, hemicellulose, cellulose, lignin 470 
 471 
Spatial and environmental drivers of population divergence 472 

We performed multivariate redundancy analyses (RDA) to attribute explainable variation 473 

in phenotypic traits, to spatial location, environment or their joint effect. This analysis 474 

integrates two classical models of population structure, isolation-by-distance and 475 

isolation-by-environment. The results show the percentage of variation explained by 476 

environmental variables controlling space PHENO ~ ENV + Condition (GEO), spatial 477 

variables controlling environment PHENO ~ GEO + Condition (ENV), and the 478 

combination of both (PHENO ~ GEO + ENV for different species  pairs (e.g., Q. 479 

geminata vs Q. minima GE/MI, Q. geminata vs Q. virginiana GE/VI). Overall, the total 480 

variation explained by environment and spatial location varies widely across species 481 

pairs, ranging from 20% (OL/SA) to 57% (GE/SA). In most cases, the variation 482 

explained by environmental variables (IBE) is greater than that explained solely by 483 

spatial factors (IBD), suggesting that environmental conditions play a more significant 484 

role than spatial variation in determining spectral traits. This is particularly evident in 485 

pairs, including GE/MI (18% vs. 6.5%) in the visible range, and GE/VI (33% vs. 16%) in 486 

the SWIR region. However, in certain cases (e.g., GE/SA), spatial factors explain a 487 

relatively high proportion of variation (31%) compared to environmental variables (20%), 488 

potentially reflecting spatial patterns linked to species' geographic distributions (Fig. 5). 489 

Complete results showing Adjusted r2 and proportion of variance explained (PVE %) for 490 

each model, and proportion of variable explained by each environmental variable  491 

(Supporting Information, pRDA_Results.xlsx). 492 
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 493 
Fig. 5.  Redundancy analysis of divergence in pairwise Quercus Virentes species. Radians 494 
represent the percentage of the total variation in spectrally derived traits and spectral VIP wavelengths in 495 
each region Visible, NIR and SWIR that can be explained by space:Environment: PHENO ~ ENV + 496 
Condition (GEO) (green IBE); PHENO ~ GEO + Condition (ENV) (brown IBD) and their interaction 497 
PHENO ~ GEO + ENV (blue). Asterisks (*) indicate that the PVE % is not significant. Environmental 498 
variables peer individuals are listed in Supporting file Environmental.xlxs 499 

 500 

 501 
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Phylogenetic signal and phenotypic variation 502 

We found significant levels of phylogenetic signal in the spectra of Quercus section 503 

Virentes, with strong signals observed in the visible and some parts of the NIR regions. 504 

Predicted traits such as hemicellulose, soluble contents, and lignin also exhibited strong 505 

to moderate phylogenetic signals (Table S6). In contrast, the SWIR region showed 506 

limited phylogenetic signals, suggesting that this region may be less influenced by 507 

evolutionary constraints. 508 

Accounting for phylogenetic relationships among populations using PGLS, we 509 

found significant associations between traits and bioclimatic variables, including the 510 

minimum temperature of coldest month (Bio 6, Fig. 6A), the mean temperature of the 511 

wettest quarter (Bio 8), annual precipitation (Bio 12, Fig. 6B), and precipitation of the 512 

warmest quarter (Bio 18) (Table S5). Populations that occur in colder regions  (e.g., 513 

within Q. fusiformis and Q. virginiana) tended to exhibit lower lignin content than those 514 

from warmer regions (within Q. oleoides, Q. brandegeei, Q. sagraena)  (Bio 6), while 515 

populations  occurring in drier conditions (Bio 12), including those of Q. brandegeei and 516 

Q. fusiformis showed  lower concentrations of anthocyanins  as indicated by lower 517 

values in anthocyanin index. Across all 427 individuals, Pearson correlation coefficients 518 

showed significant relationships between traits and the minimum temperature of the 519 

coldest month (Fig. 6A) for lignin (r=0.24, P=0.0001), solubles (r=0.2, P=0.0001), LMA 520 

(r=0.21, P=0. 0001), hemicellulose (r=0.24, P=0.0001), anthocyanin index(r=0.23, P= 521 

0.0001), and for annual precipitation (Fig. 6B) for anthocyanin index (r=0.4, P=0.0001), 522 

hemicellulose (r=0.4, P=0.0001), chlorophyll index(r=0.4, P=0.0001), cellulose ( r=0.21, 523 

P=0.0001), lignin (r=0.4, P=0.0001). 524 
 525 
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 526 
Fig. 6.  Relationship between traits and minimum temperatures of the coldest month . Red square 527 
enclosed graphs represent PGLS model significant association of trait and environmental variables 528 
controlled by phylogeny using a phylogenetic tree of 17 individuals. Other graphs represent significant 529 
correlations between environmental variables and trait measures using 427 individuals. Dashed lines 530 
represent significant correlations for individuals of Q. virginiana (blue) and Q. oleoides (red) 531 
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 532 
Fig. 7.  Relationship between traits and annual precipitation. Red square enclosed graphs represent 533 
PGLS model significant association of trait and environmental variables controlled by phylogeny using a 534 
phylogenetic tree of 17 individuals. Other graphs represent significant correlations between environmental 535 
variables and trait measures using 427 individuals. Dashed lines represent significant correlations for 536 
individuals of Q. virginiana (blue) and Q. oleoides (red). 537 
 538 

 539 

 540 

 541 
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Accounting for environmental influence on phenotypes using spectral variation in leaves 542 

from a common garden 543 

 544 

Common garden results for PST-FST comparisons in Q. fusiformis, Q. geminata, Q. 545 

oleoides, and Q. virginiana generally supported the results for wild populations (shown 546 

at a c/h2 ratio of 0.75 in Fig. S7). Notably, hemicellulose, cellulose, lignin, thickness, and 547 

LMA emerged as traits where PST exceeded FST at least in some pairwise comparisons 548 

in both common garden and wild population individuals. Not all pairwise results that 549 

were significant in wild populations remained significant in common gardens, yet many 550 

were. For example, in both common garden and wild populations, cellulose values for 551 

PST exceeded FST for Q. virginiana vs Q. fusiformis and for Q. oleoides vs Q. fusiformis 552 

but not other pairwise comparisons. For lignin, PST values exceeded FST values for Q. 553 

geminata vs Q. virginiana and Q. oleoides vs Q. fusiformis in both common garden and 554 

wild populations but not in other pairwise comparisons.  555 

 556 

Discussion 557 

Our study highlights the capability of spectral phenotypic data combined with neutral 558 

genetic variation to reveal evolutionary processes that have shaped diversification 559 

within Quercus section Virentes. Across the range of the live oak lineage that spans 560 

temperate and tropical environments, spectral variation provides key insights into how 561 

environmental pressures shape phenotypic traits and drive ecological divergence, 562 

complementing genetic analyses for a more comprehensive view of adaptive evolution. 563 

Sympatric species with niche specialization show evidence for adaptive differentiation 564 

We found that among sympatric Quercus species in the southeastern US, (Quercus 565 

virginiana, Q. geminata, and Q. minima), environmental selection, rather than 566 

geographic proximity, drives phenotypic divergence consistent with the hypothesis that 567 

fine-scale adaptations to contrasting local habitats enable coexistence. Our pRDA 568 

analysis shows that environmental variables explain more phenotypic variation than 569 

geographic distance, even with gene flow. Traits like LMA, lignin content, cellulose, 570 
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thickness and spectral features that differentiate species are likely under selection. 571 

These traits and phenotypic attributes may contribute to survival across hydrologically 572 

distinct microhabitats. Previous studies have shown linkages between functional trait 573 

variation and topography or microhabitat in this region. The topography of northern 574 

central Florida forms an ecological gradient where small elevation changes cause shifts 575 

in water availability (Brown, Stone & Carlisle, 1990). Quercus species in this area 576 

occupy habitats that span xeric sandhills to mesic river edges and ravines (Myers, 1992; 577 

Kurz & Godfrey, 1962), resulting in selective pressures that shape functional traits and 578 

adaptation  to hydrological regimes (Cavender-Bares et al., 2004b;Cavender-Bares & 579 

Holbrook, 2001; Reich et al., 2003). Evolutionary divergence among Virentes, Quercus 580 

virginiana, Q. geminata, and Q. minima, has also been found despite complex 581 

introgression (Eaton et al., 2015; Cavender-Bares et al., 2015). These species maintain 582 

reproductive isolation through phenology, niche specialization, and habitat 583 

preference(Cavender-Bares et al., 2004a, b; Cavender-Bares & Pahlich, 2009). Full 584 

spectral analysis reveals strong adaptive divergence among these species, especially in 585 

the near-infrared (NIR, 700–800 nm) and visible (VIS, 616, 688 nm) regions, indicating 586 

differences in foliar structure and pigments associated with water availability (Ourcival 587 

and Rambal 1990, references). Although Q. geminata and Q. minima show little 588 

differentiation in the shortwave infrared (SWIR) and do not differ significantly in most of 589 

the structural traits (with the exception of cellulose, Fig 4a), both differ markedly from Q. 590 

virginiana. Lower lignin concentrations in Q. virginiana compared to Q. geminata and Q. 591 

minima as well as reduced LMA and lower leaf thickness, are traits differences 592 

associated with decreased sclerophylly expected in more mesic habitats (Sancho-593 

Knapik et al., 2021; Alonso-Forn et al., 2020, 2023). 594 

 595 

Phenotypic clustering across regions is associated with shared ancestry, historical 596 

geneflow and climatic similarity 597 

 598 
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Unsupervised clustering analyses (GENELAND) based on spectrally predicted traits 599 

place Q. oleoides (Central America populations), Q. sagraeana (Cuba), and Q. 600 

virginiana, Q. geminata, and Q. minima (Florida) into the same cluster (Fig. 2b).  601 

Phenotypic clustering among distinct species can be a consequence of shared ancestry 602 

or historical gene flow followed by vicariance. The origin of Q. sagraeana, an allopatric 603 

Cuban endemic has been long investigated: one hypothesis suggests migration from 604 

Florida (Santiago-Valentín & Olmstead, 2004; Graham, 2010; Gugger et al., 2013), 605 

while another supports a Central American origin (Muller, 1955; Eaton et al., 2015). 606 

Genome-wide RADseq analyses reveal Q. sagraeana as a sister species to Q. 607 

oleoides, supporting a Central American origin with later introgression from Q. virginiana 608 

and Q. geminata (Eaton et al., 2015). Despite restricted gene flow—especially with 609 

current high sea levels (Gugger et al., 2013)—the lack of clear phenotypic structure may 610 

reflect retained ancestral polymorphisms. Phenotypic clustering may also be a 611 

consequence of similar selection pressures, given that these populations all occur in 612 

subtropical humid environments.  613 

 614 

In contrast to clustered phenotypes associated with shared ancestry, historical geneflow 615 

and climatic similarity, populations of the allopatric sister species Q. brandegeei and Q. 616 

fusiformis show geographically structured phenotypes that align with genetic 617 

differences. Q. fusiformis and Q. brandegeei diverged about 5.2 Ma. Q. brandegeei, 618 

which occurs in an isolated region of southern Baja California’s desert (Cavender-Bares 619 

et al. 2015) exhibits traits more suited to aridity, such as smaller and thicker leaves with 620 

higher LMA, compared to its sister species. These findings highlight ecological 621 

divergence driven by environmental selection between contrasting  climates, with pRDA 622 

supporting spectral trait differentiation, especially in the NIR region Fig 5. 623 

Collectively, the patterns reveal different evolutionary processes: contrasting 624 

environmental pressures and microhabitat-level differentiation drive phenotypic 625 

divergence, while shared history and ancestral gene flow, coupled with shared 626 

environments, promote phenotypic clustering. Plasticity is also likely to contribute to the 627 
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patterns of phenotypic variation we observe in wild populations, given the general 628 

pattern of greater PST - FST differences in wild populations compared to common garden 629 

populations (Fig. S6). 630 

Phylogenetic history, signal, and environmental influences on phenotypic variation 631 

In Quercus section Virentes, species distributed across temperate and subtropical 632 

climates exhibit significant phenotypic variation influenced by both phylogenetic history 633 

and environmental pressures. Using phylogenetic generalized least squares (PGLS) 634 

that included several populations per species, we found that species from colder 635 

latitudes, such as Q. fusiformis and Q. virginiana, exhibited lower lignin concentrations 636 

in their leaves. This same trend emerges when examining variation at the level of 637 

individuals. Individuals across the Virentes showed an increase in soluble sugars and 638 

hemicellulose in colder climates, consistent with findings in other plant species, 639 

including Arabidopsis (Panter et al., 2019; Kutsuno et al., 2022). These chemical 640 

changes found in populations from colder climates–lower lignin concentrations coupled 641 

with higher cellulose and soluble cell constituents–may be associated with biochemical 642 

modifications to the cell wall that enhance freezing tolerance by stabilizing cell 643 

structures and facilitating water movement during freeze-thaw cycles (Kutsuno et al., 644 

2022). Lower lignin levels are linked to cell permeability, which facilitates water outflow 645 

and ice formation in extracellular spaces without damaging cells (Yamada et al. 2002, 646 

Domon et al.2013, Cass et al. 2015). The cell wall plays a crucial role in protecting the 647 

plasma membrane from extracellular freezing damage, as it serves as the primary site 648 

of ice crystal formation (Panter et al., 2020). In Arabidopsis, alterations in the pectin 649 

cross-link structure, lignin biosynthesis (Huang et al. 2010), and modifications in 650 

hemicellulose composition have been shown to affect basal freezing tolerance (Panter 651 

et al., 2019; Shi et al., 2014). Lignins and other phenolic compounds can also act as 652 

defense agents affecting leaf optical properties in the SWIR2 region. (Li et al. 2023, 653 

Czyż et al. 2020). 654 

Previous studies show that minimum temperature of the coldest month predicts 655 

freezing tolerance and cold acclimation capacity in live oaks. In common garden 656 

experiments, species from temperate latitudes Q. virginiana, Q. geminata and Q. 657 
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fusiformis, demonstrated the ability to increase freezing tolerance in response to chilling 658 

growth temperatures, contrary to tropical species like Q. oleoides (Koehler et al., 2012; 659 

Cavender-Bares, 2007). The ability to cold acclimate and express higher freezing 660 

tolerance under temperate conditions was associated with less competitive growth rates 661 

under tropical (non-stressed) growth conditions (Koehler et al., 2012). 662 

Across individuals significant variation in Anthocyanin Reflectance Index (ARI) is 663 

evident within Q. virginiana and Q. oleoides (Fig. 6b), reflecting their broad geographic 664 

and climatic ranges. Within Q. virginiana, the highest levels of anthocyanins occur in the 665 

coldest climates, but the overall trend across the Virentes is one of increasing 666 

anthocyanin content in warmer, more tropical regions. Accumulation of anthocyanins 667 

can contribute to photoprotective effects under cold conditions but can also deter 668 

herbivores (Gould 2004). Under low temperatures, anthocyanins have been shown to 669 

mitigate photodamage by intercepting light or neutralizing reactive oxygen species 670 

(Pietrini et al. 2002; Gould 2004; Hughes et al. 2012). Ramírez-Valiente et al. (2015) 671 

reported that anthocyanin levels in immature leaves of Virentes species and populations 672 

increased in response to seasonal low temperature stress but that that across all 673 

Virentes populations, those from tropical regions exhibited higher anthocyanin levels 674 

than those from temperate regions. The latter result points to the role that anthocyanins 675 

play in defense against herbivores. 676 

Herbivore pressure is well known to increase at tropical latitudes (e.g., Coley and 677 

Barone 1996, Salazar and Marquis 2012, Tang et al. 2023), and defense chemistry has 678 

been shown to increase in more tropical regions in oaks (Pearse and Hipp 2012). In 679 

warmer climates, higher anthocyanin concentrations have been linked to reduced 680 

herbivory, including in Q. robur  (Valdes-Correcher  et al. 2025).  Our findings of 681 

increasing anthocyanin levels in tropical regions indicate that anthocyanins play a 682 

greater role in protection against herbivores than in cold tolerance in the Virentes. The 683 

coupled increase in both anthocyanins and lignin concentrations in tropical regions (Fig. 684 

6d,f) indicate that both may be important elements in defense against herbivores.  685 
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We also see a significant trend in increased anthocyanin levels with mean annual 686 

precipitation (Fig. 7). Quercus brandegeei and Q. fusiformis, which experience 687 

significant seasonal drought, have lower anthocyanins than species from more mesic 688 

environments. Ramírez-Valiente et al. (2015) reported that anthocyanin accumulation 689 

was more pronounced in mesic ecotypes under drought conditions, emphasizing that 690 

anthocyanins play a key role in mitigating photodamage through their antioxidant and 691 

light-filtering properties in environments with higher water availability because other 692 

photoprotective involving xanthophyll cycle mechanisms are absent. They concluded 693 

that mesic populations are more reliant on anthocyanin-based photoprotection, 694 

Interestingly, our results also show that Q. brandegeei and Q. fusiformis exhibited 695 

higher chlorophyll indices despite their lower anthocyanin levels, suggesting that xeric 696 

species may prioritize maintaining high photosynthetic efficiency during a shorter active 697 

growing season. The observed trade-off between anthocyanin accumulation and 698 

chlorophyll concentration in our study (Fig. 7b, d) suggests an investment in high 699 

photosynthesis in shorter active growing seasons in xeric populations (Ramírez-Valiente 700 

and Cavender-Bares 2017), on the one hand, and increased anthocyanin-based 701 

photoprotection and/or defense chemistry in more mesic conditions. We also found that 702 

individuals from drier sites showed somewhat higher LMA (Fig. 7f). Previous studies 703 

have shown that xeric ecotypes in species like Fagus sylvatica tend to exhibit reduced 704 

anthocyanin levels while relying on morphological adaptations such as increased LMA 705 

and higher trichome density to enhance drought tolerance (Camarero et al., 2012; 706 

García-Plazaola & Becerril, 2000a). These structural and physiological strategies, 707 

combined with higher chlorophyll levels, may support efficient energy use and 708 

photosynthetic function in regions prone to drought stress. Our findings highlight the 709 

multifunctional role of anthocyanins (Gould 2004) and the importance of environmental 710 

context in shaping leaf morphology, pigment dynamics, and carbon compounds across 711 

Quercus species. 712 

 713 

 714 

 715 

 716 
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Balancing evolutionary constraint and adaptive divergence in spectral traits 717 

The strong phylogenetic signal observed in the visible spectrum (Table S6) supports the 718 

hypothesis that spectral traits associated with photosynthesis, such as pigment 719 

concentrations, are evolutionarily conserved (Meireles et al., 2020). Although closely 720 

related species such as Q. geminata and Q. minima exhibit minimal differences in the 721 

visible spectrum, these differences are still ecologically relevant, particularly in specific 722 

spectral bands associated with environmental variables. When pairwise comparisons 723 

include Q. virginiana, these differences become more pronounced, reflecting a dual 724 

influence of shared ancestry and local adaptation. This suggests that while the visible 725 

spectrum captures phylogenetically conserved traits, it also reveals adaptive shifts 726 

driven by local environmental pressures (Liu et al., 2015). This interplay highlights the 727 

potential for evolutionary plasticity within a conserved spectral framework. The 728 

significant environmental contribution to visible spectrum variation—particularly the 729 

influence of the topographic wetness index  (PVE% supporting information  730 

pRDA_Results.xlsx)—underscores the importance of microhabitat-level adaptive 731 

divergence in closely related, sympatric species. Given the sympatry of these species, 732 

strong environmental contributions, such as those driven by differences in  topographic 733 

wetness index levels, to variation in the visible spectrum may reflect niche 734 

differentiation, enabling co-occurrence by reducing competition for water resources. 735 

Variation in the visible spectrum may reflect niche differentiation, allowing co-736 

occurrence by reducing competition. This pattern is consistent with the hypothesis that 737 

recent, sympatric divergence is often driven by strong ecological pressures acting on 738 

traits with direct functional relevance to the environment (Arnegard et al., 2015). Even 739 

for traits with high phylogenetic signals, species can fine-tune or modify their traits 740 

within the limits of their evolutionary potential to adapt to contrasting environments. 741 

Using common gardens to decipher the genetic basis of spectral traits and the role of 742 

plasticity 743 

The spatial autocorrelation of environmental variables can lead to geographic and 744 

neutral differences between populations correlating with environmental conditions, 745 

thereby masking adaptive evolutionary processes (Reznick & Ghalambor, 2001; Prentis 746 
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et al., 2008). Consequently, the use of common gardens is crucial for clarifying the roles 747 

of different evolutionary forces in populations, as they allow for the assessment of 748 

phenotypic variation under controlled environmental conditions. Our examination of 749 

spectral features and spectrally derived traits in common garden experiments compared 750 

to wild populations increases our understanding of how trait selection varies depending 751 

on interaction with the environment. Sympatric (Q. geminata and Q. virginiana) or 752 

parapatric (Q. fusiformis and Q. oleoides) species may undergo specialization 753 

reinforcing species boundaries and influencing the evolution of adaptive traits. While we 754 

did not explicitly test for plasticity in this study, the comparison of PST - FST in the same 755 

populations grown in a common garden or in the wild reveals that there is a significant 756 

component of phenotypic variation attributable to plasticity.  However, we found that 757 

individuals of sympatric or parapatric species show similar values of PST  and significant 758 

adaptive divergence, in both common gardens and wild populations, indicating the 759 

fixation of traits in these populations, perhaps as a consequence of species interactions. 760 

This phenomenon was not observed when comparing allopatric or widely distributed 761 

species, where plasticity may be more important for persistence. Plasticity within widely 762 

distributed species may confer an advantage in adapting to diverse climates, as seen in 763 

populations of Q. oleoides. Long-lived trees that inhabit extensive climatic ranges face 764 

the challenge of coping with highly variable climatic conditions and dynamic selective 765 

pressures on growth and stress tolerance across different space-temporal scales 766 

(Meireles et al. 2017).  767 

 768 

Conclusions  769 

Our research demonstrates the efficacy of using leaf-level spectra and spectrally 770 

derived traits to elucidate the roles of adaptive divergence and phenotypic plasticity in 771 

the persistence of populations of long-lived organisms. Understanding adaptive 772 

divergence among species is a long-standing challenge in evolutionary biology due, in 773 

part, to the complexity of quantifying phenotypic traits for large sample sizes. Our 774 

findings show that isolation-by-environment, rather than geographic proximity, shapes 775 

phenotypic divergence among sympatric Quercus species, highlighting the importance 776 

of adaptive strategies in sustaining regional coexistence among species that occupy 777 
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diverse microhabitats. In sympatric species, niche specialization plays a key role in 778 

diversification resulting in trait divergence and speciation and contributing to landscape-779 

level coexistence among closely related species. While we found evidence for adaptive 780 

divergence in live oak species, this divergence occurred alongside substantial gene flow 781 

within local populations. This interplay between neutral and selective forces highlights 782 

the complexity of adaptation, where phenotypic differentiation arises together with 783 

genetic connectivity. Taken together, these patterns underscore the critical roles of 784 

natural selection, genetic variation and phenotypic plasticity in ensuring the long-term 785 

persistence of these species (Teixeira & Huber, 2021; Cavender-Bares, 2019). 786 

Integration of data that capture a high degree of phenotypic and genetic variation 787 

represented within and across divergent lineages is critical to deciphering the influence 788 

of genetic and environmental factors and their interactions on phenotypes. The 789 

approach we used integrates disparate fields within evolutionary and ecology biology to 790 

elucidate how interactions between landscapes and species biological traits drive 791 

biodiversity patterns.  792 

 793 
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Cellulose and Lignin predicted from dry spectra. 829 

Fig. S3 The variable importance in the projection (VIP) metric was calculated based on 830 

dry sample spectral data models for six traits. 831 

Fig. S4 Spatial distribution of genetic and phenotypic variation in Q. oleoides.   832 

Fig. S5. PST comparisons among species using: a) spectrally predicted traits (LMA: Leaf 833 
mass area; THI: thickness; SOL: solubles; HEM: hemicellulose; CEL: cellulose;  LIG: 834 
lignin); b) spectral bands within the visible (VIS), near infrared (NIR) and short-wave 835 
infrared (SWIR) region with high importance (i.e., Variable Importance of Projection 836 
(VIP) in discriminating species using wavelet spectra  837 
 838 
Fig S6. Spectrally predicted traits and selected wavelength relationships under different 839 
environmental conditions. 840 

Fig. S7 PST vs FST estimates and 95% confidence intervals from quantitative predicted 841 
traits among wild and greenhouse individuals for four species in Quercus section 842 
Virentes.  843 
 844 
Fig. S8  Phylogenetic signal detected in leaf spectra varies across wavelengths across . 845 
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Quercus Virentes species. 846 
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Supporting Methods 73 
 74 
 75 

Table S1 Previous studies from which the genetic data were obtained and from which specimens 76 
were collected and measured for spectral data. Studies from which three individual leaves were taken 77 
to measure the dry spectrum. Leaves were collected from wild populations and common gardens for DNA 78 
extraction, and ecophysiology experiments. A portion of the leaves were pressure dried and stored in a 79 
dry cabinet at the University of Minnesota. 80 

Species Data Comments Study 

Q. geminata, Q. 
virginiana 

nSSRs  Cavender-Bares, & 
Pahlich,2009 

Q. geminata, Q. 
virginiana, Q. 
oleoides, Q. 
fusiformis 

 

Dried leaves for 
spectra 

measurments 

Only the leaves of individuals on 
warm treatment were measured 

Koehler et al. 2011 

Q. oleoides, Q. 
virginiana 

nSSRs  Cavender- Bares et 
al. 2011 

Q. sagreana nSSRs  Gugger & Cavender-
Bares, 2013 

Q. oleoides Dried leaves for 
spectra 

measurments 

Only leaves from well-watered 
individuals were measured from 

spectral data 

Ramírez-Valiente et 
al. 2017 

 

 81 
 82 
Methods S1: Environmental Characteristics of the Virentes Lineage 83 

The Virentes lineage is distinguished within the genus Quercus by its restriction to low-84 

altitude habitats, generally on well-drained sandy or volcanic tuff soils (Muller 1961a; 85 

Boucher 1983; Nixon 1985; Cavender-Bares et al. 2004a). The species in this lineage 86 

share key morphological synapomorphies, such as fused cotyledons and fused stellate 87 
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trichomes (Candolle 1862; Engelmann 1876-1877; Lewis 1911; Coker 1912; Camus 88 

1936-1938). All Virentes species are wind-pollinated and inter-fertile, with exceptionally 89 

high wood density (Nixon 1985; Nixon & Muller 1997) They maintain green foliage 90 

throughout winter in the southeastern U.S. and Texas or during the dry season in 91 

Central America, with a leaf lifespan of approximately one year. Species within this 92 

lineage exhibit varying degrees of tolerance to freezing and drought, which influences 93 

their distribution and migration patterns (Cavender-Bares 2007; Cavender-Bares & 94 

Pahlich 2009; Koehler et al. 2012). 95 

1. Quercus virginiana 96 

Quercus virginiana is a large, long-lived tree that grows in a variety of soil types, from 97 

moist to well-drained soils, and it can tolerate both alkaline and salty soils. Unlike Q. 98 

minima and Q. geminata, Q. virginiana is less drought-tolerant (Cavender-Bares et al. 99 

2004). Some populations of Q. virginiana have shown the ability to tolerate short-term 100 

freezing temperatures, withstanding temperatures as low as -18°C to -12°C, making it 101 

more cold-tolerant than tropical oaks like Q. oleoides but less so than temperate 102 

oaks.(Cavender-Bares & Pahlich 2009; Koehler et al. 2012, Fontes et al in 103 

preparation).This cold tolerance has allowed it to establish in areas with mild winters. 104 

2. Quercus geminata 105 

Quercus geminata is a smaller tree relative to Q. virginiana, with pubescent leaves that 106 

reduce water loss, making it well-suited to arid conditions. It has a robust root system 107 

that provides greater stability in sandy soils. The tree prefers sandy, well-drained soils 108 

typical of coastal dunes and deep sandy areas. Compared to Q. virginiana, it is more 109 

tolerant of salt and drought. It can also produce resprouts from its roots, enabling it to 110 

form clonal colonies. This combination of traits gives Q. geminata a competitive 111 

advantage in sandy coastal areas exposed to strong winds and occasional drought. 112 

3. Quercus minima 113 

Quercus minima is a low-growing shrub that rarely exceeds 2 meters in height. It 114 

reproduces both by seed and through underground rhizomes, allowing it to form dense 115 
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clonal colonies. This species is found in the coastal plains of the southeastern United 116 

States, particularly in Florida. It prefers well-drained soils and thrives in thickets and 117 

prairies that experience frequent fires. Due to its reliance on rhizome regeneration, Q. 118 

minima is more fire-resistant than Q. geminata and Q. virginiana, as its underground 119 

shoots allow for rapid post-fire recovery. 120 

4. Quercus brandegeei 121 

Quercus brandegeei is an endemic and endangered oak species restricted to the 122 

mountainous region of the Sierra La Laguna in Baja California Sur, Mexico. Unlike other 123 

oaks, this tree is limited to growth in ephemeral riverbeds, which are seasonally flooded 124 

by hurricane waters, making water availability a crucial factor for its survival. (Denvir 125 

and Westwood, 2016; Cavender-Bares et al., 2015) Q. brandegeei exhibits a clustered 126 

spatial distribution, concentrating near these water sources. It relies heavily on riparian 127 

environments, where fluctuations in moisture are essential for its survival. The 128 

conservation status of Q. brandegeei is of significant concern due to its limited range 129 

and dependence on specific water availability (Carrero et al.2020). 130 

5. Quercus fusiformis 131 

Quercus fusiformis, also known as Texas live oak, is native to the southern United 132 

States and parts of northern Mexico (Muller, 1961). This species is adapted to dry, 133 

mountainous terrain and can be found as far west as Arizona. It is highly tolerant of heat 134 

and drought, thriving in arid environments where other oaks struggle. It exhibits frost 135 

tolerance to temperatures as low as -12°C , with its survival in colder regions depending 136 

on local microclimates and the age or health of the tree (Ramirez-Valiente et al. 2015). 137 

Unlike most other species, its evergreen nature allows it to retain leaves year-round, 138 

which helps shield the bark and inner tissues from freezing temperatures. 139 

6. Quercus oleoides 140 

Quercus oleoides, also known as the tropical live oak, is a key species in the seasonally 141 

dry tropical forests of Central America, with its range extending from northern Mexico 142 

through Costa Rica. It prefers warm, dry climates with limited exposure to freezing 143 
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temperatures. This species thrives in nutrient-poor, sandy soils or volcanic tuff and 144 

forms part of the monodominant stands of tropical dry forests (Cavender-Bares, 2005). 145 

Unlike temperate oak species, Q. oleoides is not highly tolerant to cold. It can endure 146 

brief, mild cold spells, but prolonged frost or subfreezing temperatures are lethal to the 147 

species. This thermal limitation reflects its adaptation to tropical and subtropical 148 

conditions (Cavender-Bares et al. 2011). 149 

7. Quercus sagraeana 150 

Quercus sagraeana, also known as the Cuban oak, is a medium-sized evergreen tree 151 

that is endemic to western Cuba. It is the only oak species native to the Caribbean. This 152 

species thrives in the seasonally dry tropical biome, where it is adapted to warm, dry 153 

conditions with pronounced wet and dry seasons. Its habitat includes the Cuban pine 154 

forests ecoregion, and its survival is linked to its ability to endure the seasonal variability 155 

of water availability (Gugger & Cavender-Bares 2013). 156 

 157 

Summary of Cold Tolerance 158 

Highly Cold-Tolerant Species: 159 

Quercus fusiformis: Tolerates frost down to -12°C but depends on microclimatic 160 

conditions for survival in colder areas. 161 

Quercus virginiana: Can survive short-term freezing conditions down to -18°C to -12°C). 162 

Low to Moderate Cold Tolerance: 163 

Quercus geminata: Adapted to warm, coastal environments, tolerates mild cold but not 164 

extreme frost. 165 

Low or No Cold Tolerance: 166 

Quercus minima: Primarily adapted to Florida's fire-prone, subtropical habitats. 167 
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Quercus oleoides: Prefers warm, tropical conditions; does not survive prolonged 168 

subfreezing temperatures. 169 

Quercus sagraeana: Occupies warm, seasonally dry tropical environments in Cuba, 170 

with no adaptation to freezing temperatures. 171 

 172 
Method S2 Bayesian clustering using STRUCTURE software. 173 
 174 
Bayesian analysis was used both to define the genetic groups within the seven species 175 

and to define the groups within the broadly distributed Quercus oleoides species. We 176 

allowed K groupings to range from 1 to 9 based on previous results (Cavender-Bares, et 177 

al. 2015) with independent runs and a burn-in of 2 x 105 steps followed by 2 x 106 178 

Markov Chain Monte Carlo (MCMC) iterations using multilocus data for all individuals. 179 

The most probable value of K was identified with the ΔK statistic (Evanno et al., 2005) 180 

with the online version of Structure Harvester v 0.6.94 (Earl & Von Holdt, 2012). We 181 

consider the percentage of assignment of an individual to a specific cluster to consider 182 

its belonging to that genetic group.  Individuals with assignment values (Qi) between 183 

0.2-0.5 were considered as admixed, where i represents the assignment of individuals 184 

to the ith cluster.  185 

Analysis of molecular variance (AMOVA) comparing species, and genetic groups 186 

analysis were performed with ARLEQUIN v3.5.1.2 (Excoffier & Lischer, 2010) using the 187 

infinite alleles model (FST).  Additionally, we calculated pairwise genetic differentiation 188 

between the species and genetic groups with FST estimators using hierfstat Package in 189 

R (Goudet, J. 2005). 190 

 191 

Method S3 Continuous Wavelet Transform 192 

The Continuous Wavelet Transform (CWT) is a method used to analyze localized 193 

variations of power within a signal at multiple scales, enabling the decomposition of a 194 

signal into its frequency components (Graps 1995). Unlike Fourier transforms, which 195 

analyze signals in a fixed global frequency domain, the CWT provides a multi-scale 196 

representation, making it particularly suited for analyzing complex, non-stationary 197 

signals such as reflectance spectra. 198 
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In our study, we applied the CWT to [briefly describe what the spectra or data represent, 199 

e.g., leaf reflectance spectra] to identify spectral patterns associated with [specific traits 200 

or properties]. The CWT transforms the original signal into a set of wavelet coefficients 201 

that correspond to different scales (or frequencies). Each scale reflects patterns or 202 

features at a specific resolution, with smaller scales capturing finer details and larger 203 

scales representing broader trends. 204 

Summing Wavelet Scales: 205 

To summarize information across relevant scales, we summed the wavelet coefficients 206 

within predefined ranges of scales. These ranges were chosen based on [criteria, e.g., 207 

prior studies, known spectral regions related to traits]. Summing across scales provides 208 

an aggregate metric that captures the overall contribution of specific spectral features to 209 

the traits of interest. This approach is analogous to integrating over a frequency band 210 

but tailored to the multi-scale nature of wavelet analysis. 211 

 212 

Method S4 PLSR modeling framework to predict leaf traits from dried-leaf 213 

reflectance spectra. 214 

For each sample, we measured full-range reflectance spectra (350–2,500 nm) of the 215 

leaves. To construct the models, we measured the following leaf structural and chemical 216 

traits on a percentage of the samples of Quercus Virentes species plus other Quercus 217 

species: LMA (kg/m2), thickness (mm), carbon fractions (soluble cell contents, 218 

hemicellulose, cellulose, and lignin; %), and concentrations of a variety of elements (Al, 219 

C, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, Zn; % or mg/g). We used a PLSR modelling 220 

framework to predict each trait from pressed-leaf spectra across the full range (400–221 

2,400 nm). PLSR is suited to handle spectral datasets, which have many collinear 222 

predictors, because it projects the spectral matrix onto a smaller number of orthogonal 223 

latent components in a way that maximizes the ability to predict the response variable. 224 

Our methods for model calibration and validation largely follow Burnett et al. (2021). To 225 

avoid the imbalance given by the number of samples of each species, the data were 226 

split hierarchically using the species as an index to maintain a proportion close to 60% 227 

samples for calibration and 40% for independent validation datasets (Appendix Table 1 228 

list the number of individuals used for each trait prediction, the smallest number of 229 
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components selected). We quantified model performance using R2 and root mean 230 

squared error (RMSE) between measurements and mean predictions. We also report 231 

the RMSE as a percentage of the 2.5% trimmed range of measured values (%RMSE), 232 

which we used rather than the entire range (as in e.g. Burnett et al., 2021) for 233 

robustness to outliers. For each trait, we also tested whether the magnitude of residuals 234 

(observed minus predicted) in the validation dataset varied among leaves with different 235 

discoloration scores. We performed all statistical analyses in R v. 3.6.3 (R Core Team, 236 

2020) and used package pls v. 2.7.1 (Mevik et al., 2019) for PLSR modelling. 237 

 238 

Method S5 Comparing phenotypic vs genotypic divergence. 239 

The QST index introduced by Lande (1992) and Spitze (1993) is intended as an analog 240 

to FST by measuring the degree of phenotypic variance among populations over a set of 241 

quantitative traits rather than at a specific locus. FST can be used as a null hypothesis by 242 

assuming that the value of FST measured through neutral loci is the value of divergence 243 

between populations due to drift and migration. Assuming neutrality (no selection), we 244 

thus expect that FST = QST, meaning that divergence between traits (or phenotypic 245 

characters) could be achieved by drift alone. If QST > FST the inference is that 246 

quantitative traits show a higher level of differentiation than expected by genetic drift, 247 

assuming directional selection by favoring different phenotypes (i.e., heterogeneous 248 

selection). If QST < FST trait divergence among populations is less than expected by drift 249 

alone, indicating the influence of natural selection, but one that is selecting for the same 250 

optimum in different populations (i.e., stabilizing selection). 251 

In wild populations where imposing a breeding design is challenging, the QST index is 252 

often approximated by PST (Leinonen et al., 2006). The difference between QST and PST 253 

is that the latter is calculated from phenotypic variance components with no distinction 254 

between the relative contribution of genetic and environmental variation: 255 

     256 

!!" =
!
"#	$$
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"#	$$

#%&$%#
                            (eqn. 1) 257 

 258 

where #'& and #(&   are the phenotypic variance components between and within 259 

populations, h2 is heritability (i.e., the proportion of phenotypic variance due to additive 260 
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genetic effects), and c is an estimate of the proportion of the total variance due to 261 

additive genetic effects across populations (Brommer, 2011).  262 

 263 

Given that traits were measured in wild populations rather than in common 264 

garden experiments designed to estimate heritability (h2) and additive genetic variation 265 

(c), and that the PST approximation of QST is dependent on how well c and h are 266 

theoretically calculated, we estimated the c/h2    ratio following Seeholzer & Brumfield 267 

(2018): 268 

 269 

)
*# =

+&,&'()**+,)	$/()**+,)
#

	$0(12%+,)# %(,&'()**+,)	+.)                               (eqn 2) 270 

 271 

 272 

Where  #0(12234)
&

 is the upper confidence interval (CI) value for the within-populations 273 

phenotypic variance, #5(67(34)&  is the lower CI value for the between populations 274 

phenotypic variance and FST (upper)   is the upper CI value estimated from the genetic 275 

markers (FST). Ratios of c/h² closer to zero are considered robust evidence that PST 276 

(phenotypic differentiation among populations) surpasses FST (genetic differentiation 277 

among populations), indicating a deviation from neutral expectations (Brommer, 2011). 278 

Following this rationale, we interpret c/h² ratios less than 0.25 as strong evidence for 279 

natural selection driving phenotypic differentiation, ratios of 0.26–0.50 as moderate 280 

selection, and values between 0.51–0.75 as weak selection. We interpret values 281 

approaching or exceeding one as very weak or no selection. In the latter case, 282 

differentiation results primarily from random changes (i.e., genetic drift), plasticity, and 283 

environmental effects (Brommer, 2011, Cruz-Nicolas et al. 2019). Several studies have 284 

detected that the leaf weight-area ratio exhibits allometric growth; (Niklas et al. 2007, 285 

2009; Li et al. 2008; Niklas & Cobb 2008, Sun et al. 2017; Lin et al. 2018).  Since both 286 

the traits predicted from the spectrum and the wave-lengths are affected by leaf area 287 

and density, all phenotypic traits were transformed using the Aitchison log-ratio 288 

transformation (Aitchison, 1986).  289 
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 290 

Fig. 1 Plots illustrating how a comparison between neutral differentiation and the estimate of 291 
PST [sensu eqn (2)] depends on the c ⁄ h2 ratio. In each plot, the dashed vertical line indicates 292 
the point of the ‘null assumption’ c = h2 for estimating PST. The horizontal line marks the upper 293 
confidence estimate of the neutral divergence estimated as FST (= 0.06 in each plot). Estimates 294 
of PST and its lower and upper 95% confidence intervals are plotted. Panel (a) indicates low PST 295 
(95% CI at c = h2: 0.029–0.107), where PST clearly does not differ from FST. Panel (b) is for a 296 
trait where PST > FST for the null assumption (95% CI: 0.0938–0.285), but the significance of this 297 
difference is not very robustas the lower confidence estimate of PST overlaps with the upper 298 
confidence estimate for FST when c ⁄ h2 = 0.63. Panel (c) indicates a trait with strong phenotypic 299 
divergence (PST 95% CI at c = h2: 0.2946–0.586), and the difference in PST and FST is fairly 300 
robust as their confidence intervals only overlap when c ⁄ h2 = 0.17.(Taken from Brommer 301 
2011). 302 
 303 

Method S6 Spatial and environmental drivers of population divergence. 304 
 305 

To quantify environmental variation across distribution of the seven species of Virentes 306 

we used the 19 Environmental variables extracted from the WorldClim database and the 307 

HYDRO1k (USGS, 2024) at 30s arc resolution. Hydro 1k raster data sets are the 308 

hydrologically correct DEM, derived flow directions, flow accumulations, slope, aspect, 309 

and a compound topographic (wetness) index. Before any analyses, the pool of 310 

variables was reduced from 24 to 6 after removing highly correlated variables (based on 311 
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Pearson's correlation |r| ≤ 0.60) to control for multicollinearity for each pairwise species. 312 

Since Q. oleoides is the most widely distributed species, pairwise comparison with other 313 

species was made only considering populations that have genetic or phenotypic 314 

concordance with other populations. For example: we only consider Northern Mexico 315 

populations of Q. oleoides that show admixture with Q. fusiformis. Only Q. oleoides 316 

populations of Central America were used to compare pairwise pRDA with Florida and 317 

Cuban populations of Q. virginiana, Q. sagreana, Q. minima and Q. geminate. These 318 

six variables represented variation in temperature, precipitation, and soil water capacity. 319 

Geography was characterized by the latitude and longitude of the population. Genetic 320 

distance was calculated between all 427 individuals, pairwise Nei's D (Nei, 1972) 321 

calculated using GENALEX were collapsed using PCoA, and the first five PCoA axes 322 

were treated as composite variables to represent each group of data. 323 

We quantified the degree to which phenotypic variation was assessed using a variance 324 

partitioning technique to estimate individual and shared contributions of each variable 325 

(Borcard et al., 1992). This approach uses partial RDAs to estimate the proportion of 326 

explained variance for each predictor variable, independently and combined, out of the 327 

total explained variance. Each model included phenotype as the response variable and 328 

all combinations of genetic, environmental, and geographic variation as predictors. 329 

Phenotype was characterized by four variables: the six traits predicted from the PLSR 330 

spectral modelling, and the VIP wavelength bands that had PST > FST significant 331 

values for each pairwise species. The total phenotypic variance explained (PVE) by the 332 

predictors and adjusted r2(i.e., individual contribution in terms of total PVE) was 333 

estimated with the varpart function in the vegan package in R. Model significance, when 334 

appropriate, was assessed using independent RDA and pRDAs, permutation-based 335 

ANOVAs (n = 999), and significance thresholds of α ≥ 0.05. All measurements were 336 

centered and standardized prior to analyses.  337 

. 338 

 339 
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Table S2. a) Results of hierarchical analyses of molecular variance (AMOVA) for 7 species of the 340 

Virentes section in 64 populations based on eleven nSSRs loci. b) Pairwise FST values of genetic 341 

differentiation in nSSR a) among species and b) genetic groups of section Virentes. Values in bold 342 

numbers are significant P < 0.05. GE= Q. geminate, MN= Q. minima, VI= Q. virginiana, SA= Q. sagreana, 343 

OL= Q. oleoides, BR= Q. brandegeei, FU= Q. fusiformis. 344 

 345 
   a) 346 

Level df SS VC % 
 

Among species 6.0 500.1 0.4 9.2**  

Among populations within species 57.0 627.3 0.3 6.5**  

Among individuals within populations 605.0 2792.6 0.6 13.7**  

Within individuals 669.0 2226.5 3.3 70.6**  

Total 1337.0 6146.5 4.7   

df, degrees of freedom; SS, Sum of Squares; VC, Variance Components; *p <0.05, **p < 0.001 347 

 348 

 349 

b) 350 

 GE MN VI OL SA BR FU 

GE  0.011 0.130 0.162 0.233 0.272 0.175 
MN   0.111 0.138 0.214 0.244 0.146 
VI    0.059 0.100 0.167 0.079 
OL     0.073 0.185 0.046 
SA      0.243 0.146 
BR       0.152 
FU        

 351 

Table S3. Summary statistics and SD of PLSR_DA model from pressed-leaf spectra restricted to 1400-352 
2400 nm. Using Raw spectral data, vector Normalized and Continuous Wavelet Transform  353 

 Raw Vector Normalized CWT  

Accuracy 0.92 ± 0.011 0.91 ± 0.012 0.92  ± 0.011  

Kappa 0.88 ± 0.018 0.86 ± 0.019 0.88  ± 0.017  
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Sensitivity 0.88 ± 0.10 0.87  ± 0.10 0.87  ± 0.10  

Specificity 0.98 ± 0.016 0.98  ± 0.017 0.89  ± 0.014  

 354 

 355 

Table S4. Summary statistics for the PLSR calibration and validation models for each leaf trait. #S: 356 
number of samples, #C: number of components. Performance statistics include R2: the fit between the 357 
observed values and the predicted values, RMSE: root mean square error, %RMSE: percent root mean 358 
square error, MAE: mean absolute error. spectrally predicted traits (LMA: Leaf mass area; THI: thickness; 359 
SOL: solubles; HEM: hemicellulose; CEL: cellulose; LIG: lignin) 360 

        Calibration model Validation model 

Trait # S # C data 
range 

R2 RMSE %RMSE MAE R2 RMSE %RMSE MAE 

LMA g/m-2 146 6 33.8 – 
273.6 

0.87 19.21 0.15 14.51 0.88 17.6 0.14 13.25 

THI mm 151 6 0.101 – 

0.75 

0.82 0.06 0.2 0.04 0.65 0.08 0.28 0.06 

SOL % 84 8 36.5 – 
61.9 

0.86 2.4 0.05 1.87 0.51 4.29 0.09 3.63 

HEM % 74 8 11.3 – 

0.9 

0.79 1.06 0.06 0.83 0.25 2.07 0.12 1.61 

CEL % 97 9 8.6 – 
32.6 

0.84 2.28 0.11 1.78 0.72 3.37 0.17 2.64 

LIG % 96 8 7.1 – 

23.8 

0.74 2.72 0.17 0.14 0.59 2.72 0.17 0.17 
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 361 
Fig. S2 Internal validation results for LMA, Thickness, Solubles, Hemicellulose, Cellulose and 362 
Lignin predicted from dry spectra. The error bars for each data point are 95% confidence intervals 363 
calculated from the distribution of predictions based on the ensemble of 1000 iterations. 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
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 375 
 376 
 377 

 378 
Fig. S3. The variable importance in the projection (VIP) metric was calculated based on dry sample 379 
spectral data models for six traits. a) and c) represent wavelengths from 400 to 1200 nm VIP, b) and 380 
d) 1200 to 2400 nm VIP. The dashed horizontal line at 0.8 represents a heuristic threshold for 381 
importance, as suggested by Burnett et al. (2021).  382 
 383 
 384 
 385 



 

18 
 

 386 

Fig. S4. Spatial distribution of genetic and phenotypic variation in Q. oleoides. a) Four genetic 387 
groups were identified using STRUCTURE (Pritchard 2000) from 123 individuals and b) five phenotypic 388 
groups identified by GENELAND (Guillot et al., 2009) using six spectrally derived leaf traits (leaf mass 389 
area, thickness, solubles, hemicellulose, cellulose, lignin) derived from dried leaf spectra from all 390 
individuals. The percentage assignment to genetic or phenotypic groups is represented at both the 391 
individual tree level (upper bar plots) and subpopulation level (pie charts). 392 

 393 

 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
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 418 

  419 

Fig. S5. PST comparisons among species using: a) spectrally predicted traits (LMA: Leaf mass area; THI: thickness; SOL: solubles; HEM: 420 
hemicellulose; CEL: cellulose;  LIG: lignin); b) spectral bands within the visible (VIS), near infrared (NIR) and short-wave infrared (SWIR) region with 421 
high importance (i.e., Variable Importance of Projection (VIP) in discriminating species using wavelet spectra . Matrices represent PST plotted as a function 422 
of c/h2  values of 0.25 (orange), 0.5 (pink)  and 0.75 (blue). The optimal value of c/h2 at which the lower confidence limit of PST is higher than the upper confidence 423 
limit of FST was chosen as the critical value of c/h2 at which PST exceeds FST. The lower this critical value, the more robust inferences of selection are to 424 
environmental effects. Panel a) shows a simplified phylogenetic tree inferred from RADseq (min 20) data for 27 Virentes individuals using RAXML (Cavender-425 
Bares et al., 2015) with the pairwise comparisons among species that were conducted using the six spectrally predicted traits. Colored lines represent sister 426 
relationships, historical introgression between specie pairs, and/or sympatric geographic associations within the Virentes: Red, sympatric sister species; Blue, 427 
sister but not sympatric species; Green, historically introgressing populations; Purple, parapatric species with introgression. Only phylogenetically and 428 
geographically meaningful pairwise comparisons are shown. Panel b) represents plotted VIP values obtained from the PLS-DA classification model using wavelet 429 
spectra: orange vertical lines represent wavelengths that were used as traits to calculate PST pairwise distances. Matrices are divided into VIS, NIR, and SWIR 430 
spectral regions. Contrary to panel a) all pairwise comparisons among species are shown, but name colors represent the same phylogenetic/geographic relations. 431 
GE= Q. geminata, MN= Q. minima, VI= Q. virginiana, SA= Q. sagreana, OL= Q. oleoides, BR= Q. brandegeei, FU= Q. fusiformis.432 
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Table S5. Statistical associations between various plant traits, environmental variables, and spectral 433 
reflectance at specific wavelengths. The results include standard error (Std_Error), significance level 434 
(p_value), coefficient of determination (R²), and adjusted R². Additionally, potential biochemical 435 
compounds linked to each spectral band are provided. 436 

 
Trait 

Environmenta
l 

Variable 
Std_E p R2 Adjusted 

R2 
Potential Associated Trait 

(Concentration/Reflectance) 

 
Traits 

SOL % Bio_18 0.15 0.001 0.58 0.56  

LIG % 
 

Bio_6 0.11 0.04 0.03 0.29  
Bio_18 0.15 0.001 0.64 0.62 

 
 
 
 
 
 
 
 

VIS 

580nm Bio_18 0.00 0.001 0.51 0.47 
Carotenoids, including β-carotene 

(+/-) 
 

688nm Bio_18 0.000 0.003 0.466 0.431 anthocyanins 

 
 

NIR 733nm Bio_18 0.00 0.001 0.44 0.40 

Reflectance linked to leaf structure 
and mesophyll thickness. 

(-/+) 
 

760nm Bio_14 0.00 0.01 0.37 0.33 

potential influence of leaf structural 
traits. 
(-/+) 

 

787nm Bio_8 0.00 0.04 0.25 0.20 

Leaf thickness, Leaf Mass Area 
(LMA), 

(-/+) 
 

 
 

SWIR 
1660nm 

 

Bio_18 0.00 0.02 0.33 0.28 Lignin and cellulose 
(-/+) 

 
 

Wetness index 0.01 0.04 0.25 0.20 

2050nm Bio_8 0.00 0.001 0.47 0.43 

Cellulose, lignin (OH and CH bond 
absorptions) 

(-/+) 
 

 
 
 
 
INDEX 

CCI Bio_18 -0.78 0.14 0.0005 0.68  

Chlorophyll Bio_18 -0.78 0.14 0.0005 0.68  

Chlorophyll Bio_8 -0.46 0.16 0.01 0.36  

ARI1 Bio_18 0.80 0.15 0.00 0.64  

ARI1 Bio_12 0.64 0.19 0.00 0.43  

ARI1 Bio_8 0.54 0.15 0.00 0.45  

437 
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 438 
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  439 

Fig S6. Spectrally predicted traits and selected wavelength relationships under different 440 
environmental conditions. Phylogenetic generalized least squares (PGLS) models account for 441 
relatedness across species. Coefficients for all models are given in Supporting Information Table 442 
S5443 
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Table S6. Phylogenetic signal calculated using Blomberg’s K (K), KWN white noise and KBM 444 
Brownian motion estimated for the seven species in Quercus Virentes phylogeny, where 445 
regions with significant signal *(p-value < 0.05) ns, no significative 446 

Region wavelength/trait K p_value 
K p (K > KWN) 

VIS 
 

400 0.67 ** ** 
418 1.11 ** ** 
427 0.52 ** ** 
445 0.64 ** ** 
517 0.59 ** ** 
580 0.59 ** ** 
589 0.60 ** ** 
616 0.90 ** ** 
643 0.39 ns ** 
679 0.51 ** ** 
688 0.49 ** ** 

NIR 
 

706 0.83 ** ** 
733 0.58 ** ** 
760 0.44 ** ** 
787 0.38 ns ** 
985 0.30 ns ** 

SWIR 
 

1390 0.23 ns ** 
1432 0.21 ns ** 
1435 0.23 ns ** 
1444 0.28 ns ** 
1660 0.34 ns ** 
1876 0.16 ns ** 
1912 0.18 ns ** 
2056 0.26 ns ** 
2137 0.29 ns ** 
2218 0.21 ns ** 
2245 0.16 ns ** 
2290 0.14 ns ** 

Traits 

LMA 0.24 ns ** 
thickness 0.25 ns ** 
solubles 0.69 ** ** 

hemicellulose 1.79 ** ** 
cellulose 0.30 ns ** 
lignin 0.92 ** ** 

 447 
 448 
 449 
 450 
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 451 
Fig. S7. PST vs FST estimates and 95% confidence intervals from quantitative predicted traits 452 
among wild and greenhouse individuals for four species in Quercus section Virentes. Graphs 453 
represented in colored blue circles (wild), and orange squares (greenhouse) mean PST values 454 
plotted as a function of c/h2 = 0.75. GE= Q. geminate, VI= Q. virginiana, OL= Q. oleoides, FU= Q. 455 
fusiformis. Predicted traits (LMA) Leaf mass area, (THI) thickness, (SOL) solubles, (HEM) 456 
hemicellulose, (CEL) cellulose, and (LIG) lignin. 457 
 458 
 459 
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 460 
 461 
Fig. S8 Phylogenetic signal detected in leaf spectra varies across wavelengths across . 462 
Quercus Virentes species. Phylogenetic signal calculated using Blomberg’s K (K) estimated, 463 
where regions with significant signal (P-value < 0.05) dark colors. Not significant values are colored 464 
with dim colors. Blue visible; red NIR; purple SWIR 465 
 466 
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References 468 
 469 

  470 
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Springer 471 

Netherlands. 472 
Brommer, J. E. (2011). Whither Pst? The approximation of Qst by Pst in 473 

evolutionary and conservation biology. Journal of Evolutionary 474 
Biology, 24(6), 1160–1168. 475 

Burnett, A. C., Anderson, J., Davidson, K. J., Ely, K. S., Lamour, J., Li, Q., 476 
Morrison, B. D., Yang, D., Rogers, A., & Serbin, S. P. (2021). A best-477 
practice guide to predicting plant traits from leaf-level hyperspectral 478 
data using partial least squares regression. Journal of Experimental 479 
Botany, 72(18), 6175–6189. 480 

Cavender-Bares, J., González-Rodríguez, A., Eaton, D. A. R., Hipp, A. A. L., 481 
Beulke, A., & Manos, P. S. (2015). Phylogeny and biogeography of 482 
the American live oaks (Quercus subsection Virentes): a genomic and 483 
population genetics approach. Molecular Ecology, 24(14), 3668–484 
3687. 485 

Carrero C, Jerome D, Beckman E, Byrne A, Coombes A, Deng M, González 486 
Rodríguez A, Van Sam H, Khoo E, Nguyen N, Robiansyah I, 487 
Rodríguez Correra H, Sang J, Song Y-G, Strijk J, Sugau J, Sun W, 488 
Valencia-Ávalos S, Westwood M. 2020. The Red List of Oaks 2020. 489 

Cruz-Nicolás, J., Giles-Pérez, G., González-Linares, E., Múgica-Gallart, J., 490 
Lira-Noriega, A., Gernandt, D. S., Eguiarte, L. E., & Jaramillo-Correa, 491 



 

26 
 

J. P. (2019). Contrasting evolutionary processes drive morphological 492 
and genetic differentiation in a subtropical fir (Abies, Pinaceae) 493 
species complex. Botanical Journal of the Linnean Society. 494 
https://doi.org/10.1093/botlinnean/boz077 495 

Denvir, A. & Westwood, M. (2016.) Quercus brandegeei, Encino Arroyo. The 496 
IUCN Red List of Threatened Species 2016: e.T30726A2795363. 497 
https://dx.doi.org/10.2305/IUCN.UK.2016- 3.RLTS. 498 
T30726A2795363.en 499 

Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a 500 
website and program for visualizing STRUCTURE output and 501 
implementing the Evanno method. Conservation Genetics Resources, 502 
4(2), 359–361. 503 

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of 504 
clusters of individuals using the software structure: a simulation study. 505 
Molecular Ecology, 14(8), 2611–2620. 506 

Hipp, A. L., Manos, P. S., Hahn, M., Avishai, M., Bodénès, C., Cavender-507 
Bares, J., Crowl, A. A., Deng, M., Denk, T., Fitz-Gibbon, S., Gailing, 508 
O., González-Elizondo, M. S., González-Rodríguez, A., Grimm, G. 509 
W., Jiang, X.-L., Kremer, A., Lesur, I., McVay, J. D., Plomion, C., … 510 
Valencia-Avalos, S. (2020). Genomic landscape of the global oak 511 
phylogeny. New Phytologist, 226(4), 1198–1212. 512 

Koehler, K., Center, A., & Cavender-Bares, J. (2012). Evidence for a 513 
freezing tolerance–growth rate trade-off in the live oaks (Quercus 514 
series Virentes ) across the tropical–temperate divide. New 515 
Phytologist, 193(3), 730–744. 516 

Li, G., Yang, D., & Sun, S. (2008). Allometric relationships between lamina 517 
area, lamina mass and petiole mass of 93 temperate woody species 518 
vary with leaf habit, leaf form and altitude. Functional Ecology, 22(4), 519 
557–564. https://doi.org/10.1111/j.1365-2435.2008.01407.x 520 

Mevik, B., Wehrens, R. and Liland, K. H. (2020). pls:Partial Least Squares 521 
and Principal Component Regression. R package version 2.7-3. 522 
https://CRAN.Rproject.org/package=pls 523 

Nei, M. (1972). Genetic distance between populations. The American 524 
Naturalist, 106(949), 283–292 525 

Niklas, K. J., Cobb, E. D., & Spatz, H. (2009). Predicting the allometry of leaf 526 
surface area and dry mass. American Journal of Botany, 96(2), 531–527 
536. https://doi.org/10.3732/ajb.0800250 528 

Niklas, K. J., Cobb, E. D., & Spatz, H.-C. (2009). Predicting the allometry of 529 
leaf surface area and dry mass. American Journal of Botany, 96(2), 530 
531–536. 531 

https://doi.org/10.1093/botlinnean/boz077
https://cran.rproject.org/package=pls
https://cran.rproject.org/package=pls
https://cran.rproject.org/package=pls


 

27 
 

Ramírez-Valiente, J. A., & Cavender-Bares, J. (2017). Evolutionary trade-532 
offs between drought resistance mechanisms across a precipitation 533 
gradient in a seasonally dry tropical oak (Quercus oleoides). Tree 534 
Physiology, 37(7), 889–901 535 

  Seeholzer, G. F., & Brumfield, R. T. (2018). Isolation by distance, not 536 
incipient ecological speciation, explains genetic differentiation in an 537 
Andean songbird (Aves: Furnariidae: Cranioleuca antisiensis, Line-538 
cheeked Spinetail) despite near threefold body size change across an 539 
environmental gradient. Molecular Ecology, 27(1), 279–296. 540 
https://doi.org/10.1111/mec.14429 541 

  Shi, P., Liu, M., Ratkowsky, D. A., Gielis, J., Su, J., Yu, X., Wang, P., 542 
Zhang, L., Lin, Z., & Schrader, J. (2019). Leaf area–length allometry 543 
and its implications in leaf shape evolution. Trees, 33(4), 1073–1085. 544 
https://doi.org/10.1007/s00468-019-01843-4 545 

  Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral 546 
genetic diversity in conservation genetics. Proceedings of the 547 
National Academy of Sciences, 118(10). 548 
https://doi.org/10.1073/pnas.2015096118 549 

  Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool 550 
of chemometrics. Chemometrics and Intelligent Laboratory Systems, 551 
58(2), 109–130. 552 

 553 

 554 


