

1 **Improving landscape fire frequency estimates by integrating public land**
2 **fire data and satellite imagery**

3

4 Felicity E. Charles^{1*} 0000-0002-7241-2720

5 April E. Reside¹ 0000-0002-0760-9527

6 Patrick T. Moss² 0000-0003-1546-9242

7 Annabel L. Smith¹ 0000-0002-1201-8713

8

9 ¹School of the Environment, The University of Queensland, Gatton, 4343, QLD, Australia

10 ²School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane

11 City, 4000, QLD, Australia

12 *Correspondence: f.charles@uq.edu.au

13

14 Running headline: Improving landscape fire frequency estimates

15

16 **Keywords:** fire management, fire scar mapping, Landsat, predictive modelling, satellite fire

17 data, Sentinel, species distribution model, remote sensing

18

19 **Abstract**

20

21 **Background**

22 Effective fire management requires accurate knowledge of fire history, often derived from
23 satellite imagery. However, satellites are not well suited to detecting low intensity fires.

24 **Aims**

25 We aimed to improve satellite fire frequency estimates by incorporating mapped fire history
26 data from public land and environmental co-variation.

27 **Methods**

28 Using a generalisable workflow, we applied boosted regression trees, generalised linear, and
29 generalised additive models to predict fire frequency in an eastern Australia case study.

30 Performance of raw and modelled satellite fire frequencies were tested by correlating them
31 with higher quality public land fire mapping.

32 **Key results**

33 Satellite data underestimated fire frequency, especially in infrequently burnt areas (i.e., 1-6
34 fires). Generalised linear and generalise additive models improved the correlation to public
35 land fire data from the baseline (Pearson's $r = 0.331$) to 0.577 and 0.526, respectively.

36 **Conclusions**

37 Generalised linear and generalised additive models improved fire frequency estimates and
38 were most useful at low fire frequencies. Generalised linear models also had some utility for
39 mapping higher fire frequencies.

40 **Implications**

41 Satellite derived fire mapping is widely used in fire science but is likely to underestimate fire
42 activity. Our approach can improve the accuracy of satellite derived fire frequency estimates
43 for fire management and research.

44

45 **Summary**

46

47 Satellite derived fire history data are widely used in fire management and research, but these
48 data often underestimate fire frequency. We present a generalisable application of predictive
49 modelling framework and show that it can improve fire frequency estimates from satellite
50 data, ultimately assisting fire management for conservation and human safety.

51

52 **Introduction**

53

54 Fire has shaped the structure and composition of ecosystems for millennia, with variation in
55 fire regimes driven by global climatic patterns such as El Niño-Southern Oscillation, and by
56 anthropogenic influences such as cultural and prescribed burning (Bird *et al.* 2016;
57 Williamson *et al.* 2016; Moura *et al.* 2019; Fang *et al.* 2021; Kelly *et al.* 2023). However,
58 contemporary fire regimes are changing rapidly due to climate change (Moritz *et al.* 2012; Le
59 Page *et al.* 2017; Harvey *et al.* 2022), land clearing, fire suppression, and inappropriate fire
60 management policies (Rogers *et al.* 2020; Jones *et al.* 2022; Kelly *et al.* 2023; Kreider *et al.*
61 2024; Sayedi *et al.* 2024). In the 21st century, fire regime changes have been marked by
62 multiple large intense wildfires affecting vast areas of Australia, Europe, and North and South
63 America (Castellnou *et al.* 2018; Coen *et al.* 2018; Gustafsson *et al.* 2019; Collins *et al.* 2021;
64 D’Angelo *et al.* 2022; González *et al.* 2022). These ‘megafires’ (i.e., those which burn over
65 10,000 ha, Linley *et al.* 2022) are likely to increase into the future (Khorshidi *et al.* 2020),
66 along with increasing extreme fire weather and longer fire seasons, especially in mid- to
67 high-latitudes (Moritz *et al.* 2012; Flannigan *et al.* 2013; Le Page *et al.* 2017; Dowdy *et al.*
68 2019). In regions where fire suppression is the dominant management strategy, vegetation

69 encroachment can increase wildfire risk (Moura *et al.* 2019; Kelly *et al.* 2023; Sayedi *et al.*
70 2024) and threaten species which rely on fire for reproduction (Corlett 2016; Kelly *et al.*
71 2020; Lavery *et al.* 2021; Bachman *et al.* 2024). Thus, there is an urgent global need to
72 address fire regime changes and manage fire at large scales.

73

74 Understanding ecosystem function relies on knowledge of historical fire regimes which occur
75 on evolutionary timescales (i.e., centuries to millions of years, Moss *et al.* 2013; Mariani *et*
76 *al.* 2017; Mackenzie *et al.* 2020), or ecological timescales (i.e., decadal scales, Smith *et al.*
77 2016; Le Breton *et al.* 2023; Plumanns-Pouton *et al.* 2024). Fire history on ecological
78 timescales is related to the generation times of plant and animal species and is especially
79 important for understanding the impacts of rapid global change (Charles *et al.* 2025a). Prior
80 to the availability of satellite imagery in the 1970s, multi-decadal fire history data were
81 mainly derived from aerial imagery, on-ground surveys, tree-ring fire scar analyses,
82 dendroecological techniques with radiocarbon analyses, and fire sensitive species age
83 reconstruction where establishment corresponded to the last major fire (Mouillot *et al.* 2005;
84 Conedera *et al.* 2009; Wood *et al.* 2010; Greene *et al.* 2017; Fedrigo *et al.* 2019; Queensland
85 Parks and Wildlife Service 2023). These multi-decadal fire datasets can be limited in
86 spatiotemporal coverages (Conedera *et al.* 2009; Duane *et al.* 2015) and disrupted by
87 jurisdictional boundaries, producing discontinuous datasets (Liu *et al.* 2019b; Phelps *et al.*
88 2021; Welch 2021; Ryu *et al.* 2023). Gathering and processing fire scar data manually is also
89 time intensive which limits its geographic breadth and hence, applicability. Furthermore,
90 aerial or ground-based fire data are often incomplete due to changes in mapping system,
91 government policies (e.g., reporting guidelines), or spatial scales (e.g., omission of small
92 scale fires less than 1 ha or mapping only completed for public land) (Pausas *et al.* 2012; San-
93 Miguel-Ayanz *et al.* 2012; Welch 2021; Queensland Parks and Wildlife Service 2023; Ryu *et*

94 *al.* 2023; Duane *et al.* 2025). Improved workflows are needed to ensure that future fire
95 history data collection is standardised and that existing data can be used to reconstruct fire
96 histories, while accounting for inaccuracy or incompleteness.

97

98 Satellite derived imagery has circumvented some of the issues with aerial or ground-based
99 data and is frequently used to reconstruct fire histories (D’Este *et al.* 2020; Elia *et al.* 2020;
100 Orero *et al.* 2024; Ramsey *et al.* 2024) and map fire severity (Redmond *et al.* 2002; Collins *et*
101 *al.* 2018; Collins *et al.* 2020; Gibson *et al.* 2020; Saulino *et al.* 2020). Several satellite image-
102 derived fire maps are available at different resolutions and spatial coverages, such as the
103 500 m Global Fire Atlas, global 250 m Moderate Resolution Imaging Spectroradiometer
104 (MODIS) burned area product, and Landsat or Sentinel-2 products at finer resolutions (e.g.,
105 30 and 10 m, respectively) (Maier *et al.* 2012; Andela *et al.* 2019; Ruscalleda-Alvarez *et al.*
106 2021). However, satellite derived fire products also have drawbacks. They can misclassify
107 burned areas (van den Berg 2021), and satellite imagery used to derive burn scars often have
108 resolutions too coarse to capture small fires at scales relevant to management (Ruscalleda-
109 Alvarez *et al.* 2021). Another source of inaccuracy in satellite derived fire products is their
110 inability to capture low intensity understorey fires (Randerson *et al.* 2012; Khairoun *et al.*
111 2024) meaning that fire frequency is often underestimated (Collett 2021; van den Berg 2021).
112 Low intensity understorey fires can be detected by combining satellite data with high
113 resolution airborne digital sensor imagery (e.g., McCarthy *et al.* 2017; Woodgate *et al.* 2025)
114 but this method is resource intensive, in terms of time and expert personnel, and is likely
115 prohibitive for mapping over large spatiotemporal scales. As a result, fire histories on decadal
116 timeframes are often unknown or inaccurate (Galizia *et al.* 2021; Ruscalleda-Alvarez *et al.*
117 2021; Khairoun *et al.* 2024). Thus, there is a strong need for approaches which can improve
118 estimates of multi-decadal fire history at landscape scales.

119

120 Here, we aimed to develop a workflow to predict fire frequency (i.e., a cumulative count of
121 the number of fires in a period of time) outside of public estates by improving the accuracy of
122 landscape-scale fire frequency estimates from satellite data. We used a novel application of
123 species distribution modelling workflows to improve estimates of satellite derived fire
124 histories by integrating fire history data from public land, which is manually verified and,
125 thus, more accurate, with environmental co-variation. Environmental factors including
126 climate, terrain, and vegetation productivity drive fire cycles and govern fuel availability and
127 flammability (Cary *et al.* 2006; Bradstock 2010; Duane *et al.* 2015). Thus, our approach
128 treated fire history data in the same way as species distribution modelling workflows treat
129 species whose presence depends on a specific niche (Wisz *et al.* 2013; He *et al.* 2019). Three
130 different model types were evaluated by examining correlations between public land fire data
131 and modelled fire history estimates. We expected modelled estimates to have stronger
132 correlations with public land fire data compared unmodelled values from the satellite
133 imagery. We begin by outlining a general workflow which can be applied to any landscape
134 where fire history data is available. Following this, we present a case study of our approach in
135 southeast Queensland, Australia. Our data, code, and modelling workflow are publicly
136 available and can be customised for applications in other regions, enabling downstream
137 analysis of fire histories across landscapes.

138

139 **Methods**

140

141 *Overview of workflow to improve fire frequency estimates*

142

143 The first stage of the workflow involves obtaining historical fire data and gridded continuous
144 environmental data (Fig. 1a). Environmental data can include variables most likely to
145 influence fire occurrences in a given landscape, such as climate (e.g., temperature and
146 precipitation), terrain (e.g., elevation and slope), and site productivity (e.g., percent soil clay,
147 foliage projective cover, vegetation aggregation) (Cary *et al.* 2006; Bradstock 2010; Duane *et*
148 *al.* 2015). Data are then cropped to the study region and reformatted to align the spatial
149 resolution and coordinate reference systems across layers (Fig. 1a). In the second stage,
150 available historical fire data is reformatted such that the fire metric of interest (e.g., fire
151 frequency, fire return interval, time since last fire, or fire seasonality) can be calculated using
152 standard GIS functions for the relevant time period (Fig. 1b). Here we focus on fire frequency
153 (i.e., a cumulative count of the number of fires in a period of time). Modelling the
154 relationship between fire history data derived from satellite imagery and fire data mapped on
155 public land allows projections of fire history to areas that are unmapped (i.e., unburnt areas)
156 or inaccurately mapped (i.e., outside the region where fire history information has been
157 recorded).

158

159 Presence points are created from burned grid cells and depending on the completeness of the
160 fire data, absences can be created in a number of ways. For fire history records where unburnt
161 areas are accurately mapped (i.e., true absences), these can be directly used as absences. For
162 incomplete fire history records, two methods can be used to create ‘absence’ points.
163 Pseudoabsence points can be created outside of a pre-defined buffer around each presence

164 point (see Barbet-Massin *et al.* 2012; Broussin *et al.* 2024). Alternatively, a large number of
165 background points can be randomly created across the study region. We recommend the
166 second option (i.e., background points) as pseudoabsences may exclude areas unlikely to
167 burn due to their close proximity to presence points (Broussin *et al.* 2024), potentially leading
168 to some over-estimation of low fire frequencies. A presence-absence/background dataset can
169 then be produced by extracting fire and environmental data for the presence and
170 absence/background points.

171

172 Prior to modelling (the third stage of the workflow), backwards stepwise elimination and
173 variable correlation tests can be used to exclude non-informative and/or highly correlated
174 variables (see Valavi *et al.* 2022). The extent of spatial autocorrelation should be calculated to
175 produce spatially explicit presence-background datasets to be used for model training (e.g.,
176 80% of the data) and model evaluation (e.g., 20% of the data for evaluating Area Under the
177 Receiver Operating Characteristic Curve, AUC_{ROC}; and Precision-Recall Gain curves,
178 AUC_{PRG}). We recommend investigating multiple modelling methods to account for differing
179 strengths and weaknesses among models (Li *et al.* 2013; Elith *et al.* 2020; Valavi *et al.* 2022;
180 Harris *et al.* 2024). If using boosted regression trees (BRT), hyperparameter tuning should be
181 performed to determine optimal settings for tree complexity and learning rate (see Elith *et al.*
182 2008). Spatially explicit training data can then be used to run BRT, generalised linear (GLM),
183 and generalised additive (GAM) models (Fig. 1c). Generalised additive model tuning can be
184 performed after modelling, and models should be re-run if model fit requires improvement.

185

186 In the fourth stage, spatial fire frequency predictions can be produced from each model using
187 the environmental predictors (Fig. 1d). In the fifth and final stage, models are evaluated using
188 the spatially explicit model evaluation dataset. Predictive performance can be evaluated by

189 comparing spatial prediction maps and by using standard evaluation procedures for species
190 distribution modelling workflows (e.g., AUC_{ROC} and AUC_{PRC}; Valavi *et al.* 2022) (Fig. 1e).
191 Further model evaluation can be performed by comparing observed and predicted fire
192 frequency correlations, fire frequency histograms, and fire regime management
193 recommendations for specific vegetation communities.

194

195 *Case study region*

196

197 Our case study focused on the southeast Queensland Interim Biogeographic Regionalisation
198 of Australia (IBRA) bioregion, Australia, limited to the border with New South Wales (Fig.
199 2). The region has a subtropical climate with mean annual rainfall ranging from 600 mm to
200 2000 mm (Australian Bureau of Meteorology 2024a). Mean maximum temperatures range
201 throughout the region from 21 °C to 33 °C in summer and 18 °C to 24 °C in winter
202 (Australian Bureau of Meteorology 2024b). Coastal areas within the region generally
203 experience more moderate temperatures and higher rainfall than inland areas. The IBRA is
204 dominated by dry sclerophyll forest (Department of Climate Change 2024), which
205 accumulates fuel load quickly (Cochrane 1968; Gilroy *et al.* 2009; Gould *et al.* 2011).

206

207 Ecologically informed fire regimes recommendations suggest variable high to low fire
208 frequency regimes (i.e., mosaics of fire return intervals from 4 to 20 years to create
209 spatiotemporal mosaics of fire, Neldner *et al.* 2019; Queensland Herbarium 2024). In the
210 subtropics, many dry sclerophyll systems have grassy understorey and the recommended fire
211 regimes are for low intensity, cool season burns that scorch the ground layer while avoiding
212 burning the trees (Neldner *et al.* 2019). This type of burning can maintain ground layer plant
213 diversity (Dooley *et al.* 2023) while also minimising weed invasion (Debuse *et al.* 2014).

214 Bushfires in the region generally occur in late winter and spring (Sullivan *et al.* 2012).
215 Prescribed burning on public land is conducted across large areas (e.g., ~ 600 000 to 1 million
216 ha, Department of Environment 2020a; Department of Environment and Science 2021, 2023)
217 during winter (Elliott *et al.* 2020; Department of Environment and Science 2022b) (Fig. 2).
218 On private land, properties are burned for fire hazard reduction, woody vegetation control,
219 ecosystem restoration, and weed control (Toledo *et al.* 2012; Edwards *et al.* 2016;
220 McCormack *et al.* 2024). However, private land can be more prone to frequent fire due to
221 management attitudes and objectives which do not necessarily align with ecosystem
222 conservation, reduced management abilities, and increased ignitions resulting from the
223 wildland-urban interface (Aslan *et al.* 2024). Cultural burning also takes place on public and
224 private land (Williamson 2021; Greenwood *et al.* 2022; Williamson 2022).

225
226 Between September 2019 and February 2020, wildfires affected 3.1 million hectares of public
227 land managed by Queensland Parks and Wildlife Service and nearby private land, in an event
228 that was unprecedented in spatial scale and intensity (Legge *et al.* 2022). These wildfires
229 occurred following a multi-year drought during extreme fire weather conditions (Nolan *et al.*
230 2020; Udy *et al.* 2024), resulting in extensive areas burnt at high severity with canopy scorch
231 or consumption (Dickman 2021; Nolan *et al.* 2021). These fires occurred in drastically
232 different to conditions to prescribed burns (Morgan *et al.* 2020) and resulted in a suite of
233 negative ecological impacts (Marsh *et al.* 2022). In 2021-2022, prescribed burning was
234 conducted across a smaller areas (358 563 ha) as a result of the wildfire (Department of
235 Environment and Science 2022a).

236

237 *Modelling methods*

238

239 We conducted all analyses in R version 4.5.1 (R Core Team 2018). Modelling methods
240 included machine-learning and traditional regression models commonly used in species
241 distribution and fire predictive modelling (Bistinas *et al.* 2014; Li *et al.* 2022; Valavi *et al.*
242 2022). Spatial data were manipulated (e.g., cropped, reprojected, aggregated, disaggregated)
243 using the `terra` R package version 1.8-60 (Hijmans 2025), unless otherwise specified. All
244 spatial data layers (Table 1) were projected to a standard coordinate reference system (EPSG
245 3577: GDA94/Australian Albers); spatial extent (i.e., southeast Queensland IBRA, Fig. 2);
246 and resolution of 30 m. We masked spatial data to exclude water bodies, limiting predictions
247 to land.

248

249 *Historical fire data pre-processing*

250

251 Satellite fire history data were obtained with burn scars identified from Landsat for 1987 –
252 2016 at 30 m resolution but data for 2017 – 2023 were obtained from Sentinel 2 at 10 m
253 resolution (Collett 2021; van den Berg 2021) (Table 1). Each of these datasets are produced
254 as yearly composites with values denoting month of burn. As such, the data do not indicate
255 cells burnt more than once in a month (which is unlikely, although possible), nor do they
256 indicate if the fire was a wildfire or a prescribed burn. For Landsat, fire scars are
257 automatically detected from significant changes in reflectance, relative to the previous
258 reflectance value, which arise from the presence of charcoal or ash, removal of foliage, or
259 scorch (Collett 2021). For Sentinel, fire scars are automatically detected from imagery using
260 differenced bare soil fraction relative to the previous fractional cover values (van den Berg
261 2021). Satellite fire scar values were reclassified such that month values of 1-12 were

262 assigned 1s and no data values (i.e., unburnt and no data areas – water or masked agricultural
263 crops) were assigned 0s. Fire frequency was then calculated as the cumulative count of cells
264 assigned 1 for Landsat and Sentinel data separately. To avoid issues with downscaling fire
265 history data to finer resolutions (e.g., changes in minimum values) (Atkinson *et al.* 2000;
266 Ekström *et al.* 2015; Park *et al.* 2019), Sentinel 2 data was scaled up through cell value
267 averaging during aggregation to 30 m resolution after pre-processing. Landsat derived fire
268 frequencies from 1987 – 2016 and Sentinel 2 derived fire frequencies from 2017 – 2023 were
269 then combined into one dataset to provide fire frequencies over 1987 to 2023.

270

271 Public land fire data were obtained from Queensland Parks and Wildlife Service (Table 1)
272 (Queensland Parks and Wildlife Service 2023). These data consisted of spatial maps of
273 wildfire and prescribed burn scar perimeters in public estates (e.g., national parks and state
274 forests) between 1930 and 2024 (Queensland Parks and Wildlife Service 2023). Public land
275 fire data was mapped through field observations and Global Position System (GPS) capture;
276 digitations from paper-based records and aerial imagery; and fire scar analysis of satellite
277 imagery. Consequently, due to this post hoc mapping fire history records prior to the 2000s
278 were incomplete (Elliott *et al.* 2020; Queensland Parks and Wildlife Service 2023). To address
279 this incompleteness while reducing major losses of temporal coverage, we subset the public
280 land fire data to match the temporal coverage of the satellite data (i.e., 1987-2023). These
281 data were then converted to raster format with 5 m resolution, assigning cell values as the
282 count of overlapping polygons using `terra` (Hijmans 2025). The final public land fire
283 frequency dataset was then aggregated to a 30 m resolution using the `gdalUtilities` R
284 package version 1.2.5 (O'Brien 2023).

285

286 *Gridded environmental and climate data pre-processing*

287

288 To represent environmental variation which influences fire probability, we used continuous
289 gridded spatial data on the following environmental variables (Table 1): terrain (elevation,
290 slope, aspect, and topographic position index); site productivity (topographic wetness index,
291 foliage projective cover, soil percent clay, and broad vegetation group); and climate
292 (temperature seasonality and precipitation seasonality). Terrain attributes were expected to
293 influence fire probability and fire behaviour patterns through their effect on vegetation
294 structure, productivity, and solar radiation exposure (e.g., with variation in aspect) (Del-Toro-
295 Guerrero *et al.* 2019; Cheng *et al.* 2023). Site productivity attributes were expected to
296 influence fire probability through their effects on fuel accumulation and fuel moisture (Cary
297 *et al.* 2006; Bradstock 2010; Duane *et al.* 2015). Climatic variables were expected to
298 influence fire weather conditions which drives fire probability (Cary *et al.* 2006).
299 Precipitation seasonality was also expected to influence vegetation productivity as it drives
300 the regularity of fuel moisture and flammability (Bradstock 2010) while capturing variation
301 in wet and dry seasons (Wang *et al.* 2024), highly relevant to our subtropical study region.
302 These environmental predictors were processed to standardise resolution, projection, and
303 spatial extent using `gdalUtilities` in the same way as the fire data (see Table 1). The
304 SRTM-derived 1 Second Digital Elevation Model Version 1.0 was used to derive aspect and
305 degrees of slope using `terra` (Geoscience Australia 2011) (Table 1). Topographic position
306 index was derived from the Digital Elevation Model using the `landform` R package version
307 0.2 (Alberti 2023).
308
309 Consistent with other predictive modelling studies which used long-term average climate data
310 (e.g., Syphard *et al.* 2008; D’Este *et al.* 2020), we formatted climate and vegetation datasets

such that they represented averages across their relevant time periods. Climate seasonality measures were derived from daily datasets for precipitation, minimum temperature and maximum temperature (Jeffrey *et al.* 2001; SILO 2025c, 2025b, 2025a). For precipitation, we calculated average monthly precipitation per year, which was used for subsequent seasonality calculations (SILO 2025c). For temperature, we calculated average daily temperature from daily minimum and maximum measurements, which were then averaged for each month per year and used for subsequent seasonality calculations (SILO 2025b, 2025a). Seasonality indices (i.e., precipitation seasonality and temperature seasonality) were then calculated as the standard deviation of the average monthly measurement $\times 100$ per year (Fick *et al.* 2017). Final precipitation and temperature seasonality values were then produced as the long-term average of these seasonality measures across all years for the study region. Foliage projective cover (FPC) data measures the amount of woody mid- and over-story vegetation (Department of Environment 2024b) and is provided as 0-100% foliage cover. The 2014 data required reclassification as values of 1-100% were denoted as 100-200, and 0% was denoted by values above 200 or below 100. We then calculated average FPC from the reclassified 2012-2014 and 2018-2023 datasets. For broad vegetation group (BVG) data, the numerical code allocated to each group was used for modelling and this data was converted to raster using `terra` (Hijmans 2025). Soil percent clay data were available for each stratum in our study region (e.g., 0 to 0.05 m, 0.05 to 0.1 m, etc) and these were processed to produce the average soil percent clay from 0 to 2 m.

For each environmental predictor, we replaced cells with no data (i.e., NA) with single imputation (Lopucki *et al.* 2022), such that NAs were replaced by an average from the surrounding cells using `terra`. Foliage projective cover had large areas mapped as NA due to mapping only mid- and over-story vegetation of >0.5 ha (Department of Environment

336 2024b). However, single imputation was still considered appropriate for FPC as
337 underestimation was already present due to a lack of understorey data (Department of
338 Environment 2024b). For BVG data, no interpolation was performed.

339

340 *Presence-background points dataset*

341

342 Our datasets suffered from a lack of definitively identifiable unburnt areas from 1987-2023
343 (Elliott *et al.* 2020; Queensland Parks and Wildlife Service 2023). As our aim was to improve
344 estimates of fire frequency for areas outside of public land, we used public land fire data to
345 produce background points in place of absences (see Liu *et al.* 2019a; Grimmett *et al.* 2020;
346 Valavi *et al.* 2022). As such, we restricted model training and testing to areas where more
347 accurate fire history data was available. Prior to producing presence/absence points, we set a
348 random seed for reproducibility. Presence points were created as a random sample of 10,000
349 points in areas of public land fire frequency ≥ 1 (i.e., presence points must have burnt at least
350 once) using `terra` (Hijmans 2025). For presence points, values were assigned as the fire
351 frequency value from the cell (i.e., presences represent the fire frequency of the cell).

352 Background points were then created as a random sample of 80,000 points across public land
353 in the study region, irrespective of the location of presence points. Therefore, an ‘absence’
354 could occur in the same location as a presence, consistent with recent statistical approaches
355 (Liu *et al.* 2019a; Valavi *et al.* 2022; Whitford *et al.* 2024). For satellite fire frequency and
356 environmental predictors, we used a custom function (see Golding *et al.* 2016) which
357 resampled NA values primarily occurring at the edges of landmasses, by replacing the NA
358 with the nearest non-NA value. For the public land fire frequency data, NAs were assigned 0s
359 as the data were restricted to public estates and some of these areas had no fire records for the
360 time period. Data for each environmental predictor were extracted for all presence and

361 background points, and these datasets were then combined into a single dataset (hereafter
362 ‘presence-background data’).

363

364 *Model selection*

365

366 Variable selection

367

368 Prior to modelling, we used two methods to examine correlations among predictor variables
369 to eliminate the risk of including highly correlated or non-informative variables. Firstly, we
370 used Spearman’s rank correlation coefficient (ρ) to test for highly correlated variables (e.g.,
371 Spearman’s rank correlation coefficient, $\rho \geq 0.8$), Duane *et al.* 2015; Valavi *et al.* 2022) using
372 the `ggstatsplot` R package version 0.13.3 (Patil 2021). Secondly, to eliminate non-
373 informative variables we fit a global linear model and ran Akaike Information Criterion
374 (AIC) backward stepwise elimination (e.g., Syphard *et al.* 2008; Elia *et al.* 2020) using the
375 `MASS` R package version 7.3-65 (Venables *et al.* 2002). No variables were above the
376 correlation threshold or uninformative, so all were retained.

377

378 Spatial blocking and spatial autocorrelation

379

380 Predictive modelling requires independent training and evaluation data (Hastie *et al.* 2009)
381 which, for predicting to new areas, should also be spatially blocked (see Roberts *et al.* 2017).
382 This spatial blocking reduces the propensity for overfitting due to spatial dependencies
383 between biological processes, and biasing of estimates due to spatial autocorrelation (Roberts
384 *et al.* 2017; Hao *et al.* 2020). To determine the distance over which spatial autocorrelation
385 occurred, we fit an initial variogram using the `blockCV` R package version 3.2-0 (Valavi *et*

386 *al.* 2019) to inform parameter settings (e.g., psill, model, range, and nugget). Subsequent
387 variograms were fit using the `gstat` R package version 2.1-4 (Pebesma 2004; Gräler *et al.*
388 2016). Variograms were fit iteratively with parameters adjusted until the final outputs were
389 the same as those used for fitting the current variogram. The size of blocks for spatially
390 explicit data was determined by the final range value returned by the variogram. Presence-
391 background data were then split into spatially explicit blocks of 29109 m in size, randomly
392 allocating points to five data partitions in a checkerboard pattern with an 80% to 20% training
393 to evaluation split. The allocation of data to these five partitions was performed such that the
394 number of points for a particular fire frequency was balanced across partitions (e.g., for a fire
395 frequency of 2, each of the five training partitions had *ca.* 8000 points while each of the five
396 evaluation partitions had *ca.* 2000 points).

397

398 *Predictive modelling*

399

400 We used three different modelling approaches to estimate landscape-scale fire frequency:
401 Boosted Regression Trees (BRT), Generalised Linear Models (GLM), and Generalised
402 Additive Models (GAM). Each of these models differ in their technical and conceptual
403 approach with BRT being less easily interrogated but used commonly in species distribution
404 modelling (Soykan *et al.* 2014; Elith *et al.* 2020) and fire applications (Sachdeva *et al.* 2018;
405 Kalantar *et al.* 2020). Generalised linear models and GAMs use a traditional statistical
406 modelling approach and often perform well in modelling species distributions (e.g., Meynard
407 *et al.* 2007; Murase *et al.* 2009; Valavi *et al.* 2022). Our goal was to compare the three model
408 types to determine which method improved estimates of satellite fire frequency when
409 compared to the more accurately mapped public fire data. In all models, the response variable
410 was satellite fire frequency derived from Landsat and Sentinel-2. All models were fit with a

411 Poisson distribution; log link function, appropriate for count data; and a random seed set prior
412 to modelling, for reproducibility.

413

414 The ratio of presence to background points in our data was small (1:8), resulting in zero-
415 inflation. Thus, following Valavi *et al.* (2022), we compared three weighting approaches for
416 BRT modelling to balance the contribution of background points to model fitting: (1) no
417 weighting; (2) down-weighting backgrounds points (the total summed weight of background
418 points equalled the total weight of presences); and (3) infinitely weighted logistic regression
419 (background points with a very large weight, hereafter ‘Infinite BRT’). Based on BRT model
420 performance, we then selected either (2) down-weighting or (3) infinite weighting for GLM
421 and GAM model fitting.

422

423 Boosted regression tree modelling

424

425 Boosted regression trees hyperparameters were optimised prior to modelling by creating a
426 data frame with all combinations of: number of trees (500, 600, ..., 10000); tree complexity
427 (1, 2, ..., 8); number of minimum observations in node (50, 100, or 200); and learning rate
428 (0.1, 0.05, ..., 0.0001) (see Elith *et al.* 2008). Using the training subset of presence-
429 background data a BRT model was then trained in the `caret` R package version 7.0-1 (Kuhn
430 2008) with a 10-partition cross-validation method and grid search pattern. The optimised tree
431 complexity of 8 and learning rate of 0.1 were used in subsequent modelling. Each BRT model
432 was run using the `dismo` R package version 1.3-16 with these parameter settings (Hijmans *et*
433 *al.* 2024). The relative influence of each environmental predictor on the model was calculated
434 internally by BRT and was extracted from the model for comparison between models.

435

436 Generalised linear and generalised additive modelling

437

438 Generalised linear models and GAMs were used with background point down-weighting
439 applied in the same manner as for BRT. Generalised linear models were run in base R (R
440 Core Team 2023) and GAMs in the `mgcv` R package version 1.9-3 (Wood 2004, 2011, 2017).

441 Generalised additive models fit non-linear relationships by summing smooth functions of
442 each variable, applying marginal basis functions, and controlling the basis dimensions of each
443 variable (Wood 2004, 2011). We used tensor product smooth functions ('te') which apply
444 separate penalties to each variable making them useful for variables in different units (Wood
445 2006, 2017). We also specified cyclic cubic regression spline ('cc') marginal basis functions
446 for climatic variables to stop the smoother shrinking to zero and random effect ('re') marginal
447 basis functions for BVG to account for the categorical nature of the data (Wood 2017).

448 Generalised additive model smoothness was further controlled by specifying the basis
449 dimension ('k') to determine knot spacing (i.e., the amount of 'wigginess' in the response)
450 (Wood 2017). We adjusted k for each variable separately until k -index values and expected
451 degrees of freedom were not close together and diagnostic plots showed reasonable fit. The
452 relative influence of each environmental predictor on GLM and GAM models was calculated
453 using `glmm.hp` version 0.1-8 and `gam.hp` version 0.0-3 R packages (Lai *et al.* 2022; Lai *et*
454 *al.* 2024). These functions calculate individual contributions of each predictor towards
455 marginal R^2 (Lai *et al.* 2022; Lai *et al.* 2024), and we extracted the normalised relative
456 contribution for each model which was comparable to BRT relative influence calculations.

457

458 Predicting fire frequency and evaluating model performance

459

460 Spatial predictions of fire frequency were produced from each model using the environmental
461 predictors in `terra` (Hijmans 2025). Predictions were extracted for presence and
462 background points to evaluate model performance using commonly used species distribution
463 modelling metrics in the `precrec` R package version 0.14.5 (Saito *et al.* 2016): AUC_{ROC}
464 and AUC_{PRG} . Additional statistics were calculated including mean squared error; average
465 deviance of observed and predicted values using a Poisson distribution through `dismo`
466 (Hijmans *et al.* 2024); and Pearson's coefficient of determination through in the `stats` R
467 package (R Core Team 2023).

468

469 Model performance was further validated by examining the correlation between public fire
470 frequency data and modelled fire frequency at presence points. We compared these to the
471 correlation between public land fire frequency and unmodelled satellite fire frequency
472 ('observed'). Where the correlation coefficient of the modelled data was greater than that of
473 the observed value ($r = 0.331$), we considered that model to have improved estimates of fire
474 frequency. We provided AUC values for their familiarity and comparison to other species
475 distribution modelling studies, evaluating AUC following Araújo *et al.* (2005). However,
476 these statistics may not be reliable, especially for presence-background/pseudoabsence
477 models (see, Lobo *et al.* 2008; Jiménez *et al.* 2020). Thus, we also used histograms and maps
478 displaying the density distribution of fire frequencies to visually compare observed and
479 modelled fire frequencies.

480

481 Finally, we compared fire frequencies from public data, unmodelled satellite data, and
482 modelled predictions for BVG aggregations. Broad vegetation aggregations followed those

483 recognised in southeast Queensland's fire regime group classification system (Department of
484 the Environment 2012; Queensland Herbarium 2024), based on Queensland's BVG (Neldner
485 *et al.* 2019). These can be grouped broadly as fire-prone vegetation: open forests and
486 woodlands; *Melaleuca* communities; heath communities; grasslands; and coastal fringing
487 forests and headlands, and fire-sensitive vegetation: rainforests, dry vine forests and brigalow
488 communities; wet tall open forests; mangroves and saltmarsh; and riparian, foredune, coral
489 cay island and beach ridge communities. For each aggregation, 1,000 random points were
490 produced and fire frequency information from public land, modelled and unmodelled satellite
491 fire frequency data were extracted. Using the ecologically informed fire regime management
492 guidelines (Department of the Environment 2012; Queensland Herbarium 2024), we
493 calculated the minimum and maximum fire frequency recommendation over a 36-year period.
494 This was then used to determine the ecologically grounded validity of our fire frequency
495 estimates, classifying whether fire frequencies were within, higher, or lower than
496 recommended ranges for each fire frequency dataset.

497

498 **Results**

499

500 Our results showed that the accuracy of satellite fire frequency estimates can be improved by
501 modelling its relationship with public land fire and environmental data; with correlations
502 ranging from -0.084 to 0.576 (Table 2). From 1987-2023, fire frequency for unmodelled
503 satellite data ranged from 0 to 29 fires, while on public land it ranged from 0 to 12 fires.
504 Across model types, the maximum predicted fire frequency varied: GLM = 29; GAM = 40;
505 down-weighted BRT = 130; unweighted BRT = 115; and Infinite BRT = 9. Over-estimation
506 of fire frequencies >30 fires was limited to less than 1% of the landscape. All models showed
507 similar performance in terms of AUC_{ROC} and AUC_{PRG} (AUC_{ROC} = 0.707 to 0.776; AUC_{PRG} =

508 0.705 to 0.796), but GLM and GAM estimates resulted in the largest increases in correlation
509 relative to the observed values ($r = 0.577$ and 0.523, respectively, Table 2). The down-
510 weighted and unweighted BRT only weakly increased correlations compared to the observed
511 value ($r = 0.437$ and 0.375, respectively, Table 2). The Infinite BRT had the lowest
512 correlation ($r = -0.084$; Table 2).

513

514 The relative contribution of environmental variables to estimates of fire frequency varied
515 among model types, with the best predictor being foliage projective cover for all models (Fig.
516 3). Public land fire frequency was the second-best predictor for down-weighted and third best
517 predictor for unweighted BRT, but did not contribute to Infinite BRT modelling (Fig. 3). For
518 the generalised linear model, and to a lesser extent the generalised additive model, foliage
519 projective cover and public land fire frequency were the main contributors, capturing almost
520 all variability.

521

522 Compared with public land fire data, observed estimates from satellite data underestimated
523 areas that burned infrequently (i.e., 1-6 fires) but estimated more areas burnt to have burned
524 frequently (≥ 7 fires) than public land fire data (Fig. 4a). Predictions from the GLM resulted
525 in a large decrease in areas classified as unburnt which substantially improved classification
526 of areas burnt 1-2 times (Fig. 4b). Predictions from the GAM also significantly reduced areas
527 classified as unburnt, but not to the same extent as the GLM (Fig. 4b, c). The GLM and GAM
528 both underestimated fire frequencies >2 but the GLM was more likely to capture higher fire
529 frequencies (Fig 4b, c). Predictions from down-weighted and unweighted BRT were similar
530 to the GLM and GAM, generally underestimating most common fire frequencies (i.e., 1-5
531 fires) but did not reduce areas classified as unburnt to the same extent (Fig. 4d-f). The Infinite
532 BRT resulted in the most severe underprediction (Fig. 4f). Predictions from all models

533 generally improved estimates of landscape-scale fire frequency with more areas mapped as
534 having burnt at least once (Fig. 5). However, the GLM was slightly better at representing the
535 spatial extent of higher fire frequencies than other models (Fig. 5c-g). Predictions from BRT
536 resulted in larger areas remaining as unburnt, including areas mapped burnt for public land
537 fire data (e.g., southeast Queensland's offshore islands) (Fig. 5 b, e-g).

538

539 The distribution of fire frequencies in vegetation aggregations was highly variable (Fig. 6).
540 For fire-prone sclerophyllous vegetation (Fig. 6a-e), most cells were predicted to have a fire
541 frequency that was within or lower than ecological recommendations. Open forests and
542 woodlands were within or lower than recommendations, with GLM and GAM predicting
543 most cells to have burnt once or twice (Fig. 6a). Less than 1% of cells for open forests and
544 woodlands were burnt higher than recommended, and this was not well captured by GLM or
545 GAM predictions (Fig. 6a). For *Melaleuca* and heath communities, the GLM better captured
546 the range of fire frequencies than the GAM, and most cells were predicted to have burnt at
547 frequencies lower than recommended (Fig. 6b, c). For *Melaleuca* and heath communities that
548 were burnt more frequently than recommended, the GLM better captured these fire
549 frequencies than the GAM (Fig. 6b, c). For grasslands, the GLM predicted most cells to have
550 fire frequencies higher than ecologically recommended, but these were limited to less than
551 1% of cells (Fig. 6d). The GLM best capture the prevalence of cells burnt below
552 recommendations for grasslands and the range of fire frequencies for cells burnt within
553 recommendations (Fig. 6d). For coastal forests and headlands, most cells were predicted to
554 have burnt less frequently than recommended, and this was similar to the observed data (Fig.
555 6e). For these communities, the GLM best captured cells burnt within and lower than
556 recommendations and the maximum fire frequency for cells burnt higher than recommended
557 (Fig. 6e).

558

559 For fire-sensitive vegetation aggregations (Fig. 6f-i), GLM and GAM predictions resulted in
560 a large reduction of cells classified as unburnt by observed fire frequencies, but
561 underestimated cells burnt at higher fire frequencies. For mangroves and saltmarsh vegetation
562 and riparian, foredune and beach ridges vegetation aggregations, most cells were classified to
563 have burnt once or twice, with the GLM better capturing the range of fire frequencies than
564 the GAM (Fig. 6f, h). For rainforests, vine forests and brigalow and wet tall open forest
565 vegetation aggregations, most cells were predicted to have burnt once (Fig. 6 g, i). However,
566 the range of fire frequencies was better captured by the GAM for rainforest and the GLM for
567 wet tall open forests (Fig. 6g, i). Thus, the GLM predictions generally produced more useful
568 estimates of fire frequency in both fire-prone and fire-sensitive vegetation aggregations (Fig.
569 6).

570

571 **Discussion**

572

573 Accurate fire history data are generally unavailable for areas outside of public land, and some
574 regions rely solely on less accurate satellite data to capture fire histories (Galizia *et al.* 2021;
575 Ruscalleda-Alvarez *et al.* 2021; Khairoun *et al.* 2024). Our modelling showed that
576 unmodelled estimates from satellite data underestimated fire frequency compared to public
577 land data, especially in infrequently burnt areas (i.e., 1-6 fires). This is important because
578 satellite fire mapping is widely used in fire science (e.g., Ruscalleda-Alvarez *et al.* 2021; De
579 Luca *et al.* 2022; Miranda *et al.* 2022) and researchers often assume it is accurate. Here, we
580 improved the accuracy of fire frequency estimates from satellite data by modelling its
581 relationship with public land fire and environmental data. The famous aphorism, attributed to
582 George Box: “all models are wrong, but some are useful”, can help interpret the relevance of

583 our models. The GLM and GAM tended to underestimate fire frequency in areas burnt more
584 than twice (i.e., they were ‘wrong’), but they were ‘useful’ in identifying areas likely to have
585 burned once or twice, which had been undetected by satellites. Therefore, our models enable
586 us to more accurately understand landscape scale fire frequency in the past 36 years (i.e.,
587 1987-2023). The GLM and GAM improved estimates of landscape scale fire frequency, with
588 correlation increases of 0.25 and 0.20, respectively. While all models performed similarly, the
589 higher relative contribution of more accurate public land fire frequency data to the GLM and
590 GAM likely improved modelling of relationships between environmental attributes and
591 known fire occurrences. Conversely, the BRTs did not significantly reduce areas mapped as
592 unburnt and had variable predictive capacity across fire frequencies possibly due to the lower
593 relative contribution of public land fire frequency. Thus, the GLM and GAM were more
594 accurate than BRTs and were especially useful at mapping fire in areas otherwise mapped as
595 unburnt by satellite derived data.

596

597 Modelled fire frequencies from the GLM and GAM were generally similar to observed public
598 land data and unmodelled satellite fire frequencies for fire-prone sclerophyllous vegetation
599 aggregations (Neldner *et al.* 2019). In sclerophyllous vegetation, we expect high fire
600 frequencies (i.e., ≥ 5 fires over 36 years) as this vegetation accumulates fuel load quickly
601 (Cochrane 1968; Gilroy *et al.* 2009; Gould *et al.* 2011; Benwell 2024). Re-classification of
602 unburnt areas as burnt once or twice in these aggregations are likely accurate as cells burnt at
603 these fire frequencies were within or lower than ecologically informed fire regime
604 recommendations (Department of Environment and Science 2022b). Thus, the GLM would
605 be an effective model type for predicting fire frequency in sclerophyll vegetation
606 aggregations as it better captures the wider gradient of fire frequencies than the GAM. In
607 grasslands, the GLM predicted high fire frequencies (12 – 20 fires) for some cells which

608 exceeded ecological recommendations, but grasslands typically have high fire frequencies
609 (Archibald *et al.* 2013; Cruz *et al.* 2022; Simpson *et al.* 2022; Yates *et al.* 2023). Furthermore,
610 invasion by high biomass grasses result in increased fire frequencies (Miller *et al.* 2010;
611 Setterfield *et al.* 2013; van Klinken *et al.* 2018; Simpson *et al.* 2022). Although this might
612 have contributed to higher than recommended fire frequencies, more research is needed to
613 confirm this.

614

615 The ecological fire regime recommendations for fire-sensitive vegetation aggregations is ‘do
616 not intentionally burn’, ‘no fire’ or ‘as required’ (Department of Environment and Science
617 2022b). However, the unmodelled satellite and public land data suggest several areas of these
618 vegetation types have burnt at least once over the past 36 years. Our GLM and GAM
619 predictions captured this prevalence of fire-sensitive vegetation to have burnt at least once
620 but also resulted in large reductions of unburnt cells. This reduction was not substantial for
621 mangrove or riparian vegetation when compared to satellite estimates, likely due to low
622 overstorey vegetation which would limit satellite imagery capture of understorey vegetation.
623 For rainforest and wet tall open forest vegetation, the GLM and GAM predicted few cells
624 classified to have burnt more than twice in 36 years, which did not accurately reflect
625 observed public land or unmodelled satellite estimates. However, these vegetation
626 aggregations are not highly flammable and typically burn infrequently, as little as once in 100
627 years (Campbell *et al.* 2006; Cawson *et al.* 2018; Thorley *et al.* 2023; Benwell 2024). Thus,
628 the GLM would be an effective model type for predicting fire frequency in fire-sensitive
629 vegetation as it generally did not result in predictions of extremely high fire frequencies like
630 the GAM for such non-flammable vegetation.

631

632 In Australia, rainforest is typically found within gullies surrounded by more flammable
633 sclerophyllous vegetation with wet tall open forests forming the boundary between rainforest
634 and open forests and woodlands (Neldner *et al.* 2019; Fensham *et al.* 2024; Thomsen *et al.*
635 2025). In southeast Queensland, public fire history data showed that more than 60% of
636 rainforest patches have been affected by wildfire in the past 36 years, potentially linked to
637 suboptimal open forest and woodland vegetation fire regimes (Queensland Parks and Wildlife
638 Service 2023; Thorley *et al.* 2023). Our results showed 55% of open forest and woodlands
639 had burnt under fire frequencies lower than ecologically recommended from modelled and
640 unmodelled estimates (Queensland Herbarium 2024). Potentially resulting from this, a large
641 number of cells for wet tall open forests and rainforests were classified as having burnt at
642 least once from 1987 to 2023 for both modelled and unmodelled fire frequency estimates.
643 Low fire frequencies, coupled with highly flammable fuel (Cawson *et al.* 2018; Benwell
644 2024) and drought, can result in high intensity fires in sclerophyll vegetation which can
645 penetrate rainforest margins (Collins *et al.* 2021; Laidlaw *et al.* 2022; Thorley *et al.* 2023;
646 Bird *et al.* 2025). Increased fire in rainforest margins reduces abundance of fire-retardant
647 rainforest species and facilitates encroachment of flammable species, potentially resulting in
648 fire regime and vegetation community changes (Cochrane *et al.* 2008; Fletcher *et al.* 2020;
649 Thorley *et al.* 2023; Fensham *et al.* 2024). For tens of thousands of years, Indigenous people
650 managed vegetation across Australia using fire, but European colonisation suppressed this
651 practice, leading to fuel build up and vegetation changes (e.g., vegetation thickening) (Moss
652 *et al.* 2015; Mackenzie *et al.* 2020; Stewart *et al.* 2020; Hoffman *et al.* 2021; Greenwood *et*
653 *al.* 2022; Mariani *et al.* 2022; Hanson *et al.* 2023). Further climate-change driven fire regime
654 shifts are expected to intensify during the 21st century (Moritz *et al.* 2012; Di Virgilio *et al.*
655 2019; Dowdy *et al.* 2019; Canadell *et al.* 2021), which may contribute to further vegetation
656 shifts and threats to fire sensitive species (Walsh *et al.* 2013; Dudley *et al.* 2019; Lavery *et al.*

657 2021; Thomsen *et al.* 2025). Thus, accurate landscape-scale historical fire information is
658 needed for conservation and mitigation actions, and our workflow can contribute to that goal.

659

660 Our analysis necessarily focussed on biophysical drivers which represent proximate
661 mechanism driving fire trends (Cary *et al.* 2006; Bradstock 2010; Duane *et al.* 2015). Social
662 drivers might be ultimate causes, and are likely to be correlated with biophysical drivers
663 (Gibbons *et al.* 2012; Penman *et al.* 2014; Parisien *et al.* 2016; Chuvieco *et al.* 2021; Jones *et*
664 *al.* 2022). Including correlated social drivers might have reduced the accuracy of model
665 estimates, so we did not attempt that here. It would also add intangible complexity arising
666 from different fire management strategies across land tenures, temporally variable fire
667 management attitudes, and arson which, in some instances, may not be easily associated with
668 human settlements (Chuvieco *et al.* 2010; Parisien *et al.* 2016; Chuvieco *et al.* 2021; Jones *et*
669 *al.* 2022). In other fire-prone regions such as Spain, ignitions in the past 50 years have been
670 strongly associated with human activity, compared with non-human sources, although human
671 ignitions have declined more recently due to fire prevention and suppression policies
672 (Rodrigues *et al.* 2016). In our analysis, urbanisation is likely to have been at least partially
673 captured by FPC as urban areas typically have lower woody vegetation cover (Rayner *et al.*
674 2025). Further studies could investigate methods for including social variables in the
675 modelling workflow.

676

677 Our workflow can be used to improve predictions of the landscape-scale fire frequency and
678 assess whether fire regimes fall within the range of ecological recommendations (Department
679 of Environment and Science 2022b). Researchers can tailor the modelling workflow to the
680 spatial extent and temporal period of interest and select the model type providing the most
681 accurate estimation for the context and vegetation type. Where researchers have access to

682 more accurate fire history data than satellite derived estimates, this should be used as a
683 priority. Our workflow can be used for instances where fire history data from on ground
684 surveying or satellite imagery is incomplete. Where researchers are interested in
685 understanding simply whether the land has burnt recently or not, a GLM or GAM could be
686 used as results from these models were similar. Where researchers want to better characterise
687 high fire frequencies (e.g., more than 4 fires), the GLM would be appropriate for all
688 vegetation types. While the GLM might underestimate higher fire frequencies in fire-
689 sensitive vegetation, occurrences of higher fire frequencies were rare and generally not
690 captured by the GAM. In future, the accuracy of our models could be improved by
691 incorporating data more directly related to fire occurrences such as lightning strikes (Song *et*
692 *al.* 2024) and/or spatial occurrence records of fire ephemeral plant species (Baker *et al.*
693 2005). Such data could more clearly indicate fire occurrences and their relationship with
694 environmental attributes. Our predictive modelling workflow may aid fire management and
695 conservation practices by improving the accuracy of fire frequency estimates.

696

697 **Data availability**

698

699 A preprint version of this article is available on EcoEvoRxiv at
700 <https://doi.org/10.32942/X24331>. Data and code are available as an archived Zenodo
701 repository (Charles *et al.* 2025b): <https://doi.org/10.5281/zenodo.18226822>.

702

703 **Acknowledgements**

704

705 Valuable feedback from Mark Ooi, Sabine Kasel, two anonymous reviews and the editor,
706 Stefan Doerr, improved the manuscript. Andrew Meiklejohn contributed advice in the early

707 development of this project. Christina Buelow assisted with initial fire frequency mapping
708 and spatial data processing in R.

709

710 **Conflict of interest statement**

711

712 The authors declare that we have no conflicts of interest.

713

714 **Declaration of Funding**

715

716 This research was supported by a University of Queensland Research Training Program
717 (RTP) Scholarship.

718

719 **References**

720

721 Alberti G (2023) landform: topographic position index-based landform classification. R
722 package version 0.2. (The Comprehensive R Archive Network: Vienna, Austria) Available at
723 <https://CRAN.R-project.org/package=landform> [Verified 1 August 2023]

724

725 Andela N, Morton DC, Giglio L, Paugam R, Chen Y, Hantson S, van der Werf GR,
726 Randerson JT (2019) The Global Fire Atlas of individual fire size, duration, speed and
727 direction. *Earth System Science Data* **11**(2), 529-552. doi:<https://doi.org/10.5194/essd-11-529-2019>

729

730 Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact
731 models under climate change. *Global Change Biology* **11**(9), 1504-1513.
732 doi:<https://doi.org/10.1111/j.1365-2486.2005.01000.x>

733

734 Archibald S, Lehmann CER, Gomez-Dans JL, Bradstock RA (2013) Defining pyromes and
735 global syndromes of fire regimes. *Proceedings of the National Acadamey of Science* **110**(16),
736 6442-6447. doi:10.1073/pnas.1211466110

737

738 Aslan C, Tarver R, Brunson M, Veloz S, Sikes B, Epanchin-Niell R (2024) Experiences with
739 wildfire are associated with private landowners' management decisions, relationships, and
740 perceptions of risk. *Landscape and Urban Planning* **247**, 105067.
741 doi:<https://doi.org/10.1016/j.landurbplan.2024.105067>

742

743 Atkinson PM, Tate NJ (2000) Spatial scale problems and geostatistical solutions: a review.
744 *The Professional Geographer* **52**(4), 607-623. doi:<https://doi.org/10.1111/0033-0124.00250>

745

746 Australian Bureau of Meteorology (2024a) Average annual, seasonal and monthly rainfall
747 maps - Queensland (Dataset). (Australian Bureau of Meterology Australian Bureau of
748 Meterology: Australia). Available at
749 <http://www.bom.gov.au/climate/maps/averages/rainfall/?period=an®ion=qd> [Verified 6
750 January 2025]

751

752 Australian Bureau of Meteorology (2024b) Average monthly and annual temperature maps -
753 Queensland (Dataset). (Australian Bureau of Meterology Australian Bureau of Meterology:
754 Australia). Available at
755 <http://www.bom.gov.au/climate/maps/averages/temperature/?maptype=mxt&period=win®ion=qd> [Verified 6 January 2025]

756

757

758 Bachman SP, Brown MJM, Leão TCC, Nic Lughadha E, Walker BE (2024) Extinction risk
759 predictions for the world's flowering plants to support their conservation. *New Phytologist*
760 **242**(2), 797-808. doi:<https://doi.org/10.1111/nph.19592>

761

762 Baker KS, Steadman KJ, Plummer JA, Merritt DJ, Dixon KW (2005) Dormancy release in
763 Australian fire ephemeral seeds during burial increases germination response to smoke water
764 or heat. *Seed Science Research* **15**(4), 339-348. doi:<https://doi.org/10.1079/SSR2005222>

765

766 Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for
767 species distribution models: how, where and how many? *Methods in Ecology and Evolution*
768 **3**(2), 327-338. doi:<https://doi.org/10.1111/j.2041-210X.2011.00172.x>

769

770 Benwell A (2024) Fire responses of flora in a sclerophyll–rainforest vegetation complex in
771 the Nightcap Range, north coast, New South Wales. *Australian Journal of Botany* **72**(1),
772 BT23049. doi:<https://doi.org/10.1071/BT23049>

773

774 Bird RB, Bird DW, Codding BF (2016) People, El Niño southern oscillation and fire in
775 Australia: fire regimes and climate controls in hummock grasslands. *Philosophical
776 Transactions of the Royal Society B: Biological Sciences* **371**(1696), 20150343.
777 doi:<https://doi.org/10.1098/rstb.2015.0343>

778

779 Bird RR, Zsoldos RR, Jimenez Sandoval MV, Watson SJ, Smith AL (2025) Wildfire in
780 rainforest margins is associated with variation in mammal diversity and habitat use. *Wildlife
781 Research* **52**(2), WR24103. doi:<https://doi.org/10.1071/WR24103>

782

783 Bistinas I, Harrison SP, Prentice IC, Pereira JMC (2014) Causal relationships versus
784 emergent patterns in the global controls of fire frequency. *Biogeosciences* **11**(18), 5087-5101.
785 doi:<https://doi.org/10.5194/bg-11-5087-2014>

786

787 Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future
788 implications. *Global Ecology and Biogeography* **19**(2), 145-158.
789 doi:<https://doi.org/10.1111/j.1466-8238.2009.00512.x>

790

791 Broussin J, Mouchet M, Goberville E (2024) Generating pseudo-absences in the ecological
792 space improves the biological relevance of response curves in species distribution models.
793 *Ecological Modelling* **498**, 110865. doi:<https://doi.org/10.1016/j.ecolmodel.2024.110865>

794

795 Campbell ML, Clarke PJ (2006) Response of montane wet sclerophyll forest understorey
796 species to fire: evidence from high and low intensity fires. *Proceedings of the Linnean
797 Society of New South Wales* **127**(1), 63-73. [In English]

798

799 Canadell JG, Meyer CP, Cook GD, Dowdy A, Briggs PR, Knauer J, Pepler A, Haverd V
800 (2021) Multi-decadal increase of forest burned area in Australia is linked to climate change.
801 *Nat Commun* **12**(1), 6921. doi:<https://doi.org/10.1038/s41467-021-27225-4>

802

803 Cary GJ, Keane RE, Gardner RH, Lavorel S, Flannigan MD, Davies ID, Li C, Lenihan JM,
804 Rupp TS, Mouillot F (2006) Comparison of the sensitivity of landscape-fire-succession
805 models to variation in terrain, fuel pattern, climate and weather. *Landscape Ecology* **21**(1),
806 121-137. doi:<https://doi.org/10.1007/s10980-005-7302-9>

807

808 Castellnou M, Guiomar N, Rego F, Fernandes P (2018) Fire growth patterns in the 2017 mega
809 fire episode of october 15, central Portugal. In 'Advances in Forest Fire Research'. (Ed. DX
810 Viegas) pp. 447-453. (University of Coimbra: Coimbra, Portugal)
811 https://doi.org/10.14195/978-989-26-16-506_48

812

813 Cawson JG, Duff TJ, Swan MH, Penman TD (2018) Wildfire in wet sclerophyll forests: the
814 interplay between disturbances and fuel dynamics. *Ecosphere* **9**(5), e02211.
815 doi:<https://doi.org/10.1002/ecs2.2211>

816

817 Charles FE, Reside AR, Smith AL (2025a) The influence of changing fire regimes on
818 specialised plant-animal interactions. *Philosophical Transactions of the Royal Society B-
819 Biological Sciences*. doi:<https://doi.org/10.1098.rstb.2023.0448>

820

821 Charles FE, Smith AL (2025b) Fire frequency predictive modelling (version 0.2 peer review
822 pre-release) (Dataset). (FE Charles Zenodo: Brisbane, Queensland, Australia). Available at
823 <https://doi.org/10.5281/zenodo.15133643> [Verified 4 April 2025]

824

825 Cheng Z, Aakala T, Larjavaara M (2023) Elevation, aspect, and slope influence woody
826 vegetation structure and composition but not species richness in a human-influenced
827 landscape in northwestern Yunnan, China. *Frontiers in Forests and Global Change* **6**. [In
828 English] doi:<https://doi.org/10.3389/ffgc.2023.1187724>

829

830 Chuvieco E, Justice C (2010) Relations between human factors and global fire activity. In
831 'Advances in Earth Observation of Global Change'. (Eds E Chuvieco, J Li, X Yang) pp. 187-
832 199. (Springer: Dordrecht, Netherlands) https://doi.org/10.1007/978-90-481-9085-0_14

833

834 Chuvieco E, Pettinari ML, Koutsias N, Forkel M, Hantson S, Turco M (2021) Human and
835 climate drivers of global biomass burning variability. *Science of The Total Environment* **779**,
836 146361. doi:<https://doi.org/10.1016/j.scitotenv.2021.146361>

837

838 Cochrane GR Fire ecology in southeastern Australian sclerophyll forests. Proceedings of
839 Proceedings of Annual (8th) Tall Timbers Fire Ecology Conference, 1968, Tallahassee,

840 Florida, United States of America. (Ed. EV Komarek) pp. 15-40. (Tall Timbers Research,
841 Inc.) Available at https://talltimbers.org/wp-content/uploads/2014/03/Cochrane1968_op.pdf

842

843 Cochrane MA, Laurance WF (2008) Synergisms among fire, land use, and climate change in
844 the Amazon. *Ambio* **37**(7-8), 522-527. [In eng] doi:<https://doi.org/10.1579/0044-7447-37.7.522>

845

846

847 Coen JL, Stavros EN, Fites-Kaufman JA (2018) Deconstructing the King megafire.
848 *Ecological Applications* **28**(6), 1565-1580. doi:<https://doi.org/10.1002/ea.1752>

849

850 Collett L (2021) Annual Fire Scars - Landsat, QLD DES algorithm, QLD coverage (Dataset).
851 (Terrestrial Ecosystem Research Network (TERN) TERN: Brisbane, Queensland, Australia).
852 Available at
853 <http://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/461074b3-5272-4e4e-886f-df26bd2426ad>, <https://portal.tern.org.au/annual-scars-landsat-qld-coverage>
855 [Verified 2021-12-01]

856

857 Collins L, Bradstock RA, Clarke H, Clarke MF, Nolan RH, Penman TD (2021) The
858 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-
859 severity fire. *Environmental Research Letters* **16**(4), 044029.
860 doi:<https://doi.org/10.1088/1748-9326/abeb9e>

861

862 Collins L, Griffioen P, Newell G, Mellor A (2018) The utility of random forests for wildfire
863 severity mapping. *Remote Sensing of Environment* **216**, 374-384.
864 doi:<https://doi.org/10.1016/j.rse.2018.07.005>

865

866 Collins L, McCarthy G, Mellor A, Newell G, Smith L (2020) Training data requirements for
867 fire severity mapping using landsat imagery and random forest. *Remote Sensing of
868 Environment* **245**, 111839. doi:<https://doi.org/10.1016/j.rse.2020.111839>

869

870 Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past
871 fire regimes: methods, applications, and relevance to fire management and conservation.
872 *Quaternary Science Reviews* **28**(5), 555-576.
873 doi:<https://doi.org/10.1016/j.quascirev.2008.11.005>

874

875 Corlett RT (2016) Plant diversity in a changing world: status, trends, and conservation needs.
876 *Plant Diversity* **38**(1), 10-16. doi:<https://doi.org/10.1016/j.pld.2016.01.001>

877

878 Cruz MG, Alexander ME, Kilinc M (2022) Wildfire rates of spread in grasslands under
879 critical burning conditions. *Fire* **5**(2), 55. doi:<https://doi.org/10.3390/fire5020055>

880

881 CSIRO (2024) Soils and Landscape Grid of Australia – the modelled-value for clay (%)
882 (Dataset). (CSIRO TERN Landscapes: Australia). Available at
883 https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-COGSDataStore_SLGA.html
884 [Verified 12 April 2024]

885

886 D'Angelo G, Guimond S, Reisner J, Peterson DA, Dubey M (2022) Contrasting stratospheric
887 smoke mass and lifetime from 2017 Canadian and 2019/2020 Australian megafires: global
888 simulations and satellite observations. *Journal of Geophysical Research: Atmospheres*
889 **127**(10), e2021JD036249. doi:<https://doi.org/10.1029/2021JD036249>

890
891 D'Este M, Ganga A, Elia M, Lovreglio R, Giannico V, Spano G, Colangelo G, Laforteza R,
892 Sanesi G (2020) Modeling fire ignition probability and frequency using Hurdle models: a
893 cross-regional study in southern Europe. *Ecological Processes* **9**(1), 54.
894 doi:<https://doi.org/10.1186/s13717-020-00263-4>

895
896 De Luca G, Silva JMN, Modica G (2022) Regional-scale burned area mapping in
897 Mediterranean regions based on the multitemporal composite integration of Sentinel-1 and
898 Sentinel-2 data. *GIScience & Remote Sensing* **59**(1), 1678-1705.
899 doi:<https://doi.org/10.1080/15481603.2022.2128251>

900
901 Debuse VJ, Lewis T (2014) Long-term repeated burning reduces Lantana camara
902 regeneration in a dry eucalypt forest. *Biological Invasions* **16**(12), 2697-2711.
903 doi:<https://doi.org/10.1007/s10530-014-0697-y>

904
905 Del-Toro-Guerrero FJ, Kretzschmar T, Bullock SH (2019) Precipitation and topography
906 modulate vegetation greenness in the mountains of Baja California, México. *International*
907 *Journal of Biometeorology* **63**(10), 1425-1435. [In eng] doi:<https://doi.org/10.1007/s00484-019-01763-5>

909
910 Department of Climate Change, Energy, the Environment, and Water (2024) Australia -
911 present major vegetation groups and subgroups - NVIS version 7.0 (Dataset). (Department of
912 Climate Change, Energy, the Environment, and Water Australian Government: Canberra,
913 ACT, Australia). Available at
914 <https://fed.dcceew.gov.au/datasets/5e70b5afc36a4c458a2cceb313eb3889/about> [Verified
915

916 Department of Environment, Science and Innovation (2024a) Remnant 2021 broad vegetation
917 groups - Queensland (Dataset). (Q Government Queensland Spatial Catalogue: Brisbane,
918 Queensland, Australia). Available at <https://qldspatial.information.qld.gov.au> [Verified 8
919 January 2025]

920
921 Department of Environment, Science, and Innovation (2020a) Annual report 2019-2020, pp.
922 26. (Department of Environment and Science: Brisbane, Queensland, Australia) Available at
923 <https://www.parliament.qld.gov.au/Work-of-the-Assembly/Tabled-Papers/docs/5620T1773/5620t1773.pdf>

925
926 Department of Environment, Tourism, Science and Innovation (2020b) Landsat foliage
927 projective cover - Queensland 2014 (Dataset). (Queensland Department of Environment,
928 Tourism, Science and Innovation Queensland Spatial Catalogue: Brisbane, Queensland,
929 Australia). Available at <https://www.data.qld.gov.au/dataset/landsat-foliage-projective-cover-queensland-2014> [Verified 6 April 2023]

931
932 Department of Environment, Tourism, Science and Innovation (2020c) Wooded extent and
933 foliage projective cover - Queensland 2012 (Dataset). (Queensland Department of
934 Environment, Tourism, Science and Innovation Queensland Spatial Catalogue: Brisbane,
935 Queensland, Australia). Available at <https://www.data.qld.gov.au/dataset/wooded-extent-and-foliage-projective-cover-queensland-2012/resource/3b28cb6d-85a3-4c83-a7bd-82bfa9b36c93>
937 [Verified 20 August 2025]

938

939 Department of Environment, Tourism, Science and Innovation (2020d) Wooded extent and
940 foliage projective cover - Queensland 2013 (Dataset). (Queensland Department of
941 Environment, Tourism, Science and Innovation Queensland Spatial Catalogue: Brisbane,
942 Queensland, Australia). Available at <https://www.data.qld.gov.au/dataset/wooded-extent-and-foliage-projective-cover-queensland-2013> [Verified 20 August 2025]

944

945 Department of Environment, Tourism, Science and Innovation (2022) Statewide Landcover
946 and Trees Study (SLATS) Sentinel - 2 - 2018 Foliage Projective Cover (FPC) Queensland
947 (Dataset). (Queensland Department of Environment, Tourism, Science and Innovation
948 Queensland Spatial Catalogue: Brisbane, Queensland, Australia). Available at
949 <https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-slats-sentinel-2-2018-foliage-projective-cover-fpc-queensland> [Verified 17 April 2024]

951

952 Department of Environment, Tourism, Science and Innovation (2024b) Statewide Landcover
953 and Trees Study (SLATS) Sentinel - 2 Foliage Projective Cover (FPC) Queensland (Dataset).
954 (Queensland Department of Environment, Tourism, Science and Innovation Queensland
955 Spatial Catalogue: Brisbane, Queensland, Australia). Available at
956 <https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-queensland-sentinel-2-series> [Verified 16 April 2024]

958

959 Department of Environment, Tourism, Science and Innovation (2025a) Statewide Landcover
960 and Trees Study (SLATS) Sentinel - 2 - 2022 Foliage Projective Cover (FPC) Queensland -
961 Whole of state (Dataset). (Queensland Department of Environment, Tourism, Science and
962 Innovation Queensland Spatial Catalogue: Brisbane, Queensland, Australia). Available at
963 <https://www.data.qld.gov.au/dataset/statewide-landcover-and-trees-study-queensland-sentinel-2-series/resource/e1d7f5b4-4a39-4931-be91-a8fa3e52c1e7> [Verified 16 April 2024]

965

966 Department of Environment, Tourism, Science and Innovation (2025b) Statewide Landcover
967 and Trees Study (SLATS) Sentinel - 2 - 2023 Foliage Projective Cover (FPC) Queensland -
968 Whole of state (Dataset). (Queensland Department of Environment, Tourism, Science and
969 Innovation Queensland Spatial Catalogue: Brisbane, Queensland, Australia). Available at
970 <http://qldspatial.information.qld.gov.au/catalogue/custom/search.page?q=%22Statewide>
971 Landcover And Trees Study (SLATS) Sentinel-2 - 2023 woody vegetation extent -
972 Queensland - Whole of state%22 [Verified 16 April 2024]

973

974 Department of Environment and Science (2021) Annual report 2020-2021, pp. 23.
975 (Department of Environment and Science: Brisbane, Queensland, Australia) Available at
976 <https://www.parliament.qld.gov.au/Work-of-the-Assembly/Tabled-Papers/docs/5721T1534/5721t1534.pdf>

978

979 Department of Environment and Science (2022a) Annual report 2021-2022, pp. 13.
980 (Department of Environment and Science: Brisbane, Queensland, Australia) Available at
981 https://www.des.qld.gov.au/_data/assets/pdf_file/0027/287163/annual-report-2021-22.pdf

982

983 Department of Environment and Science (2022b) Queensland Parks and Wildlife Service
984 planned burn guidelines: southeast Queensland bioregion
985 of Queensland. (Department of Environment and Science, Queensland Government:
986 Queensland, Australia) Available at
987 https://parks.des.qld.gov.au/_data/assets/pdf_file/0030/305688/Bp2005-SEQ-planned-burn-guidelines.pdf

989
990 Department of Environment and Science (2023) Annual report 2022-2023, pp. 17.
991 (Department of Environment and Science: Brisbane, Queensland, Australia) Available at
992 https://www.detsi.qld.gov.au/_data/assets/pdf_file/0013/324040/annual-report-2022-2023.pdf
993
994
995 Department of the Environment, Tourism, Science and Innovation (2012) Fire regime groups
996 - southeast Queensland (Dataset). (Queensland Department of Environment, Science, and
997 Innovation Queensland Spatial Catalogue: Brisbane, Queensland, Australia). Available at
998 <https://qldspatial.information.qld.gov.au/> [Verified 20th November 2025]
999
1000 Di Virgilio G, Evans JP, Blake SAP, Armstrong M, Dowdy AJ, Sharples J, McRae R (2019)
1001 Climate change increases the potential for extreme wildfires. *Geophysical Research Letters*
1002 **46**(14), 8517-8526. doi:<https://doi.org/10.1029/2019GL083699>
1003
1004 Dickman CR (2021) Ecological consequences of Australia's "Black Summer" bushfires:
1005 managing for recovery. *Integrated Environmental Assessment and Management* **17**(6), 1162-
1006 1167. doi:<https://doi.org/10.1002/ieam.4496>
1007
1008 Dooley M, Lewis T, Schmidt S (2023) Fire frequency has a contrasting effect on vegetation
1009 and topsoil in subcoastal heathland, woodland and forest ecosystems, south-east Queensland,
1010 Australia. *Austral Ecology* **48**(8), 1865-1887. doi:<https://doi.org/10.1111/aec.13427>
1011
1012 Dowdy AJ, Ye H, Pepler A, Thatcher M, Osbrough SL, Evans JP, Di Virgilio G, McCarthy N
1013 (2019) Future changes in extreme weather and pyroconvection risk factors for Australian
1014 wildfires. *Scientific Reports* **9**(1), 10073-10011. doi:<https://doi.org/10.1038/s41598-019-46362-x>
1015
1016
1017 Duane A, Moghli A, Coll L, Vega C (2025) On the evidence of contextually large fires in
1018 Europe based on return period functions. *Applied Geography* **176**, 103539.
1019 doi:<https://doi.org/10.1016/j.apgeog.2025.103539>
1020
1021 Duane A, Piqué M, Castellnou M, Brotons L (2015) Predictive modelling of fire occurrences
1022 from different fire spread patterns in Mediterranean landscapes. *International Journal of
1023 Wildland Fire* **24**(3), 407-418. doi:<https://doi.org/10.1071/WF14040>
1024
1025 Dudley A, Butt N, Auld TD, Gallagher RV (2019) Using traits to assess threatened plant
1026 species response to climate change. *Biodiversity and Conservation* **28**(7), 1905-1919.
1027 doi:<https://doi.org/10.1007/s10531-019-01769-w>
1028
1029 Edwards A, Gill N (2016) Living with landscape fire: landholder understandings of agency,
1030 scale and control within fiery entanglements. *Environment and Planning D: Society and
1031 Space* **34**(6), 1080-1097. doi:<https://doi.org/10.1177/0263775816645588>
1032
1033 Ekström M, Grose MR, Whetton PH (2015) An appraisal of downscaling methods used in
1034 climate change research. *WIREs Climate Change* **6**(3), 301-319.
1035 doi:<https://doi.org/10.1002/wcc.339>
1036

1037 Elia M, Giannico V, Spano G, Laforteza R, Sanesi G (2020) Likelihood and frequency of
1038 recurrent fire ignitions in highly urbanised Mediterranean landscapes. *International Journal*
1039 of Wildland Fire **29**(2), 120-131. doi:<https://doi.org/10.1071/WF19070>

1040

1041 Elliott M, Lewis T, Venn T, Srivastava SK (2020) Planned and unplanned fire regimes on
1042 public land in south-east Queensland. *International Journal of Wildland Fire* **29**(5), 326-338.
1043 doi:<https://doi.org/10.1071/WF18213>

1044

1045 Elith J, Graham C, Valavi R, Abegg M, Bruce C, Ferrier S, Ford A, Guisan A, Hijmans RJ,
1046 Huettmann F, Lohmann L, Loiselle B, Moritz C, Overton J, Peterson AT, Phillips S,
1047 Richardson K, Williams S, Wiser SK, Wohlgemuth T, Zimmermann NE (2020) Presence-only
1048 and presence-absence data for comparing species distribution modeling methods. *Biodiversity*
1049 *Informatics* **15**(2), 69-80. [In English] doi:<https://doi.org/10.17161/bi.v15i2.13384>

1050

1051 Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. *Journal*
1052 of Animal Ecology **77**(4), 802-813. doi:<https://doi.org/10.1111/j.1365-2656.2008.01390.x>

1053

1054 Fang K, Yao Q, Guo Z, Zheng B, Du J, Qi F, Yan P, Li J, Ou T, Liu J, He M, Trouet V (2021)
1055 ENSO modulates wildfire activity in China. *Nature Communications* **12**(1), 1764.
1056 doi:<https://doi.org/10.1038/s41467-021-21988-6>

1057

1058 Fedrigo M, Stewart SB, Kasel S, Levchenko V, Trouvé R, Nitschke CR (2019) Radiocarbon
1059 dating informs tree fern population dynamics and disturbance history of temperate forests in
1060 southeast Australia. *Radiocarbon* **61**(2), 445-460. doi:<https://doi.org/10.1017/RDC.2018.119>

1061

1062 Fensham RJ, Laffineur B, Browning O (2024) Fuel dynamics and rarity of fire weather
1063 reinforce coexistence of rainforest and wet sclerophyll forest. *Forest Ecology and*
1064 *Management* **553**, 121598. doi:<https://doi.org/10.1016/j.foreco.2023.121598>

1065

1066 Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for
1067 global land areas. *International Journal of Climatology* **37**(12), 4302-4315.
1068 doi:<https://doi.org/10.1002/joc.5086>

1069

1070 Flannigan M, Cantin AS, de Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global
1071 wildland fire season severity in the 21st century. *Forest Ecology and Management* **294**, 54-
1072 61. doi:<https://doi.org/10.1016/j.foreco.2012.10.022>

1073

1074 Fletcher M-S, Cadd HR, Mariani M, Hall TL, Wood SW (2020) The role of species
1075 composition in the emergence of alternate vegetation states in a temperate rainforest system.
1076 *Landscape Ecology* **35**(10), 2275-2285. doi:<https://doi.org/10.1007/s10980-020-01110-9>

1077

1078 Galizia LF, Curt T, Barbero R, Rodrigues M (2021) Assessing the accuracy of remotely
1079 sensed fire datasets across the southwestern Mediterranean Basin. *Natural Hazards and Earth*
1080 *System Sciences* **21**(1), 73-86. doi:<https://doi.org/10.5194/nhess-21-73-2021>

1081

1082 Gallant J, Austin J (2012) Topographic Wetness Index derived from 1" SRTM DEM-H. v2
1083 (Dataset). (CSIRO CSIRO: Australia). Available at
1084 <https://doi.org/10.4225/08/57590B59A4A08> [Verified 18 August 2023]
1085

1086 Geoscience Australia (2011) SRTM-derived 1 second digital elevation models version 1.0
1087 (Dataset). (Australian Government Geoscience Australia: Australia). Available at
1088 <https://elevation-direct-downloads.s3-ap-southeast-2.amazonaws.com/1sec-dem/69816.zip>
1089 [Verified 18 October 2023]

1090

1091 Gibbons P, van Bommel L, Gill AM, Cary GJ, Driscoll DA, Bradstock RA, Knight E, Moritz
1092 MA, Stephens SL, Lindenmayer DB (2012) Land management practices associated with
1093 house loss in wildfires. *PLoS One* **7**(1), e29212.
1094 doi:<https://doi.org/10.1371/journal.pone.0029212>

1095

1096 Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing approach to mapping fire
1097 severity in south-eastern Australia using sentinel 2 and random forest. *Remote sensing of*
1098 *environment* **240**, 111702. doi:<https://doi.org/10.1016/j.rse.2020.111702>

1099

1100 Gilroy J, Tran C (2009) A new fuel load model for eucalypt forests in southeast Queensland.
1101 *The Proceedings of the Royal Society of Queensland* **115**, 137-143. [In English]

1102

1103 Golding N, Hudson L, Patching H (2016) Streamline functions for species distribution
1104 modelling in the SEEG research group: R - seegSDM. (GitHub: Oxford, United Kingdom)
1105 Available at <https://github.com/SEEG-Oxford/seegSDM/blob/master/R/seegSDM.R> [Verified
1106 1 May 2024]

1107

1108 González ME, Galleguillos M, Lopatin J, Leal C, Becerra-Rodas C, Lara A, San Martín J
1109 (2022) Surviving in a hostile landscape: *Nothofagus alessandrii* remnant forests threatened
1110 by mega-fires and exotic pine invasion in the coastal range of central Chile. *Oryx* **57**, 228-
1111 238. doi:<https://doi.org/10.1017/S0030605322000102>

1112

1113 Gould JS, Lachlan McCaw W, Phillip Cheney N (2011) Quantifying fine fuel dynamics and
1114 structure in dry eucalypt forest (*Eucalyptus marginata*) in Western Australia for fire
1115 management. *Forest Ecology and Management* **262**(3), 531-546.
1116 doi:<https://doi.org/10.1016/j.foreco.2011.04.022>

1117

1118 Gräler B, Pebesma E, Heuvelink G (2016) Spatio-temporal interpolation using gstat. *The R*
1119 *journal* **8**(1), 204-218. doi:<https://doi.org/10.32614/rj-2016-014>

1120

1121 Greene GA, Daniels LD (2017) Spatial interpolation and mean fire interval analyses quantify
1122 historical mixed-severity fire regimes. *International Journal of Wildland Fire* **26**(2), 136-147.
1123 doi:<https://doi.org/10.1071/WF16084>

1124

1125 Greenwood L, Bliege Bird R, Nimmo D (2022) Indigenous burning shapes the structure of
1126 visible and invisible fire mosaics. *Landscape Ecology* **37**(3), 811-827.
1127 doi:<https://doi.org/10.1007/s10980-021-01373-w>

1128

1129 Grimmett L, Whitsed R, Horta A (2020) Presence-only species distribution models are
1130 sensitive to sample prevalence: evaluating models using spatial prediction stability and
1131 accuracy metrics. *Ecological Modelling* **431**, 109194.
1132 doi:<https://doi.org/10.1016/j.ecolmodel.2020.109194>

1133

1134 Gustafsson L, Berglind M, Granström A, Grelle A, Isacsson G, Kjellander P, Larsson S,
1135 Lindh M, Pettersson LB, Strengbom J, Stridh B, Sävström T, Thor G, Wikars L-O,

1136 Mikusiński G (2019) Rapid ecological response and intensified knowledge accumulation
1137 following a north European mega-fire. *Scandinavian Journal of Forest Research* **34**(4), 234-
1138 253. doi:<https://doi.org/10.1080/02827581.2019.1603323>

1139

1140 Hanson JM, Welsh KJ, Moss PT, Gadd P (2023) Implications of sea level variability on the
1141 formation and evolution of subtropical Rainbow Beach patterned fen complexes, Queensland,
1142 Australia. *The Holocene* **33**(1), 49-60. doi:<https://doi.org/10.1177/09596836221126120>

1143

1144 Hao T, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2020) Testing whether ensemble
1145 modelling is advantageous for maximising predictive performance of species distribution
1146 models. *Ecography* **43**(4), 549-558. doi:<https://doi.org/10.1111/ecog.04890>

1147

1148 Harris J, Pirtle JL, Laman EA, Siple MC, Thorson JT (2024) An ensemble approach to
1149 species distribution modelling reconciles systematic differences in estimates of habitat
1150 utilization and range area. *Journal of Applied Ecology* **61**(2), 351-364.
1151 doi:<https://doi.org/10.1111/1365-2664.14559>

1152

1153 Harvey BJ, Enright NJ (2022) Climate change and altered fire regimes: impacts on plant
1154 populations, species, and ecosystems in both hemispheres. *Plant Ecology* **223**(7), 699-709.
1155 [In English] doi:<https://doi.org/10.1007/s11258-022-01248-3>

1156

1157 Hastie T, Tibshirani R, Friedman J (2009) 'Elements of statistical learning: data mining,
1158 inference, and prediction.' 2nd edn. (Springer: New York, New York, United States of
1159 America) <https://doi.org/10.1007/978-0-387-84858-7>

1160

1161 He T, Lamont BB, Pausas JG (2019) Fire as a key driver of Earth's biodiversity. *Biological
1162 Reviews* **94**(6), 1983-2010. doi:<https://doi.org/10.1111/brv.12544>

1163

1164 Hijmans RJ (2025) terra: Spatial Data Analysis. R package version 1.8.60. (The
1165 Comprehensive R Archive Network: Vienna, Austria) Available at [https://CRAN.R-project.org/package=terra](https://CRAN.R-
1166 project.org/package=terra) [Verified 20 August 2025]

1167

1168 Hijmans RJ, Phillips S, Leathwick JR, Elith J (2024) dismo: species distribution modelling. R
1169 package version 1.3-16. (The Comprehensive R Archive Network: Vienna, Austria) Available
1170 at <https://CRAN.R-project.org/package=dismo> [Verified 20 August 2025]

1171

1172 Hoffman KM, Davis EL, Wickham SB, Schang K, Johnson A, Larking T, Lauriault PN,
1173 Quynh Le N, Swerdfager E, Trant AJ (2021) Conservation of Earth's biodiversity is
1174 embedded in Indigenous fire stewardship. *Proceedings of the National Academy of Sciences*
1175 **118**(32), e2105073118. doi:<https://doi.org/10.1073/pnas.2105073118>

1176

1177 Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to
1178 construct a comprehensive archive of Australian climate data. *Environmental Modelling &
1179 Software* **16**(4), 309-330. doi:[https://doi.org/10.1016/S1364-8152\(01\)00008-1](https://doi.org/10.1016/S1364-8152(01)00008-1)

1180

1181 Jiménez L, Soberón J (2020) Leaving the area under the receiving operating characteristic
1182 curve behind: an evaluation method for species distribution modelling applications based on
1183 presence-only data. *Methods in Ecology and Evolution* **11**(12), 1571-1586.
1184 doi:<https://doi.org/10.1111/2041-210X.13479>

1185

1186 Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, Forkel M, Smith AJP,
1187 Burton C, Betts RA, van der Werf GR, Sitch S, Canadell JG, Santín C, Kolden C, Doerr SH,
1188 Le Quéré C (2022) Global and regional trends and drivers of fire under climate change.
1189 *Reviews of Geophysics* **60**(3), e2020RG000726. doi:<https://doi.org/10.1029/2020RG000726>
1190

1191 Kalantar B, Ueda N, Idrees MO, Janizadeh S, Ahmadi K, Shabani F (2020) Forest fire
1192 susceptibility prediction based on machine learning models with resampling algorithms on
1193 remote sensing data. *Remote Sensing* **12**(22), 3682. doi:<https://doi.org/10.3390/rs12223682>
1194

1195 Kelly LT, Fletcher M-S, Oliveras Menor I, Pellegrini AFA, Plumanns-Pouton ES, Pons P,
1196 Williamson GJ, Bowman DMJS (2023) Understanding fire regimes for a better
1197 Anthropocene. *Annual Review of Environment and Resources* **48**, 207-235.
1198 doi:<https://doi.org/10.1146/annurev-environ-120220-055357>
1199

1200 Kelly LT, Giljohann KM, Duane A, Aquilue N, Archibald S, Batllori E, Bennett AF, Buckland
1201 ST, Canelles Q, Clarke MF, Fortin M-J, Hermoso V, Herrando S, Keane RE, Lake FK,
1202 McCarthy MA, Moran-Ordonez A, Parr CL, Pausas JG, Penman TD, Regos A, Rumpff L,
1203 Santos JL, Smith AL, Syphard AD, Tingley MW, Brotons L (2020) Fire and biodiversity in
1204 the Anthropocene. *Science* **370**(6519), 929. doi:<https://doi.org/10.1126/science.abb0355>
1205

1206 Khairoun A, Mouillot F, Chen W, Ciais P, Chuvieco E (2024) Coarse-resolution burned area
1207 datasets severely underestimate fire-related forest loss. *Science of the Total Environment* **920**,
1208 170599. doi:<https://doi.org/10.1016/j.scitotenv.2024.170599>
1209

1210 Khorshidi MS, Dennison PE, Nikoo MR, AghaKouchak A, Luce CH, Sadegh M (2020)
1211 Increasing concurrence of wildfire drivers tripled megafire critical danger days in southern
1212 California between 1982 and 2018. *Environmental Research Letters* **15**(10), 104002.
1213 doi:<https://doi.org/10.1088/1748-9326/abae9e>
1214

1215 Kreider MR, Higuera PE, Parks SA, Rice WL, White N, Larson AJ (2024) Fire suppression
1216 makes wildfires more severe and accentuates impacts of climate change and fuel
1217 accumulation. *Nature Communications* **15**(1), 2412. doi:<https://doi.org/10.1038/s41467-024-46702-0>
1218

1219 Kuhn M (2008) Building predictive models in R using the caret package. *Journal of
1220 Statistical Software* **28**(5), 1-26. doi:<https://doi.org/10.18637/jss.v028.i05>
1221

1222 Lai J, Tang J, Li T, Zhang A, Mao L (2024) Evaluating the relative importance of predictors
1223 in Generalized Additive Models using the gam.hp R package. *Plant Diversity* **46**(4), 542-546.
1224 doi:<https://doi.org/10.1016/j.pld.2024.06.002>
1225

1226 Lai J, Zou Y, Zhang S, Zhang X, Mao L (2022) glmm.hp: an R package for computing
1227 individual effect of predictors in generalized linear mixed models. *Journal of Plant Ecology*
1228 **15**(6), 1302-1307. doi:<https://doi.org/10.1093/jpe/rtac096>
1229

1230 Laidlaw MJ, Hines HB, Melzer RI, Churchill TB (2022) Beyond bushfire severity: mapping
1231 the ecological impact of bushfires on the Gondwana rainforests of Australia world heritage
1232 area. *Australian Zoologist* **42**(2), 502-513. doi:<https://doi.org/10.7882/az.2022.027>
1233

1234

1235 Lavery T, Lindenmayer D, Blanchard W, Carey A, Cook E, Copley P, Macgregor NA, Melzer
1236 R, Nano C, Prentice L, Scheele BC, Sinclair S, Southwell D, Stuart S, Wilson M, Woinarski J
1237 (2021) Counting plants: the extent and adequacy of monitoring for a continental-scale list of
1238 threatened plant species. *Biological Conservation* **260**, 109193.
1239 doi:<https://doi.org/10.1016/j.biocon.2021.109193>

1240

1241 Le Breton T, Schweickle L, Dunne C, Lyons M, Ooi M (2023) Fire frequency and severity
1242 mediate recruitment response of a threatened shrub following severe megafire. *Fire Ecology*
1243 **19**(1), 67. doi:<https://doi.org/10.1186/s42408-023-00217-z>

1244

1245 Le Page Y, Morton D, Hartin C, Bond-Lamberty B, Pereira JMC, Hurt G, Asrar G (2017)
1246 Synergy between land use and climate change increases future fire risk in Amazon forests.
1247 *Earth System Dynamics* **8**(4), 1237-1246. doi:<https://doi.org/10.5194/esd-8-1237-2017>

1248

1249 Legge S, Woinarski JCZ, Scheele BC, Garnett ST, Lintemanns M, Nimmo DG, Whiterod NS,
1250 Southwell DM, Ehmke G, Buchan A, Gray J, Metcalfe DJ, Page M, Rumpff L, van Leeuwen
1251 S, Williams D, Ahyong ST, Chapple DG, Cowan M, Hossain MA, Kennard M, Macdonald S,
1252 Moore H, Marsh J, McCormack RB, Michael D, Mitchell N, Newell D, Raadik TA, Tingley
1253 R (2022) Rapid assessment of the biodiversity impacts of the 2019–2020 Australian
1254 megafires to guide urgent management intervention and recovery and lessons for other
1255 regions. *Diversity and Distributions* **28**(3), 571-591. doi:<https://doi.org/10.1111/ddi.13428>

1256

1257 Li W, Xu Q, Yi J, Liu J (2022) Predictive model of spatial scale of forest fire driving factors:
1258 a case study of Yunnan Province, China. *Scientific Reports* **12**(1), 19029.
1259 doi:<https://doi.org/10.1038/s41598-022-23697-6>

1260

1261 Li X, Wang Y (2013) Applying various algorithms for species distribution modelling.
1262 *Integrative Zoology* **8**(2), 124-135. doi:<https://doi.org/10.1111/1749-4877.12000>

1263

1264 Linley GD, Jolly CJ, Doherty TS, Geary WL, Armenteras D, Belcher CM, Bliege Bird R,
1265 Duane A, Fletcher M-S, Giorgis MA, Haslem A, Jones GM, Kelly LT, Lee CKF, Nolan RH,
1266 Parr CL, Pausas JG, Price JN, Regos A, Ritchie EG, Ruffault J, Williamson GJ, Wu Q,
1267 Nimmo DG (2022) What do you mean, ‘megafire’? *Global Ecology and Biogeography*
1268 **31**(10), 1906-1922. doi:<https://doi.org/10.1111/geb.13499>

1269

1270 Liu C, Newell G, White M (2019a) The effect of sample size on the accuracy of species
1271 distribution models: considering both presences and pseudo-absences or background sites.
1272 *Ecography* **42**(3), 535-548. doi:<https://doi.org/10.1111/ecog.03188>

1273

1274 Liu D, Xu Z, Fan C (2019b) Predictive analysis of fire frequency based on daily
1275 temperatures. *Natural Hazards* **97**(3), 1175-1189. doi:<https://doi.org/10.1007/s11069-019-03694-1>

1277

1278 Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the
1279 performance of predictive distribution models. *Global Ecology and Biogeography* **17**(2), 145-
1280 151. doi:<https://doi.org/10.1111/j.1466-8238.2007.00358.x>

1281

1282 Łopucki R, Kiersztyn A, Pitucha G, Kitowski I (2022) Handling missing data in ecological
1283 studies: ignoring gaps in the dataset can distort the inference. *Ecological Modelling* **468**,
1284 109964. doi:<https://doi.org/10.1016/j.ecolmodel.2022.109964>

1285
1286 Mackenzie L, Moss P, Ulm S (2020) A late-Holocene record of coastal wetland development
1287 and fire regimes in tropical northern Australia. *The Holocene* **30**(10), 1379-1390.
1288 doi:<https://doi.org/10.1177/0959683620932970>

1289
1290 Maier SW, Russell-Smith J (2012) Measuring and monitoring of contemporary fire regimes
1291 in Australia using satellite remote sensing. In 'Flammable Australia: fire regimes, biodiversity
1292 and ecosystems in a changing world'. (Ed. AMG Ross A Bradstock, Richard J Williams) pp.
1293 79-95. (CSIRO Publishing: Collingwood, Victoria, Australia)

1294
1295 Mariani M, Connor SE, Theuerkauf M, Herbert A, Kuneš P, Bowman D, Fletcher M-S, Head
1296 L, Kershaw AP, Haberle SG, Stevenson J, Adeleye M, Cadd H, Hopf F, Briles C (2022)
1297 Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires.
1298 *Frontiers in Ecology and the Environment* **20**(5), 292-300.
1299 doi:<https://doi.org/10.1002/fee.2395>

1300
1301 Mariani M, Fletcher M-S (2017) Long-term climate dynamics in the extra-tropics of the south
1302 pacific revealed from sedimentary charcoal analysis. *Quaternary Science Reviews* **173**, 181-
1303 192. doi:<https://doi.org/10.1016/j.quascirev.2017.08.007>

1304
1305 Marsh JR, Bal P, Fraser H, Umbers K, Latty T, Greenville A, Rumpff L, Woinarski JCZ
1306 (2022) Accounting for the neglected: invertebrate species and the 2019–2020 Australian
1307 megafires. *Global Ecology and Biogeography* **31**(10), 2120-2130.
1308 doi:<https://doi.org/10.1111/geb.13550>

1309
1310 McCarthy G, Moon K, Smith L (2017) Mapping fire severity and fire extent in forest in
1311 Victoria for ecological and fuel outcomes. *Ecological Management & Restoration* **18**(1), 54-
1312 65. doi:<https://doi.org/10.1111/emr.12242>

1313
1314 McCormack PC, Miller RK, McDonald J (2024) Prescribed burning on private land:
1315 reflections on recent law reform in Australia and California. *International Journal of
1316 Wildland Fire* **33**(1), WF22213. doi:<https://doi.org/10.1071/WF22213>

1317
1318 Meynard CN, Quinn JF (2007) Predicting species distributions: a critical comparison of the
1319 most common statistical models using artificial species. *Journal of Biogeography* **34**(8),
1320 1455-1469. doi:<https://doi.org/10.1111/j.1365-2699.2007.01720.x>

1321
1322 Miller G, Friedel M, Adam P, Chewings V (2010) Ecological impacts of buffel grass
1323 (*Cenchrus ciliaris* L.) invasion in central Australia – does field evidence support a fire-
1324 invasion feedback? *The Rangeland Journal* **32**(4), 353-365.
1325 doi:<https://doi.org/10.1071/RJ09076>

1326
1327 Miranda A, Mentler R, Moletto-Lobos Í, Alfaro G, Aliaga L, Balbontín D, Barraza M,
1328 Baumbach S, Calderón P, Cárdenas F, Castillo I, Contreras G, de la Barra F, Galleguillos M,
1329 González ME, Hormazábal C, Lara A, Mancilla I, Muñoz F, Oyarce C, Pantoja F, Ramírez R,
1330 Urrutia V (2022) The Landscape Fire Scars database: mapping historical burned area and fire
1331 severity in Chile. *Earth System Science Data* **14**(8), 3599-3613.
1332 doi:<https://doi.org/10.5194/essd-14-3599-2022>

1333

1334 Morgan GW, Tolhurst KG, Poynter MW, Cooper N, McGuffog T, Ryan R, Wouters MA,
1335 Stephens N, Black P, Sheehan D, Leeson P, Whight S, Davey SM (2020) Prescribed burning
1336 in south-eastern Australia: history and future directions. *Australian forestry* **83**(1), 4-28.
1337 doi:<https://doi.org/10.1080/00049158.2020.1739883>

1338

1339 Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K
1340 (2012) Climate change and disruptions to global fire activity. *Ecosphere* **3**(6), 49.
1341 doi:<https://doi.org/10.1890/ES11-00345.1>

1342

1343 Moss P, Mackenzie L, Ulm S, Sloss C, Rosendahl D, Petherick L, Steinberger L, Wallis L,
1344 Heijnis H, Petchey F, Jacobsen G (2015) Environmental context for late Holocene human
1345 occupation of the South Wellesley Archipelago, Gulf of Carpentaria, northern Australia.
1346 *Quaternary International* **385**, 136-144. doi:<https://doi.org/10.1016/j.quaint.2015.02.051>

1347

1348 Moss PT, Tibby J, Petherick L, McGowan H, Barr C (2013) Late Quaternary vegetation
1349 history of North Stradbroke Island, Queensland, eastern Australia. *Quaternary Science*
1350 *Reviews* **74**, 257-272. doi:<https://doi.org/10.1016/j.quascirev.2013.02.019>

1351

1352 Mouillot F, Field CB (2005) Fire history and the global carbon budget: a $1^\circ \times 1^\circ$ fire history
1353 reconstruction for the 20th century. *Global Change Biology* **11**(3), 398-420.
1354 doi:<https://doi.org/10.1111/j.1365-2486.2005.00920.x>

1355

1356 Moura LC, Scariot AO, Schmidt IB, Beatty R, Russell-Smith J (2019) The legacy of colonial
1357 fire management policies on traditional livelihoods and ecological sustainability in savannas:
1358 impacts, consequences, new directions. *Journal of Environmental Management* **232**, 600-606.
1359 doi:<https://doi.org/10.1016/j.jenvman.2018.11.057>

1360

1361 Murase H, Nagashima H, Yonezaki S, Matsukura R, Kitakado T (2009) Application of a
1362 generalized additive model (GAM) to reveal relationships between environmental factors and
1363 distributions of pelagic fish and krill: a case study in Sendai Bay, Japan. *ICES Journal of*
1364 *Marine Science* **66**(6), 1417-1424. doi:<https://doi.org/10.1093/icesjms/fsp105>

1365

1366 Neldner V, Butler D, Guymer G (2019) 'Queensland's regional ecosystems: building and
1367 maintaining a biodiversity inventory, planning framework and information system for
1368 Queensland version 2.' (Queensland Herbarium, Department of Science, Informatoin
1369 Technology and Innovation: Brisbane, QLD, Australia)

1370

1371 Nolan RH, Boer MM, Collins L, Resco de Dios V, Clarke H, Jenkins M, Kenny B, Bradstock
1372 RA (2020) Causes and consequences of eastern Australia's 2019–20 season of mega-fires.
1373 *Global Change Biology* **26**(3), 1039-1041. doi:<https://doi.org/10.1111/gcb.14987>

1374

1375 Nolan RH, Bowman DMJS, Clarke H, Haynes K, Ooi MKJ, Price OF, Williamson GJ,
1376 Whittaker J, Bedward M, Boer MM, Cavanagh VI, Collins L, Gibson RK, Griebel A, Jenkins
1377 ME, Keith DA, Mcilwee AP, Penman TD, Samson SA, Tozer MG, Bradstock RA (2021)
1378 What do the Australian Black Summer fires signify for the global fire crisis? *Fire* **4**(4), 97.
1379 doi:<https://doi.org/10.3390/fire4040097>

1380

1381 O'Brien J (2023) gdalUtilities: wrappers for 'GDAL' utilities executables. (The
1382 Comprehensive R Archive Network: Vienna, Austria) Available at

1383 <https://github.com/JoshOBrien/gdalUtilities/>, <https://joshobrien.github.io/gdalUtilities/>
1384 [Verified 5 October 2023]

1385

1386 Ororo L, Omondi EO, Omolo BO (2024) A Bayesian model for predicting monthly fire
1387 frequency in Kenya. *PLoS One* **19**(1), e0291800.
1388 doi:<https://doi.org/10.1371/journal.pone.0291800>

1389

1390 Parisien M-A, Miller C, Parks SA, DeLancey ER, Robinne F-N, Flannigan MD (2016) The
1391 spatially varying influence of humans on fire probability in North America. *Environmental
1392 Research Letters* **11**(7), 075005. doi:<https://doi.org/10.1088/1748-9326/11/7/075005>

1393

1394 Park N-W, Kim Y, Kwak G-H (2019) An overview of theoretical and practical issues in
1395 spatial downscaling of coarse resolution satellite-derived products. *Korean Journal of Remote
1396 Sensing* **35**(4), 589-607. [In Ko] doi:<https://doi.org/10.7780/KJRS.2019.35.4.8>

1397

1398 Patil I (2021) Visualizations with statistical details: the 'ggstatsplot' approach. *Journal of
1399 Open Source Software* **6**(61), 3167. doi:<https://doi.org/10.21105/joss.03167>

1400

1401 Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the western Mediterranean
1402 Basin: from fuel-limited to drought-driven fire regime. *Climatic Change* **110**(1), 215-226.
1403 doi:<https://doi.org/10.1007/s10584-011-0060-6>

1404

1405 Pebesma EJ (2004) Multivariable geostatistics in S
1406 the gstat package. *Computers & Geosciences* **30**(7), 683-691.
1407 doi:<https://doi.org/10.1016/j.cageo.2004.03.012>

1408

1409 Penman TD, Bradstock RA, Price OF (2014) Reducing wildfire risk to urban developments:
1410 Simulation of cost-effective fuel treatment solutions in south eastern Australia.
1411 *Environmental Modelling & Software* **52**, 166-175.
1412 doi:<https://doi.org/10.1016/j.envsoft.2013.09.030>

1413

1414 Phelps N, Woolford DG (2021) Guidelines for effective evaluation and comparison of
1415 wildland fire occurrence prediction models. *International Journal of Wildland Fire* **30**(4),
1416 225-240. doi:<https://doi.org/10.1071/WF20134>

1417

1418 Plumanns-Pouton E, Swan M, Penman T, Kelly LT (2024) How do intervals between fires
1419 influence canopy seed production and viability? *Functional Ecology* **38**(9), 1915-1930.
1420 doi:<https://doi.org/10.1111/1365-2435.14619>

1421

1422 Queensland Herbarium (2024) Regional ecosystem fire management guidelines (Dataset).
1423 (Queensland Department of Environment, Science, and Innovation Queensland Government:
1424 Brisbane, Queensland, Australia). Available at
1425 https://www.qld.gov.au/_data/assets/file/0025/384046/fire-management-guidelines-v13.1.csv [Verified 8 January 2025]

1426

1427

1428 Queensland Parks and Wildlife Service (2023) Fire history - Queensland Parks and Wildlife
1429 Service (Dataset). (Queensland Parks and Wildlife Service Queensland Spatial: Brisbane,
1430 Queensland, Australia). Available at <https://www.data.qld.gov.au/dataset/fire-history-queensland-parks-and-wildlife-service> [Verified 18 August 2023]

1431

1432

1433 R Core Team (2018) The R Project for statistical computing. (R Foundation for Statistical
1434 Computing: Vienna, Austria) Available at <https://www.r-project.org> [Verified 12th September
1435 2020]

1436

1437 R Core Team (2023) R: a language and environment for statistical computing. (R Foundation
1438 for Statistical Computing: Vienna, Austria) Available at <https://www.R-project.org/> [Verified
1439 1 August 2023]

1440

1441 Ramsey S, Jones S, Reinke K (2024) Review of approaches and challenges for the validation
1442 of satellite-based active fire products in savannah ecosystems. *International Journal of
1443 Wildland Fire* **33**(10), WF23202. doi:<https://doi.org/10.1071/WF23202>

1444

1445 Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC (2012) Global burned area
1446 and biomass burning emissions from small fires. *Journal of Geophysical Research: Biogeosciences* **117**, G04012. doi:<https://doi.org/10.1029/2012JG002128>

1448

1449 Rayner CJ, Brunt T, Smith AL (2025) The impact of a decade of urbanisation on a semi-
1450 aquatic mammal in a subtropical freshwater ecosystem. *Landscape Ecology* **40**(8), 175.
1451 doi:<https://doi.org/10.1007/s10980-025-02197-8>

1452

1453 Redmond R, Winne C, Opitz D, Mangrich M (2002) Classifying and mapping wildfire
1454 severity: a comparison of methods. *Photogrammetric Engineering & Remote Sensing* **71**.
1455 doi:<https://doi.org/10.14358/PERS.71.11.1311>

1456

1457 Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-
1458 Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF (2017)
1459 Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic
1460 structure. *Ecography* **40**(8), 913-929. doi:<https://doi.org/10.1111/ecog.02881>

1461

1462 Rodrigues M, Jiménez A, de la Riva J (2016) Analysis of recent spatial–temporal evolution of
1463 human driving factors of wildfires in Spain. *Natural Hazards* **84**(3), 2049-2070.
1464 doi:<https://doi.org/10.1007/s11069-016-2533-4>

1465

1466 Rogers BM, Balch JK, Goetz SJ, Lehmann CER, Turetsky M (2020) Focus on changing fire
1467 regimes: interactions with climate, ecosystems, and society. *Environmental Research Letters*
1468 **15**(3), 030201. doi:<https://doi.org/10.1088/1748-9326/ab6d3a>

1469

1470 Ruscalleda-Alvarez J, Moro D, van Dongen R (2021) A multi-scale assessment of fire scar
1471 mapping in the Great Victoria Desert of Western Australia. *International Journal of Wildland
1472 Fire* **30**(11), 886-898. doi:<https://doi.org/10.1071/WF21019>

1473

1474 Ryu G, Charalambou C (2023) Historical bushfire boundaries - version 1.0. (Geoscience
1475 Australia: Canberra, Australia) Available at
1476 <https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/147763> [Verified 7th
1477 November 2024]

1478

1479 Sachdeva S, Bhatia T, Verma AK (2018) GIS-based evolutionary optimized gradient boosted
1480 decision trees for forest fire susceptibility mapping. *Natural Hazards* **92**(3), 1399-1418.
1481 doi:<https://doi.org/10.1007/s11069-018-3256-5>

1482

1483 Saito T, Rehmsmeier M (2016) Precrec: fast and accurate precision–recall and ROC curve
1484 calculations in R. *Bioinformatics* **33**(1), 145–147.
1485 doi:<https://doi.org/10.1093/bioinformatics/btw570>

1486

1487 San-Miguel-Ayanz J, Schulte E, Schmuck G, Camia A, Strobl P, Liberta G, Giovando C,
1488 Boca R, Sedano F, Kempeners P, McInerney D, Whitmore C, Santos De Oliveira S,
1489 Rodrigues M, Durrant T, Corti P, Oehler F, Vilar L, Amatulli G (2012) Comprehensive
1490 monitoring of wildfires in Europe: the European Forest Fire Information System (EFFIS). In
1491 'Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts'.
1492 (Ed. JP Tiefenbacher) pp. 87–108. (IntechOpen: Rijeka, Croatia)
1493 <https://doi.org/10.5772/28441>

1494

1495 Saulino L, Rita A, Migliozi A, Maffei C, Allevato E, Garonna AP, Saracino A (2020)
1496 Detecting burn severity across mediterranean forest types by coupling medium-spatial
1497 resolution satellite imagery and field data. *Remote Sensing* **12**(4), 741.
1498 doi:<https://doi.org/10.3390/rs12040741>

1499

1500 Sayedi SS, Abbott BW, Vannière B, Leys B, Colombaroli D, Romera GG, Słowiński M,
1501 Aleman JC, Blarquez O, Feurdean A, Brown K, Aakala T, Alenius T, Allen K, Andric M,
1502 Bergeron Y, Biagioli S, Bradshaw R, Bremond L, Brisset E, Brooks J, Brugger SO, Brussel
1503 T, Cadd H, Cagliero E, Carcaillet C, Carter V, Catry FX, Champreux A, Chaste E, Chavardès
1504 RD, Chipman M, Conedera M, Connor S, Constantine M, Courtney Mustaphi C, Dabengwa
1505 AN, Daniels W, De Boer E, Dietze E, Estrany J, Fernandes P, Finsinger W, Flantua SGA,
1506 Fox-Hughes P, Gaboriau DM, M.Gayo E, Girardin MP, Glenn J, Glückler R, González-
1507 Arango C, Groves M, Hamilton DS, Hamilton RJ, Hantson S, Hapsari KA, Hardiman M,
1508 Hawthorne D, Hoffman K, Inoue J, Karp AT, Krebs P, Kulkarni C, Kuosmanen N, Lacourse
1509 T, Ledru M-P, Lestienne M, Long C, López-Sáez JA, Loughlin N, Niklasson M, Madrigal J,
1510 Maezumi SY, Marcisz K, Mariani M, McWethy D, Meyer G, Molinari C, Montoya E,
1511 Mooney S, Morales-Molino C, Morris J, Moss P, Oliveras I, Pereira JM, Pezzatti GB,
1512 Pickarski N, Pini R, Rehn E, Remy CC, Revelles J, Rius D, Robin V, Ruan Y, Rudaya N,
1513 Russell-Smith J, Seppä H, Shumilovskikh L, T.Sommers W, Tavşanoğlu Ç, Umbanhowar C,
1514 Urquiaga E, Urrego D, Vachula RS, Wallenius T, You C, Daniau A-L (2024) Assessing
1515 changes in global fire regimes. *Fire Ecology* **20**(1), 18. doi:<https://doi.org/10.1186/s42408-023-00237-9>

1516

1517 Setterfield SA, Rossiter-Rachor NA, Douglas MM, Wainger L, Petty AM, Barrow P,
1518 Shepherd IJ, Ferdinand KB (2013) Adding fuel to the fire: the impacts of non-native grass
1519 invasion on fire management at a regional scale. *PLoS One* **8**(5), e59144.
1520 doi:<https://doi.org/10.1371/journal.pone.0059144>

1521

1522 SILO QGLP (2025a) SILO - Australian climate data from 1889 to yesterday - daily
1523 maximum temperature (Dataset). (QGLP SILO Queensland Government: Brisbane,
1524 Queensland, Australia). Available at <https://s3-ap-southeast-2.amazonaws.com/silo-open-data/Official/annual/index.html> [Verified 30th July 2025]

1525

1526

1527 SILO QGLP (2025b) SILO - Australian climate data from 1889 to yesterday - daily minimum
1528 temperature (Dataset). (QGLP SILO Queensland Government: Brisbane, Queensland,
1529 Australia). Available at <https://s3-ap-southeast-2.amazonaws.com/silo-open-data/Official/annual/index.html> [Verified 30th July 2025]

1530

1531

1532

1533 SILO QGLP (2025c) SILO - Australian climate data from 1889 to yesterday - daily rainfall
1534 (Dataset). (QGLP SILO Queensland Government: Brisbane, Queensland, Australia).
1535 Available at <https://s3-ap-southeast-2.amazonaws.com/silo-open-data/Official/annual/index.html> [Verified 30th July 2025]

1537

1538 Simpson KJ, Archibald S, Osborne CP (2022) Savanna fire regimes depend on grass trait
1539 diversity. *Trends in Ecology & Evolution* **37**(9), 749-758.
1540 doi:<https://doi.org/10.1016/j.tree.2022.04.010>

1541

1542 Smith AL, Landguth EL, Bull CM, Banks SC, Gardner MG, Driscoll DA (2016) Dispersal
1543 responses override density effects on genetic diversity during post-disturbance succession.
1544 *Proceedings of the Royal Society B-Biological Sciences* **283**(1827), 20152934-20152934.
1545 doi:<https://doi.org/10.1098/rspb.2015.2934>

1546

1547 Song Y, Xu C, Li X, Oppong F (2024) Lightning-induced wildfires: an overview. *Fire* **7**(3),
1548 79. doi:<https://doi.org/10.3390/fire7030079>

1549

1550 Soykan CU, Eguchi T, Kohin S, Dewar H (2014) Prediction of fishing effort distributions
1551 using boosted regression trees. *Ecological Applications* **24**(1), 71-83.
1552 doi:<https://doi.org/10.1890/12-0826.1>

1553

1554 Stewart PLCF, Moss PT, Farrell R (2020) Land change analysis of Moon Point vegetation on
1555 Fraser Island, east coast, Queensland, Australia. *International Journal of Ecology and*
1556 *Environmental Science* **46**(1), 25-39.

1557

1558 Sullivan AL, McCaw WL, Cruz MG, Matthews S, Ellis PF, Williams RJ, Bradstock RA, Gill
1559 AM (2012) Fuel, fire weather and fire behaviour in Australian ecosystems. In 'Flammable
1560 Australia: fire regimes, biodiversity and ecosystems in a changing world'. (Eds RA
1561 Bradstock, AM Gill, RJ Williams) pp. 51-77. (CSIRO Publishing: Collingwood, Vic)
1562 <https://doi.org/10.1071/978064310483906.51.78.2012.6>

1563

1564 Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK
1565 (2008) Predicting spatial patterns of fire on a southern California landscape. *International*
1566 *Journal of Wildland Fire* **17**(5), 602-613. doi:<https://doi.org/10.1071/WF07087>

1567

1568 Thomsen AM, Lemmon J, Allen V, Mills CH, Keith DA, Ooi MKJ (2025) Evidence for state
1569 shift and generation of fire feedback loops in mesic forest driven by extreme fire severity and
1570 high fire frequency. *Environmental Research Letters* **20**(4), 044021.
1571 doi:<https://doi.org/10.1088/1748-9326/abf30>

1572

1573 Thorley J, Srivastava SK, Shapcott A (2023) What type of rainforest burnt in the south east
1574 Queensland's 2019/20 bushfires and how might this impact biodiversity. *Austral Ecology*
1575 **48**(3), 616-642. doi:<https://doi.org/10.1111/aec.13293>

1576

1577 Toledo D, Kreuter UP, Sorice MG, Taylor CA (2012) To burn or not to burn: ecological
1578 reoration, lability cocerns, and the rle of pescibed brning asociations. *Rangelands* **34**(2), 18-
1579 23. doi:<https://doi.org/10.2111/RANGELANDS-D-11-00037.1>

1580

1581 Udy DG, Vance TR, Kiem AS, Holbrook NJ, Abram N (2024) Australia's 2019/20 Black
1582 Summer fire weather exceptionally rare over the last 2000 years. *Communications Earth &*
1583 *Environment* **5**(1), 317. doi:<https://doi.org/10.1038/s43247-024-01470-z>

1584

1585 Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2019) blockCV: an r package for
1586 generating spatially or environmentally separated folds for k-fold cross-validation of species
1587 distribution models. *Methods in Ecology and Evolution* **10**(2), 225-232.
1588 doi:<https://doi.org/10.1111/2041-210X.13107>

1589

1590 Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J (2022) Predictive performance of
1591 presence-only species distribution models: a benchmark study with reproducible code.
1592 *Ecological Monographs* **92**(1), e01486. doi:<https://doi.org/10.1002/ecm.1486>

1593

1594 van den Berg D (2021) Sentinel-2 fire scars - QLD DES algorithm, QLD coverage.
1595 (Terrestrial Ecosystem Research Network: Australia) Available at
1596 <https://portal.tern.org.au/metadata/TERN/7b6d2b84-cbf3-46e8-aa8c-c49352f9ffd5> [Verified
1597 7th November 2024]

1598

1599 van Klinken RD, Friedel MH (2018) Unassisted invasions: understanding and responding to
1600 Australia's high-impact environmental grass weeds. *Australian Journal of Botany* **65**(8), 678-
1601 690. doi:<https://doi.org/10.1071/BT17152>

1602

1603 Venables WN, Ripley BD (2002) 'Modern applied statistics with S.' 4th edn. (Springer: New
1604 York, New York, United States of America) <https://doi.org/10.1007/978-0-387-21706-2>

1605

1606 Walsh JC, Watson JEM, Bottrill MC, Joseph LN, Possingham HP (2013) Trends and biases in
1607 the listing and recovery planning for threatened species: an Australian case study. *Oryx* **47**(1),
1608 134-143. doi:<https://doi.org/10.1017/S003060531100161X>

1609

1610 Wang X, Luo M, Song F, Wu S, Chen YD, Zhang W (2024) Precipitation seasonality
1611 amplifies as Earth warms. *Geophysical Research Letters* **51**(10), e2024GL109132.
1612 doi:<https://doi.org/10.1029/2024GL109132>

1613

1614 Welch K (2021) Creating a comprehensive western American/Canadian fire dataset, 1880-
1615 2018. Master of Arts Masters, Western Washington University, Bellingham, Washington,
1616 United States of America.

1617

1618 Whitford AM, Shipley BR, McGuire JL (2024) The influence of the number and distribution
1619 of background points in presence-background species distribution models. *Ecological*
1620 *Modelling* **488**, 110604. doi:<https://doi.org/10.1016/j.ecolmodel.2023.110604>

1621

1622 Williamson B (2021) Cultural burning in New South Wales: challenges and opportunities for
1623 policy makers and Aboriginal peoples. Report number 9781925286571
1624 1925286576, Centre for Aboriginal Economic Policy Research (ANU), Canberra, ACT,
1625 Australia. <https://doi.org/10.25911/Q1PY-8E04>

1626

1627 Williamson B (2022) Cultural burning and public forests: convergences and divergences
1628 between Aboriginal groups and forest management in south-eastern Australia. *Australian*
1629 *Forestry* **85**(1), 1-5. doi:<https://doi.org/10.1080/00049158.2022.2054134>

1630

1631 Williamson GJ, Prior LD, Jolly WM, Cochrane MA, Murphy BP, Bowman DMJS (2016)
1632 Measurement of inter- and intra-annual variability of landscape fire activity at a continental
1633 scale: the Australian case. *Environmental Research Letters* **11**(3), 035003.
1634 doi:<https://doi.org/10.1088/1748-9326/11/3/035003>

1635

1636 Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF,
1637 Forchhammer MC, Grytnes J-A, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M,
1638 Maiorano L, Nilsson M-C, Normand S, Öckinger E, Schmidt NM, Termansen M,
1639 Timmermann A, Wardle DA, Aastrup P, Svenning J-C (2013) The role of biotic interactions
1640 in shaping distributions and realised assemblages of species: implications for species
1641 distribution modelling. *Biological Reviews* **88**(1), 15-30. doi:<https://doi.org/10.1111/j.1469-185X.2012.00235.x>

1642

1643

1644 Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for
1645 generalized additive models. *Journal of the American Statistical Association* **99**(467), 673-
1646 686. doi:<https://doi.org/10.1198/016214504000000980>

1647

1648 Wood SN (2006) Low-rank scale-invariant tensor product smooths for generalized additive
1649 mixed models. *Biometrics* **62**(4), 1025-1036. doi:<https://doi.org/10.1111/j.1541-0420.2006.00574.x>

1650

1651

1652 Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood
1653 estimation of semiparametric generalized linear models. *The Journal of the Royal Statistical
1654 Society, Series B (Statistical Methodology)* **73**(1), 3-36. doi:<https://doi.org/10.1111/j.1467-9868.2010.00749.x>

1655

1656

1657 Wood SN (2017) 'Generalized additive models: an introduction with R.' 2nd edn. (Taylor &
1658 Francis Group: New York, New York, United States of America)
1659 <https://doi.org/10.1201/9781315370279>

1660

1661 Wood SW, Hua Q, Allen KJ, Bowman DMJS (2010) Age and growth of a fire-prone
1662 Tasmanian temperate old-growth forest stand dominated by *Eucalyptus regnans*, the world's
1663 tallest angiosperm. *Forest Ecology and Management* **260**(4), 438-447.
1664 doi:<https://doi.org/10.1016/j.foreco.2010.04.037>

1665

1666 Woodgate W, Phinn S, Devereux T, Aryal RR (2025) Bushfire recovery at a long-term tall
1667 eucalypt flux site through the lens of a satellite: combining multi-scale data for structural-
1668 functional insight. *Remote Sensing of Environment* **317**, 114530.
1669 doi:<https://doi.org/10.1016/j.rse.2024.114530>

1670

1671 Yates C, Evans J, Vernooij R, Eames T, Muir E, Holmes J, Edwards A, Russell-Smith J
1672 (2023) Incentivizing sustainable fire management in Australia's northern arid spinifex
1673 grasslands. *Journal of Environmental Management* **344**, 118384.
1674 doi:<https://doi.org/10.1016/j.jenvman.2023.118384>

1675

1676

1677

Table 1 Spatial fire, environmental, climate, and terrain variables used to predict fire frequency in the study region of southeast Queensland, Australia.

Data were resampled using the nearest neighbour method (i.e., the default resampling tool in the `gdalUtilities` R package).

Environmental variable	Raw	Resampled	Temporal	Data source
	resolution	resolution	resolution	
Annual Fire Scars: Landsat, QLD DES algorithm, QLD coverage	30 m	Unchanged	1987-2016	Collett 2021
Sentinel-2 fire scars: QLD DES algorithm, QLD coverage	10 m	30 m	2017-2023	van den Berg 2021
Public land fire history	5 m	30 m	1930-2024	Queensland Parks and Wildlife Service 2023
Daily rainfall	5 km	30 m	1987-2023	Jeffrey <i>et al.</i> 2001, SILO 2025c
Daily minimum temperature	5 km	30 m	1987-2023	Jeffrey <i>et al.</i> 2001, SILO 2025b
Daily maximum temperature	5 km	30 m	1987-2023	Jeffrey <i>et al.</i> 2001, SILO 2025a
Topographic wetness index	30 m	Unchanged	2000	Gallant <i>et al.</i> 2012
Foliage projective cover				
- Woody extent and foliage projective cover 2012	25 m	30 m	1988-2012	Department of Environment 2020c
- Woody extent and foliage projective cover 2013	30 m	Unchanged	1988-2013	Department of Environment 2020d

- Landsat 2014	30 m	Unchanged	1998-2014	Department of Environment 2020b
- Statewide Landcover and Trees Study (SLATS)	30 m	Unchanged	2018	Department of Environment 2022
Sentinel-2 2018				
- Statewide Landcover and Trees Study (SLATS)	10 m	30 m	2019, 2020,	Department of Environment 2024b
Sentinel-2			2021, 2022,	
			2023	
Remnant 2021 Broad Vegetation groups - Queensland	100 m	30 m	2017-2024	Department of Environment 2024a
Soil % clay, from 0 to 2 m	90 m	30 m	2021	CSIRO 2024
SRTM-derived 1 Second Digital Elevation Model Version	30 m	Unchanged	2001-2015	Geoscience Australia 2011
1.0, used to derive elevation, aspect, slope, and topographic				
position index				

Table 2 Evaluation statistics comparing predictive performance among generalised linear, generalised additive, and boosted regression tree (BRT) models of fire frequency.

Pearson's correlation coefficient (r) indicates the correlation between predictive fire frequency and fire frequency derived from public land fire history data within the public estate of southeast Queensland, Australia.

Evaluation statistic	Generalised linear model	Generalised additive model	Down-weighted BRT	Unweighted BRT	Infinite BRT
Correlation (r)	0.577	0.526	0.437	0.375	-0.08
with public land fire					
AUC_{ROC}	0.771	0.767	0.776	0.773	0.707
AUC_{PRG}	0.796	0.786	0.788	0.792	0.705

AUC_{ROC} = Area Under the Receiver Operating Characteristic Curve; AUC_{PRG} = Area Under the Precision-Recall Gain Curve; Infinite BRT = Infinitely weighted logistic regression BRT

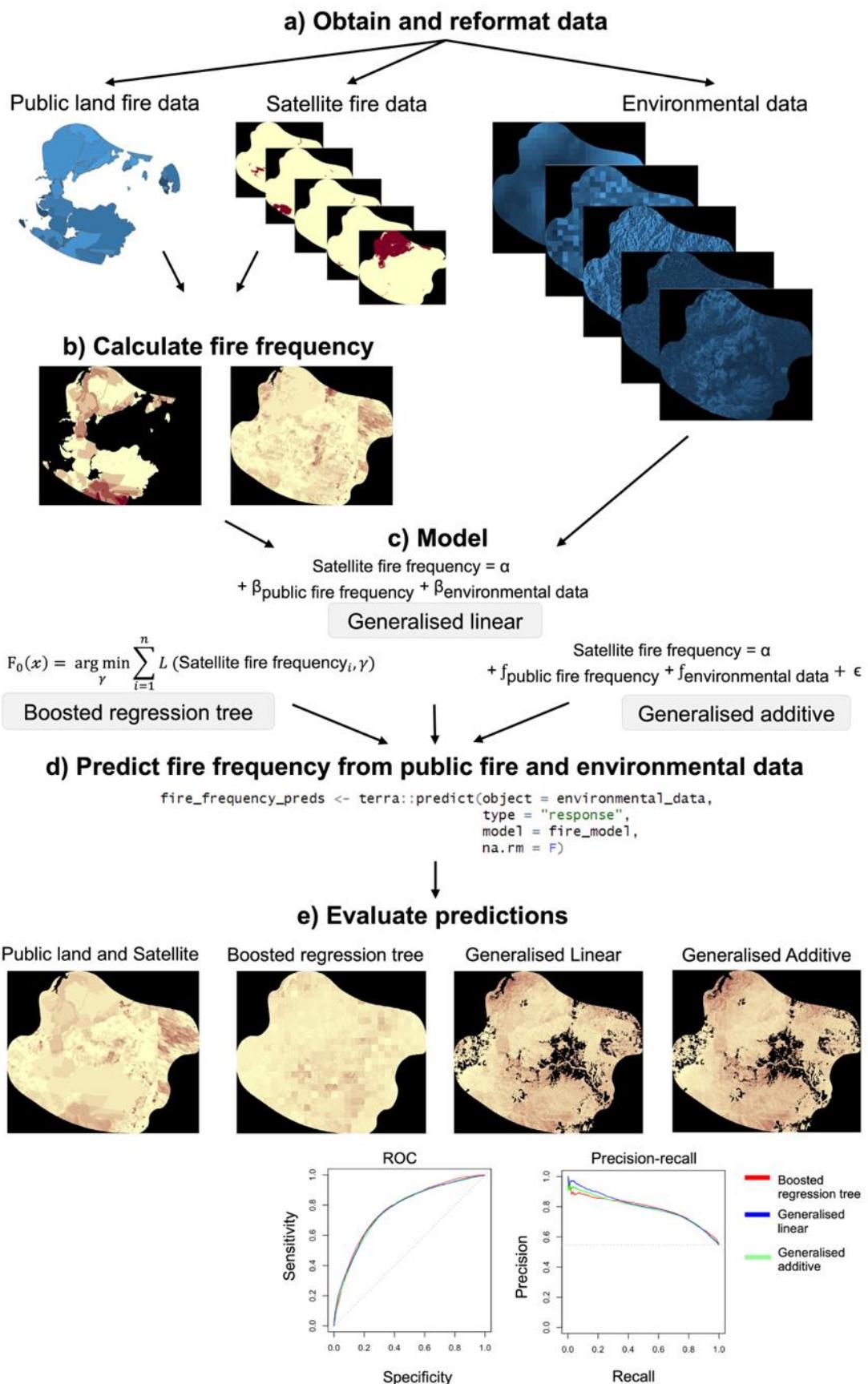


Fig. 1 Generalisable workflow for improving fire frequency estimates using predictive modelling: (a) obtain and reformat fire (e.g., public land and satellite, where available) and environmental (e.g., climate, site productivity, terrain) data; (b) calculate fire frequency from fire history data; (c) run models; (d) produce spatial predictions; and (e) evaluate predictions by comparison of spatial predictions and model performance statistics.

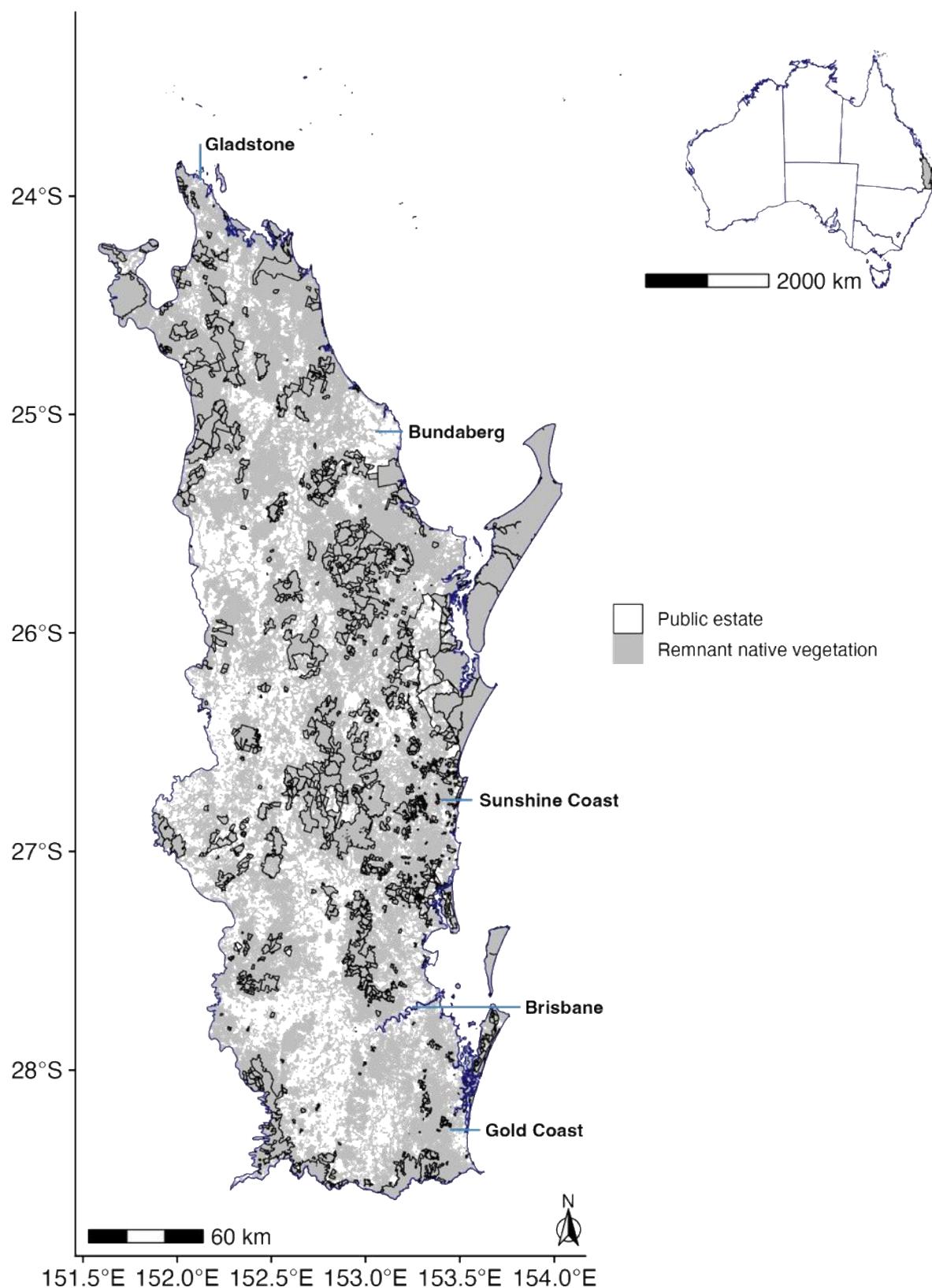


Fig. 2 Remnant native vegetation cover and public estate land managed by Queensland Parks and Wildlife Service in the case study region of southeast Queensland, Australia.

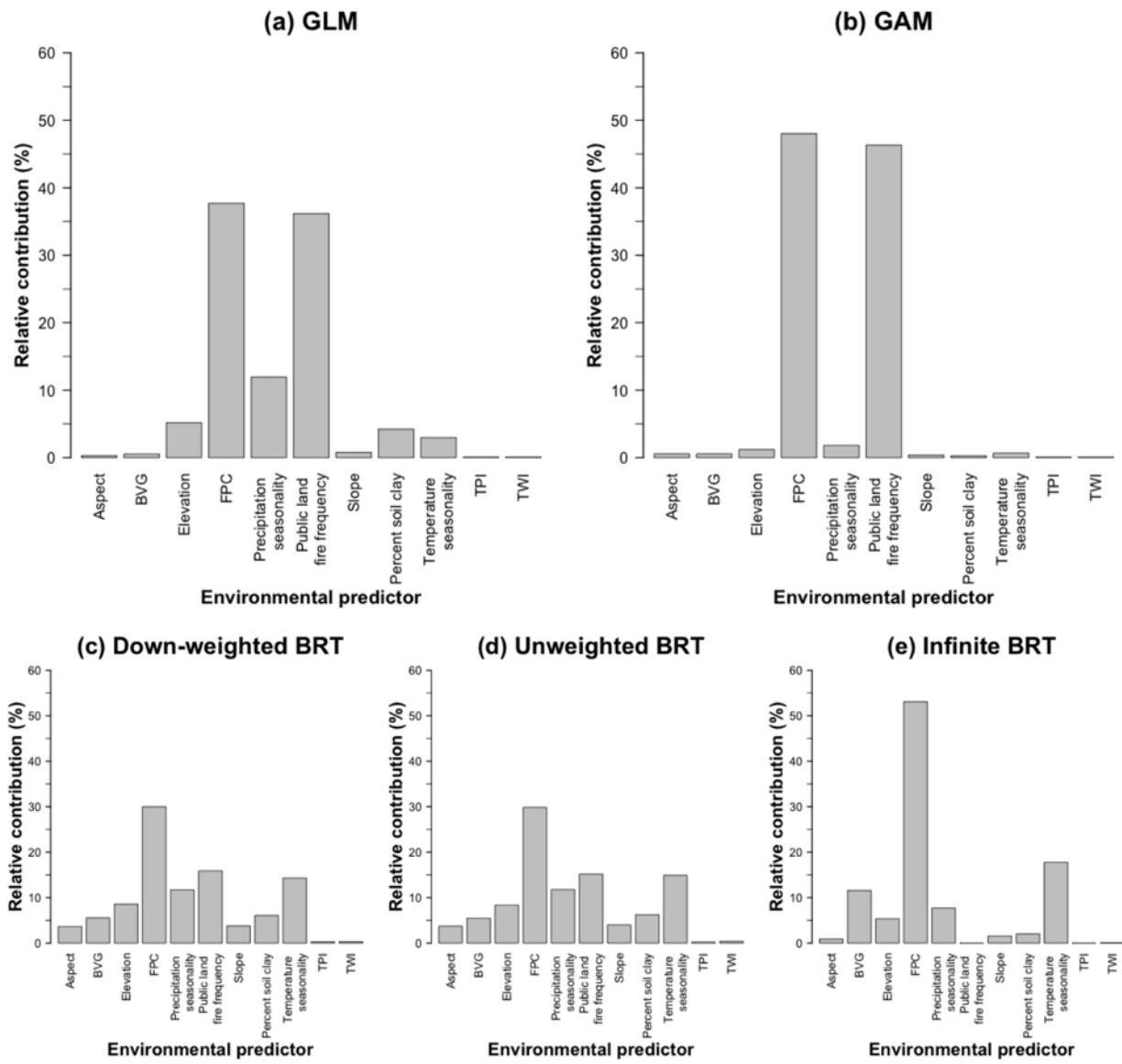


Fig. 3 Relative contributions of environmental predictors to modelling satellite fire frequency for (a) generalised additive (GAM); (b) generalised linear (GLM); (c) Down-weighted BRT; (d) unweighted BRT; (e) infinitely weighted logistic regression BRT (Infinite BRT). The relative contribution axis was truncated at 60% as no variables' contribution to modelling exceeded 55%.

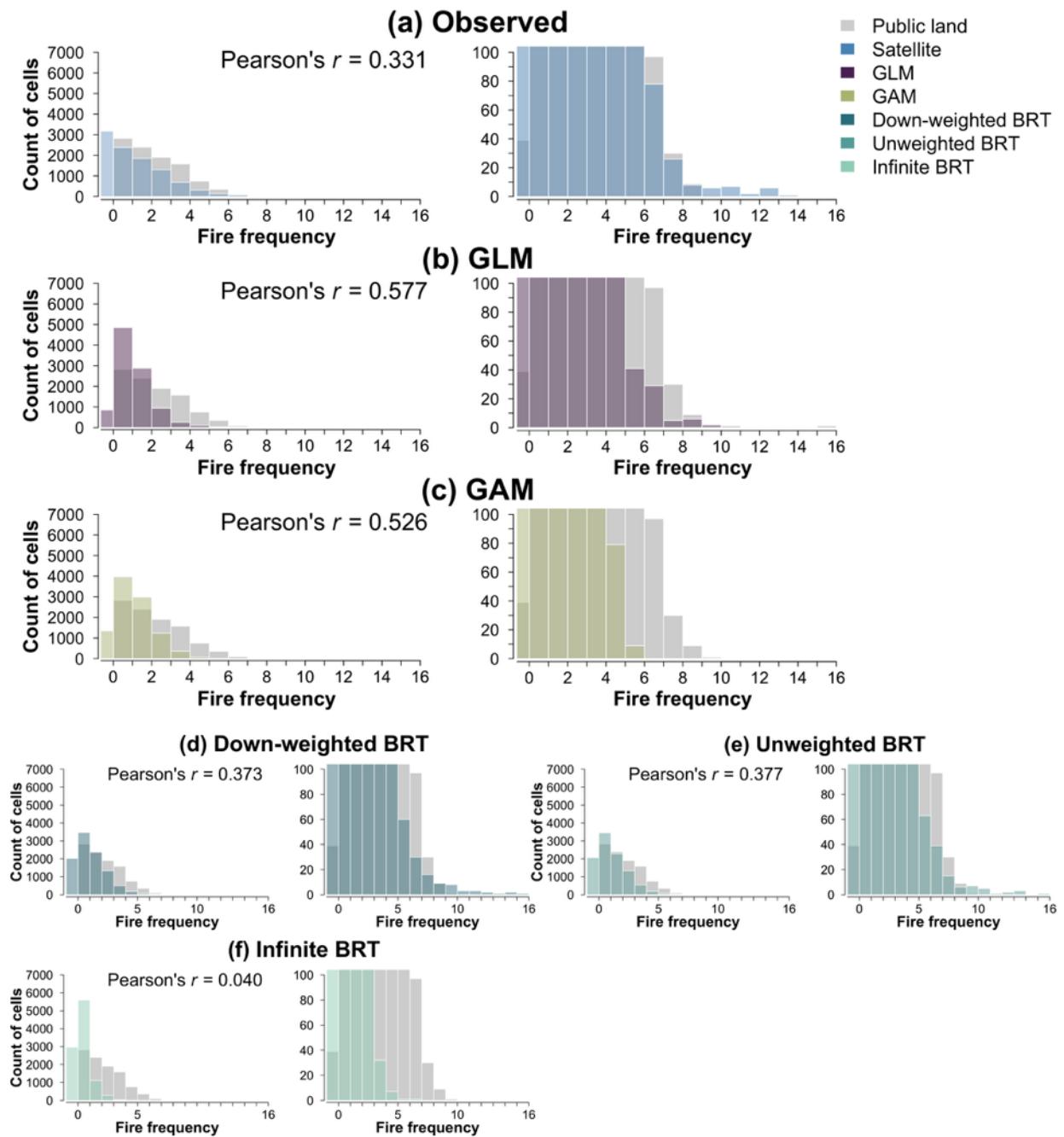


Fig. 4 Comparisons of fire frequency estimates between public land fire history data ('public'), raw, unmodelled satellite data ('satellite') and predictions from a range of model types. The right-hand panel for each model type shows cell counts below 100 to enable comparisons at high fire frequencies (fire frequencies ≥ 4 had very low cell counts and were difficult to visualise). All fire frequency estimates were compared against the public land fire data as a baseline, with fire frequency at presence points ranging from 0 to a maximum of 16 fires depending on the model. (a) Observed = satellite and public land, (b) generalised linear (GLM), (c) generalised additive (GAM), (d) down-weighted Boosted Regression Tree (BRT), (e) unweighted BRT, and (f) Infinitely Weighted Logistic Regression BRT (Infinite BRT) model predictions.

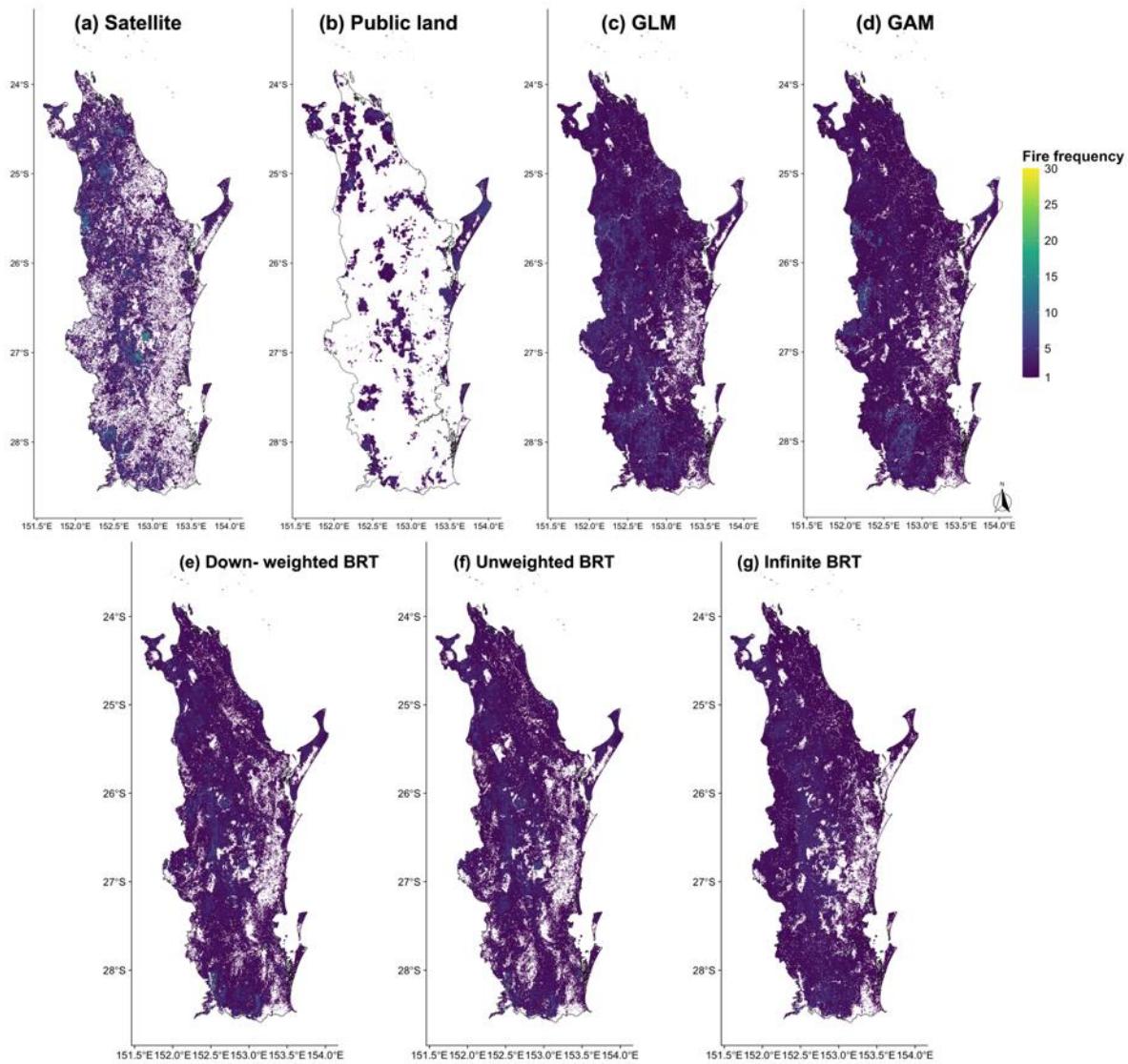


Fig. 5 Fire frequency from 1987 to 2023 in southeast Queensland, Australia derived from (a) observed satellite and (b) public land fire history data. The observed fire frequencies were compared to predictions from: (c) generalised linear model (GLM), (d) generalised additive model (GAM), (e) down-weighted BRT, (f) unweighted BRT, and (g) Infinitely Weighted Logistic Regression (Infinite BRT). White areas are those mapped as unburned. The maximum estimated fire frequency varied across model types: (a) satellite data = 29; (b) public data = 12; (c) GLM = 29; (d) GAM = 40; (e) down-weighted BRT = 130; (f) unweighted BRT = 115; (g) Infinite BRT = 9. Fewer than 1% of cells had fire frequencies >30 from 1987 to 2023 for GAM, unweighted BRT, and down-weighted BRT. Thus, to aid visualisation, fire frequencies >30 are not shown but can be extracted from the database provided online (Charles *et al.* 2025b).

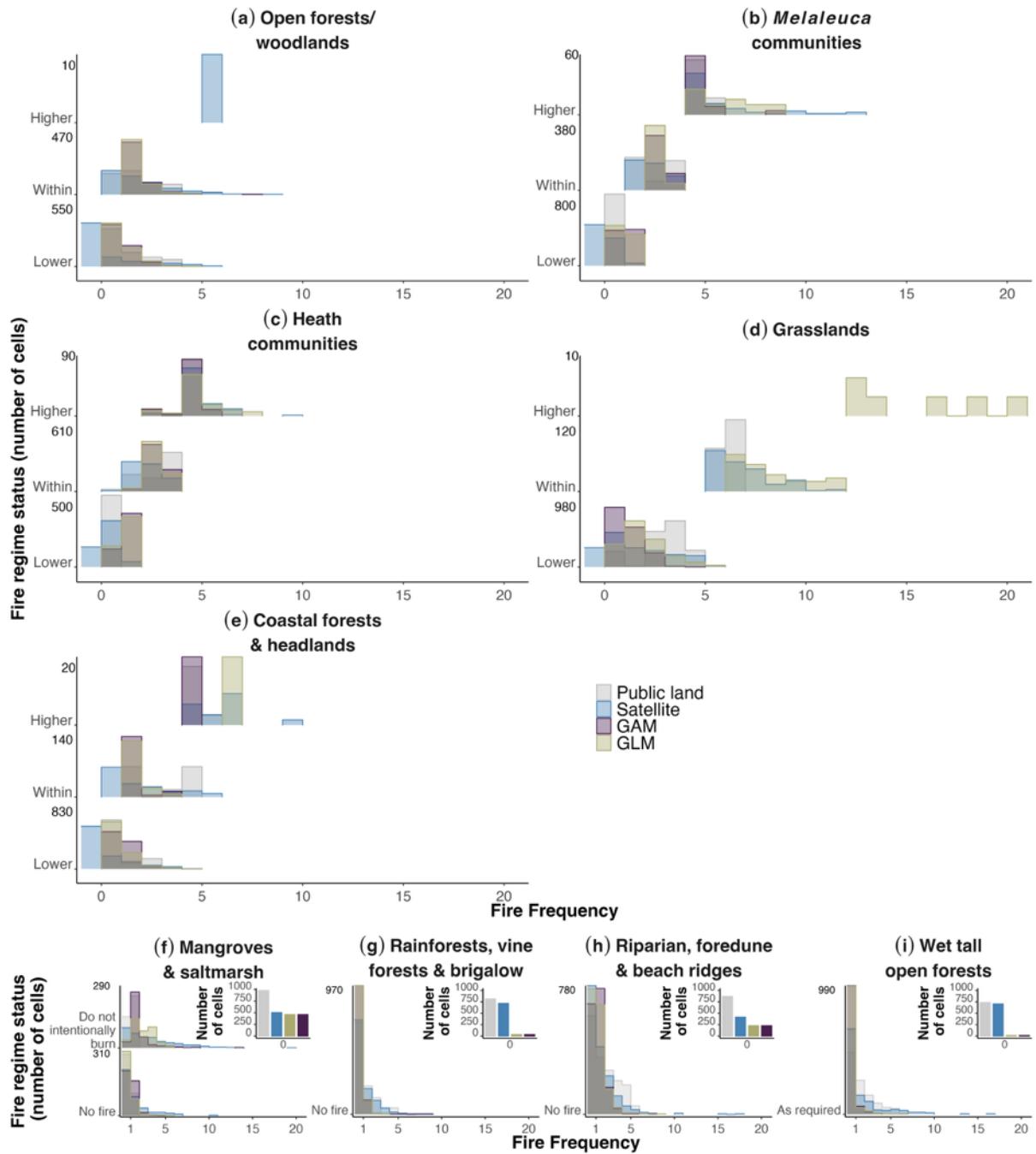


Fig. 6 Distributions of fire frequencies from 1987 to 2023 across broad vegetation aggregations in southeast Queensland, Australia relative to ecologically informed fire regime recommendations. For 1000 random points within each broad vegetation aggregation, the number of cells (y-axis) for each fire frequency (x-axis) are shown, categorising whether the fire regimes were within, higher, or lower than ecological recommendations. The maximum number of cells for each fire regime status category is presented on the y-axis. Broad vegetation aggregations were classified as fire-prone vegetation: (a) open forests and woodlands; (b) *Melaleuca* communities; (c) heath communities; (d) grasslands; and (e) coastal forests and headlands, or fire sensitive vegetation: (f) mangroves and saltmarshes; (g) rainforests, vine forests, and brigalow; (h) riparian, foredune, and (i) wet tall open forests.

beach ridges; and (i) wet tall open forests. Recommendations for fire sensitive vegetation (f – i) are: ‘do not intentionally burn’, ‘no fire’ or ‘as required’. Estimated fire for these vegetation types were dominated by zeros, and the zero values were, thus, plotted as an inset to aid visualisation. Fire frequency estimates are presented from public land fire history data (‘public’); raw, unmodelled satellite data (‘satellite’); and predictions from a Generalised Linear Model (GLM) and a Generalised Additive Model (GAM). The range of fire frequency differed between datasets from zero fires to satellite data and GLM predictions = 20; GAM predictions = 14; and public land fire data = 7.