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Abstract 19 

 20 

Background 21 

Contemporary fire regimes are changing rapidly, and effective fire management requires 22 

knowledge of fire history, often derived from satellite imagery. Satellites, however, are not 23 

well suited to detecting low intensity fires, meaning fire history data are often inaccurate. 24 

Aims 25 

We aimed to improve satellite fire frequency estimates by incorporating data from fire history 26 

on public land and environmental co-variation. 27 

Methods 28 

Using a generalisable workflow, we applied boosted regression trees, generalised linear, and 29 

generalised additive models to predict fire frequency in an eastern Australia case study. 30 

Key results 31 

Relative to unprocessed satellite data, generalised linear and generalised additive models 32 

improved correlations with public land fire data by 0.39 and 0.25, respectively. Generalised 33 

linear models estimated low fire frequencies well (≤2 fires), whereas generalised additive 34 

models predicted higher fire frequencies (≥3 fires) more accurately. 35 

Conclusions 36 

For mapping land as burnt or unburnt, generalised linear models are most appropriate. For 37 

understanding the total number of fires over time, and for most vegetation types, predictions 38 

from generalised additive model are most appropriate. 39 

Implications 40 

Our approach can improve the accuracy of fire frequency estimates from satellite data, to 41 

assist fire management and conservation. However, model selection will depend on the 42 

application and vegetation type. 43 

 44 

Summary 45 

 46 

Historical fire data are widely used in fire management and research, but these data are often 47 

incomplete, which limits our ability to manage fire for conservation and human safety. We 48 

present a generalisable application of predictive modelling which can improve landscape-49 

scale fire frequency estimates from satellite data. 50 

 51 
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Introduction 52 

 53 

Fire has shaped the structure and composition of ecosystems for millennia, with variation in 54 

fire regimes driven by global climatic patterns such El Niño-Southern Oscillation, and by 55 

anthropogenic influences such as cultural burning (Bird et al. 2016; Williamson et al. 2016; 56 

Moura et al. 2019; Fang et al. 2021; Kelly et al. 2023). However, contemporary fire regimes 57 

are changing rapidly due to climate change (Moritz et al. 2012; Le Page et al. 2017; Harvey 58 

and Enright 2022), land clearing, fire suppression, and inappropriate fire management 59 

policies (Rogers et al. 2020; Kelly et al. 2023; Kreider et al. 2024; Sayedi et al. 2024). In the 60 

21st century, fire regime changes have been marked by multiple large intense wildfires 61 

affecting vast areas of Australia, Europe, and North and South America (Castellnou et al. 62 

2018; Coen et al. 2018; Gustafsson et al. 2019; Collins et al. 2021; D’Angelo et al. 2022; 63 

González et al. 2022). These ‘megafires’ (i.e., those which burn over 10,000 ha, Linley et al. 64 

2022) are likely to increase into the future (Khorshidi et al. 2020), along with increasing 65 

extreme fire weather and longer fire seasons, especially in mid- to high-latitudes (Moritz et 66 

al. 2012; Flannigan et al. 2013; Le Page et al. 2017; Dowdy et al. 2019). In regions where 67 

fire suppression is the dominant management strategy, vegetation encroachment can increase 68 

wildfire risk (Moura et al. 2019; Kelly et al. 2023; Sayedi et al. 2024) and threaten species 69 

which rely on fire for reproduction (Corlett 2016; Kelly et al. 2020; Lavery et al. 2021; 70 

Bachman et al. 2024). Thus, there is an urgent global need to address fire regime changes and 71 

manage fire at large scales. 72 

 73 

Understanding ecosystem function relies on knowledge of historical fire regimes which occur 74 

on evolutionary timescales (i.e., centuries to millions of years, Moss et al. 2013; Mariani and 75 

Fletcher 2017; Mackenzie et al. 2020), or ecological timescales (i.e., decadal scales, Smith et 76 

al. 2016; Le Breton et al. 2023; Plumanns-Pouton et al. 2024). Fire history on ecological 77 

timescales related to generation times of plant and animal species and is especially important 78 

for understanding the impacts of rapid global change (Charles et al. 2025). Prior to the 79 

availability of satellite imagery in the 1970s, multi-decadal fire history data were mainly 80 

derived from aerial imagery, on-ground surveys, and tree-ring fire scar analyses (Mouillot 81 

and Field 2005; Greene and Daniels 2017; Queensland Parks and Wildlife Service 2023). 82 

These multi-decadal fire datasets can be limited in spatiotemporal coverages (Duane et al. 83 

2015) and disrupted by jurisdictional boundaries, producing discontinuous datasets (Liu et al. 84 

2019b; Phelps and Woolford 2021; Ryu and Charalambou 2023). Gathering and processing 85 
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such fire scar data manually is also time intensive which limits its geographic breadth and 86 

hence, applicability. Furthermore, aerial or ground-based fire data are often incomplete due to 87 

changes in mapping systems and government policies (Queensland Parks and Wildlife 88 

Service 2023; Ryu and Charalambou 2023). Another major issue is that these data are usually 89 

restricted to public land, leaving little knowledge of contemporary fire histories outside 90 

public estates. Some studies have attempted to account for incompleteness in public land fire 91 

history (e.g., restricting analyses to recent years with stricter reporting guidelines and more 92 

accurate mapping methods, Eliott et al. 2020), but generalisable workflows for reconstructing 93 

fire histories are lacking. 94 

 95 

Satellite derived imagery has circumvented some of the issues with aerial or ground-based 96 

data and is frequently used to reconstruct fire histories (D’Este et al. 2020; Elia et al. 2020; 97 

Orero et al. 2024; Ramsey et al. 2024). Several fire-related satellite products are available at 98 

different resolutions and spatial coverages, such as the 500 m Global Fire Atlas, global 250m 99 

Moderate Resolution Imaging Spectroradiometer MODIS burned area product, and Landsat 100 

or Sentinel-2 products at smaller scales (e.g., 30 and 10 m, respectively) scales (Maier and 101 

Russell-Smith 2012; Andela et al. 2019; Ruscalleda-Alvarez et al. 2021). However, satellite 102 

derived fire products also suffer from drawbacks. They can misclassify burned areas (van den 103 

Berg 2021), and their resolution is often too coarse to capture small fires at scales relevant to 104 

management (Ruscalleda-Alvarez et al. 2021). Another source of inaccuracy in satellite fire 105 

products is their inability to capture low intensity understorey fires (Randerson et al. 2012; 106 

Khairoun et al. 2024) meaning that fire frequency is often underestimated (Collett 2021; van 107 

den Berg 2021). Low intensity understorey fires can be detected by combining satellite data 108 

with high resolution airborne digital sensor imagery (e.g., McCarthy et al. 2017) but this 109 

method is resource intensive, in terms of time and expert personnel, and is likely prohibitive 110 

for mapping over large spatiotemporal scales. As a result, despite the importance of knowing 111 

how often and at what intervals burning has taken place over decadal timescales is often 112 

unknown (Galizia et al. 2021; Ruscalleda-Alvarez et al. 2021; Khairoun et al. 2024). Thus, 113 

there is a strong need for approaches which can improve estimates of multi-decadal fire 114 

history at landscape scales. 115 

 116 

Here, we aimed to develop a method to predict fire frequency outside of public estates and 117 

improve the accuracy of landscape-scale fire frequency estimates from satellite data. We used 118 
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a novel application of species distribution modelling to improve estimates of satellite fire 119 

frequency by integrating data of fire history on public land and environmental co-variation. 120 

Environmental factors including climate, terrain, and vegetation productivity drive fire cycles 121 

and govern fuel availability and flammability (Cary et al. 2006; Bradstock 2010; Duane et al. 122 

2015). Thus, our approach treated fire history data in the same way as species distribution 123 

modelling treats species whose presence depends on a specific niche (Wisz et al. 2013; He et 124 

al. 2019). Three different model types were evaluated by examining correlations between 125 

public land fire data and modelled fire frequency estimates. We expected correlations would 126 

be higher between public land fire data and the modelled values than the unmodelled values 127 

from the satellite imagery. We begin by outlining a general workflow which can be applied to 128 

any landscape where fire history data is available. Following this, we present a case study of 129 

our approach in southeast Queensland, Australia. Our data, code, and modelling workflow are 130 

publicly available and can be customised for applications in other regions, enabling 131 

downstream analysis of fire history across landscapes. 132 

 133 

Methods 134 

 135 

General workflow to improve fire frequency estimates 136 

 137 

Patchy satellite historical fire data can be improved by modelling the spatial relationship with 138 

environmental factors, and where available, more accurately mapped public land historical 139 

fire data. Modelling these relationships allows projections of fire history to areas that are 140 

unmapped (i.e., unburnt areas) or inaccurately mapped (i.e., outside region where fire history 141 

information has been recorded). We recommend investigating multiple modelling methods to 142 

account for differing strengths and weaknesses among models (Li and Wang 2013; Elith et al. 143 

2020; Valavi et al. 2022; Harris et al. 2024). The first stage of the workflow involves 144 

obtaining historical fire data and gridded continuous environmental data (Fig. 1a). 145 

Environmental data can include variables most likely to influence fire occurrences in a given 146 

landscape, such as climate (e.g., temperature and precipitation), terrain (e.g., elevation and 147 

slope), and site productivity (e.g., percent soil clay and foliage projective cover) (Cary et al. 148 

2006; Bradstock 2010; Duane et al. 2015). Data are then cropped to the study region and 149 

reformatted to align the spatial resolution and coordinate reference systems across layers 150 

(Fig. 1a). In the second stage, available historical fire data is reformatted such that the fire 151 

metric of interest can be calculated using standard GIS functions (Fig. 1b). Here we focus on 152 
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fire frequency (i.e., the cumulative count of cells which burned over the time period), but 153 

other metrics could include fire return interval, time since last fire, or fire seasonality for the 154 

relevant time period. 155 

 156 
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 157 

Fig. 1 Generalisable workflow for improving fire frequency estimates using predictive modelling: (a) obtaining 158 

and reformatting fire (e.g., public land and satellite, where available) and environmental (e.g., climate, site 159 
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productivity, terrain) data; (b) calculate fire frequency from fire history data; (c) run models; (d) produce spatial 160 

predictions; and (e) evaluate predictions by comparing of spatial predictions and model performance statistics. 161 

 162 

Presence points are created from burned grid cells and depending on the completeness of the 163 

fire data, absences can be created in a number of ways. For fire history records where unburnt 164 

areas are accurately mapped (i.e., true absences), these can be absence points. For incomplete 165 

fire history records, two methods can be used to create ‘absence’ points. Pseudoabsence 166 

points can be created outside of a pre-defined buffer around each presence point (see Barbet-167 

Massin et al. 2012; Broussin et al. 2024). Alternatively, a large number of background points 168 

can be created across the study region. We recommend the second option (i.e., background 169 

points) as pseudoabsences may exclude areas unlikely to burn due to their close proximity to 170 

presence points (Broussin et al. 2024), potentially leading to some over-estimation of low fire 171 

frequencies. A presence-absence/background dataset can then be produced by extracting fire 172 

and environmental data for the presence and absence/background points. 173 

 174 

Prior to modelling (the third stage of the workflow), backwards stepwise elimination and 175 

variable correlation tests can be used to exclude redundant and/or highly correlated variables 176 

(see Valavi et al. 2022). The extent of spatial autocorrelation should be calculated to produce 177 

spatially explicit presence-background datasets to be used for model training (i.e., 80% of the 178 

data) and model evaluation (i.e., 20% of the data for evaluating Area Under the Receiver 179 

Operating Characteristic Curve (AUCROC) and Precision-Recall Gain curves (AUCPRG). If 180 

using boosted regression trees (BRT), hyperparameter tuning should be performed to 181 

determine optimal settings for tree complexity and learning rate (see Elith et al. 2008). 182 

Spatially explicit training data can then be used to run BRT, generalised linear (GLM), and 183 

generalised additive (GAM) models (Fig. 1c). Generalised additive model tuning can be 184 

performed after modelling, and models should be re-run if model fit requires improvement. In 185 

the fourth stage, spatial fire frequency predictions can be produced from each model using 186 

the environmental predictors (Fig. 1d). In the fifth and final stage, models are evaluated using 187 

the spatially explicit model evaluation dataset. Predictive performance can be evaluated by 188 

comparing spatial prediction maps and by using standard evaluation procedures for species 189 

distribution modelling workflows (e.g., AUCROC and AUCPRC; Valavi et al. 2022) (Fig. 1e). 190 

Further model evaluation can be performed by comparing observed and predicted fire 191 

frequency correlations and fire frequency histograms. 192 
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 193 

Case study region 194 

 195 

Our case study focused on southeast Queensland, Australia, extending from Bauple in 196 

Queensland, south to northern New South Wales, and from the east coast, west to 197 

Toowoomba, Queensland (Fig. 2). The region has a subtropical climate with mean annual 198 

rainfall ranging from 600 mm to 2000 mm (Australia Bureau of Meteorology 2024a). Mean 199 

maximum temperatures range throughout the region from 21 °C to 33 °C in summer and 18 200 

°C to 24 °C in winter (Australia Bureau of Meteorology 2024b). Coastal areas within the 201 

region generally experience more moderate temperatures and higher rainfall. Fires in the 202 

region generally occur in late winter and spring with prescribed burning in public estates 203 

typically conducted in winter (Eliott et al. 2020; Department of Environment and Science 204 

2022) (Fig. 2). In 2021-2022, prescribed burning was conducted across 358 563 ha of 205 

Queensland by Queensland Parks and Wildlife Service (Department of Environment 2024a). 206 

Between September 2019 and February 2020, wildfires affected 3.1 million hectares of public 207 

and nearby land managed by Queensland Parks and Wildlife Service, in an event that was 208 

unprecedented in spatial scale and intensity (Legge et al. 2022). On private land, properties 209 

are burned for fire hazard reduction, woody vegetation control, ecosystem restoration, and 210 

weed control, and as a cultural practices (Toledo et al. 2012; Edwards and Gill 2016; 211 

Greenwood et al. 2022; McCormack et al. 2024). 212 

 213 
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 214 

Fig. 2 Remnant native vegetation cover and the public estate, managed by Queensland Parks and Wildlife Service, in the 215 

case study region of southeast Queensland, Australia. 216 

 217 

Modelling methods 218 

 219 

We conducted all analyses in R version 4.3.1 (R Core Team 2018). Modelling methods 220 

included machine-learning and traditional regression models commonly used in species 221 

distribution and fire predictive modelling (Bistinas et al. 2014; Li et al. 2022; Valavi et al. 222 

2022). Spatial data were manipulated (e.g., cropped, reprojected, aggregated, disaggregated) 223 

using terra version 1.7-78 (Hijmans 2024), unless otherwise specified. All spatial data layers 224 

(Table 1) were projected to a standard coordinate reference system (EPSG 3577: 225 

GDA94/Australian Albers); extent (Fig. 2); and to a resolution of 30 m. We masked spatial 226 

data to exclude water bodies, limiting predictions to land. 227 

 228 
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Historical fire data pre-processing 229 

 230 

Satellite fire scar data were obtained from Landsat (1987-2016, 30 m) and Sentinel (2017 – 231 

2023, 10 m) fire scar data (Collett 2021; van den Berg 2021). Each of these datasets are 232 

produced as yearly composites with values denoting month of burn. Due to high 233 

computational demand, the study region was subdivided into eight blocks for processing. For 234 

each subdivision block, satellite fire scar values were reclassified such that values of 1-12 235 

were assigned 1s and no data values (i.e., unburnt and no data areas – water or agricultural 236 

crop masked) were assigned 0s. Fire frequency (i.e., a count of the number of fires in the past 237 

36 years) was then calculated as the cumulative count of cells assigned 1 for each subdivision 238 

block, for Landsat and Sentinel data separately. Upon completion of this pre-processing, 239 

Sentinel fire data was then aggregated to 30 m resolution by averaging cell values. For each 240 

subdivision block, the cumulative sum of fire frequencies for 1987-2023 was calculated, 241 

combining Sentinel and Landsat data. Finally, each subdivision block was merged into one 242 

dataset representing satellite fire frequency data for the study region from 1987-2023. 243 

 244 

Public land fire data were obtained from Queensland Parks and Wildlife Service. These data 245 

consisted of spatial maps of burn scar extents in public estates (e.g., National Parks and state 246 

forests) between 1930 and 2024 (Queensland Parks and Wildlife Service 2023). Public land 247 

fire data were subset to match the temporal coverage of the satellite data (i.e., 1987-2023). 248 

These data were then converted to raster format with 5 m resolution, assigning cell values as 249 

the count of overlapping polygons using fasterize version 1.0.5 (Ross 2023). The final public 250 

land fire frequency dataset was then aggregated to a 30m resolution using gdalUtilities 251 

version 1.2.5 (O'Brien 2023). 252 

 253 

Gridded environmental and climate data pre-processing 254 

 255 

To represent environmental variation which influences fire probability, we used continuous 256 

gridded spatial data on the following environmental predictors (Table 1): terrain (elevation, 257 

slope, aspect, and topographic position index); site productivity (topographic wetness index, 258 

foliage projective cover, and soil percent clay); and climate (temperature seasonality, 259 

precipitation seasonality, and average diurnal temperature range). Terrain attributes were 260 

expected to influence fire probability and fire behaviour patterns through their effect on 261 

vegetation structure, productivity, and solar radiation exposure (e.g., with variation in aspect) 262 
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(Del-Toro-Guerrero et al. 2019; Cheng et al. 2023). Site productivity attributes were expected 263 

to influence fire probability through their effects on fuel accumulation and fuel moisture 264 

levels (Cary et al. 2006; Bradstock 2010; Duane et al. 2015). Climatic variables were 265 

expected to influence fire weather conditions which drive fire probability (Cary et al. 2006). 266 

Precipitation seasonality was also expected to influence vegetation productivity as it captures 267 

variation in wet and dry seasons (Wang et al. 2024), highly relevant to our subtropical study 268 

region. These environmental predictors were processed to standardise resolution, projection, 269 

and study extent using gdalUtilities (see Table 1), in the same way as the fire data. A Digital 270 

Elevation Model was used to derive aspect and degrees of slope using terra. Topographic 271 

position index was derived from the Digital Elevation Model using landform version 0.2 272 

(Alberti 2023). 273 

 274 



13 

 

Table 1 Spatial environmental, climate, and terrain variables used to predict fire frequency in the study region of southeast Queensland, Australia. Data were resampled using 

the nearest neighbour method (i.e., the default resampling tool in gdalUtilities). 

Environmental variable Raw 

resolution 

Resampled 

resolution 

Temporal 

resolution 

Data source 

Mean diurnal temperature range 1 km 30 m 1970-2000 (Fick and Hijmans 2017) 

Temperature seasonality 1 km 30 m 1970-2000 (Fick and Hijmans 2017) 

Precipitation seasonality 1 km 30 m 1970-2000 (Fick and Hijmans 2017) 

Topographic wetness index 30 m Unchanged 2000 (Gallant and Austin 2012) 

Foliage projective cover 

- Landsat 2014 

 

30 m 

 

Unchanged 

 

1998-2014 

 

(Department of Environment 2020) 

- Statewide Landcover and Trees Study 

(SLATS) Sentinel-2 2018 

30 m Unchanged 2018 (Department of Environment 2022) 

- Statewide Landcover and Trees Study 

(SLATS) Sentinel-2 

10 m 30 m 2019, 2020, 

2021 

(Department of Environment 2024b) 

Soil % clay from 0 to 2m 90 m 30 m 2021 (CSIRO 2024) 

Elevation, aspect, slope, topographic position index 30 m Unchanged 2001-2015 (Geoscience Australia 2011) 
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Foliage projective cover (FPC) data is provided as 0-100% foliage cover, but the 2014 data 

required reclassification as values of 0-100% were denoted as 100-200, and 0% was denoted 

by values above 200 or below 100. We then calculated average FPC from the reclassified 

2014 and 2018-2021 datasets. Soil percent clay data were available for each stratum in our 

study region (e.g., 0 to 0.05 m, 0.05 to 0.1 m, etc) and these were processed to produce the 

average soil percent clay from 0 to 2 m. 

 

For each environmental predictor, we replaced cells with no data (NA) with single imputation 

(Łopucki et al. 2022), such that NAs were replaced by an average from the surrounding cells 

using terra as nearby cells are likely to be similar. Foliage projective cover had large areas 

mapped as NA due to mapping only mid- and over-story vegetation of >0.5 ha (Department 

of Environment 2024b). However, single imputation was still considered appropriate for FPC 

as underestimation was already present due to a lack of understorey data (Department of 

Environment 2024b). 

 

Presence-background points dataset 

 

Our datasets suffered from a lack of definitively identifiable unburnt areas from 1987-2023 

(Eliott et al. 2020; Queensland Parks and Wildlife Service 2023). As our aim was to improve 

estimates of fire frequency for areas outside of public land, we used public land fire data to 

produce background points in place of absences (see Liu et al. 2019a; Grimmett et al. 2020; 

Valavi et al. 2022). Prior to producing presence/absence points, we set a random seed for 

reproducibility. Presence points were created as a random sample of 10,000 points in areas of 

public land fire frequency ≥1 using terra (Hijmans 2024). Background points were then 

created as a random sample of 80,000 points across southeast Queensland irrespective of the 

location of presence points, such that an ‘absence’ could occur in the same location as a 

presence, consistent with recent statistical approaches (Liu et al. 2019a; Valavi et al. 2022; 

Whitford et al. 2024). For satellite fire frequency and environmental predictors, we used a 

custom function (see Golding et al. 2016 ) which resampled NA values, primarily occurring 

at the edges of landmasses, by replacing the NA with the nearest non-NA value. For the 

public land fire frequency data, NAs were assigned 0s as the data were restricted to public 

estates and some of these areas had no fire records for the time period. Data for each 
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environmental predictor were extracted for all presence and background points and these 

datasets were then combined into a single dataset (hereafter ‘presence-background data’). 

 

Model selection 

 

Variable selection 

 

Prior to modelling, we used two methods to examine correlations among predictor variables 

to eliminate the risk of including highly correlated or irrelevant variables. Firstly, we used 

Spearman’s rank correlation coefficient (ρ) to test for highly correlated variables (e.g., 

Spearman’s rank correlation coefficient, ρ ≥0.8, Duane et al. 2015; Valavi et al. 2022) using 

ggstatsplot version 2.1-1 (Patil 2021). No variables were above this correlation threshold, so 

all were retained. Secondly, to eliminate irrelevant variables we fit a global linear model and 

ran Akaike Information Criterion (AIC) backward stepwise elimination (e.g., Syphard et al. 

2008; Elia et al. 2020) using MASS version 7.3-60 (Venables and Ripley 2002). Soil percent 

clay was excluded during stepwise elimination and was removed from presence-background 

and environmental predictors data. 

 

Spatial blocking 

 

Predictive modelling requires independent training and evaluation data (i.e., AUCROC and 

AUCPRG evaluation) (Hastie et al. 2009) which, for predicting to new areas, should also be 

spatially blocked (see Roberts et al. 2017). This spatial blocking reduces the propensity for 

overfitting due to spatial dependencies between biological processes, and biasing of estimates 

due to spatial autocorrelation (Roberts et al. 2017; Hao et al. 2020). We used variograms to 

determine the extent of spatial autocorrelation for the satellite fire frequency data. An initial 

variogram was computed using blockCV version 3.1-4 (Valavi et al. 2019) to inform 

parameter settings (e.g., psill, model, range, and nugget) for subsequent fitting of variograms 

using gstat version 2.1-1 (Pebesma 2004; Gräler et al. 2016). We fitted variograms iteratively 

with parameters adjusted until the final outputs were the same as those used for fitting, with 

the final range value used to inform spatially explicit block size. Satellite fire frequency was 

used to randomly but equally allocate points restricted to areas of public land fire data to five 

training and evaluation dataset partitions in a checkboard pattern. This resulted in each 

partition for a given satellite fire frequency having a 4:1 ratio of training to evaluation points. 
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Predictive modelling 

 

We used three different modelling approaches to estimate landscape-scale fire frequency: 

Boosted Regression Trees (BRT), Generalised Linear Models (GLM), and Generalised 

Additive Models (GAM). Each of these models differ in their technical and conceptual 

approach with BRT being less easily interrogated but used commonly in species distribution 

modelling (Soykan et al. 2014; Elith et al. 2020) and fire applications (Sachdeva et al. 2018; 

Kalantar et al. 2020). Generalised linear models and GAMs use a traditional statistical 

modelling approach and often perform well in modelling species distributions (e.g., Meynard 

and Quinn 2007; Murase et al. 2009; Valavi et al. 2022). Our goal was to compare the three 

model types to determine which method improved estimates of satellite fire frequency when 

compared to the more accurately mapped public fire data. In all models, the response variable 

was satellite fire frequency derived from Landsat and Sentinel-2. All models were fit with a 

Poisson distribution; log link function, appropriate for count data; and a random seed set prior 

to modelling, for reproducibility. 

 

Boosted regression tree modelling 

 

Boosted regression trees hyperparameters were optimised prior to modelling by creating a 

data frame with all combinations of: number of trees (500, 600, …, 10000); tree complexity 

(1, 2, …, 8); number of minimum observations in node (50, 100, or 200); and learning rate 

(0.1, 0.05, …, 0.0001) (see Elith et al. 2008). Using the training subset of presence-

background data a BRT model was then trained in caret version 6.0-94 (Kuhn 2008) with a 

10-partition cross-validation method and grid search pattern. The optimised tree complexity 

of 8 and learning rate of 0.1 were used in subsequent modelling. 

 

The ratio of presence to background points in our data was small (2:8) thus, following Valavi 

et al. (2022), we used three weighting approaches to balance their contribution: (1) no 

weighting; (2) down-weighting backgrounds points (the total summed weight of background 

points equalled the total weight of presences); and (3) infinitely weighted logistic regression 

(background points with a very large weight) (hereafter ‘Infinite BRT’). Each BRT model 

was then run using dismo version 1.3-14 (Hijmans et al. 2023). 
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Generalised linear and generalised additive modelling 

 

Generalised linear models and GAMs were used with background point down-weighting 

applied in the same manner as for BRT. Generalised linear models were run in base R (R 

Core Team 2023) and GAMs in mgcv version 1.9-1 (Wood 2004, 2011, 2017). Generalised 

additive models fit non-linear relationships by summing smooth functions of each variable, 

applying marginal basis functions, and controlling the basis dimensions of each variable 

(Wood 2004, 2011). We used tensor product smooth functions (‘te’) which apply separate 

penalties to each variable making them useful for variables in different units  (Wood 2006, 

2017). We also specified cyclic cubic regression spline (‘cc’) marginal basis functions for 

climatic variables to stop the smoother shrinking to zero (Wood 2017). Generalised additive 

model smoothness was further controlled by specifying the basis dimension (‘k’) to determine 

knots spacing (i.e., the amount of ‘wiggliness’ in the response) (Wood 2017). We adjusted k 

for each variable separately until k-index values and expected degrees of freedom were not 

close together and diagnostic plots showed reasonable fit. 

 

Predicting fire frequency and evaluating model performance 

 

Spatial predictions of fire frequency were produced from each model using the environmental 

predictors through terra (Hijmans 2024). Predictions were extracted for presence and 

background points to evaluate model performance using commonly used species distribution 

modelling metrics in precrec version 0.14.4 (Saito and Rehmsmeier 2016): AUCROC and 

AUCPRG. Additional statistics were calculated including mean squared error; average 

deviance of observed and predicted values using a Poisson distribution through dismo 

(Hijmans et al. 2023); and Pearson’s coefficient of determination through stats (R Core Team 

2023). 

 

Model performance was further validated by examining the correlation between public fire 

frequency data and modelled fire frequency at presence points. We compared these 

correlations to the correlation between public land fire frequency and unmodelled satellite 

fire frequency (‘observed’). Where the correlation coefficient of the modelled data was 

greater than that of the observed value (r = 0.252), we considered that model to have 

improved estimates of fire frequency. We provided AUC values for their familiarity and 

comparison to other species distribution modelling studies, evaluating AUC following Araújo 
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et al. (2005). However, these statistics may not be reliable, especially for presence-

background/pseudoabsence models (see, Lobo et al. 2008; Jiménez and Soberón 2020). Thus, 

we also used histograms and maps displaying the density distribution of fire frequencies to 

visually compare observed and modelled fire frequencies. Finally, we compared fire 

frequencies from public data, unmodelled satellite data, and modelled predictions for broad 

vegetation aggregations. Broad vegetation aggregations followed those recognised in 

Queensland’s Broad Vegetation Group (BVG) classification system: rainforests = 1-7; 

sclerophyll = 8-27; grassland and shrubland = 28-33; and wetland, mangrove and saltmarsh = 

34-35 (Neldner et al. 2019). For each aggregation, fire frequency at 1,000 random points was 

extracted from public land, modelled and unmodelled satellite fire frequency data. 

 

Results 

 

Our results showed that the accuracy of satellite fire frequency estimates can be improved by 

modelling its relationship with public land fire and environmental data; with correlations 

ranging from 0.004 to 0.638 (Table 2). From 1987-2023, fire frequency for unmodelled 

satellite data ranged from 0 to 26 fires, while on public land it ranged from 0 to 12 fires. 

Across model types, the maximum predicted fire frequency varied: GLM = 14; GAM = 18; 

down-weighted BRT = 50; unweighted BRT = 38; and Infinitely BRT = 9. This tendency for 

models to under- or over-estimate maximum fire frequency was considered to be a minor 

problem as fire frequencies >18 were less than 1% of the landscape. The largest increases in 

correlation relative to the observed values were for the GLM and GAM (r = 0.638 and 0.503, 

respectively, Table 2), but these models had poorer performance than the down-weighted 

BRT (AUCROC = 0.722 and 0.742, respectively, Table 2). Down-weighted and unweighted 

BRT predictions had the highest performance (AUCROC = 0.930 and 0.754, respectively), but 

only weakly increased correlations (Table 2). Furthermore, the Infinite BRT had the poorest 

performance and lowest correlation (r = 0.004; Table 2). The relative contribution of 

environmental variables to estimates of fire frequency varied among model types, with the 

best predictor being public land fire frequency for GLM and GAM and temperature 

seasonality for the BRT models (Fig. 3). Public land fire frequency was the third best 

predictor for down-weighted and unweighted BRT, but did not contribute to Infinite BRT 

modelling (Fig. 3). 
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Table 2 Evaluation statistics comparing predictive performance among generalised linear, generalised additive, 

and boosted regression tree (BRT) models of fire frequency. Pearson’s correlation coefficient (r) indicates the 

correlation between predictive fire frequency and fire frequency derived from public land fire history data 

within the public estate of southeast Queensland, Australia. 

Evaluation statistic Generalised 

linear model 

Generalised 

additive 

model 

Down-

weighted 

BRT 

Unweighted 

BRT 

Infinite 

BRT 

Correlation (r) 

with public land 

fire 

0.638 0.503 0.329 0.332 0.004 

AUCROC 0.722 0.742 0.930 0.754 0.660 

AUCPRG 0.703 0.707 0.927 0.707 0.574 

AUCROC = Area Under the Receiver Operating Characteristic Curve; AUCPRG = Area Under the Precision-Recall 

Gain Curve; Infinite BRT = Infinitely weighted logistic regression BRT 
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Fig. 3 Relative contributions of environmental predictors to modelling satellite fire frequency for (a) generalised additive 

(GAM); (b) generalised linear (GLM); (c) Down-weighted BRT; (d) unweighted BRT; (e) infinitely weighted logistic 

regression BRT (Infinite BRT). FPC = Foliage Projective Cover; TPI = Topographic Position Index; TWI = Topographic 

Wetness Index. 

 

As expected, unmodelled estimates from satellite data underestimated fire frequency, 

especially in infrequently burnt areas (i.e., 1-6 fires). However, in frequently burnt areas (i.e., 

≥7 fires), satellite data identified more fires than public land fire data (Fig. 4a). Predictions 

from the GLM resulted in a large decrease in areas classified as unburnt which substantially 

improved classification of areas burnt 1-2 times (Fig. 4b). Predictions from the GAM also 

significantly reduced areas classified as unburnt, but not to the same extent as the GLM (Fig. 

4b, c). The GLM and GAM both underestimated fire frequencies >2 but the GAM was more 

likely to capture higher fire frequencies (Fig 4b, c). Thus, the GLM was slightly better at 
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classifying areas as burnt or unburnt, while the GAM was slightly better at classifying areas 

burnt multiple times. Predictions from down-weighted and unweighted BRT were similar to 

the GLM and GAM, generally underestimating most common fire frequencies (i.e., 1-5 fires) 

but did not reduce areas classified as unburnt to the same extent (Fig. 4d-f). Furthermore, the 

Infinite BRT resulted in the most severe underprediction (Fig. 4f). Therefore, while our 

predictive models typically underpredicted fire frequencies >2, our predictions significantly 

reduced unburnt area classification (Fig. 4a-e). Predictions from the GLM and GAM 

generally improved estimates of landscape-scale fire frequency with more areas mapped as 

having burnt at least once (Fig. 5c, d). However, the GAM was slightly better at representing 

the spatial extent of higher fire frequencies than the GLM (Fig. 5a-d). While BRT predictions 

also improved representation of higher fire frequencies, these models predicted larger areas as 

unburnt (Fig. 5e-g). 
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Fig. 4 Comparisons of fire frequency estimates between public land fire history data (‘public’), raw, unmodelled 

satellite data (‘satellite’) and prediction from a range of model types. The right-hand panel for each model type 

shows cell counts below 100 to enable comparisons at high fire frequencies (fire frequencies ≥4 had very low 

cell counts and were difficult to visualise). All fire frequency estimates were compared against the public land 

fire data as a baseline, with fire frequency at presence points ranging from 0 to a maximum of 16 fires 

depending on the model. (a) Observed = satellite and public land, (b) generalised linear (GLM), (c) generalised 

additive (GAM), (d) unweighted Boosted Regression Tree (BRT), (e) down-weighted BRT, and (f) Infinitely 

Weighted Logistic Regression BRT (Infinite BRT) model predictions. 
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Fig. 5 Fire frequency from 1987 to 2023 in southeast Queensland, Australia derived from (a) observed satellited 

and (b) public land fire history data. White areas are those mapped as unburned. The observed fire frequencies 

were compared to predictions from: (c) generalised linear model (GLM), (d) generalised additive model (GAM), 
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(e) down-weighted BRT, (f) unweighted BRT, and (g) Infinite BRT. The maximum estimated fire frequency 

varied across model types: (a) satellite data = 26; (b) public data = 12; (c) GLM = 14; (d) GAM = 18; (e) down-

weighted BRT = 50; (f) unweighted BRT = 38; (g) Infinite BRT = 9. Fewer than 1% of cells had fire frequencies 

>18 fires in the past 36 years for satellite, unweighted BRT, and down-weighted BRT. Thus, to aid visualisation, 

fire frequencies >18 are not shown but can be extracted from the database provided online (Charles and Smith 

2025). 

 

The distribution of fire frequencies in vegetation aggregations was highly variable (Fig. 6). In 

rainforest, the GLM and GAM tended to classify unburned areas as burned, and thus, 

overpredicted fire activity (Fig. 6a). However, the GAM did this to a lesser extent than the 

GLM (Fig. 6a). In sclerophyll vegetation, areas classified as unburnt for public land and 

unmodelled satellite data were commonly modelled as having burnt once rather than 

spreading along the gradient of fire frequencies, this was especially evident for the GLM 

(Fig. 4b-c, Fig 6b). In grassland and shrubland, GLM and GAM predictions for unburnt areas 

were similar to that of unmodelled satellite fire frequency (Fig. 6c). The GLM and GAM 

resulted in some overprediction of grassland and shrublands areas burnt once but the GAM 

tended to spread previously unburnt areas along the fire frequency gradient more than the 

GLM (Fig. 6c). In wetland, mangrove and saltmarsh, overprediction was evident for low fire 

frequencies (i.e., 1 fire) but for higher fire frequencies, underprediction was more evident in 

the GLM than the GAM (Fig. 6d). Thus, GAM predictions, while resulting in some 

overprediction at low fire frequencies (i.e., 1 fire), produced more useful estimates through its 

capture of higher fire frequencies than the GLM across different broad vegetation 

aggregations (Fig. 6). 
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Fig. 6 Distributions of estimated fire frequencies from 1987 to 2023 across broad vegetation aggregations: (a) 

rainforest; (b) sclerophyll vegetation; (c) grassland and shrubland, and (d) wetland, mangrove and saltmarsh, 

derived from Broad Vegetation Groups (BVG) in Queensland, Australia. Fire frequency estimates are presented 

from public land fire history data (‘public’), raw, unmodelled satellite data (‘satellite’), and predictions from a 

Generalised Linear Model (GLM) and a Generalised Additive Model (GAM). The range of fire frequency 

differed between datasets from zero fires to satellite data = 10; public land fire data and GAM predictions = 7; 

and GLM predictions = 5. 

 

Discussion 

 

Accurate fire history data are generally unavailable for areas outside of public land, and some 

regions rely solely on less accurate satellite data to capture fire histories (Galizia et al. 2021; 

Ruscalleda-Alvarez et al. 2021; Khairoun et al. 2024). Here, we improved the accuracy of 

fire frequency estimates from satellite data by modelling its relationship with public land fire 
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and environmental data. Our resulting models conform to the famous aphorism, attributed to 

George Box: “all models are wrong, but some are useful”. The GLM and GAM tended to 

underestimate fire frequency in areas burnt more than twice (i.e., they were ‘wrong’), but 

they were ‘useful’ in identifying areas likely to have burned once or twice, which had been 

undetected by satellites. Therefore, our models enables us to more accurately classify the 

landscape as burnt or unburnt in the past 36 years (i.e., 1987-2023). The GLM and GAM 

improved estimates of landscape scale fire frequency, with correlation increases of 0.39 and 

0.25, respectively, likely due to the high relative contribution of public land fire frequency to 

these models. Correlation improvements were likely due to a higher relative contribution of 

higher accuracy public land fire frequency to the GLM and GAM predictive modelling, 

improving modelling of relationships between environmental attributes and satellite fire 

frequency. Conversely, the BRTs did not significantly reduce areas mapped as unburnt and 

had variable predictive capacity across fire frequencies, possibly due to a lower relative 

contribution of public land fire frequency to BRT predictive modelling. Thus, the GLM and 

GAM were more accurate than BRTs and were especially useful at mapping fire in areas 

otherwise mapped as unburnt by satellite derived data. 

 

Modelled fire frequencies from the GLM and GAM tightly matched observed fire frequencies 

in shrubland and grassland, and to wetland, mangrove and saltmarsh vegetation. This is likely 

due to low overstorey vegetation which would otherwise limit satellite imagery capture of 

understorey vegetation. However, for shrubland and grassland and wetland, mangrove and 

saltmarsh vegetation, we recommend using a GAM as it was better able to capture higher fire 

frequencies. In sclerophyll and rainforest vegetation, selection of model type is less clear, as 

unburnt areas were mapped as having burnt once or twice. For sclerophyll vegetation, we 

expect high fire frequencies (i.e., ≥5 fires over 36 years) as this vegetation type accumulates 

fuel load quickly (Gilroy and Tran 2009; Cawson et al. 2018; Benwell 2024). It seems likely 

that the re-classification of unburnt areas as burnt once or twice in this aggregation is 

accurate. Thus, the GAM would be an effective model type for predicting fire frequency in 

sclerophyll vegetation as it captures a wider gradient of fire frequencies. Conversely, 

rainforests typically burn infrequently, as little as once in 100 years (Thorley et al. 2023; 

Benwell 2024). It seems unlikely that the re-classification of unburnt areas to areas burnt 

once (or more) over 36 years is an accurate reflection of rainforest fire history. Considering 

that rainforests comprise less than 15% of remnant vegetation in southeast Queensland, our 

predictive models may not be useful for this vegetation type (Neldner et al. 2019). For 
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rainforest vegetation, predictive models would be more useful when specifically fitted to this 

vegetation type. 

 

For tens of thousands of years, Indigenous people managed vegetation across Australia using 

fire, but European colonisation supressed this practice, leading to fuel build up and vegetation 

changes (e.g., vegetation thickening) (Moss et al. 2015; Mackenzie et al. 2020; Stewart et al. 

2020; Hoffman et al. 2021; Greenwood et al. 2022; Mariani et al. 2022; Hanson et al. 2023). 

In Australia, rainforest is typically found within gullies surrounded by more flammable 

sclerophyllous vegetation (Neldner et al. 2019; Fensham et al. 2024). Public fire history data 

shows that more than 60% of these rainforest patches have been affected by wildfire in the 

past 36 years, potentially linked to suboptimal sclerophyll vegetation fire regimes 

(Queensland Parks and Wildlife Service 2023; Thorley et al. 2023). Our results showed fire 

frequency in sclerophyllous vegetation was substantially lower than the recommended fire 

return interval for this vegetation type (i.e., less than 5-6 fires over 36 years, Queensland 

Herbarium 2024). Low fire frequencies, coupled with highly flammable fuel (Cawson et al. 

2018; Benwell 2024) and drought, can result in high intensity fires in sclerophyll vegetation 

which can penetrate rainforest margins (Collins et al. 2021; Laidlaw et al. 2022; Thorley et 

al. 2023; Bird et al. 2025). Increased fire in rainforest margins reduces abundance of fire-

retardant rainforest species and facilitates encroachment of flammable species, potentially 

perpetuating fire regime and vegetation community changes (Cochrane and Laurance 2008; 

Fletcher et al. 2020; Thorley et al. 2023; Fensham et al. 2024). Further climate-change driven 

fire regime shifts are expected to intensify during the 21st century driven by climate change 

(Moritz et al. 2012; Di Virgilio et al. 2019; Dowdy et al. 2019; Canadell et al. 2021), which 

may contribute to vegetation shifts and threats to fire sensitive species (Walsh et al. 2013; 

Dudley et al. 2019; Lavery et al. 2021). Thus, accurate landscape-scale historical fire 

information is needed for conservation and mitigation actions, and our workflow can 

contribute to that goal. 

 

Our workflow can be used to improve predictions of the landscape-scale fire frequency and 

assess fire regimes suitability for some vegetation types. The choice of predictive model will 

depend on context and vegetation type. Where researchers are interested in understanding 

simply whether the land has burnt recently or not, the GLM would be most appropriate. 

Where researchers want to better characterise high fire frequencies (e.g., more than 4 fires in 

the past 40 years), the GAM would be appropriate for most vegetation types. However, we 
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recommend trialling new modelling approaches for estimating fire history in rainforest 

vegetation, due to its unique context. In future, the accuracy of our models could be improved 

by incorporating data more directly related to fire occurrences such as lightning strikes. These 

data were unavailable for our study, but might more clearly indicate relationships between 

environmental attributes and wildfire occurrences. Our predictive modelling workflow may 

aid fire management and conservation practices by improving the accuracy of fire frequency 

estimates. 

 

Data availability 

 

Data and code are available as an archived Zenodo repository (Charles and Smith 2025): 

https://doi.org/10.5281/zenodo.15133643. 
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