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The patterns and processes discernible in natural ecosystems still remain the most appropriate standard
available. . . What is needed are countless elegant solutions keyed to particular places and problems.

Jackson and Piper (1989)

1 Introduction

The central promise of ecosystem monitoring technologies
— like bioacoustic, camera trap, citizen science, eDNA,
and satellite data — is to reveal changes in the structure
and composition of the Earth’s ecological systems to facili-
tate timely and effective conservation action (Langhammer
et al., 2024). The opportunities for new technologies to
provide data-driven conservation insights have been clear
for several decades (Hobbs and Mooney, 1990; Roughgar-
den et al., 1991), but interest accelerated rapidly about a
decade ago as access to data, computing power, and new
measurement tools flourished (Snaddon et al., 2013; Pimm
et al., 2015; Marvin et al., 2016). Over ten years of re-
search and development have further increased the stability
and predictability of these systems, where the opportuni-
ties and limitations for each type of data are now fairly
well characterized (Anderson, 2018; Jäckel et al., 2021;
Fraisl et al., 2022; Tuia et al., 2022). Now, the fusion of
multimodal observation systems, where data from multi-
ple sources are combined to provide novel and emerging
insights, is developing as a key research frontier (Daroya
et al., 2024; Sastry et al., 2024; Zhu et al., 2024).

From a technology systems perspective, the emergence of
multimodal analyses marks a key transition from multiple
independent systems in developing states towards a ma-
ture, interconnected, and network-like state. The former
is typically characterized by linear flows of information
within a single system, such as automating wildlife detec-
tions from camera traps (Beery et al., 2019) or classifying
habitats from satellite data (Alleaume et al., 2018). The
latter is characterized by flows of information across mul-
tiple systems, such as dynamic species abundance maps

derived from fusing citizen science and satellite data (Fink
et al., 2023) or integrations of eDNA and camera trap data
to monitor species site use patterns (Tetzlaff et al., 2024).
As methods for fusing data across modalities emerge, so
will the technical systems that manage the flows of data
between systems and end-users.

Mult-modal ecosystem monitoring networks are desirable
because, while individual technology systems specialize
in measuring ecological patterns at distinct spatial and
temporal scales, characterizing the complex dynamics in-
herent to ecosystems is best achieved through multiscale
analysis (Chave, 2013). While multimodal ecosystem mon-
itoring technology networks represent a meaningful end
state, few are currently operational and there are even fewer
blueprints to outline how these systems should be built. In
anticipation of the upcoming opportunities to build and
deploy such networks, this essay reviews some of the emer-
gent properties of systems in general, as well as the very
systems we seek to better monitor — ecosystems — to
identify key principles to guide software architecture and
technology design (Meadows, 2008). What technology de-
sign patterns will best facilitate timely multisource insights
into ecological change?

2 Ecological Design

Ecosystem monitoring technologies are systems that pro-
duce a time series of digital data describing the structure
and function of ecological systems, including the stocks
and flows of organisms and resources through an environ-
ment. These technologies — called Digital Earth Tech-
nologies by Bakker (2024) — typically refer to a system
with four primary components: hardware, software, data,
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and people. In the most simplistic representation, measure-
ments are made by hardware, processed by software, stored
as data, and those data are analyzed by users or by down-
stream software systems. These components can be broken
into subsystems — like the power and communications
systems onboard satellites — but it is useful to represent
each technology as a network of components. The purpose
and function of each system are often self-contained, such
as classifying bird calls or detecting logging activity from
acoustic signals. But multimodal monitoring systems will
be more complex, managing information flows between
systems, creating a network of networks. How will and
how should such networks operate?

Ecological systems are networks of networks, for exam-
ple, and their structures reveal some relevant architectural
patterns for technology design. Ecology and architecture
are didactic disciplines, revealing the complex, multiscale
interactions between components in natural and built sys-
tems. While architecture is nearly always diagrammatic,
prescriptive, and future facing — providing blueprints to
build from — the origins of modern ecological research
often involved inspection, interrogation, and disentangle-
ment. This often takes the form of isolating and examining
the roles of individual components in a system, such as
removing a species from a trophic network to examine
how the rest of the network responds. The goal of this type
of research is often to develop a clear, relational under-
standings of the species interactions and the effect sizes of
changes within complex, interdependent systems.

While a diagrammatic, predictive architecture of the
Earth’s ecosystems may not yet exist, there are at least a se-
ries of core foundational principles for how ecological sys-
tems work, which can inform how to build complex tech-
nology systems. This is not a strictly novel framing; such
topics have been explored in-depth within software sys-
tems literature. Messerschmitt and Szyperski (2003) made
the connections between software systems and ecosystems
explicit in the early 2000s; Mens and Grosjean (2015) ex-
panded on this theme, using trophic systems as a model
to explore how resourcing developers drives innovation;
Keil et al. (2018) articulated the emergent evolutionary and
ecological dynamics at play among Linux distributions;
Jacobides et al. (2018) extended the ecosystem analogy
to describe interactions between markets and businesses.
Metaphors and analogies are prominent in these works and
will be here, too.

The metaphors of three additional ecological processes are
extended here to the realm of technology development:
succession dynamics, resilience, and stable states. What
follows is not a discussion of implementation details but a
high-level synthesis of key ecological processes that apply
directly to technology systems, primarily to software and
data. The goal is to articulate how natural design patterns
can be used to build clear, relational technology systems
that map the patterns of nature themselves — to develop a
blueprint for biomimicry.

3 Succession Dynamics

Succession is a prominent process within ecological sys-
tems. In plant communities, it refers to a directional change
in the composition and structure of a community over time,
which begins when a disturbance — an event that removes
or introduces part of a community — is followed by new es-
tablishment or by regrowth (Gurevitch, Jessica et al., 2006).
Ecological communities frequently exist under dynamic
and homeostatic conditions, shifting between directional
turnover processes and self-repairing, self-sustaining pro-
cesses (Fig. 1). Tensions between these processes typically
result in increased community diversity, promoting stabil-
ity within the system over time (Hatton et al., 2024).

3.1 Balancing feedback loops in ecosystems

Balancing feedback loops are equilibrating or goal-seeking
structures in systems, and are both sources of stability and
sources of resistance to change (Meadows, 2008). These
feedback loops are driven by many processes in ecological
systems, such as coevolution, competition, disturbance,
and resource availability. These processes have several
parallels in technology systems, like research partnerships,
institutional competition, the release or deprecation of an
analysis platform, and access to compute power. To de-
sign a stable ecosystem monitoring network, we can draw
inspiration from the properties of stable natural systems.
The following is an adapted summary of the emergent
properties of forests and other ecosystems (Bradley, 1994).

• Forests and ecosystems are an ever-changing continuum
of living and nonliving things and processes embedded
in time, not suspended from time.

• Forests are mixtures of living and nonliving things and
processes that are self-organized, self-repairing, and
self-sustaining. They are dynamic, yet relatively stable.

• Diversity is a fundamental property of forests and other
ecosystems. It emerges for many "reasons" at system
levels, from biogeochemical cycling to dispersal me-
chanics to species interactions to geomorphic turnover.

• The world and its forests are coevolving and interrelated
systems of things and processes that meet many "ends"
and functions.

• Forests are complex landscapes whose patterns reflect
crucial underlying structure and process.

3.2 Dynamic succession in software

In software systems, a new system is established by the
first lines of code. Software continues to grow over time as
new functions are written, new features are added, and the
system evolves toward production or fails and goes locally
extinct (Bloch, Michael et al., 2012). Balancing loops
within software systems include unit and integration test-
ing, which increase stability by mitigating regression risks
and ensuring continuity over time (i.e. the software contin-
ues to operate as expected). Automated testing workflows
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Figure 1: Radial succession diagram illustrating growth and turnover within a forest over time (Hallé et al., 1978). The
icons correspond to different vegetation structural archetypes, showing how forests change in response to competition,
disturbance, and time. The successive phases (I, II, III, IV) include dynamic growing stages and homeostatic steady
stages (diverging and circular arrows). Disturbances effects are heterogeneous, resulting in either complete or partial
community turnover (solid or dashed lines), which could drive regressions to previous states or advance to new, more
complex states. Time is represented on a log scale.

underpin continuous integration, continuous deployment,
and continuous delivery, which all shorten the feedback
loops between developers and users of a system, and im-
prove predictability (Shahin et al., 2017). Software version-
ing and deterministic dependency management increase
stability by ensuring reproducibility, particularly in new
runtime environments. However, a software system’s de-
pendency tree can act as both a source of stability and a
source of resistance to change. Stability can be achieved
by pinning dependencies to specific versions, but can also
introduce resistance to change by not integrating features
from new releases.

These processes — writing code, writing tests, automating
deployment, integrating with other systems — occur over
time as developers contribute code, representing a system
dynamically moving from initialization to operation. Itera-
tive and exploratory software development is particularly
prominent within scientific programming, where growing
code organically, refactoring regularly, and avoiding pre-
mature optimization are cited as best practices Balaban

et al. (2021). Version control systems like Git facilitate
these patterns by providing an ongoing record of changes
within a system. This enables developers to understand the
processes that created the current state — the succession
dynamics — and allows users to revert back to previous
states if necessary. These tools are critical because code
is regularly refactored to improve efficiency and clarity,
which are self-repairing and self-organizing processes. The
axiom that ”rewriting is the essence of writing” applies
equally to writing software (Zinsser, 2001).

Change is common in both ecological and software sys-
tems, and stable systems expect and promote balancing
feedback loops to manage equilibration. This does not
mean, however, that all ecological and all software sys-
tems inevitably and linearly move towards stability. The
frequency and intensity of disturbances within these sys-
tems can cause major disruptions, such as a high-intensity
wildfire or the loss of a software team. Not all systems are
resilient to such changes. Designing for resilience should
be a primary goal for ecosystem monitoring networks,

3



Designing Multi-Modal Ecosystem Monitoring Networks

which will necessarily manage complex interdependencies
between systems. What does resilience mean from the
perspective of ecological design?

4 Designing for Resilience

Resilience implies the capacity of systems
to withstand external disturbances and inter-
nal malfunctions. Resilient systems absorb
shock gracefully and forgive human error. Re-
silience does not imply a static condition; it
implies flexibility that allows a system to sur-
vive unexpected stress. Resilient design does
not achieve the greatest possible efficiency all
the time, but achieves a deeper efficiency by
avoiding failures that jeopardize the opera-
tion and maintenance of the system.

Orr (1992)

Resilience in ecology was first defined as the amount of
disturbance an ecosystem could withstand without chang-
ing its self-organizing processes and structures (i.e. the
ecosystem’s stable state; Holling, C.S., 1973). But since
ecological communities grow and respond to changes over
time, experiencing different degrees and types of stability,
the concept of alternative stable states emerged to describe
how communities can maintain and change between multi-
ple self-organizing states over time (Beisner et al., 2003).
Ecological resilience in the context of alternative stable
states then refers to the limits of a stability domain and is
defined by the magnitude of disturbance that a system can
absorb before changing stable states (Gunderson, 2000).

Alternative stable states have parallels in software sys-
tems. Semantic versioning, for example, minimizes insta-
bility by clearly describing and tracking the release history
of software packages, from bug fixes to minor releases
to major releases (e.g., from v1.0.1 to v1.1.0 to v2.0.0;
Preston-Werner 2013). Bug fixes and minor releases up-
grade functionality in an internally consistent, backwards-
compatible fashion; a self-repairing process that maintains
a stable state. Major releases, which introduce incompati-
ble changes to the system architecture, mark a transition to
a new stable state. The primary functions of the software
remain intact, but the underlying processes and structures
that produce them have been reorganized. In the context
of succession dynamics, minor releases represent home-
ostatic changes, while major releases represent dynamic
directional changes (Fig. 1).

Developing multimodal ecosystem monitoring networks
will require transitioning technology systems between sta-
ble states; from a series of self-contained technologies to
a network of interconnected ones. An effective network
should itself be resilient to disruptive disturbances, such as
the loss of one mode of measurement, in the same way that
a single technology system should be resilient to distur-
bances, like the loss of one instrument. A resilient network

is likely to emerge from a series of underlying technology
systems that are themselves resilient.

What makes a technology system resilient? Resilient sys-
tems exhibit certain qualities, and these qualities have been
found to generalize across disciplines (Lovins, 2003; Orr,
2004; Meadows, 2008). These include:

• Simplicity and repairability

• Diversity and redundancy of components

• Modular, dispersed structure

• Multiple short interconnections between components

• Loose coupling of components in a hierarchy

• Decentralized control

• Rapid feedback mechanisms

Networks of ecosystem monitoring technologies will be
built, maintained, and used by a geographically diverse
community of users. Resilience here implies building
small, resource-efficient, locally adaptable, culturally suit-
able, and technologically elegant solutions, where the fail-
ure of one component does not jeopardize much else (Orr,
1992). No technology system is going to immediately
demonstrate these properties: they emerge over time as
a result of succession. Developers and system architects
both implicitly or explicitly manage the processes of devel-
opment that move software systems between stable states,
and the mechanisms of this turnover are iterative design,
refactoring, and review. Once the underlying design goals
for a system align with the goals of resilience, they should
slowly transition from developing to mature system states.

5 Mature Stable States

The development of multimodal ecosystem monitoring
networks represents a transition from a series of indepen-
dent, developing systems towards a mature, network-like
state (Table 1). And while the patterns of succession and
resilience are likely to be shared at both the subsystem
and network levels, managing flows of information be-
tween systems may require new configurations that are
not present within any subsystem. How do we expect
the transitions observed between developing and mature
ecological systems to apply to technology systems?

The early stages of technology development are charac-
terized by a small number of pioneering organizations or
researchers — or species, in this metaphor — with more
participants emerging as the technology becomes better
understood. Specialization typically follows as more or-
ganizations adopt the technology and as new applications
are tailored to address specific use cases (Jacobides et al.,
2018). For example, general advances in computer vi-
sion (Krizhevsky et al., 2012; He et al., 2016) have been
fundamental to advancing automatic species identification
from camera traps, cell phone pictures, and satellite data
alike, with highly specialized innovations proliferating in
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Ecosystem Property Developing Stages Mature Stages
Species diversity Low High
Niche partitioning General Specific
Coexistence dynamics Competition Specialization
Life cycles Short, simple Long, complex
Growth strategy Fast, uncontrolled Feedback control
Food chain Linear Web-like
Nutrient conservation Wasteful Efficient
Stability Low High

Table 1: Emergent properties of ecosystems at developing and mature stages. Developing stages are represented in Fig.
1 by phases I and II, and mature stages are represented by phases III and IV. Adapted from (Benyus, 1997; Allenby and
Cooper, 1994).

each of these fields (Ueda, 2020; Kattenborn et al., 2021;
Hernandez et al., 2024; Gillespie et al., 2024).

The technological innovation systems literature has iden-
tified that the initial phase of technology development is
characterized by poorly defined products with high uncer-
tainty, followed by a period of rapid growth where stan-
dards and value chains form and adoption takes off (Taylor
and Taylor, 2012; Markard, 2020). Adoption eventually
saturates, growth slows down, competition increases, and
there is a shakeout where many participants leave the in-
dustry, leading to stabilization.

Many ecosystem monitoring technologies are still in this
period of rapid, highly uncertain development. Geospatial
foundation models are a good example of a poorly defined
but rapidly developing technology. Foundation models
seek to over-generalize and solve every problem every-
where better than solutions tailored to a particular place or
context (Mai et al., 2023). Based on the premise that one
model could emerge to provide the foundation on which
all further analyses will stand, modeling approaches have
proliferated without design standards or a clear articula-
tion of how to create alignment across models (Rolf et al.,
2024).

Despite the imprecise premise — it is unlikely that one
model generalizes across all geospatial modalities — at-
tempting to solve the problem at all has identified key
opportunities. Efforts to harmonize data across modali-
ties — from bioacoustic, camera trap, citizen science, and
satellite data — may be converging around a data format
that could facilitate the flow of information across systems:
one-dimensional numerical arrays, otherwise known as
embeddings. Transforming data into a compatible analyti-
cal structure would create a simple, efficient mechanism
for fusing data between modalities, improving predictive
power, and applying transfer learning between contexts
(Ma et al., 2024). Fusing data from multiple models could
also improve resilience by reducing dependencies on any
one system, and could help transition the flow of informa-
tion from a linear workflow to a more networked, web-like
configuration.

6 Ten Principles for Designing Multi Modal
Ecosystem Monitoring Networks

Ecosystem monitoring technologies have developed to the
point where automated, multiscale, multimodal monitoring
networks are conceptually and technically feasible (Spar-
row et al., 2020; Besson et al., 2022; Pollock et al., 2025).
Such networks are likely to emerge as system-scale shifts
from developing to mature technology states (Table 1). Au-
tomating information flows from multiple systems will be
critical here, and the key technology design challenge is to
create coherent information feeds that allow us to respond
to and mitigate change, and to evaluate progress towards
conservation targets.

The emergent properties of ecosystems themselves might
illuminate the principles for how networks can evolve from
rapidly growing, highly uncertain products to stable, spe-
cialized, and interconnected components within larger sys-
tems. The lessons of succession dynamics, resilience, and
alternative stable states in ecology that can guide the de-
velopment of the next generation of ecosystem monitoring
networks. How can new technology systems be built to
mirror the processes and patterns of the ecological systems
they monitor? How should these principles be translated
from metaphor to mechanics?

Decentralize by design Monitoring technologies often
manage a directional flow of information, passing data
from one or more sources through a model to generate
predictions, a process typically managed by one organiza-
tion. Emerging monitoring networks will instead resemble
a web-like system with multiple connections between com-
ponents, managed by multiple organizations. This will
likely start by linking linear systems, like merging two or
three modalities together to produce an ensemble predic-
tion, then grow towards multi-node networks. The exact
pathway towards mature, stable-state systems with short
feedback loops — where models improve as more data
are collected and circulated through a system — is not yet
clear, but it will certainly be charted by experiment-driven
prototyping and open collaboration across multiple teams.
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Focus on data interoperability over software or plat-
form interoperability One comparable network-of-
networks technology system is the Internet of Things,
which emerged as the result of alignment around consistent
network communications and data protocols (e.g. a well-
defined network topology; Karimi and Atkinson, 2013;
Rahman and Asyhari, 2019). This framework for decen-
tralized, network-driven communications may provide a
useful blueprint for monitoring systems, and a network of
ecosystem monitoring technologies might be well framed
as an Internet of Nature (Galle et al., 2019).

Data is the key resource that will flow between systems
and should be the focus for standardization because it
can be described in platform-independent formats. Since
these systems will be managed by different organizations
with different technology stacks, it will likely be faster
and more sustainable to agree on data standards than to
convince organizations to standardize their programming
languages, software packages, or cloud service providers.
This will also simplify the onboarding process for new
teams, increasing the overall diversity and specialization
of participants in the network.

Align on core data and metadata standards Establish-
ing efficient flows of information between systems will
require alignment on how data are provided and described
across modalities. This is a delicate balance. Specify too
many standards and the system becomes too rigid; too
few and duplicate effort will be spent integrating disparate
datasets.

At the outset, it will be worth aligning on how to represent
the core dimensions of ecological data: how to describe
location, time, taxonomy, and measurement units. Several
relevant open standards already exist, such as the Spa-
tioTemporal Asset Catalog specification to describe space
and time (Zhao et al., 2021), Darwin Core and Humboldt
Core for standardizing species observations (Wieczorek
et al., 2012; Guralnick et al., 2018), and the Essential Biodi-
versity Variables to categorize biodiversity metrics (Pereira
et al., 2013).

Alignment does not necessarily require that existing data
must be processed or reprocessed to fit a certain standard,
but refers to alignment on how data should be loaded and
analyzed (e.g., to ensure straightforward joins or intersec-
tions across datasets). Software can play a key role in
managing compatibility. Middleware that translates and
standardizes data, such as the Taxonomic Name Resolu-
tion Service (Boyle et al., 2013), can be used to facilitate
consistent analyses between teams.

Prioritize cloud-native and API-driven access patterns
Cloud-native workflows can shift data access patterns from
analyzing stocks of data to flows of data; from analyzing
local copies of data to web-based analyses. Application
programming interfaces (APIs) are a core component of
cloud-native systems that allow software applications to
communicate and exchange data, which are often hosted

as web services. APIs provide an abstraction layer that
permits interoperability across systems, handling key regu-
latory functions such as authentication, authorization, rate
limiting, and data standards enforcement.

APIs can establish communication contracts between sys-
tems, regulating flows of information, as well as signaling
and diagnosing which parts of the system are down, which
are critical feedback loops for developers. Organizing
access around APIs allows data providers to curate and
manage their data production systems internally and only
expose data via web services, which regulate and instruct
users how data can be accessed. API-driven designs will
become increasingly valuable as access patterns evolve
from analyzing stocks of data (e.g., downloading static
training datasets) to processing flows of data (e.g., near-
real-time inference).

Use clear versioning strategies for software, data, and
APIs to ensure stability Technology systems grow and
change over time via succession dynamics, transitioning
between alternative stable states as model accuracy and pro-
cessing efficiency improve over time. However, changes in
one system can have major effects on downstream systems,
and not all changes can be immediately integrated across
the full network, since different teams update their systems
at different rates. This poses risks to reproducibility, which
is critical for scientific analysis.

How can we ensure that changes in one system do not in-
troduce instability across the whole system? Establishing
clear and consistent versioning standards is one way to
mitigate this risk. By establishing clear versioning infor-
mation across the system — for datasets, for models, APIs,
and software packages — users can expect deterministic
behavior based on version numbers and can pin their de-
pendencies to specific deployments or datasets. Version
information can also document data provenance (i.e. the
history of a dataset’s origin and transformations), provid-
ing data consumers with traceable information on the raw
data used in a derivative product.

Create staging and production environments for testing
releases across systems Establishing both staging and
production environments, also referred to as “next” and
“live” environments, improves software resilience by test-
ing new changes in an isolated environment before moving
to production. Staging environments can help developers
test stable-state behaviors to avoid breaking changes to
downstream systems and make it easy to revert changes,
improving repairability. In the context of multimodal mon-
itoring networks, staging environments will be the primary
location to test new dataset releases.

Staged integration testing creates a rapid feedback mech-
anism for data consumers to characterize how their mod-
els respond to new data in an isolated environment. It
should also establish cross-team feedback loops, as data
consumers can communicate issues to data providers. Al-
though this approach will create several short and efficient
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feedback loops, it is also likely to create longer, more com-
plex release cycles as developers collaborate to balance
changes, improvements, and stability.

Test against consistent, independent benchmarks to
understand performance shifts over time Automated
software testing is recommended as a best practice be-
cause it reduces regression risks (i.e., introducing breaking
changes). This principle can be extended beyond soft-
ware and applied to automated model performance testing,
which could be considered continuous evaluation. Ecosys-
tem monitoring technologies often involve predictive mod-
eling, and models can be retrained as new observations
or new predictive features become available, which then
change the model predictions. This typically improves
overall accuracy, though not always uniformly. An updated
camera trap species classification model may improve the
predictive accuracy for certain taxa but decrease for others,
for example.

Since data consumers are concerned about the consistency
of the predictions they use, data producers should evaluate
model performance using consistent independent bench-
mark datasets so consumers can clearly understand how
new versions of data are likely to affect downstream sys-
tems. Automated continuous evaluation workflows will
shorten feedback loops for internal developers, increase
transparency between teams, and provide some protection
against regressions during integration.

Promote open, asynchronous communications within
and between systems A modular, dispersed structure
with short connections between components will eventu-
ally describe a mature technology system, but will better
first describe the working relationships between the re-
searchers and developers in organizations that work to
build these systems. At this stage in the maturity of ecosys-
tem monitoring technologies, people are still the most
critical components of systems, navigating the evolving
research landscape and making complex scientific and
technical choices.

Linking complex systems will require many forms of com-
munication regarding strategic alignment, knowledge shar-
ing, and technical feedback. Teams that contribute to
ecosystem monitoring networks should provide multiple
avenues for receiving input and contributions from other
teams, like discussion forums and software issue trackers.
Asynchronous communication should be prioritized to en-
sure accessibility to a large audience, including teams who
may not contribute to the network until later. Open, asyn-
chronous communication will be critical for establishing
shared understanding between teams, improving system
resilience by creating knowledge redundancy across teams.

Encourage and plan for growing participation Dy-
namic, resilient systems should include many diverse com-
ponents: multiple data providers, multiple modeling teams,
and multiple end users. This diversity of components is
not likely to be present initially, but will eventually emerge

as succession dynamics evolve. As observed in the tech-
nological innovation systems literature, the early phases
of development are characterized by a small but growing
number of teams building high uncertainty products before
adoption saturates, growth slows, and participants shake
out, leading to stabilization (Markard, 2020). Contributors
should be expected to enter and exit the network over time,
which should not compromise the overall stability of an
effectively decentralized system.

Advance the technology to advance the science Hier-
archical systems evolve from the bottom up, and a key
systems tenet is that the purpose of the upper layers of
the hierarchy is to serve the purposes of the lower layers
(Meadows, 2008). This principle certainly applies to tech-
nology systems, where the network of components should
principally manage the efficient flow of information be-
tween systems. But it also reinforces that the fundamen-
tal purpose of ecosystem monitoring technologies is to
provide timely and high-quality data on how ecological
communities are changing.

Although mature technology systems exhibit self-repairing
and self-organizing properties, which repair and organize
the technology system itself, we should always remember
that the operations of these systems should function prin-
cipally in service of advancing our understanding of how
the planet’s ecosystems are changing.

7 Conclusion

The organizing principles of ecosystems reveal the design
patterns that ecosystem monitoring technologies can adopt
for quantifying changes to ecological communities. Moni-
toring technologies should be designed around the princi-
ples of short linkages and rapid feedback loops between
components, which applies to all levels of the technology
stack and to the communications between people.

The goals of ecosystem monitoring technologies at large
and the goals of modern ecological research clearly align
around rapidly testing and understanding how the com-
ponents of ecological systems respond to change. If we
align our technology systems with the principles of eco-
logical resilience, our monitoring networks may be able to
keep up with the pace at which the world’s ecosystems are
changing — and help us change with them.
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