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Abstract

Background

Effective fire management requires accurate knowledge of fire history, often derived from
satellite imagery. However, satellites are not well suited to detecting low intensity fires.
Aims

We aimed to improve satellite fire frequency estimates by incorporating mapped fire history
data from public land and environmental co-variation.

Methods

Using a generalisable workflow, we applied boosted regression trees, generalised linear, and
generalised additive models to predict fire frequency in an eastern Australia case study.
Performance of raw and modelled satellite fire frequencies were tested by correlating them
with higher quality public land fire mapping.

Key results

Satellite data underestimated fire frequency, especially in infrequently burnt areas (i.e., 1-6
fires). Generalised linear and generalise additive models improved the correlation to public
land fire data from the baseline (Pearson’s » = 0.331) to 0.577 and 0.526, respectively.
Conclusions

Generalised linear and generalised additive models improved fire frequency estimates and
were most useful at low fire frequencies. Generalised linear models also had some utility for
mapping higher fire frequencies.

Implications

Satellite derived fire mapping is widely used in fire science but is likely to underestimate fire
activity. Our approach can improve the accuracy of satellite derived fire frequency estimates

for fire management and research.
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Summary

Satellite derived fire history data are widely used in fire management and research, but these
data often underestimate fire frequency. We present a generalisable application of predictive
modelling framework and show that it can improve fire frequency estimates from satellite

data, ultimately assisting fire management for conservation and human safety.

Introduction

Fire has shaped the structure and composition of ecosystems for millennia, with variation in
fire regimes driven by global climatic patterns such as El Nino-Southern Oscillation, and by
anthropogenic influences such as cultural and prescribed burning (Bird et al. 2016;
Williamson et al. 2016; Moura et al. 2019; Fang et al. 2021; Kelly et al. 2023). However,
contemporary fire regimes are changing rapidly due to climate change (Moritz ef al. 2012; Le
Page et al. 2017; Harvey et al. 2022), land clearing, fire suppression, and inappropriate fire
management policies (Rogers ef al. 2020; Jones et al. 2022; Kelly et al. 2023; Kreider et al.
2024; Sayedi et al. 2024). In the 21 century, fire regime changes have been marked by
multiple large intense wildfires affecting vast areas of Australia, Europe, and North and South
America (Castellnou et al. 2018; Coen et al. 2018; Gustafsson et al. 2019; Collins et al. 2021;
D’Angelo et al. 2022; Gonzalez et al. 2022). These ‘megafires’ (i.e., those which burn over
10,000 ha, Linley et al. 2022) are likely to increase into the future (Khorshidi et al. 2020),
along with increasing extreme fire weather and longer fire seasons, especially in mid- to
high-latitudes (Moritz et al. 2012; Flannigan et al. 2013; Le Page et al. 2017; Dowdy et al.

2019). In regions where fire suppression is the dominant management strategy, vegetation
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encroachment can increase wildfire risk (Moura et al. 2019; Kelly et al. 2023; Sayedi et al.
2024) and threaten species which rely on fire for reproduction (Corlett 2016; Kelly et al.
2020; Lavery et al. 2021; Bachman et al. 2024). Thus, there is an urgent global need to

address fire regime changes and manage fire at large scales.

Understanding ecosystem function relies on knowledge of historical fire regimes which occur
on evolutionary timescales (i.e., centuries to millions of years, Moss et al. 2013; Mariani et
al. 2017; Mackenzie et al. 2020), or ecological timescales (i.e., decadal scales, Smith et al.
2016; Le Breton et al. 2023; Plumanns-Pouton et al. 2024). Fire history on ecological
timescales is related to the generation times of plant and animal species and is especially
important for understanding the impacts of rapid global change (Charles ef al. 2025a). Prior
to the availability of satellite imagery in the 1970s, multi-decadal fire history data were
mainly derived from aerial imagery, on-ground surveys, tree-ring fire scar analyses,
dendroecological techniques with radiocarbon analyses, and fire sensitive species age
reconstruction where establishment corresponded to the last major fire (Mouillot ez al. 2005;
Conedera et al. 2009; Wood et al. 2010; Greene et al. 2017; Fedrigo et al. 2019; Queensland
Parks and Wildlife Service 2023). These multi-decadal fire datasets can be limited in
spatiotemporal coverages (Conedera et al. 2009; Duane et al. 2015) and disrupted by
jurisdictional boundaries, producing discontinuous datasets (Liu et al. 2019b; Phelps et al.
2021; Welch 2021; Ryu et al. 2023). Gathering and processing fire scar data manually is also
time intensive which limits its geographic breadth and hence, applicability. Furthermore,
aerial or ground-based fire data are often incomplete due to changes in mapping system,
government policies (e.g., reporting guidelines), or spatial scales (e.g., omission of small
scale fires less than 1 ha or mapping only completed for public land) (Pausas et al. 2012; San-

Miguel-Ayanz et al. 2012; Welch 2021; Queensland Parks and Wildlife Service 2023; Ryu et
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al. 2023; Duane et al. 2025). Improved workflows are needed to ensure that future fire
history data collection is standardised and that existing data can be used to reconstruct fire

histories, while accounting for inaccuracy or incompleteness.

Satellite derived imagery has circumvented some of the issues with aerial or ground-based
data and is frequently used to reconstruct fire histories (D’Este ef al. 2020; Elia et al. 2020;
Orero et al. 2024; Ramsey et al. 2024) and map fire severity (Redmond et al. 2002; Collins et
al. 2018; Collins et al. 2020; Gibson et al. 2020; Saulino ef al. 2020). Several satellite image-
derived fire maps are available at different resolutions and spatial coverages, such as the

500 m Global Fire Atlas, global 250 m Moderate Resolution Imaging Spectroradiometer
(MODIS) burned area product, and Landsat or Sentinel-2 products at finer resolutions (e.g.,
30 and 10 m, respectively) (Maier ef al. 2012; Andela et al. 2019; Ruscalleda-Alvarez et al.
2021). However, satellite derived fire products also have drawbacks. They can misclassify
burned areas (van den Berg 2021), and satellite imagery used to derive burn scars often have
resolutions too coarse to capture small fires at scales relevant to management (Ruscalleda-
Alvarez et al. 2021). Another source of inaccuracy in satellite derived fire products is their
inability to capture low intensity understorey fires (Randerson et al. 2012; Khairoun ef al.
2024) meaning that fire frequency is often underestimated (Collett 2021; van den Berg 2021).
Low intensity understorey fires can be detected by combining satellite data with high
resolution airborne digital sensor imagery (e.g., McCarthy et al. 2017; Woodgate et al. 2025)
but this method is resource intensive, in terms of time and expert personnel, and is likely
prohibitive for mapping over large spatiotemporal scales. As a result, fire histories on decadal
timeframes are often unknown or inaccurate (Galizia ef al. 2021; Ruscalleda-Alvarez et al.
2021; Khairoun et al. 2024). Thus, there is a strong need for approaches which can improve

estimates of multi-decadal fire history at landscape scales.
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Here, we aimed to develop a workflow to predict fire frequency (i.e., a cumulative count of
the number of fires in a period of time) outside of public estates by improving the accuracy of
landscape-scale fire frequency estimates from satellite data. We used a novel application of
species distribution modelling workflows to improve estimates of satellite derived fire
histories by integrating fire history data from public land, which is manually verified and,
thus, more accurate, with environmental co-variation. Environmental factors including
climate, terrain, and vegetation productivity drive fire cycles and govern fuel availability and
flammability (Cary et al. 2006; Bradstock 2010; Duane et al. 2015). Thus, our approach
treated fire history data in the same way as species distribution modelling workflows treat
species whose presence depends on a specific niche (Wisz ef al. 2013; He et al. 2019). Three
different model types were evaluated by examining correlations between public land fire data
and modelled fire history estimates. We expected modelled estimates to have stronger
correlations with public land fire data compared unmodelled values from the satellite
imagery. We begin by outlining a general workflow which can be applied to any landscape
where fire history data is available. Following this, we present a case study of our approach in
southeast Queensland, Australia. Our data, code, and modelling workflow are publicly
available and can be customised for applications in other regions, enabling downstream

analysis of fire histories across landscapes.
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Methods

Overview of workflow to improve fire frequency estimates

The first stage of the workflow involves obtaining historical fire data and gridded continuous
environmental data (Fig. 1a). Environmental data can include variables most likely to
influence fire occurrences in a given landscape, such as climate (e.g., temperature and
precipitation), terrain (e.g., elevation and slope), and site productivity (e.g., percent soil clay,
foliage projective cover, vegetation aggregation) (Cary et al. 2006; Bradstock 2010; Duane et
al. 2015). Data are then cropped to the study region and reformatted to align the spatial
resolution and coordinate reference systems across layers (Fig. 1a). In the second stage,
available historical fire data is reformatted such that the fire metric of interest (e.g., fire
frequency, fire return interval, time since last fire, or fire seasonality) can be calculated using
standard GIS functions for the relevant time period (Fig. 1b). Here we focus on fire frequency
(i.e., a cumulative count of the number of fires in a period of time). Modelling the
relationship between fire history data derived from satellite imagery and fire data mapped on
public land allows projections of fire history to areas that are unmapped (i.e., unburnt areas)
or inaccurately mapped (i.e., outside the region where fire history information has been

recorded).

Presence points are created from burned grid cells and depending on the completeness of the
fire data, absences can be created in a number of ways. For fire history records where unburnt
areas are accurately mapped (i.e., true absences), these can be directly used as absences. For
incomplete fire history records, two methods can be used to create ‘absence’ points.

Pseudoabsence points can be created outside of a pre-defined buffer around each presence
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point (see Barbet-Massin et al. 2012; Broussin ef al. 2024). Alternatively, a large number of
background points can be randomly created across the study region. We recommend the
second option (i.e., background points) as pseudoabsences may exclude areas unlikely to
burn due to their close proximity to presence points (Broussin et al. 2024), potentially leading
to some over-estimation of low fire frequencies. A presence-absence/background dataset can
then be produced by extracting fire and environmental data for the presence and

absence/background points.

Prior to modelling (the third stage of the workflow), backwards stepwise elimination and
variable correlation tests can be used to exclude non-informative and/or highly correlated
variables (see Valavi et al. 2022). The extent of spatial autocorrelation should be calculated to
produce spatially explicit presence-background datasets to be used for model training (e.g.,
80% of the data) and model evaluation (e.g., 20% of the data for evaluating Area Under the
Receiver Operating Characteristic Curve, AUCRroc; and Precision-Recall Gain curves,
AUCprrg). We recommend investigating multiple modelling methods to account for differing
strengths and weaknesses among models (Li ef al. 2013; Elith ef al. 2020; Valavi et al. 2022,
Harris et al. 2024). If using boosted regression trees (BRT), hyperparameter tuning should be
performed to determine optimal settings for tree complexity and learning rate (see Elith ef al.
2008). Spatially explicit training data can then be used to run BRT, generalised linear (GLM),
and generalised additive (GAM) models (Fig. 1c). Generalised additive model tuning can be

performed after modelling, and models should be re-run if model fit requires improvement.

In the fourth stage, spatial fire frequency predictions can be produced from each model using
the environmental predictors (Fig. 1d). In the fifth and final stage, models are evaluated using

the spatially explicit model evaluation dataset. Predictive performance can be evaluated by
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comparing spatial prediction maps and by using standard evaluation procedures for species
distribution modelling workflows (e.g., AUCroc and AUCprc; Valavi et al. 2022) (Fig. 1e).
Further model evaluation can be performed by comparing observed and predicted fire
frequency correlations, fire frequency histograms, and fire regime management

recommendations for specific vegetation communities.

Case study region

Our case study focused on the southeast Queensland Interim Biogeographic Regionalisation
of Australia (IBRA) bioregion, Australia, limited to the border with New South Wales (Fig.
2). The region has a subtropical climate with mean annual rainfall ranging from 600 mm to
2000 mm (Australian Bureau of Meteorology 2024a). Mean maximum temperatures range
throughout the region from 21 °C to 33 °C in summer and 18 °C to 24 °C in winter
(Australian Bureau of Meteorology 2024b). Coastal areas within the region generally
experience more moderate temperatures and higher rainfall than inland areas. The IBRA is
dominated by dry sclerophyll forest (Department of Climate Change 2024), which

accumulates fuel load quickly (Cochrane 1968; Gilroy et al. 2009; Gould et al. 2011).

Ecologically informed fire regimes recommendations suggest variable high to low fire
frequency regimes (i.e., mosaics of fire return intervals from 4 to 20 years to create
spatiotemporal mosaics of fire, Neldner ef al. 2019; Queensland Herbarium 2024). In the
subtropics, many dry sclerophyll systems have grassy understorey and the recommended fire
regimes are for low intensity, cool season burns that scorch the ground layer while avoiding
burning the trees (Neldner et al. 2019). This type of burning can maintain ground layer plant

diversity (Dooley et al. 2023) while also minimising weed invasion (Debuse et al. 2014).
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Bushfires in the region generally occur in late winter and spring (Sullivan ef al. 2012).
Prescribed burning on public land is conducted across large areas (e.g., ~ 600 000 to 1 million
ha, Department of Environment 2020a; Department of Environment and Science 2021, 2023)
during winter (Eliott ef al. 2020; Department of Environment and Science 2022b) (Fig. 2).
On private land, properties are burned for fire hazard reduction, woody vegetation control,
ecosystem restoration, and weed control (Toledo et al. 2012; Edwards et al. 2016;
McCormack et al. 2024). However, private land can be more prone to frequent fire due to
management attitudes and objectives which do not necessarily align with ecosystem
conservation, reduced management abilities, and increased ignitions resulting from the
wildland-urban interface (Aslan ef al. 2024). Cultural burning also takes place on public and

private land (Williamson 2021; Greenwood et al. 2022; Williamson 2022).

Between September 2019 and February 2020, wildfires affected 3.1 million hectares of public
land managed by Queensland Parks and Wildlife Service and nearby private land, in an event
that was unprecedented in spatial scale and intensity (Legge et al. 2022). These wildfires
occurred following a multi-year drought during extreme fire weather conditions (Nolan et al.
2020; Udy et al. 2024), resulting in extensive areas burnt at high severity with canopy scorch
or consumption (Dickman 2021; Nolan et al. 2021). These fires occurred in drastically
different to conditions to prescribed burns (Morgan et al. 2020) and resulted in a suite of
negative ecological impacts (Marsh et al. 2022). In 2021-2022, prescribed burning was
conducted across a smaller areas (358 563 ha) as a result of the wildfire (Department of

Environment and Science 2022a).

10
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Modelling methods

We conducted all analyses in R version 4.5.1 (R Core Team 2018). Modelling methods
included machine-learning and traditional regression models commonly used in species
distribution and fire predictive modelling (Bistinas et al. 2014; Li et al. 2022; Valavi et al.
2022). Spatial data were manipulated (e.g., cropped, reprojected, aggregated, disaggregated)
using the terra R package version 1.8-60 (Hijmans 2025), unless otherwise specified. All
spatial data layers (Table 1) were projected to a standard coordinate reference system (EPSG
3577: GDA94/Australian Albers); spatial extent (i.e., southeast Queensland IBRA, Fig. 2);
and resolution of 30 m. We masked spatial data to exclude water bodies, limiting predictions

to land.

Historical fire data pre-processing

Satellite fire history data were obtained with burn scars identified from Landsat for 1987 —
2016 at 30 m resolution but data for 2017 — 2023 were obtained from Sentinel 2 at 10 m
resolution (Collett 2021; van den Berg 2021) (Table 1). Each of these datasets are produced
as yearly composites with values denoting month of burn. As such, the data do not indicate
cells burnt more than once in a month (which is unlikely, although possible), nor do they
indicate if the fire was a wildfire or a prescribed burn. For Landsat, fire scars are
automatically detected from significant changes in reflectance, relative to the previous
reflectance value, which arise from the presence of charcoal or ash, removal of foliage, or
scorch (Collett 2021). For Sentinel, fire scars are automatically detected from imagery using
differenced bare soil fraction relative to the previous fractional cover values (van den Berg

2021). Satellite fire scar values were reclassified such that month values of 1-12 were

11
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assigned Is and no data values (i.e., unburnt and no data areas — water or masked agricultural
crops) were assigned 0s. Fire frequency was then calculated as the cumulative count of cells
assigned 1 for Landsat and Sentinel data separately. To avoid issues with downscaling fire
history data to finer resolutions (e.g., changes in minimum values) (Atkinson et al. 2000;
Ekstrom et al. 2015; Park et al. 2019), Sentinel 2 data was scaled up through cell value
averaging during aggregation to 30 m resolution after pre-processing. Landsat derived fire
frequencies from 1987 — 2016 and Sentinel 2 derived fire frequencies from 2017 — 2023 were

then combined into one dataset to provide fire frequencies over 1987 to 2023.

Public land fire data were obtained from Queensland Parks and Wildlife Service (Table 1)
(Queensland Parks and Wildlife Service 2023). These data consisted of spatial maps of
wildfire and prescribed burn scar perimeters in public estates (e.g., national parks and state
forests) between 1930 and 2024 (Queensland Parks and Wildlife Service 2023). Public land
fire data was mapped through field observations and Global Position System (GPS) capture;
digitations from paper-based records and aerial imagery; and fire scar analysis of satellite
imagery. Consequently, due to this post hoc mapping fire history records prior to the 2000s
were incomplete (Eliott ef al. 2020; Queensland Parks and Wildlife Service 2023). To address
this incompleteness while reducing major losses of temporal coverage, we subset the public
land fire data to match the temporal coverage of the satellite data (i.e., 1987-2023). These
data were then converted to raster format with 5 m resolution, assigning cell values as the
count of overlapping polygons using terra (Hijmans 2025). The final public land fire
frequency dataset was then aggregated to a 30 m resolution using the gdalUtilities R

package version 1.2.5 (O'Brien 2023).
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Gridded environmental and climate data pre-processing

To represent environmental variation which influences fire probability, we used continuous
gridded spatial data on the following environmental variables (Table 1): terrain (elevation,
slope, aspect, and topographic position index); site productivity (topographic wetness index,
foliage projective cover, soil percent clay, and broad vegetation group); and climate
(temperature seasonality and precipitation seasonality). Terrain attributes were expected to
influence fire probability and fire behaviour patterns through their effect on vegetation
structure, productivity, and solar radiation exposure (e.g., with variation in aspect) (Del-Toro-
Guerrero et al. 2019; Cheng et al. 2023). Site productivity attributes were expected to
influence fire probability through their effects on fuel accumulation and fuel moisture (Cary
et al. 2006; Bradstock 2010; Duane et al. 2015). Climatic variables were expected to
influence fire weather conditions which drives fire probability (Cary et al. 2006).
Precipitation seasonality was also expected to influence vegetation productivity as it drives
the regularity of fuel moisture and flammability (Bradstock 2010) while capturing variation
in wet and dry seasons (Wang et al. 2024), highly relevant to our subtropical study region.
These environmental predictors were processed to standardise resolution, projection, and
spatial extent using gdalUtilities in the same way as the fire data (see Table 1). The
SRTM-derived 1 Second Digital Elevation Model Version 1.0 was used to derive aspect and
degrees of slope using terra (Geoscience Australia 2011) (Table 1). Topographic position
index was derived from the Digital Elevation Model using the 1andform R package version

0.2 (Alberti 2023).

Consistent with other predictive modelling studies which used long-term average climate data

(e.g., Syphard ef al. 2008; D’Este et al. 2020), we formatted climate and vegetation datasets
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such that they represented averages across their relevant time periods. Climate seasonality
measures were derived from daily datasets for precipitation, minimum temperature and
maximum temperature (Jeffrey et al. 2001; SILO 2025¢, 2025b, 2025a). For precipitation, we
calculated average monthly precipitation per year, which was used for subsequent seasonality
calculations (SILO 2025c¢). For temperature, we calculated average daily temperature from
daily minimum and maximum measurements, which were then averaged for each month per
year and used for subsequent seasonality calculations (SILO 2025b, 2025a). Seasonality
indices (i.e., precipitation seasonality and temperature seasonality) were then calculated as
the standard deviation of the average monthly measurement x 100 per year (Fick ef al. 2017).
Final precipitation and temperature seasonality values were then produced as the long-term
average of these seasonality measures across all years for the study region. Foliage projective
cover (FPC) data measures the amount of woody mid- and over-story vegetation (Department
of Environment 2024b) and is provided as 0-100% foliage cover. The 2014 data required
reclassification as values of 1-100% were denoted as 100-200, and 0% was denoted by values
above 200 or below 100. We then calculated average FPC from the reclassified 2012-2014
and 2018-2023 datasets. For broad vegetation group (BVGQG) data, the numerical code
allocated to each group was used for modelling and this data was converted to raster using
terra (Hijmans 2025). Soil percent clay data were available for each stratum in our study
region (e.g., 0 to 0.05 m, 0.05 to 0.1 m, etc) and these were processed to produce the average

soil percent clay from 0 to 2 m.

For each environmental predictor, we replaced cells with no data (i.e., NA) with single
imputation (Lopucki et al. 2022), such that NAs were replaced by an average from the
surrounding cells using terra. Foliage projective cover had large areas mapped as NA due

to mapping only mid- and over-story vegetation of >0.5 ha (Department of Environment
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2024b). However, single imputation was still considered appropriate for FPC as
underestimation was already present due to a lack of understorey data (Department of

Environment 2024b). For BVG data, no interpolation was performed.

Presence-background points dataset

Our datasets suffered from a lack of definitively identifiable unburnt areas from 1987-2023
(Eliott ef al. 2020; Queensland Parks and Wildlife Service 2023). As our aim was to improve
estimates of fire frequency for areas outside of public land, we used public land fire data to
produce background points in place of absences (see Liu ef al. 2019a; Grimmett et al. 2020;
Valavi et al. 2022). As such, we restricted model training and testing to areas where more
accurate fire history data was available. Prior to producing presence/absence points, we set a
random seed for reproducibility. Presence points were created as a random sample of 10,000
points in areas of public land fire frequency >1 (i.e., presence points must have burnt at least
once) using terra (Hijmans 2025). For presence points, values were assigned as the fire
frequency value from the cell (i.e., presences represent the fire frequency of the cell).
Background points were then created as a random sample of 80,000 points across public land
in the study region, irrespective of the location of presence points. Therefore, an ‘absence’
could occur in the same location as a presence, consistent with recent statistical approaches
(Liu et al. 2019a; Valavi et al. 2022; Whitford et al. 2024). For satellite fire frequency and
environmental predictors, we used a custom function (see Golding ef al. 2016) which
resampled NA values primarily occurring at the edges of landmasses, by replacing the NA
with the nearest non-NA value. For the public land fire frequency data, NAs were assigned Os
as the data were restricted to public estates and some of these areas had no fire records for the

time period. Data for each environmental predictor were extracted for all presence and
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background points, and these datasets were then combined into a single dataset (hereafter

‘presence-background data’).

Model selection

Variable selection

Prior to modelling, we used two methods to examine correlations among predictor variables
to eliminate the risk of including highly correlated or non-informative variables. Firstly, we
used Spearman’s rank correlation coefficient (p) to test for highly correlated variables (e.g.,
Spearman’s rank correlation coefficient, p >|0.8|, Duane et al. 2015; Valavi et al. 2022) using
the ggstatsplot R package version 0.13.3 (Patil 2021). Secondly, to eliminate non-
informative variables we fit a global linear model and ran Akaike Information Criterion
(AIC) backward stepwise elimination (e.g., Syphard et al. 2008; Elia et al. 2020) using the
MASS R package version 7.3-65 (Venables ef al. 2002). No variables were above the

correlation threshold or uninformative, so all were retained.

Spatial blocking and spatial autocorrelation

Predictive modelling requires independent training and evaluation data (Hastie et al. 2009)
which, for predicting to new areas, should also be spatially blocked (see Roberts et al. 2017).
This spatial blocking reduces the propensity for overfitting due to spatial dependencies
between biological processes, and biasing of estimates due to spatial autocorrelation (Roberts
et al. 2017; Hao et al. 2020). To determine the distance over which spatial autocorrelation

occurred, we fit an initial variogram using the b1 ockCV R package version 3.2-0 (Valavi et

16



386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

al. 2019) to inform parameter settings (e.g., psill, model, range, and nugget). Subsequent
variograms were fit using the gstat R package version 2.1-4 (Pebesma 2004; Griler et al.
2016). Variograms were fit iteratively with parameters adjusted until the final outputs were
the same as those used for fitting the current variogram. The size of blocks for spatially
explicit data was determined by the final range value returned by the variogram. Presence-
background data were then split into spatially explicit blocks of 29109 m in size, randomly
allocating points to five data partitions in a checkerboard pattern with an 80% to 20% training
to evaluation split. The allocation of data to these five partitions was performed such that the
number of points for a particular fire frequency was balanced across partitions (e.g., for a fire
frequency of 2, each of the five training partitions had ca. 8000 points while each of the five

evaluation partitions had ca. 2000 points).

Predictive modelling

We used three different modelling approaches to estimate landscape-scale fire frequency:
Boosted Regression Trees (BRT), Generalised Linear Models (GLM), and Generalised
Additive Models (GAM). Each of these models differ in their technical and conceptual
approach with BRT being less easily interrogated but used commonly in species distribution
modelling (Soykan et al. 2014; Elith et al. 2020) and fire applications (Sachdeva et al. 2018,;
Kalantar et al. 2020). Generalised linear models and GAMs use a traditional statistical
modelling approach and often perform well in modelling species distributions (e.g., Meynard
et al. 2007; Murase et al. 2009; Valavi et al. 2022). Our goal was to compare the three model
types to determine which method improved estimates of satellite fire frequency when
compared to the more accurately mapped public fire data. In all models, the response variable

was satellite fire frequency derived from Landsat and Sentinel-2. All models were fit with a
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Poisson distribution; log link function, appropriate for count data; and a random seed set prior

to modelling, for reproducibility.

The ratio of presence to background points in our data was small (1:8), resulting in zero-
inflation. Thus, following Valavi et al. (2022), we compared three weighting approaches for
BRT modelling to balance the contribution of background points to model fitting: (1) no
weighting; (2) down-weighting backgrounds points (the total summed weight of background
points equalled the total weight of presences); and (3) infinitely weighted logistic regression
(background points with a very large weight, hereafter ‘Infinite BRT”). Based on BRT model
performance, we then selected either (2) down-weighting or (3) infinite weighting for GLM

and GAM model fitting.

Boosted regression tree modelling

Boosted regression trees hyperparameters were optimised prior to modelling by creating a
data frame with all combinations of: number of trees (500, 600, ..., 10000); tree complexity
(1,2, ..., 8); number of minimum observations in node (50, 100, or 200); and learning rate
(0.1, 0.05, ..., 0.0001) (see Elith et al. 2008). Using the training subset of presence-
background data a BRT model was then trained in the caret R package version 7.0-1 (Kuhn
2008) with a 10-partition cross-validation method and grid search pattern. The optimised tree
complexity of 8 and learning rate of 0.1 were used in subsequent modelling. Each BRT model
was run using the dismo R package version 1.3-16 with these parameter settings (Hijmans et
al. 2024). The relative influence of each environmental predictor on the model was calculated

internally by BRT and was extracted from the model for comparison between models.
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Generalised linear and generalised additive modelling

Generalised linear models and GAMs were used with background point down-weighting
applied in the same manner as for BRT. Generalised linear models were run in base R (R
Core Team 2023) and GAMs in the mgcv R package version 1.9-3 (Wood 2004, 2011, 2017).
Generalised additive models fit non-linear relationships by summing smooth functions of
each variable, applying marginal basis functions, and controlling the basis dimensions of each
variable (Wood 2004, 2011). We used tensor product smooth functions (‘te’) which apply
separate penalties to each variable making them useful for variables in different units (Wood
2006, 2017). We also specified cyclic cubic regression spline (‘cc’) marginal basis functions
for climatic variables to stop the smoother shrinking to zero and random effect (‘re’) marginal
basis functions for BVG to account for the categorical nature of the data (Wood 2017).
Generalised additive model smoothness was further controlled by specifying the basis
dimension (‘k’) to determine knot spacing (i.e., the amount of ‘wiggliness’ in the response)
(Wood 2017). We adjusted & for each variable separately until k-index values and expected
degrees of freedom were not close together and diagnostic plots showed reasonable fit. The
relative influence of each environmental predictor on GLM and GAM models was calculated
using glmm. hp version 0.1-8 and gam. hp version 0.0-3 R packages (Lai et al. 2022; Lai et
al. 2024). These functions calculate individual contributions of each predictor towards
marginal R 2 (Lai et al. 2022; Lai et al. 2024), and we extracted the normalised relative

contribution for each model which was comparable to BRT relative influence calculations.

19



458  Predicting fire frequency and evaluating model performance

459

460  Spatial predictions of fire frequency were produced from each model using the environmental
461  predictors in terra (Hijmans 2025). Predictions were extracted for presence and

462  background points to evaluate model performance using commonly used species distribution
463  modelling metrics in the precrec R package version 0.14.5 (Saito et al. 2016): AUCroc
464  and AUCprc. Additional statistics were calculated including mean squared error; average
465  deviance of observed and predicted values using a Poisson distribution through dismo

466  (Hijmans ef al. 2024); and Pearson’s coefficient of determination through in the stats R
467  package (R Core Team 2023).

468

469  Model performance was further validated by examining the correlation between public fire
470  frequency data and modelled fire frequency at presence points. We compared these to the
471  correlation between public land fire frequency and unmodelled satellite fire frequency

472  (‘observed’). Where the correlation coefficient of the modelled data was greater than that of
473  the observed value (r = 0.331), we considered that model to have improved estimates of fire
474  frequency. We provided AUC values for their familiarity and comparison to other species
475  distribution modelling studies, evaluating AUC following Araujo et al. (2005). However,
476  these statistics may not be reliable, especially for presence-background/pseudoabsence

477  models (see, Lobo ef al. 2008; Jiménez ef al. 2020). Thus, we also used histograms and maps
478  displaying the density distribution of fire frequencies to visually compare observed and

479  modelled fire frequencies.

480

481  Finally, we compared fire frequencies from public data, unmodelled satellite data, and

482  modelled predictions for BVG aggregations. Broad vegetation aggregations followed those
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recognised in southeast Queensland’s fire regime group classification system (Department of
the Environment 2012; Queensland Herbarium 2024), based on Queensland’s BVG (Neldner
et al. 2019). These can be grouped broadly as fire-prone vegetation: open forests and
woodlands; Melaleuca communities; heath communities; grasslands; and coastal fringing
forests and headlands, and fire-sensitive vegetation: rainforests, dry vine forests and brigalow
communities; wet tall open forests; mangroves and saltmarsh; and riparian, foredune, coral
cay island and beach ridge communities. For each aggregation, 1,000 random points were
produced and fire frequency information from public land, modelled and unmodelled satellite
fire frequency data were extracted. Using the ecologically informed fire regime management
guidelines (Department of the Environment 2012; Queensland Herbarium 2024), we
calculated the minimum and maximum fire frequency recommendation over a 36-year period.
This was then used to determine the ecologically grounded validity of our fire frequency
estimates, classifying whether fire frequencies were within, higher, or lower than

recommended ranges for each fire frequency dataset.

Results

Our results showed that the accuracy of satellite fire frequency estimates can be improved by
modelling its relationship with public land fire and environmental data; with correlations
ranging from -0.084 to 0.576 (Table 2). From 1987-2023, fire frequency for unmodelled
satellite data ranged from 0 to 29 fires, while on public land it ranged from 0 to 12 fires.
Across model types, the maximum predicted fire frequency varied: GLM = 29; GAM = 40;
down-weighted BRT = 130; unweighted BRT = 115; and Infinite BRT = 9. Over-estimation
of fire frequencies >30 fires was limited to less than 1% of the landscape. All models showed

similar performance in terms of AUCroc and AUCprG (AUCroc = 0.707 to 0.776; AUCprG =
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532

0.705 to 0.796), but GLM and GAM estimates resulted in the largest increases in correlation
relative to the observed values (» = 0.577 and 0.523, respectively, Table 2). The down-
weighted and unweighted BRT only weakly increased correlations compared to the observed
value (r = 0.437 and 0. 375, respectively, Table 2). The Infinite BRT had the lowest

correlation (» = -0.084; Table 2).

The relative contribution of environmental variables to estimates of fire frequency varied
among model types, with the best predictor being foliage projective cover for all models (Fig.
3). Public land fire frequency was the second-best predictor for down-weighted and third best
predictor for unweighted BRT, but did not contribute to Infinite BRT modelling (Fig. 3). For
the generalised linear model, and to a lesser extent the generalised additive model, foliage
projective cover and public land fire frequency were the main contributors, capturing almost

all variability.

Compared with public land fire data, observed estimates from satellite data underestimated
areas that burned infrequently (i.e., 1-6 fires) but estimated more areas burnt to have burned
frequently (>7 fires) than public land fire data (Fig. 4a). Predictions from the GLM resulted
in a large decrease in areas classified as unburnt which substantially improved classification
of areas burnt 1-2 times (Fig. 4b). Predictions from the GAM also significantly reduced areas
classified as unburnt, but not to the same extent as the GLM (Fig. 4b, ¢). The GLM and GAM
both underestimated fire frequencies >2 but the GLM was more likely to capture higher fire
frequencies (Fig 4b, c). Predictions from down-weighted and unweighted BRT were similar
to the GLM and GAM, generally underestimating most common fire frequencies (i.e., 1-5
fires) but did not reduce areas classified as unburnt to the same extent (Fig. 4d-f). The Infinite

BRT resulted in the most severe underprediction (Fig. 4f). Predictions from all models
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generally improved estimates of landscape-scale fire frequency with more areas mapped as
having burnt at least once (Fig. 5). However, the GLM was slightly better at representing the
spatial extent of higher fire frequencies than other models (Fig. 5¢c-g). Predictions from BRT
resulted in larger areas remaining as unburnt, including areas mapped burnt for public land

fire data (e.g., southeast Queensland’s offshore islands) (Fig. 5 b, e-g).

The distribution of fire frequencies in vegetation aggregations was highly variable (Fig. 6).
For fire-prone sclerophyllous vegetation (Fig. 6a-¢), most cells were predicted to have a fire
frequency that was within or lower than ecological recommendations. Open forests and
woodlands were within or lower than recommendations, with GLM and GAM predicting
most cells to have burnt once or twice (Fig. 6a). Less than 1% of cells for open forests and
woodlands were burnt higher than recommended, and this was not well captured by GLM or
GAM predictions (Fig. 6a). For Melaleuca and heath communities, the GLM better captured
the range of fire frequencies than the GAM, and most cells were predicted to have burnt at
frequencies lower than recommended (Fig. 6b, c¢). For Melaleuca and heath communities that
were burnt more frequently than recommended, the GLM better captured these fire
frequencies than the GAM (Fig. 6b, ¢). For grasslands, the GLM predicted most cells to have
fire frequencies higher than ecologically recommended, but these were limited to less than
1% of cells (Fig. 6d). The GLM best capture the prevalence of cells burnt below
recommendations for grasslands and the range of fire frequencies for cells burnt within
recommendations (Fig. 6d). For coastal forests and headlands, most cells were predicted to
have burnt less frequently than recommended, and this was similar to the observed data (Fig.
6e). For these communities, the GLM best captured cells burnt within and lower than
recommendations and the maximum fire frequency for cells burnt higher than recommended

(Fig. 6e).
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For fire-sensitive vegetation aggregations (Fig. 6f-1), GLM and GAM predictions resulted in
a large reduction of cells classified as unburnt by observed fire frequencies, but
underestimated cells burnt at higher fire frequencies. For mangroves and saltmarsh vegetation
and riparian, foredune and beach ridges vegetation aggregations, most cells were classified to
have burnt once or twice, with the GLM better capturing the range of fire frequencies than
the GAM (Fig. 6f, h). For rainforests, vine forests and brigalow and wet tall open forest
vegetation aggregations, most cells were predicted to have burnt once (Fig. 6 g, 1). However,
the range of fire frequencies was better captured by the GAM for rainforest and the GLM for
wet tall open forests (Fig. 6g, 1). Thus, the GLM predictions generally produced more useful
estimates of fire frequency in both fire-prone and fire-sensitive vegetation aggregations (Fig.

6).

Discussion

Accurate fire history data are generally unavailable for areas outside of public land, and some
regions rely solely on less accurate satellite data to capture fire histories (Galizia et al. 2021;
Ruscalleda-Alvarez et al. 2021; Khairoun ef al. 2024). Our modelling showed that
unmodelled estimates from satellite data underestimated fire frequency compared to public
land data, especially in infrequently burnt areas (i.e., 1-6 fires). This is important because
satellite fire mapping is widely used in fire science (e.g., Ruscalleda-Alvarez et al. 2021; De
Luca et al. 2022; Miranda et al. 2022) and researchers often assume it is accurate. Here, we
improved the accuracy of fire frequency estimates from satellite data by modelling its
relationship with public land fire and environmental data. The famous aphorism, attributed to

George Box: “all models are wrong, but some are useful”, can help interpret the relevance of
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our models. The GLM and GAM tended to underestimate fire frequency in areas burnt more
than twice (i.e., they were ‘wrong’), but they were ‘useful’ in identifying areas likely to have
burned once or twice, which had been undetected by satellites. Therefore, our models enable
us to more accurately understand landscape scale fire frequency in the past 36 years (i.e.,
1987-2023). The GLM and GAM improved estimates of landscape scale fire frequency, with
correlation increases of 0.25 and 0.20, respectively. While all models performed similarly, the
higher relative contribution of more accurate public land fire frequency data to the GLM and
GAM likely improved modelling of relationships between environmental attributes and
known fire occurrences. Conversely, the BRTs did not significantly reduce areas mapped as
unburnt and had variable predictive capacity across fire frequencies possibly due to the lower
relative contribution of public land fire frequency. Thus, the GLM and GAM were more
accurate than BRTs and were especially useful at mapping fire in areas otherwise mapped as

unburnt by satellite derived data.

Modelled fire frequencies from the GLM and GAM were generally similar to observed public
land data and unmodelled satellite fire frequencies for fire-prone sclerophyllous vegetation
aggregations (Neldner ez al. 2019). In sclerophyllous vegetation, we expect high fire
frequencies (i.e., >5 fires over 36 years) as this vegetation accumulates fuel load quickly
(Cochrane 1968; Gilroy ef al. 2009; Gould et al. 2011; Benwell 2024). Re-classification of
unburnt areas as burnt once or twice in these aggregations are likely accurate as cells burnt at
these fire frequencies were within or lower than ecologically informed fire regime
recommendations (Department of Environment and Science 2022b). Thus, the GLM would
be an effective model type for predicting fire frequency in sclerophyll vegetation
aggregations as it better captures the wider gradient of fire frequencies than the GAM. In

grasslands, the GLM predicted high fire frequencies (12 — 20 fires) for some cells which
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exceeded ecological recommendations, but grasslands typically have high fire frequencies
(Archibald ef al. 2013; Cruz et al. 2022; Simpson et al. 2022; Yates et al. 2023). Furthermore,
invasion by high biomass grasses result in increased fire frequencies (Miller ez al. 2010;
Setterfield et al. 2013; van Klinken ef al. 2018; Simpson et al. 2022). Although this might
have contributed to higher than recommended fire frequencies, more research is needed to

confirm this.

The ecological fire regime recommendations for fire-sensitive vegetation aggregations is ‘do
not intentionally burn’, ‘no fire’ or ‘as required’ (Department of Environment and Science
2022b). However, the unmodelled satellite and public land data suggest several areas of these
vegetation types have burnt at least once over the past 36 years. Our GLM and GAM
predictions captured this prevalence of fire-sensitive vegetation to have burnt at least once
but also resulted in large reductions of unburnt cells. This reduction was not substantial for
mangrove or riparian vegetation when compared to satellite estimates, likely due to low
overstorey vegetation which would limit satellite imagery capture of understorey vegetation.
For rainforest and wet tall open forest vegetation, the GLM and GAM predicted few cells
classified to have burnt more than twice in 36 years, which did not accurately reflect
observed public land or unmodelled satellite estimates. However, these vegetation
aggregations are not highly flammable and typically burn infrequently, as little as once in 100
years (Campbell et al. 2006; Cawson et al. 2018; Thorley et al. 2023; Benwell 2024). Thus,
the GLM would be an effective model type for predicting fire frequency in fire-sensitive
vegetation as it generally did not result in predictions of extremely high fire frequencies like

the GAM for such non-flammable vegetation.
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In Australia, rainforest is typically found within gullies surrounded by more flammable
sclerophyllous vegetation with wet tall open forests forming the boundary between rainforest
and open forests and woodlands (Neldner ef al. 2019; Fensham et al. 2024; Thomsen et al.
2025). In southeast Queensland, public fire history data showed that more than 60% of
rainforest patches have been affected by wildfire in the past 36 years, potentially linked to
suboptimal open forest and woodland vegetation fire regimes (Queensland Parks and Wildlife
Service 2023; Thorley et al. 2023). Our results showed 55% of open forest and woodlands
had burnt under fire frequencies lower than ecologically recommended from modelled and
unmodelled estimates (Queensland Herbarium 2024). Potentially resulting from this, a large
number of cells for wet tall open forests and rainforests were classified as having burnt at
least once from 1987 to 2023 for both modelled and unmodelled fire frequency estimates.
Low fire frequencies, coupled with highly flammable fuel (Cawson ef al. 2018; Benwell
2024) and drought, can result in high intensity fires in sclerophyll vegetation which can
penetrate rainforest margins (Collins ef al. 2021; Laidlaw et al. 2022; Thorley et al. 2023;
Bird et al. 2025). Increased fire in rainforest margins reduces abundance of fire-retardant
rainforest species and facilitates encroachment of flammable species, potentially resulting in
fire regime and vegetation community changes (Cochrane et al. 2008; Fletcher et al. 2020;
Thorley et al. 2023; Fensham et al. 2024). For tens of thousands of years, Indigenous people
managed vegetation across Australia using fire, but European colonisation supressed this
practice, leading to fuel build up and vegetation changes (e.g., vegetation thickening) (Moss
et al. 2015; Mackenzie et al. 2020; Stewart ef al. 2020; Hoffman et al. 2021; Greenwood et
al. 2022; Mariani et al. 2022; Hanson ef al. 2023). Further climate-change driven fire regime
shifts are expected to intensify during the 21% century (Moritz et al. 2012; Di Virgilio et al.
2019; Dowdy et al. 2019; Canadell ef al. 2021), which may contribute to further vegetation

shifts and threats to fire sensitive species (Walsh ez al. 2013; Dudley et al. 2019; Lavery et al.
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2021; Thomsen et al. 2025). Thus, accurate landscape-scale historical fire information is

needed for conservation and mitigation actions, and our workflow can contribute to that goal.

Our analysis necessarily focussed on biophysical drivers which represent proximate
mechanism driving fire trends (Cary et al. 2006; Bradstock 2010; Duane et al. 2015). Social
drivers might be ultimate causes, and are likely to correlated with biophysical drivers
(Gibbons et al. 2012; Penman et al. 2014; Parisien et al. 2016; Chuvieco et al. 2021; Jones et
al. 2022). Including correlated social drivers might have reduced the accuracy of model
estimates, so we did not attempt that here. It would also add intangible complexity arising
from different fire management strategies across land tenures, temporally variable fire
management attitudes, and arson which, in some instances, may not be easily associated with
human settlements (Chuvieco et al. 2010; Parisien et al. 2016; Chuvieco et al. 2021; Jones et
al. 2022). In other fire-prone regions such as Spain, ignitions in the past 50 years have been
strongly associated with human activity, compared with non-human sources, although human
ignitions have declined more recently due to fire prevention and suppression policies
(Rodrigues et al. 2016). In our analysis, urbanisation is likely to have been at least partially
captured by FPC as urban areas typically have lower woody vegetation cover (Rayner et al.
2025). Further studies could investigate methods for including social variables in the

modelling workflow.

Our workflow can be used to improve predictions of the landscape-scale fire frequency and
assess whether fire regimes fall within the range of ecological recommendations (Department
of Environment and Science 2022b). Researchers can tailor the modelling workflow to the
spatial extent and temporal period of interest and select the model type providing the most

accurate estimation for the context and vegetation type. Where researchers have access to
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more accurate fire history data than satellite derived estimates, this should be used as a
priority. Our workflow can be used for instances where fire history data from on ground
surveying or satellite imagery is incomplete. Where researchers are interested in
understanding simply whether the land has burnt recently or not, a GLM or GAM could be
used as results from these models were similar. Where researchers want to better characterise
high fire frequencies (e.g., more than 4 fires), the GLM would be appropriate for all
vegetation types. While the GLM might underestimate higher fire frequencies in fire-
sensitive vegetation, occurrences of higher fire frequencies were rare and generally not
captured by the GAM. In future, the accuracy of our models could be improved by
incorporating data more directly related to fire occurrences such as lightning strikes (Song et
al. 2024) and/or spatial occurrence records of fire ephemeral plant species (Baker et al.
2005). Such data could more clearly indicate fire occurrences and their relationship with
environmental attributes. Our predictive modelling workflow may aid fire management and

conservation practices by improving the accuracy of fire frequency estimates.
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Table 1 Spatial fire, environmental, climate, and terrain variables used to predict fire frequency in the study region of southeast Queensland, Australia.

Data were resampled using the nearest neighbour method (i.e., the default resampling tool in the gdalUtilities R package).

Environmental variable Raw Resampled Temporal Data source
resolution resolution  resolution
Annual Fire Scars: Landsat, QLD DES algorithm, QLD 30 m Unchanged 1987-2016  Collett 2021
coverage
Sentinel-2 fire scars: QLD DES algorithm, QLD coverage 10 m 30 m 2017-2023  van den Berg 2021
Public land fire history 5m 30 m 1930-2024  Queensland Parks and Wildlife
Service 2023
Daily rainfall 5 km 30 m 1987-2023  Jeffrey et al. 2001, SILO 2025c¢
Daily minimum temperature 5 km 30 m 1987-2023  Jeffrey et al. 2001, SILO 2025b
Daily maximum temperature 5 km 30m 1987-2023  Jeffrey et al. 2001, SILO 2025a
Topographic wetness index 30 m Unchanged 2000 Gallant et al. 2012
Foliage projective cover
- Woody extent and foliage projective cover 2012 25m 30m 1988-2012  Department of Environment 2020c
- Woody extent and foliage projective cover 2013 30 m Unchanged 1988-2013  Department of Environment 2020d
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- Landsat 2014

- Statewide Landcover and Trees Study (SLATS)
Sentinel-2 2018

- Statewide Landcover and Trees Study (SLATS)

Sentinel-2

Remnant 2021 Broad Vegetation groups - Queensland

Soil % clay, from 0 to 2 m

SRTM-derived 1 Second Digital Elevation Model Version
1.0, used to derive elevation, aspect, slope, and topographic

position index

30m

30 m

10 m

100 m

90 m

30m

Unchanged

Unchanged

30m

30 m
30 m

Unchanged

1998-2014

2018

2019, 2020,
2021, 2022,
2023
2017-2024
2021

2001-2015

Department of Environment 2020b

Department of Environment 2022

Department of Environment 2024b

Department of Environment 2024a

CSIRO 2024

Geoscience Australia 2011
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Table 2 Evaluation statistics comparing predictive performance among generalised linear, generalised
additive, and boosted regression tree (BRT) models of fire frequency.
Pearson’s correlation coefficient () indicates the correlation between predictive fire frequency and fire

frequency derived from public land fire history data within the public estate of southeast Queensland, Australia.

Evaluation Generalised Generalised Down- Unweighted Infinite

statistic linear model additive weighted BRT BRT
model BRT

Correlation (r) 0.577 0.526 0.437 0.375 -0.08

with public land

fire

AUCroc 0.771 0.767 0.776 0.773 0.707

AUCrrG 0.796 0.786 0.788 0.792 0.705

AUCkRoc = Area Under the Receiver Operating Characteristic Curve; AUCprg = Area Under the Precision-Recall

Gain Curve; Infinite BRT = Infinitely weighted logistic regression BRT
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Fig. I Generalisable workflow for improving fire frequency estimates using predictive modelling: (a) obtain and
reformat fire (e.g., public land and satellite, where available) and environmental (e.g., climate, site productivity,
terrain) data; (b) calculate fire frequency from fire history data; (c) run models; (d) produce spatial predictions;

and (e) evaluate predictions by comparison of spatial predictions and model performance statistics.
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Fig. 2 Remnant native vegetation cover and public estate land managed by Queensland Parks and Wildlife Service in the

case study region of southeast Queensland, Australia.
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Fig. 3 Relative contributions of environmental predictors to modelling satellite fire frequency for (a) generalised additive
(GAM); (b) generalised linear (GLM); (c) Down-weighted BRT; (d) unweighted BRT; (e) infinitely weighted logistic
regression BRT (Infinite BRT). FPC = Foliage Projective Cover; TPI = Topographic Position Index; TWI = Topographic
Wetness Index. The relative contribution axis was truncated at 60% as no variables’ contribution to modelling exceeded

55%.
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Fig. 4 Comparisons of fire frequency estimates between public land fire history data (‘public’), raw, unmodelled

satellite data (‘satellite”) and predictions from a range of model types. The right-hand panel for each model type

shows cell counts below 100 to enable comparisons at high fire frequencies (fire frequencies >4 had very low

cell counts and were difficult to visualise). All fire frequency estimates were compared against the public land

fire data as a baseline, with fire frequency at presence points ranging from 0 to a maximum of 16 fires

depending on the model. (a) Observed = satellite and public land, (b) generalised linear (GLM), (c) generalised

additive (GAM), (d) down-weighted Boosted Regression Tree (BRT), (¢) unweighted BRT, and (f) Infinitely

Weighted Logistic Regression BRT (Infinite BRT) model predictions.
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Fig. 5 Fire frequency from 1987 to 2023 in southeast Queensland, Australia derived from (a) observed satellite
and (b) public land fire history data. The observed fire frequencies were compared to predictions from: (c)
generalised linear model (GLM), (d) generalised additive model (GAM), (e) down-weighted BRT, (f)
unweighted BRT, and (g) Infinitely Weighted Logistic Regression (Infinite BRT). White areas are those mapped
as unburned. The maximum estimated fire frequency varied across model types: (a) satellite data = 29; (b)
public data = 12; (¢) GLM = 29; (d) GAM = 40; (¢) down-weighted BRT = 130; (f) unweighted BRT = 115; (g)
Infinite BRT = 9. Fewer than 1% of cells had fire frequencies >30 from 1987 to 2023 for GAM, unweighted
BRT, and down-weighted BRT. Thus, to aid visualisation, fire frequencies >30 are not shown but can be

extracted from the database provided online (Charles et al. 2025b).

58



(a) Open forests/ (b) Melaleuca

- woodlands 60 communities
10 i
Higher 1= Higher
470 380
Within L . Within L
550 800
Lower L Lower n
0 5 10 15 20 0 5 10 15 20
_ c) Heath
) (m)munitie (d) Grasslands
3 " co S 10
‘6 -L
®
£ Higher J— Higher
g 610 120
£
g | ..
£ Within Within
S 50 980
° .
£
g Lower Lower
o 0 5 10 15 20 0 5 10 15 20
L (e) Coastal forests
& headlands
20
Public land
High Satellite
igher (] GAM
140 GLM
Within L
830
Lower h__
0 5 10 15 20
Fire Frequency
(f) Mangroves (g) Rainforests, vine (h) Riparian, foredune (i) Wet tall
@ = & saltmarsh forests & brigalow & beach ridges open forests
Sw 290 5o 00 970
8% 83
™ Do not ES o5 III
o w= intentionally § [=] 0
& =] burmn —_ 0
= R 310 |;
o8
2
]
.g £ o fire No fire
b 10 15 20

1 5 10 15 20 1 5 10 15 20 1 5
Fire Frequency

Fig. 6 Distributions of fire frequencies from 1987 to 2023 across broad vegetation aggregations in southeast
Queensland, Australia relative to ecologically informed fire regime recommendations. For 1000 random points
within each broad vegetation aggregation, the number of cells (y-axis) for each fire frequency (x-axis) are
shown, categorising whether the fire regimes were within, higher, or lower than ecological recommendations.
The maximum number of cells for each fire regime status category is presented on the y-axis. Broad vegetation
aggregations were classified as fire-prone vegetation: (a) open forests and woodlands; (b) Melaleuca
communities; (¢) heath communities; (d) grasslands; and (e) coastal forests and headlands, or fire sensitive

vegetation: (f) mangroves and saltmarshes; (g) rainforests, vine forests, and brigalow; (h) riparian, foredune, and
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beach ridges; and (i) wet tall open forests. Recommendations for fire sensitive vegetation (f — i) are: ‘do not
intentionally burn’, ‘no fire’ or ‘as required’. Estimated fire for these vegetation types were dominated by zeros,
and the zero values were, thus, plotted as an inset to aid visualisation. Fire frequency estimates are presented
from public land fire history data (‘public’); raw, unmodelled satellite data (‘satellite’); and predictions from a
Generalised Linear Model (GLM) and a Generalised Additive Model (GAM). The range of fire frequency
differed between datasets from zero fires to satellite data and GLM predictions = 20; GAM predictions = 14;

and public land fire data = 7.
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