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Abstract 19 

 20 

Background 21 

Effective fire management requires accurate knowledge of fire history, often derived from 22 

satellite imagery. However, satellites are not well suited to detecting low intensity fires. 23 

Aims 24 

We aimed to improve satellite fire frequency estimates by incorporating mapped fire history 25 

data from public land and environmental co-variation. 26 

Methods 27 

Using a generalisable workflow, we applied boosted regression trees, generalised linear, and 28 

generalised additive models to predict fire frequency in an eastern Australia case study. 29 

Performance of raw and modelled satellite fire frequencies were tested by correlating them 30 

with higher quality public land fire mapping. 31 

Key results 32 

Satellite data underestimated fire frequency, especially in infrequently burnt areas (i.e., 1-6 33 

fires). Generalised linear and generalise additive models improved the correlation to public 34 

land fire data from the baseline (Pearson’s r = 0.331) to 0.577 and 0.526, respectively. 35 

Conclusions 36 

Generalised linear and generalised additive models improved fire frequency estimates and 37 

were most useful at low fire frequencies. Generalised linear models also had some utility for 38 

mapping higher fire frequencies. 39 

Implications 40 

Satellite derived fire mapping is widely used in fire science but is likely to underestimate fire 41 

activity. Our approach can improve the accuracy of satellite derived fire frequency estimates 42 

for fire management and research. 43 
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 44 

Summary 45 

 46 

Satellite derived fire history data are widely used in fire management and research, but these 47 

data often underestimate fire frequency. We present a generalisable application of predictive 48 

modelling framework and show that it can improve fire frequency estimates from satellite 49 

data, ultimately assisting fire management for conservation and human safety. 50 

 51 

Introduction 52 

 53 

Fire has shaped the structure and composition of ecosystems for millennia, with variation in 54 

fire regimes driven by global climatic patterns such as El Niño-Southern Oscillation, and by 55 

anthropogenic influences such as cultural and prescribed burning (Bird et al. 2016; 56 

Williamson et al. 2016; Moura et al. 2019; Fang et al. 2021; Kelly et al. 2023). However, 57 

contemporary fire regimes are changing rapidly due to climate change (Moritz et al. 2012; Le 58 

Page et al. 2017; Harvey et al. 2022), land clearing, fire suppression, and inappropriate fire 59 

management policies (Rogers et al. 2020; Jones et al. 2022; Kelly et al. 2023; Kreider et al. 60 

2024; Sayedi et al. 2024). In the 21st century, fire regime changes have been marked by 61 

multiple large intense wildfires affecting vast areas of Australia, Europe, and North and South 62 

America (Castellnou et al. 2018; Coen et al. 2018; Gustafsson et al. 2019; Collins et al. 2021; 63 

D’Angelo et al. 2022; González et al. 2022). These ‘megafires’ (i.e., those which burn over 64 

10,000 ha, Linley et al. 2022) are likely to increase into the future (Khorshidi et al. 2020), 65 

along with increasing extreme fire weather and longer fire seasons, especially in mid- to 66 

high-latitudes (Moritz et al. 2012; Flannigan et al. 2013; Le Page et al. 2017; Dowdy et al. 67 

2019). In regions where fire suppression is the dominant management strategy, vegetation 68 
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encroachment can increase wildfire risk (Moura et al. 2019; Kelly et al. 2023; Sayedi et al. 69 

2024) and threaten species which rely on fire for reproduction (Corlett 2016; Kelly et al. 70 

2020; Lavery et al. 2021; Bachman et al. 2024). Thus, there is an urgent global need to 71 

address fire regime changes and manage fire at large scales. 72 

 73 

Understanding ecosystem function relies on knowledge of historical fire regimes which occur 74 

on evolutionary timescales (i.e., centuries to millions of years, Moss et al. 2013; Mariani et 75 

al. 2017; Mackenzie et al. 2020), or ecological timescales (i.e., decadal scales, Smith et al. 76 

2016; Le Breton et al. 2023; Plumanns-Pouton et al. 2024). Fire history on ecological 77 

timescales is related to the generation times of plant and animal species and is especially 78 

important for understanding the impacts of rapid global change (Charles et al. 2025a). Prior 79 

to the availability of satellite imagery in the 1970s, multi-decadal fire history data were 80 

mainly derived from aerial imagery, on-ground surveys, tree-ring fire scar analyses, 81 

dendroecological techniques with radiocarbon analyses, and fire sensitive species age 82 

reconstruction where establishment corresponded to the last major fire (Mouillot et al. 2005; 83 

Conedera et al. 2009; Wood et al. 2010; Greene et al. 2017; Fedrigo et al. 2019; Queensland 84 

Parks and Wildlife Service 2023). These multi-decadal fire datasets can be limited in 85 

spatiotemporal coverages (Conedera et al. 2009; Duane et al. 2015) and disrupted by 86 

jurisdictional boundaries, producing discontinuous datasets (Liu et al. 2019b; Phelps et al. 87 

2021; Welch 2021; Ryu et al. 2023). Gathering and processing fire scar data manually is also 88 

time intensive which limits its geographic breadth and hence, applicability. Furthermore, 89 

aerial or ground-based fire data are often incomplete due to changes in mapping system, 90 

government policies (e.g., reporting guidelines), or spatial scales (e.g., omission of small 91 

scale fires less than 1 ha or mapping only completed for public land) (Pausas et al. 2012; San-92 

Miguel-Ayanz et al. 2012; Welch 2021; Queensland Parks and Wildlife Service 2023; Ryu et 93 
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al. 2023; Duane et al. 2025). Improved workflows are needed to ensure that future fire 94 

history data collection is standardised and that existing data can be used to reconstruct fire 95 

histories, while accounting for inaccuracy or incompleteness. 96 

 97 

Satellite derived imagery has circumvented some of the issues with aerial or ground-based 98 

data and is frequently used to reconstruct fire histories (D’Este et al. 2020; Elia et al. 2020; 99 

Orero et al. 2024; Ramsey et al. 2024) and map fire severity (Redmond et al. 2002; Collins et 100 

al. 2018; Collins et al. 2020; Gibson et al. 2020; Saulino et al. 2020). Several satellite image-101 

derived fire maps are available at different resolutions and spatial coverages, such as the 102 

500 m Global Fire Atlas, global 250 m Moderate Resolution Imaging Spectroradiometer 103 

(MODIS) burned area product, and Landsat or Sentinel-2 products at finer resolutions (e.g., 104 

30 and 10 m, respectively) (Maier et al. 2012; Andela et al. 2019; Ruscalleda-Alvarez et al. 105 

2021). However, satellite derived fire products also have drawbacks. They can misclassify 106 

burned areas (van den Berg 2021), and satellite imagery used to derive burn scars often have 107 

resolutions too coarse to capture small fires at scales relevant to management (Ruscalleda-108 

Alvarez et al. 2021). Another source of inaccuracy in satellite derived fire products is their 109 

inability to capture low intensity understorey fires (Randerson et al. 2012; Khairoun et al. 110 

2024) meaning that fire frequency is often underestimated (Collett 2021; van den Berg 2021). 111 

Low intensity understorey fires can be detected by combining satellite data with high 112 

resolution airborne digital sensor imagery (e.g., McCarthy et al. 2017; Woodgate et al. 2025) 113 

but this method is resource intensive, in terms of time and expert personnel, and is likely 114 

prohibitive for mapping over large spatiotemporal scales. As a result, fire histories on decadal 115 

timeframes are often unknown or inaccurate (Galizia et al. 2021; Ruscalleda-Alvarez et al. 116 

2021; Khairoun et al. 2024). Thus, there is a strong need for approaches which can improve 117 

estimates of multi-decadal fire history at landscape scales. 118 
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 119 

Here, we aimed to develop a workflow to predict fire frequency (i.e., a cumulative count of 120 

the number of fires in a period of time) outside of public estates by improving the accuracy of 121 

landscape-scale fire frequency estimates from satellite data. We used a novel application of 122 

species distribution modelling workflows to improve estimates of satellite derived fire 123 

histories by integrating fire history data from public land, which is manually verified and, 124 

thus, more accurate, with environmental co-variation. Environmental factors including 125 

climate, terrain, and vegetation productivity drive fire cycles and govern fuel availability and 126 

flammability (Cary et al. 2006; Bradstock 2010; Duane et al. 2015). Thus, our approach 127 

treated fire history data in the same way as species distribution modelling workflows treat 128 

species whose presence depends on a specific niche (Wisz et al. 2013; He et al. 2019). Three 129 

different model types were evaluated by examining correlations between public land fire data 130 

and modelled fire history estimates. We expected modelled estimates to have stronger 131 

correlations with public land fire data compared unmodelled values from the satellite 132 

imagery. We begin by outlining a general workflow which can be applied to any landscape 133 

where fire history data is available. Following this, we present a case study of our approach in 134 

southeast Queensland, Australia. Our data, code, and modelling workflow are publicly 135 

available and can be customised for applications in other regions, enabling downstream 136 

analysis of fire histories across landscapes. 137 

 138 
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Methods 139 

 140 

Overview of workflow to improve fire frequency estimates 141 

 142 

The first stage of the workflow involves obtaining historical fire data and gridded continuous 143 

environmental data (Fig. 1a). Environmental data can include variables most likely to 144 

influence fire occurrences in a given landscape, such as climate (e.g., temperature and 145 

precipitation), terrain (e.g., elevation and slope), and site productivity (e.g., percent soil clay, 146 

foliage projective cover, vegetation aggregation) (Cary et al. 2006; Bradstock 2010; Duane et 147 

al. 2015). Data are then cropped to the study region and reformatted to align the spatial 148 

resolution and coordinate reference systems across layers (Fig. 1a). In the second stage, 149 

available historical fire data is reformatted such that the fire metric of interest (e.g., fire 150 

frequency, fire return interval, time since last fire, or fire seasonality) can be calculated using 151 

standard GIS functions for the relevant time period (Fig. 1b). Here we focus on fire frequency 152 

(i.e., a cumulative count of the number of fires in a period of time). Modelling the 153 

relationship between fire history data derived from satellite imagery and fire data mapped on 154 

public land allows projections of fire history to areas that are unmapped (i.e., unburnt areas) 155 

or inaccurately mapped (i.e., outside the region where fire history information has been 156 

recorded). 157 

 158 

Presence points are created from burned grid cells and depending on the completeness of the 159 

fire data, absences can be created in a number of ways. For fire history records where unburnt 160 

areas are accurately mapped (i.e., true absences), these can be directly used as absences. For 161 

incomplete fire history records, two methods can be used to create ‘absence’ points. 162 

Pseudoabsence points can be created outside of a pre-defined buffer around each presence 163 
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point (see Barbet-Massin et al. 2012; Broussin et al. 2024). Alternatively, a large number of 164 

background points can be randomly created across the study region. We recommend the 165 

second option (i.e., background points) as pseudoabsences may exclude areas unlikely to 166 

burn due to their close proximity to presence points (Broussin et al. 2024), potentially leading 167 

to some over-estimation of low fire frequencies. A presence-absence/background dataset can 168 

then be produced by extracting fire and environmental data for the presence and 169 

absence/background points. 170 

 171 

Prior to modelling (the third stage of the workflow), backwards stepwise elimination and 172 

variable correlation tests can be used to exclude non-informative and/or highly correlated 173 

variables (see Valavi et al. 2022). The extent of spatial autocorrelation should be calculated to 174 

produce spatially explicit presence-background datasets to be used for model training (e.g., 175 

80% of the data) and model evaluation (e.g., 20% of the data for evaluating Area Under the 176 

Receiver Operating Characteristic Curve, AUCROC; and Precision-Recall Gain curves, 177 

AUCPRG). We recommend investigating multiple modelling methods to account for differing 178 

strengths and weaknesses among models (Li et al. 2013; Elith et al. 2020; Valavi et al. 2022; 179 

Harris et al. 2024). If using boosted regression trees (BRT), hyperparameter tuning should be 180 

performed to determine optimal settings for tree complexity and learning rate (see Elith et al. 181 

2008). Spatially explicit training data can then be used to run BRT, generalised linear (GLM), 182 

and generalised additive (GAM) models (Fig. 1c). Generalised additive model tuning can be 183 

performed after modelling, and models should be re-run if model fit requires improvement. 184 

 185 

In the fourth stage, spatial fire frequency predictions can be produced from each model using 186 

the environmental predictors (Fig. 1d). In the fifth and final stage, models are evaluated using 187 

the spatially explicit model evaluation dataset. Predictive performance can be evaluated by 188 
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comparing spatial prediction maps and by using standard evaluation procedures for species 189 

distribution modelling workflows (e.g., AUCROC and AUCPRC; Valavi et al. 2022) (Fig. 1e). 190 

Further model evaluation can be performed by comparing observed and predicted fire 191 

frequency correlations, fire frequency histograms, and fire regime management 192 

recommendations for specific vegetation communities. 193 

 194 

Case study region 195 

 196 

Our case study focused on the southeast Queensland Interim Biogeographic Regionalisation 197 

of Australia (IBRA) bioregion, Australia, limited to the border with New South Wales (Fig. 198 

2). The region has a subtropical climate with mean annual rainfall ranging from 600 mm to 199 

2000 mm (Australian Bureau of Meteorology 2024a). Mean maximum temperatures range 200 

throughout the region from 21 °C to 33 °C in summer and 18 °C to 24 °C in winter 201 

(Australian Bureau of Meteorology 2024b). Coastal areas within the region generally 202 

experience more moderate temperatures and higher rainfall than inland areas. The IBRA is 203 

dominated by dry sclerophyll forest (Department of Climate Change 2024), which 204 

accumulates fuel load quickly (Cochrane 1968; Gilroy et al. 2009; Gould et al. 2011). 205 

 206 

Ecologically informed fire regimes recommendations suggest variable high to low fire 207 

frequency regimes (i.e., mosaics of fire return intervals from 4 to 20 years to create 208 

spatiotemporal mosaics of fire, Neldner et al. 2019; Queensland Herbarium 2024). In the 209 

subtropics, many dry sclerophyll systems have grassy understorey and the recommended fire 210 

regimes are for low intensity, cool season burns that scorch the ground layer while avoiding 211 

burning the trees (Neldner et al. 2019). This type of burning can maintain ground layer plant 212 

diversity (Dooley et al. 2023) while also minimising weed invasion (Debuse et al. 2014). 213 
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Bushfires in the region generally occur in late winter and spring (Sullivan et al. 2012). 214 

Prescribed burning on public land is conducted across large areas (e.g., ~ 600 000 to 1 million 215 

ha, Department of Environment 2020a; Department of Environment and Science 2021, 2023) 216 

during winter (Eliott et al. 2020; Department of Environment and Science 2022b) (Fig. 2). 217 

On private land, properties are burned for fire hazard reduction, woody vegetation control, 218 

ecosystem restoration, and weed control (Toledo et al. 2012; Edwards et al. 2016; 219 

McCormack et al. 2024). However, private land can be more prone to frequent fire due to 220 

management attitudes and objectives which do not necessarily align with ecosystem 221 

conservation, reduced management abilities, and increased ignitions resulting from the 222 

wildland-urban interface (Aslan et al. 2024). Cultural burning also takes place on public and 223 

private land (Williamson 2021; Greenwood et al. 2022; Williamson 2022). 224 

 225 

Between September 2019 and February 2020, wildfires affected 3.1 million hectares of public 226 

land managed by Queensland Parks and Wildlife Service and nearby private land, in an event 227 

that was unprecedented in spatial scale and intensity (Legge et al. 2022). These wildfires 228 

occurred following a multi-year drought during extreme fire weather conditions (Nolan et al. 229 

2020; Udy et al. 2024), resulting in extensive areas burnt at high severity with canopy scorch 230 

or consumption (Dickman 2021; Nolan et al. 2021). These fires occurred in drastically 231 

different to conditions to prescribed burns (Morgan et al. 2020) and resulted in a suite of 232 

negative ecological impacts (Marsh et al. 2022). In 2021-2022, prescribed burning was 233 

conducted across a smaller areas (358 563 ha) as a result of the wildfire (Department of 234 

Environment and Science 2022a). 235 

 236 
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Modelling methods 237 

 238 

We conducted all analyses in R version 4.5.1 (R Core Team 2018). Modelling methods 239 

included machine-learning and traditional regression models commonly used in species 240 

distribution and fire predictive modelling (Bistinas et al. 2014; Li et al. 2022; Valavi et al. 241 

2022). Spatial data were manipulated (e.g., cropped, reprojected, aggregated, disaggregated) 242 

using the terra R package version 1.8-60 (Hijmans 2025), unless otherwise specified. All 243 

spatial data layers (Table 1) were projected to a standard coordinate reference system (EPSG 244 

3577: GDA94/Australian Albers); spatial extent (i.e., southeast Queensland IBRA, Fig. 2); 245 

and resolution of 30 m. We masked spatial data to exclude water bodies, limiting predictions 246 

to land. 247 

 248 

Historical fire data pre-processing 249 

 250 

Satellite fire history data were obtained with burn scars identified from Landsat for 1987 – 251 

2016 at 30 m resolution but data for 2017 – 2023 were obtained from Sentinel 2 at 10 m 252 

resolution (Collett 2021; van den Berg 2021) (Table 1). Each of these datasets are produced 253 

as yearly composites with values denoting month of burn. As such, the data do not indicate 254 

cells burnt more than once in a month (which is unlikely, although possible), nor do they 255 

indicate if the fire was a wildfire or a prescribed burn. For Landsat, fire scars are 256 

automatically detected from significant changes in reflectance, relative to the previous 257 

reflectance value, which arise from the presence of charcoal or ash, removal of foliage, or 258 

scorch (Collett 2021). For Sentinel, fire scars are automatically detected from imagery using 259 

differenced bare soil fraction relative to the previous fractional cover values (van den Berg 260 

2021). Satellite fire scar values were reclassified such that month values of 1-12 were 261 
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assigned 1s and no data values (i.e., unburnt and no data areas – water or masked agricultural 262 

crops) were assigned 0s. Fire frequency was then calculated as the cumulative count of cells 263 

assigned 1 for Landsat and Sentinel data separately. To avoid issues with downscaling fire 264 

history data to finer resolutions (e.g., changes in minimum values) (Atkinson et al. 2000; 265 

Ekström et al. 2015; Park et al. 2019), Sentinel 2 data was scaled up through cell value 266 

averaging during aggregation to 30 m resolution after pre-processing. Landsat derived fire 267 

frequencies from 1987 – 2016 and Sentinel 2 derived fire frequencies from 2017 – 2023 were 268 

then combined into one dataset to provide fire frequencies over 1987 to 2023. 269 

 270 

Public land fire data were obtained from Queensland Parks and Wildlife Service (Table 1) 271 

(Queensland Parks and Wildlife Service 2023). These data consisted of spatial maps of 272 

wildfire and prescribed burn scar perimeters in public estates (e.g., national parks and state 273 

forests) between 1930 and 2024 (Queensland Parks and Wildlife Service 2023). Public land 274 

fire data was mapped through field observations and Global Position System (GPS) capture; 275 

digitations from paper-based records and aerial imagery; and fire scar analysis of satellite 276 

imagery. Consequently, due to this post hoc mapping fire history records prior to the 2000s 277 

were incomplete (Eliott et al. 2020; Queensland Parks and Wildlife Service 2023). To address 278 

this incompleteness while reducing major losses of temporal coverage, we subset the public 279 

land fire data to match the temporal coverage of the satellite data (i.e., 1987-2023). These 280 

data were then converted to raster format with 5 m resolution, assigning cell values as the 281 

count of overlapping polygons using terra (Hijmans 2025). The final public land fire 282 

frequency dataset was then aggregated to a 30 m resolution using the gdalUtilities R 283 

package version 1.2.5 (O'Brien 2023). 284 

 285 
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Gridded environmental and climate data pre-processing 286 

 287 

To represent environmental variation which influences fire probability, we used continuous 288 

gridded spatial data on the following environmental variables (Table 1): terrain (elevation, 289 

slope, aspect, and topographic position index); site productivity (topographic wetness index, 290 

foliage projective cover, soil percent clay, and broad vegetation group); and climate 291 

(temperature seasonality and precipitation seasonality). Terrain attributes were expected to 292 

influence fire probability and fire behaviour patterns through their effect on vegetation 293 

structure, productivity, and solar radiation exposure (e.g., with variation in aspect) (Del-Toro-294 

Guerrero et al. 2019; Cheng et al. 2023). Site productivity attributes were expected to 295 

influence fire probability through their effects on fuel accumulation and fuel moisture (Cary 296 

et al. 2006; Bradstock 2010; Duane et al. 2015). Climatic variables were expected to 297 

influence fire weather conditions which drives fire probability (Cary et al. 2006). 298 

Precipitation seasonality was also expected to influence vegetation productivity as it drives 299 

the regularity of fuel moisture and flammability (Bradstock 2010) while capturing variation 300 

in wet and dry seasons (Wang et al. 2024), highly relevant to our subtropical study region. 301 

These environmental predictors were processed to standardise resolution, projection, and 302 

spatial extent using gdalUtilities in the same way as the fire data (see Table 1). The 303 

SRTM-derived 1 Second Digital Elevation Model Version 1.0 was used to derive aspect and 304 

degrees of slope using terra (Geoscience Australia 2011) (Table 1). Topographic position 305 

index was derived from the Digital Elevation Model using the landform R package version 306 

0.2 (Alberti 2023). 307 

 308 

Consistent with other predictive modelling studies which used long-term average climate data 309 

(e.g., Syphard et al. 2008; D’Este et al. 2020), we formatted climate and vegetation datasets 310 
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such that they represented averages across their relevant time periods. Climate seasonality 311 

measures were derived from daily datasets for precipitation, minimum temperature and 312 

maximum temperature (Jeffrey et al. 2001; SILO 2025c, 2025b, 2025a). For precipitation, we 313 

calculated average monthly precipitation per year, which was used for subsequent seasonality 314 

calculations (SILO 2025c). For temperature, we calculated average daily temperature from 315 

daily minimum and maximum measurements, which were then averaged for each month per 316 

year and used for subsequent seasonality calculations (SILO 2025b, 2025a). Seasonality 317 

indices (i.e., precipitation seasonality and temperature seasonality) were then calculated as 318 

the standard deviation of the average monthly measurement  100 per year (Fick et al. 2017). 319 

Final precipitation and temperature seasonality values were then produced as the long-term 320 

average of these seasonality measures across all years for the study region. Foliage projective 321 

cover (FPC) data measures the amount of woody mid- and over-story vegetation (Department 322 

of Environment 2024b) and is provided as 0-100% foliage cover. The 2014 data required 323 

reclassification as values of 1-100% were denoted as 100-200, and 0% was denoted by values 324 

above 200 or below 100. We then calculated average FPC from the reclassified 2012-2014 325 

and 2018-2023 datasets. For broad vegetation group (BVG) data, the numerical code 326 

allocated to each group was used for modelling and this data was converted to raster using 327 

terra (Hijmans 2025). Soil percent clay data were available for each stratum in our study 328 

region (e.g., 0 to 0.05 m, 0.05 to 0.1 m, etc) and these were processed to produce the average 329 

soil percent clay from 0 to 2 m. 330 

 331 

For each environmental predictor, we replaced cells with no data (i.e., NA) with single 332 

imputation (Łopucki et al. 2022), such that NAs were replaced by an average from the 333 

surrounding cells using terra. Foliage projective cover had large areas mapped as NA due 334 

to mapping only mid- and over-story vegetation of >0.5 ha (Department of Environment 335 
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2024b). However, single imputation was still considered appropriate for FPC as 336 

underestimation was already present due to a lack of understorey data (Department of 337 

Environment 2024b). For BVG data, no interpolation was performed. 338 

 339 

Presence-background points dataset 340 

 341 

Our datasets suffered from a lack of definitively identifiable unburnt areas from 1987-2023 342 

(Eliott et al. 2020; Queensland Parks and Wildlife Service 2023). As our aim was to improve 343 

estimates of fire frequency for areas outside of public land, we used public land fire data to 344 

produce background points in place of absences (see Liu et al. 2019a; Grimmett et al. 2020; 345 

Valavi et al. 2022). As such, we restricted model training and testing to areas where more 346 

accurate fire history data was available. Prior to producing presence/absence points, we set a 347 

random seed for reproducibility. Presence points were created as a random sample of 10,000 348 

points in areas of public land fire frequency ≥1 (i.e., presence points must have burnt at least 349 

once) using terra (Hijmans 2025). For presence points, values were assigned as the fire 350 

frequency value from the cell (i.e., presences represent the fire frequency of the cell). 351 

Background points were then created as a random sample of 80,000 points across public land 352 

in the study region, irrespective of the location of presence points. Therefore, an ‘absence’ 353 

could occur in the same location as a presence, consistent with recent statistical approaches 354 

(Liu et al. 2019a; Valavi et al. 2022; Whitford et al. 2024). For satellite fire frequency and 355 

environmental predictors, we used a custom function (see Golding et al. 2016) which 356 

resampled NA values primarily occurring at the edges of landmasses, by replacing the NA 357 

with the nearest non-NA value. For the public land fire frequency data, NAs were assigned 0s 358 

as the data were restricted to public estates and some of these areas had no fire records for the 359 

time period. Data for each environmental predictor were extracted for all presence and 360 
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background points, and these datasets were then combined into a single dataset (hereafter 361 

‘presence-background data’). 362 

 363 

Model selection 364 

 365 

Variable selection 366 

 367 

Prior to modelling, we used two methods to examine correlations among predictor variables 368 

to eliminate the risk of including highly correlated or non-informative variables. Firstly, we 369 

used Spearman’s rank correlation coefficient (ρ) to test for highly correlated variables (e.g., 370 

Spearman’s rank correlation coefficient, ρ ≥|0.8|, Duane et al. 2015; Valavi et al. 2022) using 371 

the ggstatsplot R package version 0.13.3 (Patil 2021). Secondly, to eliminate non-372 

informative variables we fit a global linear model and ran Akaike Information Criterion 373 

(AIC) backward stepwise elimination (e.g., Syphard et al. 2008; Elia et al. 2020) using the 374 

MASS R package version 7.3-65 (Venables et al. 2002). No variables were above the 375 

correlation threshold or uninformative, so all were retained. 376 

 377 

Spatial blocking and spatial autocorrelation 378 

 379 

Predictive modelling requires independent training and evaluation data (Hastie et al. 2009) 380 

which, for predicting to new areas, should also be spatially blocked (see Roberts et al. 2017). 381 

This spatial blocking reduces the propensity for overfitting due to spatial dependencies 382 

between biological processes, and biasing of estimates due to spatial autocorrelation (Roberts 383 

et al. 2017; Hao et al. 2020). To determine the distance over which spatial autocorrelation 384 

occurred, we fit an initial variogram using the blockCV R package version 3.2-0 (Valavi et 385 
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al. 2019) to inform parameter settings (e.g., psill, model, range, and nugget). Subsequent 386 

variograms were fit using the gstat R package version 2.1-4 (Pebesma 2004; Gräler et al. 387 

2016). Variograms were fit iteratively with parameters adjusted until the final outputs were 388 

the same as those used for fitting the current variogram. The size of blocks for spatially 389 

explicit data was determined by the final range value returned by the variogram. Presence-390 

background data were then split into spatially explicit blocks of 29109 m in size, randomly 391 

allocating points to five data partitions in a checkerboard pattern with an 80% to 20% training 392 

to evaluation split. The allocation of data to these five partitions was performed such that the 393 

number of points for a particular fire frequency was balanced across partitions (e.g., for a fire 394 

frequency of 2, each of the five training partitions had ca. 8000 points while each of the five 395 

evaluation partitions had ca. 2000 points). 396 

 397 

Predictive modelling 398 

 399 

We used three different modelling approaches to estimate landscape-scale fire frequency: 400 

Boosted Regression Trees (BRT), Generalised Linear Models (GLM), and Generalised 401 

Additive Models (GAM). Each of these models differ in their technical and conceptual 402 

approach with BRT being less easily interrogated but used commonly in species distribution 403 

modelling (Soykan et al. 2014; Elith et al. 2020) and fire applications (Sachdeva et al. 2018; 404 

Kalantar et al. 2020). Generalised linear models and GAMs use a traditional statistical 405 

modelling approach and often perform well in modelling species distributions (e.g., Meynard 406 

et al. 2007; Murase et al. 2009; Valavi et al. 2022). Our goal was to compare the three model 407 

types to determine which method improved estimates of satellite fire frequency when 408 

compared to the more accurately mapped public fire data. In all models, the response variable 409 

was satellite fire frequency derived from Landsat and Sentinel-2. All models were fit with a 410 
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Poisson distribution; log link function, appropriate for count data; and a random seed set prior 411 

to modelling, for reproducibility. 412 

 413 

The ratio of presence to background points in our data was small (1:8), resulting in zero-414 

inflation. Thus, following Valavi et al. (2022), we compared three weighting approaches for 415 

BRT modelling to balance the contribution of background points to model fitting: (1) no 416 

weighting; (2) down-weighting backgrounds points (the total summed weight of background 417 

points equalled the total weight of presences); and (3) infinitely weighted logistic regression 418 

(background points with a very large weight, hereafter ‘Infinite BRT’). Based on BRT model 419 

performance, we then selected either (2) down-weighting or (3) infinite weighting for GLM 420 

and GAM model fitting. 421 

 422 

Boosted regression tree modelling 423 

 424 

Boosted regression trees hyperparameters were optimised prior to modelling by creating a 425 

data frame with all combinations of: number of trees (500, 600, …, 10000); tree complexity 426 

(1, 2, …, 8); number of minimum observations in node (50, 100, or 200); and learning rate 427 

(0.1, 0.05, …, 0.0001) (see Elith et al. 2008). Using the training subset of presence-428 

background data a BRT model was then trained in the caret R package version 7.0-1 (Kuhn 429 

2008) with a 10-partition cross-validation method and grid search pattern. The optimised tree 430 

complexity of 8 and learning rate of 0.1 were used in subsequent modelling. Each BRT model 431 

was run using the dismo R package version 1.3-16 with these parameter settings (Hijmans et 432 

al. 2024). The relative influence of each environmental predictor on the model was calculated 433 

internally by BRT and was extracted from the model for comparison between models. 434 

 435 
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Generalised linear and generalised additive modelling 436 

 437 

Generalised linear models and GAMs were used with background point down-weighting 438 

applied in the same manner as for BRT. Generalised linear models were run in base R (R 439 

Core Team 2023) and GAMs in the mgcv R package version 1.9-3 (Wood 2004, 2011, 2017). 440 

Generalised additive models fit non-linear relationships by summing smooth functions of 441 

each variable, applying marginal basis functions, and controlling the basis dimensions of each 442 

variable (Wood 2004, 2011). We used tensor product smooth functions (‘te’) which apply 443 

separate penalties to each variable making them useful for variables in different units (Wood 444 

2006, 2017). We also specified cyclic cubic regression spline (‘cc’) marginal basis functions 445 

for climatic variables to stop the smoother shrinking to zero and random effect (‘re’) marginal 446 

basis functions for BVG to account for the categorical nature of the data (Wood 2017). 447 

Generalised additive model smoothness was further controlled by specifying the basis 448 

dimension (‘k’) to determine knot spacing (i.e., the amount of ‘wiggliness’ in the response) 449 

(Wood 2017). We adjusted k for each variable separately until k-index values and expected 450 

degrees of freedom were not close together and diagnostic plots showed reasonable fit. The 451 

relative influence of each environmental predictor on GLM and GAM models was calculated 452 

using glmm.hp version 0.1-8 and gam.hp version 0.0-3 R packages (Lai et al. 2022; Lai et 453 

al. 2024). These functions calculate individual contributions of each predictor towards 454 

marginal R 2 (Lai et al. 2022; Lai et al. 2024), and we extracted the normalised relative 455 

contribution for each model which was comparable to BRT relative influence calculations. 456 

 457 



20 

 

Predicting fire frequency and evaluating model performance 458 

 459 

Spatial predictions of fire frequency were produced from each model using the environmental 460 

predictors in terra (Hijmans 2025). Predictions were extracted for presence and 461 

background points to evaluate model performance using commonly used species distribution 462 

modelling metrics in the precrec R package version 0.14.5 (Saito et al. 2016): AUCROC 463 

and AUCPRG. Additional statistics were calculated including mean squared error; average 464 

deviance of observed and predicted values using a Poisson distribution through dismo 465 

(Hijmans et al. 2024); and Pearson’s coefficient of determination through in the stats R 466 

package (R Core Team 2023). 467 

 468 

Model performance was further validated by examining the correlation between public fire 469 

frequency data and modelled fire frequency at presence points. We compared these to the 470 

correlation between public land fire frequency and unmodelled satellite fire frequency 471 

(‘observed’). Where the correlation coefficient of the modelled data was greater than that of 472 

the observed value (r = 0.331), we considered that model to have improved estimates of fire 473 

frequency. We provided AUC values for their familiarity and comparison to other species 474 

distribution modelling studies, evaluating AUC following Araújo et al. (2005). However, 475 

these statistics may not be reliable, especially for presence-background/pseudoabsence 476 

models (see, Lobo et al. 2008; Jiménez et al. 2020). Thus, we also used histograms and maps 477 

displaying the density distribution of fire frequencies to visually compare observed and 478 

modelled fire frequencies. 479 

 480 

Finally, we compared fire frequencies from public data, unmodelled satellite data, and 481 

modelled predictions for BVG aggregations. Broad vegetation aggregations followed those 482 
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recognised in southeast Queensland’s fire regime group classification system (Department of 483 

the Environment 2012; Queensland Herbarium 2024), based on Queensland’s BVG (Neldner 484 

et al. 2019). These can be grouped broadly as fire-prone vegetation: open forests and 485 

woodlands; Melaleuca communities; heath communities; grasslands; and coastal fringing 486 

forests and headlands, and fire-sensitive vegetation: rainforests, dry vine forests and brigalow 487 

communities; wet tall open forests; mangroves and saltmarsh; and riparian, foredune, coral 488 

cay island and beach ridge communities. For each aggregation, 1,000 random points were 489 

produced and fire frequency information from public land, modelled and unmodelled satellite 490 

fire frequency data were extracted. Using the ecologically informed fire regime management 491 

guidelines (Department of the Environment 2012; Queensland Herbarium 2024), we 492 

calculated the minimum and maximum fire frequency recommendation over a 36-year period. 493 

This was then used to determine the ecologically grounded validity of our fire frequency 494 

estimates, classifying whether fire frequencies were within, higher, or lower than 495 

recommended ranges for each fire frequency dataset. 496 

 497 

Results 498 

 499 

Our results showed that the accuracy of satellite fire frequency estimates can be improved by 500 

modelling its relationship with public land fire and environmental data; with correlations 501 

ranging from -0.084 to 0.576 (Table 2). From 1987-2023, fire frequency for unmodelled 502 

satellite data ranged from 0 to 29 fires, while on public land it ranged from 0 to 12 fires. 503 

Across model types, the maximum predicted fire frequency varied: GLM = 29; GAM = 40; 504 

down-weighted BRT = 130; unweighted BRT = 115; and Infinite BRT = 9. Over-estimation 505 

of fire frequencies >30 fires was limited to less than 1% of the landscape. All models showed 506 

similar performance in terms of AUCROC and AUCPRG (AUCROC = 0.707 to 0.776; AUCPRG = 507 
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0.705 to 0.796), but GLM and GAM estimates resulted in the largest increases in correlation 508 

relative to the observed values (r = 0.577 and 0.523, respectively, Table 2). The down-509 

weighted and unweighted BRT only weakly increased correlations compared to the observed 510 

value (r = 0.437 and 0. 375, respectively, Table 2). The Infinite BRT had the lowest 511 

correlation (r = -0.084; Table 2). 512 

 513 

The relative contribution of environmental variables to estimates of fire frequency varied 514 

among model types, with the best predictor being foliage projective cover for all models (Fig. 515 

3). Public land fire frequency was the second-best predictor for down-weighted and third best 516 

predictor for unweighted BRT, but did not contribute to Infinite BRT modelling (Fig. 3). For 517 

the generalised linear model, and to a lesser extent the generalised additive model, foliage 518 

projective cover and public land fire frequency were the main contributors, capturing almost 519 

all variability. 520 

 521 

Compared with public land fire data, observed estimates from satellite data underestimated 522 

areas that burned infrequently (i.e., 1-6 fires) but estimated more areas burnt to have burned 523 

frequently (≥7 fires) than public land fire data (Fig. 4a). Predictions from the GLM resulted 524 

in a large decrease in areas classified as unburnt which substantially improved classification 525 

of areas burnt 1-2 times (Fig. 4b). Predictions from the GAM also significantly reduced areas 526 

classified as unburnt, but not to the same extent as the GLM (Fig. 4b, c). The GLM and GAM 527 

both underestimated fire frequencies >2 but the GLM was more likely to capture higher fire 528 

frequencies (Fig 4b, c). Predictions from down-weighted and unweighted BRT were similar 529 

to the GLM and GAM, generally underestimating most common fire frequencies (i.e., 1-5 530 

fires) but did not reduce areas classified as unburnt to the same extent (Fig. 4d-f). The Infinite 531 

BRT resulted in the most severe underprediction (Fig. 4f). Predictions from all models 532 
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generally improved estimates of landscape-scale fire frequency with more areas mapped as 533 

having burnt at least once (Fig. 5). However, the GLM was slightly better at representing the 534 

spatial extent of higher fire frequencies than other models (Fig. 5c-g). Predictions from BRT 535 

resulted in larger areas remaining as unburnt, including areas mapped burnt for public land 536 

fire data (e.g., southeast Queensland’s offshore islands) (Fig. 5 b, e-g). 537 

 538 

The distribution of fire frequencies in vegetation aggregations was highly variable (Fig. 6). 539 

For fire-prone sclerophyllous vegetation (Fig. 6a-e), most cells were predicted to have a fire 540 

frequency that was within or lower than ecological recommendations. Open forests and 541 

woodlands were within or lower than recommendations, with GLM and GAM predicting 542 

most cells to have burnt once or twice (Fig. 6a). Less than 1% of cells for open forests and 543 

woodlands were burnt higher than recommended, and this was not well captured by GLM or 544 

GAM predictions (Fig. 6a). For Melaleuca and heath communities, the GLM better captured 545 

the range of fire frequencies than the GAM, and most cells were predicted to have burnt at 546 

frequencies lower than recommended (Fig. 6b, c). For Melaleuca and heath communities that 547 

were burnt more frequently than recommended, the GLM better captured these fire 548 

frequencies than the GAM (Fig. 6b, c). For grasslands, the GLM predicted most cells to have 549 

fire frequencies higher than ecologically recommended, but these were limited to less than 550 

1% of cells (Fig. 6d). The GLM best capture the prevalence of cells burnt below 551 

recommendations for grasslands and the range of fire frequencies for cells burnt within 552 

recommendations (Fig. 6d). For coastal forests and headlands, most cells were predicted to 553 

have burnt less frequently than recommended, and this was similar to the observed data (Fig. 554 

6e). For these communities, the GLM best captured cells burnt within and lower than 555 

recommendations and the maximum fire frequency for cells burnt higher than recommended 556 

(Fig. 6e). 557 
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 558 

For fire-sensitive vegetation aggregations (Fig. 6f-i), GLM and GAM predictions resulted in 559 

a large reduction of cells classified as unburnt by observed fire frequencies, but 560 

underestimated cells burnt at higher fire frequencies. For mangroves and saltmarsh vegetation 561 

and riparian, foredune and beach ridges vegetation aggregations, most cells were classified to 562 

have burnt once or twice, with the GLM better capturing the range of fire frequencies than 563 

the GAM (Fig. 6f, h). For rainforests, vine forests and brigalow and wet tall open forest 564 

vegetation aggregations, most cells were predicted to have burnt once (Fig. 6 g, i). However, 565 

the range of fire frequencies was better captured by the GAM for rainforest and the GLM for 566 

wet tall open forests (Fig. 6g, i). Thus, the GLM predictions generally produced more useful 567 

estimates of fire frequency in both fire-prone and fire-sensitive vegetation aggregations (Fig. 568 

6). 569 

 570 

Discussion 571 

 572 

Accurate fire history data are generally unavailable for areas outside of public land, and some 573 

regions rely solely on less accurate satellite data to capture fire histories (Galizia et al. 2021; 574 

Ruscalleda-Alvarez et al. 2021; Khairoun et al. 2024). Our modelling showed that 575 

unmodelled estimates from satellite data underestimated fire frequency compared to public 576 

land data, especially in infrequently burnt areas (i.e., 1-6 fires). This is important because 577 

satellite fire mapping is widely used in fire science (e.g., Ruscalleda-Alvarez et al. 2021; De 578 

Luca et al. 2022; Miranda et al. 2022) and researchers often assume it is accurate. Here, we 579 

improved the accuracy of fire frequency estimates from satellite data by modelling its 580 

relationship with public land fire and environmental data. The famous aphorism, attributed to 581 

George Box: “all models are wrong, but some are useful”, can help interpret the relevance of 582 
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our models. The GLM and GAM tended to underestimate fire frequency in areas burnt more 583 

than twice (i.e., they were ‘wrong’), but they were ‘useful’ in identifying areas likely to have 584 

burned once or twice, which had been undetected by satellites. Therefore, our models enable 585 

us to more accurately understand landscape scale fire frequency in the past 36 years (i.e., 586 

1987-2023). The GLM and GAM improved estimates of landscape scale fire frequency, with 587 

correlation increases of 0.25 and 0.20, respectively. While all models performed similarly, the 588 

higher relative contribution of more accurate public land fire frequency data to the GLM and 589 

GAM likely improved modelling of relationships between environmental attributes and 590 

known fire occurrences. Conversely, the BRTs did not significantly reduce areas mapped as 591 

unburnt and had variable predictive capacity across fire frequencies possibly due to the lower 592 

relative contribution of public land fire frequency. Thus, the GLM and GAM were more 593 

accurate than BRTs and were especially useful at mapping fire in areas otherwise mapped as 594 

unburnt by satellite derived data. 595 

 596 

Modelled fire frequencies from the GLM and GAM were generally similar to observed public 597 

land data and unmodelled satellite fire frequencies for fire-prone sclerophyllous vegetation 598 

aggregations (Neldner et al. 2019). In sclerophyllous vegetation, we expect high fire 599 

frequencies (i.e., ≥5 fires over 36 years) as this vegetation accumulates fuel load quickly 600 

(Cochrane 1968; Gilroy et al. 2009; Gould et al. 2011; Benwell 2024). Re-classification of 601 

unburnt areas as burnt once or twice in these aggregations are likely accurate as cells burnt at 602 

these fire frequencies were within or lower than ecologically informed fire regime 603 

recommendations (Department of Environment and Science 2022b). Thus, the GLM would 604 

be an effective model type for predicting fire frequency in sclerophyll vegetation 605 

aggregations as it better captures the wider gradient of fire frequencies than the GAM. In 606 

grasslands, the GLM predicted high fire frequencies (12 – 20 fires) for some cells which 607 
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exceeded ecological recommendations, but grasslands typically have high fire frequencies 608 

(Archibald et al. 2013; Cruz et al. 2022; Simpson et al. 2022; Yates et al. 2023). Furthermore, 609 

invasion by high biomass grasses result in increased fire frequencies (Miller et al. 2010; 610 

Setterfield et al. 2013; van Klinken et al. 2018; Simpson et al. 2022). Although this might 611 

have contributed to higher than recommended fire frequencies, more research is needed to 612 

confirm this. 613 

 614 

The ecological fire regime recommendations for fire-sensitive vegetation aggregations is ‘do 615 

not intentionally burn’, ‘no fire’ or ‘as required’ (Department of Environment and Science 616 

2022b). However, the unmodelled satellite and public land data suggest several areas of these 617 

vegetation types have burnt at least once over the past 36 years. Our GLM and GAM 618 

predictions captured this prevalence of fire-sensitive vegetation to have burnt at least once 619 

but also resulted in large reductions of unburnt cells. This reduction was not substantial for 620 

mangrove or riparian vegetation when compared to satellite estimates, likely due to low 621 

overstorey vegetation which would limit satellite imagery capture of understorey vegetation. 622 

For rainforest and wet tall open forest vegetation, the GLM and GAM predicted few cells 623 

classified to have burnt more than twice in 36 years, which did not accurately reflect 624 

observed public land or unmodelled satellite estimates. However, these vegetation 625 

aggregations are not highly flammable and typically burn infrequently, as little as once in 100 626 

years (Campbell et al. 2006; Cawson et al. 2018; Thorley et al. 2023; Benwell 2024). Thus, 627 

the GLM would be an effective model type for predicting fire frequency in fire-sensitive 628 

vegetation as it generally did not result in predictions of extremely high fire frequencies like 629 

the GAM for such non-flammable vegetation. 630 

 631 
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In Australia, rainforest is typically found within gullies surrounded by more flammable 632 

sclerophyllous vegetation with wet tall open forests forming the boundary between rainforest 633 

and open forests and woodlands (Neldner et al. 2019; Fensham et al. 2024; Thomsen et al. 634 

2025). In southeast Queensland, public fire history data showed that more than 60% of 635 

rainforest patches have been affected by wildfire in the past 36 years, potentially linked to 636 

suboptimal open forest and woodland vegetation fire regimes (Queensland Parks and Wildlife 637 

Service 2023; Thorley et al. 2023). Our results showed 55% of open forest and woodlands 638 

had burnt under fire frequencies lower than ecologically recommended from modelled and 639 

unmodelled estimates (Queensland Herbarium 2024). Potentially resulting from this, a large 640 

number of cells for wet tall open forests and rainforests were classified as having burnt at 641 

least once from 1987 to 2023 for both modelled and unmodelled fire frequency estimates. 642 

Low fire frequencies, coupled with highly flammable fuel (Cawson et al. 2018; Benwell 643 

2024) and drought, can result in high intensity fires in sclerophyll vegetation which can 644 

penetrate rainforest margins (Collins et al. 2021; Laidlaw et al. 2022; Thorley et al. 2023; 645 

Bird et al. 2025). Increased fire in rainforest margins reduces abundance of fire-retardant 646 

rainforest species and facilitates encroachment of flammable species, potentially resulting in 647 

fire regime and vegetation community changes (Cochrane et al. 2008; Fletcher et al. 2020; 648 

Thorley et al. 2023; Fensham et al. 2024). For tens of thousands of years, Indigenous people 649 

managed vegetation across Australia using fire, but European colonisation supressed this 650 

practice, leading to fuel build up and vegetation changes (e.g., vegetation thickening) (Moss 651 

et al. 2015; Mackenzie et al. 2020; Stewart et al. 2020; Hoffman et al. 2021; Greenwood et 652 

al. 2022; Mariani et al. 2022; Hanson et al. 2023). Further climate-change driven fire regime 653 

shifts are expected to intensify during the 21st century (Moritz et al. 2012; Di Virgilio et al. 654 

2019; Dowdy et al. 2019; Canadell et al. 2021), which may contribute to further vegetation 655 

shifts and threats to fire sensitive species (Walsh et al. 2013; Dudley et al. 2019; Lavery et al. 656 
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2021; Thomsen et al. 2025). Thus, accurate landscape-scale historical fire information is 657 

needed for conservation and mitigation actions, and our workflow can contribute to that goal. 658 

 659 

Our analysis necessarily focussed on biophysical drivers which represent proximate 660 

mechanism driving fire trends (Cary et al. 2006; Bradstock 2010; Duane et al. 2015). Social 661 

drivers might be ultimate causes, and are likely to correlated with biophysical drivers 662 

(Gibbons et al. 2012; Penman et al. 2014; Parisien et al. 2016; Chuvieco et al. 2021; Jones et 663 

al. 2022). Including correlated social drivers might have reduced the accuracy of model 664 

estimates, so we did not attempt that here. It would also add intangible complexity arising 665 

from different fire management strategies across land tenures, temporally variable fire 666 

management attitudes, and arson which, in some instances, may not be easily associated with 667 

human settlements (Chuvieco et al. 2010; Parisien et al. 2016; Chuvieco et al. 2021; Jones et 668 

al. 2022). In other fire-prone regions such as Spain, ignitions in the past 50 years have been 669 

strongly associated with human activity, compared with non-human sources, although human 670 

ignitions have declined more recently due to fire prevention and suppression policies 671 

(Rodrigues et al. 2016). In our analysis, urbanisation is likely to have been at least partially 672 

captured by FPC as urban areas typically have lower woody vegetation cover (Rayner et al. 673 

2025). Further studies could investigate methods for including social variables in the 674 

modelling workflow. 675 

 676 

Our workflow can be used to improve predictions of the landscape-scale fire frequency and 677 

assess whether fire regimes fall within the range of ecological recommendations (Department 678 

of Environment and Science 2022b). Researchers can tailor the modelling workflow to the 679 

spatial extent and temporal period of interest and select the model type providing the most 680 

accurate estimation for the context and vegetation type. Where researchers have access to 681 
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more accurate fire history data than satellite derived estimates, this should be used as a 682 

priority. Our workflow can be used for instances where fire history data from on ground 683 

surveying or satellite imagery is incomplete. Where researchers are interested in 684 

understanding simply whether the land has burnt recently or not, a GLM or GAM could be 685 

used as results from these models were similar. Where researchers want to better characterise 686 

high fire frequencies (e.g., more than 4 fires), the GLM would be appropriate for all 687 

vegetation types. While the GLM might underestimate higher fire frequencies in fire-688 

sensitive vegetation, occurrences of higher fire frequencies were rare and generally not 689 

captured by the GAM. In future, the accuracy of our models could be improved by 690 

incorporating data more directly related to fire occurrences such as lightning strikes (Song et 691 

al. 2024) and/or spatial occurrence records of fire ephemeral plant species (Baker et al. 692 

2005). Such data could more clearly indicate fire occurrences and their relationship with 693 

environmental attributes. Our predictive modelling workflow may aid fire management and 694 

conservation practices by improving the accuracy of fire frequency estimates. 695 
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Table 1 Spatial fire, environmental, climate, and terrain variables used to predict fire frequency in the study region of southeast Queensland, Australia. 

Data were resampled using the nearest neighbour method (i.e., the default resampling tool in the gdalUtilities R package). 

Environmental variable Raw 

resolution 

Resampled 

resolution 

Temporal 

resolution 

Data source 

Annual Fire Scars: Landsat, QLD DES algorithm, QLD 

coverage 

30 m Unchanged 1987-2016 Collett 2021 

Sentinel-2 fire scars: QLD DES algorithm, QLD coverage 10 m 30 m 2017-2023 van den Berg 2021 

Public land fire history 5 m 30 m 1930-2024 Queensland Parks and Wildlife 

Service 2023 

Daily rainfall 5 km 30 m 1987-2023 Jeffrey et al. 2001, SILO 2025c 

Daily minimum temperature 5 km 30 m 1987-2023 Jeffrey et al. 2001, SILO 2025b 

Daily maximum temperature 5 km 30 m 1987-2023 Jeffrey et al. 2001, SILO 2025a 

Topographic wetness index 30 m Unchanged 2000 Gallant et al. 2012 

Foliage projective cover 

- Woody extent and foliage projective cover 2012 

 

25 m 

 

30 m 

 

1988-2012 

 

Department of Environment 2020c 

- Woody extent and foliage projective cover 2013 30 m Unchanged 1988-2013 Department of Environment 2020d 
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- Landsat 2014 30 m Unchanged 1998-2014 Department of Environment 2020b 

- Statewide Landcover and Trees Study (SLATS) 

Sentinel-2 2018 

30 m Unchanged 2018 Department of Environment 2022 

- Statewide Landcover and Trees Study (SLATS) 

Sentinel-2 

10 m 30 m 2019, 2020, 

2021, 2022, 

2023 

Department of Environment 2024b 

Remnant 2021 Broad Vegetation groups - Queensland 100 m 30 m 2017-2024 Department of Environment 2024a 

Soil % clay, from 0 to 2 m 90 m 30 m 2021 CSIRO 2024 

SRTM-derived 1 Second Digital Elevation Model Version 

1.0, used to derive elevation, aspect, slope, and topographic 

position index 

30 m Unchanged 2001-2015 Geoscience Australia 2011 
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Table 2 Evaluation statistics comparing predictive performance among generalised linear, generalised 

additive, and boosted regression tree (BRT) models of fire frequency. 

Pearson’s correlation coefficient (r) indicates the correlation between predictive fire frequency and fire 

frequency derived from public land fire history data within the public estate of southeast Queensland, Australia. 

Evaluation 

statistic 

Generalised 

linear model 

Generalised 

additive 

model 

Down-

weighted 

BRT 

Unweighted 

BRT 

Infinite 

BRT 

Correlation (r) 

with public land 

fire 

0.577 0.526 0.437 0.375 -0.08 

AUCROC 0.771 0.767 0.776 0.773 0.707 

AUCPRG 0.796 0.786 0.788 0.792 0.705 

AUCROC = Area Under the Receiver Operating Characteristic Curve; AUCPRG = Area Under the Precision-Recall 

Gain Curve; Infinite BRT = Infinitely weighted logistic regression BRT 
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Fig. 1 Generalisable workflow for improving fire frequency estimates using predictive modelling: (a) obtain and 

reformat fire (e.g., public land and satellite, where available) and environmental (e.g., climate, site productivity, 

terrain) data; (b) calculate fire frequency from fire history data; (c) run models; (d) produce spatial predictions; 

and (e) evaluate predictions by comparison of spatial predictions and model performance statistics. 
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Fig. 2 Remnant native vegetation cover and public estate land managed by Queensland Parks and Wildlife Service in the 

case study region of southeast Queensland, Australia. 
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Fig. 3 Relative contributions of environmental predictors to modelling satellite fire frequency for (a) generalised additive 

(GAM); (b) generalised linear (GLM); (c) Down-weighted BRT; (d) unweighted BRT; (e) infinitely weighted logistic 

regression BRT (Infinite BRT). FPC = Foliage Projective Cover; TPI = Topographic Position Index; TWI = Topographic 

Wetness Index. The relative contribution axis was truncated at 60% as no variables’ contribution to modelling exceeded 

55%. 
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Fig. 4 Comparisons of fire frequency estimates between public land fire history data (‘public’), raw, unmodelled 

satellite data (‘satellite’) and predictions from a range of model types. The right-hand panel for each model type 

shows cell counts below 100 to enable comparisons at high fire frequencies (fire frequencies ≥4 had very low 

cell counts and were difficult to visualise). All fire frequency estimates were compared against the public land 

fire data as a baseline, with fire frequency at presence points ranging from 0 to a maximum of 16 fires 

depending on the model. (a) Observed = satellite and public land, (b) generalised linear (GLM), (c) generalised 

additive (GAM), (d) down-weighted Boosted Regression Tree (BRT), (e) unweighted BRT, and (f) Infinitely 

Weighted Logistic Regression BRT (Infinite BRT) model predictions. 
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Fig. 5 Fire frequency from 1987 to 2023 in southeast Queensland, Australia derived from (a) observed satellite 

and (b) public land fire history data. The observed fire frequencies were compared to predictions from: (c) 

generalised linear model (GLM), (d) generalised additive model (GAM), (e) down-weighted BRT, (f) 

unweighted BRT, and (g) Infinitely Weighted Logistic Regression (Infinite BRT). White areas are those mapped 

as unburned. The maximum estimated fire frequency varied across model types: (a) satellite data = 29; (b) 

public data = 12; (c) GLM = 29; (d) GAM = 40; (e) down-weighted BRT = 130; (f) unweighted BRT = 115; (g) 

Infinite BRT = 9. Fewer than 1% of cells had fire frequencies >30 from 1987 to 2023 for GAM, unweighted 

BRT, and down-weighted BRT. Thus, to aid visualisation, fire frequencies >30 are not shown but can be 

extracted from the database provided online (Charles et al. 2025b). 
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Fig. 6 Distributions of fire frequencies from 1987 to 2023 across broad vegetation aggregations in southeast 

Queensland, Australia relative to ecologically informed fire regime recommendations. For 1000 random points 

within each broad vegetation aggregation, the number of cells (y-axis) for each fire frequency (x-axis) are 

shown, categorising whether the fire regimes were within, higher, or lower than ecological recommendations. 

The maximum number of cells for each fire regime status category is presented on the y-axis. Broad vegetation 

aggregations were classified as fire-prone vegetation: (a) open forests and woodlands; (b) Melaleuca 

communities; (c) heath communities; (d) grasslands; and (e) coastal forests and headlands, or fire sensitive 

vegetation: (f) mangroves and saltmarshes; (g) rainforests, vine forests, and brigalow; (h) riparian, foredune, and 
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beach ridges; and (i) wet tall open forests. Recommendations for fire sensitive vegetation (f – i) are: ‘do not 

intentionally burn’, ‘no fire’ or ‘as required’. Estimated fire for these vegetation types were dominated by zeros, 

and the zero values were, thus, plotted as an inset to aid visualisation. Fire frequency estimates are presented 

from public land fire history data (‘public’); raw, unmodelled satellite data (‘satellite’); and predictions from a 

Generalised Linear Model (GLM) and a Generalised Additive Model (GAM). The range of fire frequency 

differed between datasets from zero fires to satellite data and GLM predictions = 20; GAM predictions = 14; 

and public land fire data = 7. 


