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Abstract 9 

 10 

 11 

1. The anthropocene presents significant challenges for global biodiversity, public health, and 12 

long-term ecosystem stability. The wealth of publicly available near-real-time ecology and 13 

climate data can be used to monitor these challenges and allow practitioners to develop 14 

mitigation strategies. 15 

2. There is untapped potential to apply Large Language Models (LLMs) to quantitative ecological 16 

and environmental datasets, enabling researchers and practitioners to use natural language 17 

queries to transform ecological observations into actionable insights for both conservation 18 

action and external communication of results to diverse audiences. Advances in artificial 19 

intelligence (AI), and particularly in LLMS, offer emerging opportunities to address these 20 

challenges. LLMs are increasingly proficient at identifying patterns and semantic relationships 21 

within textual data, and are highly customisable. Accessible AI tools can also facilitate 22 

communication across research and policy sectors.  23 

3. Here, we present a roadmap for designing and implementing multi-modal LLMs to answer 24 

ecological research questions. In order to build ‘virtual statistician’ systems capable of fast-25 

tracking data interpretation, we advocate for strategic planning, data stewardship practices, 26 

careful prompt-engineering, and model evaluation as key steps in the LLM development 27 

process. 28 

4. We showcase a case study that applies the open-source LangChain framework to analyse citizen 29 

science data using the eBird database to produce a chatbot allowing the user to ask quantitative 30 

questions about near-real-time bird observations. Using our LLM roadmap, we highlight the 31 

importance of iterative and strategic prompt engineering and agent selection, in addition to 32 

iteratively evaluating model output. 33 

5. As LLM software continues to evolve, their integration into ecological and environmental 34 

research can empower ecologists with purpose-built tools that bridge the gap between data 35 

collection and actionable solutions. 36 

 37 

 38 
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Introduction 43 

 44 

 45 

The anthropocene continues to offer novel and unprecedented challenges for global biodiversity, public 46 

health, and ecosystem stability (Bellard et al., 2012; Doney et al., 2012; Willis & Bhagwat, 2009). While 47 

the size and hierarchical complexity of ecological and social data have increased at a rapid rate, tools 48 

to investigate and communicate emerging phenomena within these datasets remain time-consuming and 49 

specialised. Artificial intelligence (AI) data tools could facilitate both a democratisation of data analysis 50 

and the step-change in pace required to identify emerging trends and prompt rapid intervention 51 

responses. Large Language Models (LLMs) are complex probabilistic generative AI Natural Language 52 

Processing (NLP) models adept at recognising meaning and identifying semantic interconnectedness 53 

and patterns within text. LLMs such as Google’s BERT (Bidirectional Encoder Representations from 54 

Transformers) and OpenAI’s GPT (Generative Pretrained Transformer), and DeepSeek, have been 55 

evolving exponentially over the last decade (Google, 2024; OpenAI, 2024; Topsakal & Akinci, 2023; 56 

Liu et al., 2024). While this expansive evolution may pose challenges for long-term reproducibility, it 57 

also presents lucrative opportunities for scientific efficiency. For instance, LLMs have been used to 58 

auto-generate patient discharge forms based on incredibly basic prompts provided by humans 59 

(Chatterjee et al., 2023), extract data from survey responses from patients (Haag et al., 2023), and 60 

answer complex questions about human genomics to a degree of professional accuracy (Jin et al., 2024). 61 

Within the field of ecology, LLMs have been employed to scout bodies of academic text to recognise 62 

and report meaningful occurrences of taxa names (Le Guillarme & Thuiller, 2022), identify occurrences 63 

of pest control activity (Scheepens et al., 2024), perform biodiversity literature searches using keywords 64 

(Abdelmageed et al., 2023) and extract key metadata about pathogen hosts (Gougherty & Clipp, 2024).  65 

 66 

There is considerable untapped potential to use natural language processing on structured environmental 67 

and ecological quantitative datasets (or, matrix data such as CVS, XLS files), for example through the 68 

use of open-source software libraries such as LangChain which allow a chat-based interface between 69 

existing LLMs and data (Topsakal & Akinci, 2023), or foundational transformer models such as 70 

TabPFN which are trained directly on tabular data (Hollman et al., 2025). LLMs as an academic 71 

research tool have seldom been applied to quantitative data. Using both historical and ‘near-real time’ 72 

ecological and environmental data as a textual context for AI could offer researchers the opportunity to 73 

turn real-time ecological observations into meaningful academic and policy deliverables (Pollock et al., 74 

2025). For example, citizen science data could be an ideal source for harnessing the potential of LLMs 75 

(Enríquez-de-Salamanca, 2025). Large open-access global datasets such as iNaturalist (2024) and eBird 76 
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(Sullivan et al., 2014), constantly updated by citizen scientists and moderated by subject experts, are 77 

already essential tools for researchers studying global biodiversity change, phenology, and species 78 

invasion (Chandler et al., 2017; iNaturalist, 2024; Sullivan et al., 2014). By interpreting large amounts 79 

of publically available quantitative ecological data, LLMs could enable us to effectively communicate 80 

with our datasets, fast-track data interpretation, and lead to actionable conservation and research 81 

outcomes (Ceccaroni et al., 2019, 2023; McClure et al., 2020; Pollock et al., 2025). By combining LLMs 82 

with existing and robust statistical frameworks and using bespoke NLP tools, it may be possible to 83 

create custom multi-modal AI systems which can draw from multiple data sources, which in turn can 84 

help ecologists inform conservation decisions and fast-track communication between researchers and 85 

policy-makers. 86 

In this paper, we present a roadmap for developing custom multi-modal LLMs to serve as virtual data 87 

assistants—or ‘virtual statisticians’—designed to support ecologists in summarising, visualising, and 88 

exploring trends within complex ecological datasets. These tools represent a timely and powerful 89 

opportunity for ecological researchers to interact with data in more intuitive and accessible ways. In the 90 

Methods section, we outline a novel and flexible protocol for integrating ecological and environmental 91 

matrix data into tailored LLM systems. We showcase a case study that applies this protocol to develop 92 

and iteratively refine a LangChain-powered AI model. This model functions as an interactive chatbot 93 

trained on the eBird citizen science database, allowing users to ask natural language questions about 94 

near-real-time bird observations—including species-specific trends and spatial distributions. In this 95 

section, we explore the following research questions: 96 

1) Can a chatbot app using LangChain and a pre-trained OpenAI LLM allow us to interact with 97 

citizen science matrix data in a scientifically meaningful way?  98 

2) How well does the model perform using different types of ecological query topics? 99 

Finally, we explore how multi-modal LLMs could be used more broadly across ecological research and 100 

conservation practice. We argue that now is a critical moment for ecologists to shape and adopt these 101 

tools to bridge the gap between large, complex datasets and timely, actionable insight. 102 

 103 

Methods 104 

 105 

1. Designing robust and effective quantitative LLMs  106 

 107 

This section outlines a structured approach to develop an application to integrate data processing, AI 108 

models, and user interaction. The entire approach is represented as a visual roadmap in Fig.1 and is then 109 

used to showcase the design, implementation, and evaluation of a working citizen science chatbot 110 
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(Methods Section 2). In Phase 1 of our roadmap, we gather and preprocess relevant data, selecting 111 

appropriate sources and addressing any potential biases or gaps. Phase 2 involves designing and refining 112 

AI agents through prompt engineering, followed by iterative testing to ensure accurate and effective 113 

responses. In Phase 3, we focus on integrating and deploying the system, ensuring it performs reliably 114 

in real-world scenarios. Throughout each phase, continuous evaluation and refinement are conducted to 115 

optimise performance and ensure the system's overall effectiveness. 116 

 117 

Creating retrieval augmented generation models in LangChain  118 

As LLMs become increasingly integrated into various academic and commercial applications, there is 119 

a growing need for frameworks that allow developers to connect these models with bespoke data sources 120 

and to create interactive systems. Retrieval augmented generation (RAG) models combine pre-trained 121 

generative AI models with the retrieval of selected documents, such as PDF files, text from web-122 

searches, and numerical matrix data (Jeong, 2024; Lewis et al., 2020). LangChain is an open-source 123 

RAG software framework designed to enable users to integrate existing pre-trained LLMs (such as 124 

OpenAI’s GPT models) with a variety of data sources, including matrix data which can be stored as a 125 

CSV or SQL dataframe (LangChain, 2024). The LangChain framework also includes the LangSmith 126 

developer platform which allows developers to trace runtimes of their models, and LangGraph, an 127 

orchestration framework that allows developers to build more complex agentic systems with self-128 

reflective capabilities (LangGraph, 2024). The foundation of LangChain is built on 'chains', which 129 

function as chronological query-to-output pipelines. A user provides an informative prompt, along with 130 

data inputs (e.g., dataframes, PDFs, or text scraped from web searches), memory inputs from previous 131 

model calls, the LLM, and any additional custom tools. Non-academic use cases of LangChain include 132 

the development of AI-driven spreadsheets that optimise pricing and automating real-estate operations 133 

workflows (LangChain, 2024), and designing intelligent urban traffic control tools (Chen & Ding, 134 

2025). 135 

 136 

Prompt engineering and model parameterisation 137 

A ‘prompt’ is an input that is supplied to an LLM and includes the query from the user in addition to 138 

additional instructions provided by the developer, and can therefore be understood as a ‘mission 139 

statement’ for your RAG model. Prompts can also be adjusted to include specific instructions for the 140 

LLM, such as scraping the provided text for particular keywords, or to pay particular attention to certain 141 

aspects of the data (Scheepens et al., 2024). ‘Chain-of-thought’ or ‘least-to-most’ prompting strategies 142 

can provide a framework to decompose a user query into a list of easier sub-questions which can be 143 

sequentially resolved until the model generates its final output (Zhou et al., 2023). Furthermore, 144 

example question and answer sets can be provided within the prompt to guide the model toward an 145 

appropriate response (Topsakal & Akinci, 2023). When using quantitative matrix data, the metadata 146 
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descriptions of the field can be provided in full as part of the prompt to ensure the model is correctly 147 

selecting the appropriate variables for analysis based upon the user query. Within LangChain, 148 

developers can efficiently build prompts and attach them to their base models using ‘Prompt Templates’ 149 

whereby the prompt instructions are included as a text string (LangChain, 2024; Topsakal & Akinci, 150 

2023). Prompts can be iteratively adapted during the development and evaluation stages (Ambrogi, 151 

2023; Fig.1), and are integral components to bespoke and advanced RAG models. 152 

Custom LLM tools for data summarisation and visualisation 153 

One of the key advantages of LangChain is the ability to design and attach custom tools and agents to 154 

an LLM application. Tools are Python functions that perform a distinct action (such as plotting 155 

quantitative data) and are executed when selected by an LLM ‘agent’ which acts as a decision-making 156 

component that reads the user input and pre-designed prompt and routes the query to the appropriate 157 

tool (Jeong, 2024; LangChain, 2024; Topsakal & Akinci, 2023). A suite of toolkits and agents exist that 158 

can enhance the performance of LLM apps designed to process quantitative data, including the CSV 159 

and SQL toolkits that optimise agent interactions with quantitative data and execute mathematical 160 

queries using Python or SQL code (LangChain, 2024). The GitHub toolkit can connect an LLM app to 161 

a provided repository and interact with code, data, and issue tabs. The WolframAlpha tool can connect 162 

LLM chains to the WolframAlpha computational search engine to facilitate the computation of more 163 

complex mathematical tasks. We recommend using agents and tools for summarising, visualising, and 164 

performing mathematical operations on ecological and environmental matrix data within RAG LLM 165 

models. Combined with clear and informative prompts, agentic models can receive a user query, design 166 

a workflow, assign quantitative functions to either existing or custom-made toolkits, and generate output 167 

that is informed by existing metadata. 168 

Orchestration of multiple tools and text sources in LangGraph 169 

LangGraph is a module released by LangChain that allows developers to customise their LLM apps 170 

further using an orchestrated and cyclic framework of agents (Jeong, 2024; LangGraph, 2024). Different 171 

agents can interact through unconditional (direct, non-optional) or conditional (optional, router-driven) 172 

nodes, with memory from the previous agent carried across to the next until a reasonable query has been 173 

generated and presented to the user. For quantitative researchers, one key benefit of this system is the 174 

ability to draw upon multiple data sources within one app. For example, the developer can build a ‘query 175 

routing strategy’ tool that interprets the initial user query and directs it to either an SQL or CSV agent 176 

connected to quantitative data, a standard NLP agent drawing upon bank of academic literature stored 177 

as PDFs, or even direct it to a web-scraping search tool such as Tavily (Ambrogi, 2023; Gao et al., 178 

2024; Jeong, 2024; LangGraph, 2024). Through prompt engineering and the use of API pulls and real-179 

time web searches, this system provides ecologists and environmental scientists with the opportunity to 180 
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design, evaluate, and deploy advanced LLM models with conditional logic flows that could help answer 181 

user queries about complex ecological phenomena.  182 

 183 

Roadmap to effective LLM app development and implementation 184 

There are currently no guidelines for the development and evaluation of LLM RAG models for 185 

quantitative researchers. Here, we present a roadmap, split into three phases, for the development of 186 

such an app from start to finish (Fig.1). 187 

Phase 1: Data gathering and strategic planning 188 

a) Data Gathering: Select the quantitative data-frame you would like to provide as the key data 189 

source for your app. If available, collate all of the metadata explaining data provenance (e.g. 190 

eBird citation), variable names (e.g. observation counts) and units (e.g. metres). You may 191 

choose a static data-frame to upload manually to your coding environment. You may 192 

alternatively choose to call ‘near-real-time’ data from an API (e.g. iNaturalist API or the Global 193 

Health Observatory API [iNaturalist, 2024; WHO, 2024]) if you would like your app to analyse 194 

new data as it is gathered. As part of this process, take note of any common biases or data gaps 195 

that are known to exist in these products.  196 

b) Data Processing: To reduce unnecessary computation and to streamline your app design, you 197 

may wish to include only variables of interest within your data-frame. Depending on the focus 198 

of your app, you may also choose to filter your data to focus on key areas, timeframes, species 199 

etc (Ambrogi, 2023). Make a thorough note of any changes made during the data processing 200 

phase, and make sure to include this in any final reporting.  201 

c) Selection of LLM parameters: Research and make decisions on the pre-trained LLM you would 202 

like to use for this app. Options include, but are not limited to, Llama, BERT, or the OpenAI 203 

GPT models. Make decisions about basic LLM parameters such as scaling temperature (1 = 204 

higher probability of more random answers, 0 = more deterministic with low probability of 205 

random answers) and verbosity (the length of the generated outputs). Without adding any data 206 

or prompts at this stage, use the parameters above to test-run your app.  207 

Phase 2: Prompt engineering and agent evaluation  208 

a) Create an AI agent to interact with your dataframe: If using LangChain, create an agent to 209 

interact with the SQL or CSV toolkits and attach them to your cleaned data-frame. Test the 210 

chatbot to ensure the agent is working correctly and answering user-queries based on the 211 

context you provided.  212 
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b) Prompt engineering: Design meaningful prompts to attach to your agent. This should include a 213 

mission statement, metadata descriptions, Q&A examples, and any other meaningful 214 

instructions you wish to have attached to every user query.  215 

c) Iterative testing: We strongly recommend building a prompt, running your model through a 216 

predetermined set of questions, evaluating the correctness and tone of the output, and iteratively 217 

evaluating and adjusting your prompts accordingly until a desired threshold for correctness is 218 

achieved for your bank of questions. Developers may also consider evaluating the 219 

reproducibility of the answers to your test questions.  220 

 221 

Phase 3: Application orchestration and deployment 222 

a) Optional - Multi-agent frameworks: If you would like to incorporate more source texts into 223 

your LLM RAG app, you could build an orchestrated graph app in a system such as LangGraph. 224 

We recommend adding a router tool to enable the model to choose between whichever agent 225 

deals with the most appropriate text source (e.g. a CSV or SQL agent for matrix data, or a PDF 226 

reader for saved literature). Additional tools can be added to evaluate the usefulness of these 227 

text sources to the original user query.  228 

b) Deployment and long-term tracing: Once you are satisfied with the performance of your app, 229 

you can deploy it on a user interface such as Gradio (2024), or Streamlit (2024). Upon 230 

deployment, communicate on the user interface (and directly to any relevant stakeholders) that 231 

the app provides estimates, and not certainties, to avoid public misunderstanding about the 232 

output of the tool. Once the app has been deployed, continue to regularly run audits of its 233 

efficacy over time.  234 
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 235 

Figure 1: An example workflow for the development, evaluation, and deployment of a retrieval-236 

augmented generation LLM application. Phase 1 (pink) involves gathering your source data and 237 

strategically selecting model parameters. Phase 2 (orange) involves designing and iteratively testing 238 

prompts and model agents. Phase 3 (green) involves orchestrating multiple LLM agents into a multi-239 

modal graph, and finally deploying the chatbot online.  240 

2. eBird Case Study  241 

We followed our proposed workflow (Fig.1) to demonstrate a case-study example of the use of 242 

LangChain to build a query-answering framework based on citizen science data. We chose to use eBird 243 

data (Sullivan et al., 2014), a global compilation of citizen science bird observations collected by 244 

birders, conservationists, and scientists and moderated by ornithology experts. This data can be 245 

downloaded at different spatial and temporal resolutions, or imported via API pulls, and contains 246 

metadata for each outing, including bird species observed, abundance, sex, breeding or predatory 247 

behaviours, exotic status, and space for additional notes by observers. The data contains a mixture of 248 

numerical and textual input and therefore provides a useful opportunity to test OpenAI and LangChains’ 249 

capacity to interpret both qualitative and quantitative data and produce ecologically meaningful LLM 250 
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output. For this case study, we have focused on an example eBird dataset that was recorded between 251 

1st May - 1st June 2023 in the contiguous counties of Norfolk and Cambridgeshire in the United 252 

Kingdom. We analysed the dataset in R (version 4.4.1) to generate a bank of 100 quantitative data 253 

interpretation questions (Appendix Lists 1 and 2) about bird observations across the study area. We 254 

batch-tested these models through the LangChain LLM framework to evaluate whether our models 255 

could perform sophisticated reasoning on different types of ecological questions (see Appendix Table 256 

1).   257 

 258 

We then followed an iterative process of evaluating the LLM outputs against the verified answers and 259 

subsequently improving the chain prompt. Our models were iteratively improved over time in line with 260 

AI model availability, toolkit production, and enhanced prompts designed to fill in pertinent knowledge 261 

gaps as indicated by the previous round of evaluation. The research questions associated with this case 262 

study are as follows: 263 

 264 

1) Can a chatbot app using LangChain and a pre-trained OpenAI LLM allow us to interact with 265 

citizen science matrix data in a scientifically meaningful way?  266 

2) How well does the model perform using different types of ecological query topics? 267 

 268 

Through this case study, we aimed to determine whether an LLM can generate accurate and meaningful 269 

responses relating to bird abundance and community structure, bird behaviours, and likelihoods of 270 

occurrence across different habitat types. In doing so we also investigated whether LLMs are more 271 

adept at one aspect of ecological reasoning over another.  272 

 273 

 274 

Results: eBird Chatbot Case Study  275 

 276 

Prompt engineering testing revealed notable improvements to the model when the prompt was 277 

iteratively updated (Fig. 2). Here, we present the results of each of the seven model variations (see links 278 

to the model structure in Appendix Table 1). Model 1 has no prompt, and 46% of the answers fell into 279 

the category of ‘Unsure’, whereby the model output stated that this information could not be inferred 280 

from the data frame provided. Model 2 contained a description of basic metadata, including the variable 281 

descriptions provided by eBird, and we found a slight decrease in the number of ‘Unsure’ answers 282 

(34%) alongside respective increases in answers categorised ‘Correct’ (37%) or ‘Wrong’ (28%). Model 283 

3 included the same prompt as Model 2 but with further explanations of variables that were incorrectly 284 

interpreted before, nominally variables relating to time and locality, which greatly reduced the number 285 

of ‘Unsure’ (17%) answers and increased the number of ‘Correct’ (46%) answers. Model 4 included the 286 

same prompt as Model 3 but with examples of how questions related to time could be answered (i.e. 287 

which column tables to query) and the instruction to try to answer each question to completion and to 288 



 

10 
 

report ‘I don’t know’ when there was high uncertainty. This model had 62% ‘Correct’, 2% ‘Unsure’ 289 

and 36% ‘Wrong’ answers. Model 5 included the same prompt as Model 4 but was applied to an eBird 290 

dataset of a neighbouring county (Cambridgeshire). The proportion of ‘Correct’ (56%), ‘Unsure’ (7%) 291 

and ‘Wrong’ (36%) answers are similar between the initial county dataset (Norfolk) and the 292 

Cambridgeshire dataset.  293 

 294 

At this stage in our analysis, OpenAI deployed the ChatGPT ‘GPT-4o Mini’ model (OpenAI, 2024) and 295 

made it available for developers for use in their own LLM applications. We tested the thorough metadata 296 

prompt  on ‘GPT-4o Mini’ instead of ‘GPT-3.5’ to form our ‘Model 6’. This model performed better 297 

than the previous models, with 64.2% ‘Correct’ answers, 6% ‘Unsure’ answers, and 29% ‘Wrong’ 298 

answers. Finally, we attached the Wolfram AI tool to the ‘4o Mini’ model with thorough metadata to 299 

examine if this tool would enhance the quantitative capacity of the model. For this ‘Model 7’, 77% of 300 

the answers were ‘Correct’, 2% of the answers were ‘Unsure’, and 21% of the answers were ‘Wrong’. 301 

 302 

Across models, ‘Model 7’ performed best on questions related to bird abundance (e.g. counts of bird 303 

observations, n = 25), and questions related to community (e.g. identification of co-occurrence of bird 304 

species, n = 39), followed by questions related to the metadata (e.g. questions querying the meaning of 305 

the variables, n = 19), and finally questions related to bird behaviour (e.g. questions relating to 306 

observer’s fieldwork notes within the data-frame, or question about bird breeding and hunting 307 

behaviours, n = 12). For the final version of the model (Model 7), 82% of ‘community’ questions were 308 

scored as ‘Correct’, 80% of ‘abundance’ questions were scored as ‘Correct’, 68% of ‘metadata’ 309 

questions were scored as ‘Correct’, and 67% of ‘behaviour’ questions were scored as ‘Correct’.  310 
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 311 

Figure 2: Evaluation of different prompts attached to a LangChain SQL agent. Panel (a) Shows the 312 

counts of correct, unsure, and incorrect answers generated by the different model versions, coloured by 313 

the different ecological query categories. Panel (b) shows the changing proportion of 314 

correct:unsure:incorrect over time as the model was iteratively improved. Panel (c) shows an correct 315 

user query and model-generated answer from the final version of the model (version 7), generated in a 316 

Gradio user-interface.  317 

 318 

Discussion 319 

 320 

 321 

We have devised a proposed workflow for building intelligent, quantitative RAG LLMs adept at 322 

interacting with matrix datasets (Fig.1). We showcased the design and evaluation procedure for an 323 

example model that interacts with citizen science data from eBird (Sullivan et al., 2014), highlighting 324 

the importance of iterative prompt design, the use of quantitative agents, and the adaptation to emerging 325 

pre-trained LLMs (Fig.2). Ultimately, we found that adding detailed metadata descriptions, few-shot 326 
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examples, and mission statements to the prompts greatly improved model performance and that updates 327 

to pre-trained models (e.g. GPT-3.5 to GPT-4o Mini) greatly enhances the ability of the model to 328 

interpret user queries, filter, summarise, perform mathematical functions on the data, and produce 329 

meaningful answers. The case study model indicates that researchers can customise LLM workflows to 330 

create user-friendly tools that interact meaningfully with scientific data. Research to date has focused 331 

on the rapidly improving logic and calculus capabilities of pre-trained LLMs (Collins et al., 2024), and 332 

the opportunity to design AI agents that can convert plain language queries into mathematical 333 

statements and action them in code (Wu et al., 2024). To date, no published LLMs have been trained to 334 

carry out more complicated quantitative analyses. However, we predict that these will become 335 

widespread as LLMs continue to develop at a rapid rate. For ecologists and environmental scientists 336 

working with big data, we recommend keeping abreast of these developments and considering the 337 

potential research opportunities that are likely to emerge as a result.  338 

By combining LLMs with existing and robust statistical frameworks, and by using bespoke AI agents 339 

and toolkits, we predict that it will soon be possible to create custom RAG systems that can inform real-340 

time conservation, climate adaptation, and public health mitigation actions. Using LLMs instead of 341 

traditional statistical tools is innovative and intrinsically scalable. LLMs are adept at understanding and 342 

recognising patterns across a diverse array of data types and have already been successfully used to 343 

extract useful scientific data in multiple disciplines such as genomics and ecology (Jin et al., 2024; Le 344 

Guillarme & Thuiller, 2022; Scheepens et al., 2024). As demonstrated in this paper, LLMs' ability to 345 

interpret and analyse structured matrix data using tools like LangChain (particularly the multi-modal 346 

LangGraph) offers new possibilities for environmental and ecological research (Topsakal & Akinci, 347 

2023). Data-driven tools could incorporate multi-modal orchestrations (e.g. using LangGraph, see 348 

example in Fig.3) to draw upon multiple data types, including academic literature, near-real-time matrix 349 

data using API pulls, and web-scraping operations. Such tools, if designed carefully and with adequate 350 

evaluation (Fig.1), could empower policy makers to transform scientific data into actionable 351 

interventions at pace.  352 
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 353 

Figure 3: An example multi-modal RAG LLM workflow which incorporates user queries, pre-trained 354 

NLP models, custom tools and dataframe agents and multiple data sources,  with a variety of visual, 355 

textual and numerical outputs. Model outline built in LangGraph. 356 

One clear benefit of integrating LLMs into the analysis of ecological data is the increased timeliness of 357 

response time between initial data collection and data-informed action (Marvin et al., 2016). Camera-358 

trapping and audio monitoring are increasingly becoming enhanced by AI neural network technology, 359 

bridging the gap between in situ data monitoring and species identification and geolocation (Wall et al., 360 

2008; Ware et al., 2012). Likewise, by pairing quantitative LLMs with near-real-time environmental 361 

data (e.g. OpenWeather), and citizen science data, AI technology could save critical data cleaning and 362 

analysis time for quantitative ecologists by allowing them to outsource more menial data activities and 363 

focus instead on scientific inquiry, stakeholder collaboration, and outreach (Lamba et al., 2019; 364 

McClure et al., 2020). Furthermore, integrating LLMs and citizen science data may boost engagement 365 

between the public (particularly citizen science contributors) and science, especially if the gap between 366 

data publication and analysis is facilitated by AI frameworks (Pecl et al., 2019; Theobald et al., 2015). 367 

Accessible AI tools can also promote communication across research and policy sectors, making it 368 

easier to transform raw ecological data into action. The rapid uptake of neural network technology in 369 

the sphere of ecological research (McClure et al., 2020; Torney et al., 2019; Willi et al., 2019) indicates 370 

that researchers are willing to explore the analysis capabilities of other AI tools as and when they 371 

develop (Christin et al., 2019). It is therefore important to build and uphold robust and sustainable 372 

development and evaluation frameworks for these tools.  373 
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We recommend that quantitative researchers building RAG LLMs consider the concept of “garbage in, 374 

garbage out” when choosing the data to include within their model, to the same extent one would when 375 

building a traditional statistical framework (Kilkenny & Robinson, 2018). As with any quantitative 376 

analysis, the quality of the output is contingent on the quality of the data provided to the LLM. 377 

Ecological monitoring data can be prone to issues of selective bias towards charismatic species, 378 

misidentification, and inclusion of data entry errors. For example, GBIF data has high degrees of spatial 379 

bias, which in turn can skew the results of species distribution models (Beck et al., 2014). Furthermore, 380 

citizen science databases which are compiled by non-expert observers, can be messy, biassed by site 381 

selection, weather conditions, and selective observation of particular species and behaviours (Dobson 382 

et al., 2020; Thornhill et al., 2016; Tulloch et al., 2013). Researchers can adjust their statistical model 383 

designs to reflect such biases, for example through standardising observation counts between sites and 384 

building multilevel hierarchical models (Bird et al., 2014). However, these data transformation methods 385 

may be less reliably actioned using LLM agents alone. We recommend that any vital data processing 386 

and preparation is conducted before quantitative analysis is performed by a RAG LLM (Fig.1; Phase 387 

1).  388 

Pre-trained AI models update at a high frequency, though at a cost to reproducibility for developers 389 

building upon these base models (Ma et al., 2024). We experienced such a shift ourselves during the 390 

testing of our eBird case study model, whereby ‘GPT-4o-Mini’ was introduced towards the end of our 391 

investigation - helpfully highlighting both the iterative improvements of new LLM releases, and also 392 

the rapid pace of development (Fig.2). We predict that the high deprecation rate of LLM releases will 393 

remain high as their capabilities are tested, and that any prospective developers keep abreast of new 394 

updates. In designing our roadmap for building and evaluating LLM apps (Fig.1), we aimed to frame 395 

our suggestions broadly enough that they may be applied across new and unforeseen software 396 

developments. Another common issue faced by developers using pre-trained LLMs is the high level of 397 

stochasticity and non-determinism of results when the model temperatures are higher, and that the 398 

“black box” nature of pre-trained LLMs can make transparency, reproducibility, and quality-testing 399 

difficult (Ceccaroni et al., 2019; McClure et al., 2020; Ollion et al., 2024; Ouyang et al., 2024). These 400 

issues highlight the need to a) design thorough prompts which ask your model to report its logic when 401 

generating an answer, and b) ensure that the deployed version of your LLM apps clearly state that the 402 

model is AI and has the propensity to make mistakes (Fig.1; Phases 2 & 3).  403 

 404 

Conclusion  405 

There is strong potential to enhance the accessibility, speed, and effectiveness of ecological and 406 

environmental data analysis through the development of quantitative RAG LLMs. By integrating 407 
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advanced, pre-trained AI LLMs with existing ecological and environmental data, ecologists can build 408 

customisable ‘virtual statisticians’ that streamline data analysis, making trend detection and actionable 409 

insights more readily available and fast-tracking the route from data collection through to 410 

communication to policy-makers. Through our demonstration of the eBird chatbot, we show how 411 

researchers can integrate AI tools to empower them to ask nuanced questions about biodiversity patterns 412 

and trends. Ecologists may wish to take advantage of the emerging research capabilities of AI, but we 413 

urge them to do so with an awareness of the risks inherent across LLM models. We have provided a 414 

roadmap for developing multimodal LLM apps responsibly and transparently, while leveraging ongoing 415 

model updates. As AI technologies continue to advance, the opportunities to bridge the gap between 416 

data collection and data-driven interventions will proliferate. LLM innovations may be the key to 417 

transforming raw data into rapid insights that drive ecological and environmental solutions. It is 418 

therefore the responsibility of ecologists now to develop, promote, and pursue sustainable AI research 419 

frameworks in order to guide the future of responsible and impactful science. 420 

 421 

Data availability: 422 

 423 

Scripts and data used to conduct the eBird chatbot case study are available for review and download 424 

at: BioDivHealth/eBird_testing: Testing the model output of eBird LLMs 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 
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 445 
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 448 

 449 
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Appendix 643 

 644 

Appendix List 1: Batch questions for eBird chatbot evaluation, using data from the 645 

county of Norfolk (United Kingdom) 646 

 647 

Question 

What is the total count of birds observed in Norfolk? 

Provide the average duration of surveys in Norfolk. 

How many surveys were conducted at Cley & Salthouse Marshes? 

How many unique bird species have been observed at Titchwell. 

What is the total count of Bearded Reedling observed in Norfolk? 

How many surveys recorded sightings of the Western Marsh Harrier in Norfolk? 

What is the average number of bird species observed per survey at Blakeney? 

Provide the total sum of Black Headed Gull observed at NWT Holme Dunes. 

How many observations were recorded at Happisburgh? 

How many observations of exotic birds were there? 

Which is the most common bird observed? 

Which is the least common bird observed? 

What are the 3 most common birds at Hardwick Flood Lagoon? 

Rank the top 10 most common bird species observed at Cromer Golf Course. 

What is the total count of Carrion Crows observed in Norfolk? 

What is the total number of Carrion Crows by observation count ? 

What are the 3 most common birds in Norfolk? 

What are the 3 most common birds by observation count? 

What is the average number of bird species observed per survey at Stiffkey Fen? 

Provide the total count of Manx Shearwaters observed at Sidestrand. 

How many surveys were conducted on 5th May? 

How many observations were there on 5th May? 

How many unique species were seen on 5th May? 

How many exotic bird species are observed at Stiffkey Fen. 

What is the total count of birds observed at Wensum Park in the first week of May? 

Provide the average duration of observer effort per survey at Cringleford Marsh. 
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How many surveys conducted at Cringleford Marsh included Coal Tit? 

List all the bird species observed at Cromer Golf Course before 5pm on May 5th. 

What is the least common bird species observed at Stiffkey? 

Where was the most northerly sighting of the Smew? 

What is the average number of bird species observed per survey at Stiffkey Fen during May? 

What was the median duration effort? 

Which location has the highest number of individual observers? 

Which bird is most often seen stationary? 

What is the scientific name for the Purple Heron? 

Where are Common Buzzards more abundant, at Stiffkey Fen or at Titchwell Marsh? 

Which species are never spotted at Cromer Golf Course but are spotted elsewhere? 

Which two species are most likely to be observed together in the same survey? 

Which three species are most likely to be observed together in the same survey at Cromer 

Golf Course? 

Which two species are most likely to be observed together in the same survey at Stiffkey? 

Which bird species can only be observed before 8am at Sidestrand? 

Which bird species can only be observed after 2pm at Sidestrand? 

What is the third most abundant bird species at Titchwell Marsh? 

Which bird species are only observed once at Snettisham RSPB Reserve? 

Where are Barnacle Geese more likely to be observed, at Stiffkey Fen or at Titchwell 

Marsh? 

Which bird species are most likely to be observed in a stationary position at Titchwell 

Marsh? 

What is the scientific name for the Little Egret? 

Where are Black-bellied Plovers more abundant, at Stiffkey Fen or at Holme Dunes? 

At which locality am I most likely to see a Ruddy Shelduck (by sightings)? 

At which locality am I most likely to see a Ruddy Shelduck (by abundance)? 

Which two species are most likely to be observed together in the same survey at Titchwell 

Marsh? 
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Which bird species can only be seen after 8pm at Holme Dunes? 

Are more birds observed in the morning or in the afternoon? 

Are more bird species observed in the morning or in the afternoon? 

What is the second rarest bird species at Whitlingham Country Park? 

Where are Gray Herons more likely to be observed, at Holme Dunes or at Whitlingham 

Country Park? 

Which observer has the highest count of Western Marsh Harrier observations? 

Which observer has the lowest count of Western Marsh Harrier observations? 

Are Gray Herons more likely to be seen in the same surveys as Black-headed Gulls or 

Eurasian Wrens? 

At which location are Gray Herons and Black-headed gulls most commonly seen together? 

Which two species are most commonly observed together at Cromer Golf Course? 

Which two species are least commonly observed together at Cromer Golf Course? 

Which location has the least temporally consistent data? 

What is the scientific name of the most abundant bird species at Holme Dunes? 

Which bird species is usually observed earliest every day at Titchwell Marsh? 

Where are Charadrius hiaticulas more likely to be observed, at Stiffkey Fen or at Holme 

Dunes? 

What is the average number of Garganeys spotted per observation? 

What species have not been reported at Happisburgh but could potentially be found there? 

Which species are rarely observed but have been spotted in high numbers when seen? 

Which species are more commonly observed but have been spotted in low numbers when 

seen? 

Were any unusual behaviours noted among the birds in the dataset? 

Was any breeding activity observed at Titchwell Marsh? 

Which bird species was seen with most breeding activity at Titchwell Marsh? 

Were any hunting behaviours observed in Norfolk? 

How do birds interact with their environment? 

Which bird species are not seen in the northwest of Norfolk but are seen elsewhere? 
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What sensitive species were observed in Norfolk? 

Which is the southernmost species of plover? 

Which species are always solitary? 

At which location are the largest groups of the same bird species observed? 

Which location has the highest diversity of birds? 

Which location has the lowest diversity of birds? 

Which birds have been seen on rainy days? 

Were any predatory behaviors observed at Holme Dunes? 

How do birds in the community at Cromer Golf Course interact with their environment? 

Which 5 bird species are most commonly seen in fens? 

What reasons are given for unapproved observations? 

What species are most commonly reported by group surveys? 

Which bird species are most likely to have species notes? 

Find the observer with the highest average number of species per checklist 

Were any unusual behaviours noted among the birds at Holme Dunes? 

What time of day am I most likely to spot a Smew? 

Which birds are seen on rainy days at Dersingham Bog NNR? 

Which birds are overrepresented? 

Are weekdays or weekends better for observing different types of birds? 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 
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Appendix List 2: Batch questions for eBird chatbot evaluation, using data from the 660 

county of Cambridgeshire (United Kingdom) 661 

 662 

Question 

What is the total count of birds observed in Cambridgeshire? 

Provide the average duration of surveys in Cambridgeshire. 

How many surveys were conducted at Grafham Water? 

How many unique bird species have been observed at Smithy Fen. 

What is the total count of Bearded Reedling observed in Cambridgeshire? 

How many surveys recorded sightings of the Western Marsh Harrier in Cambridgeshire? 

What is the average number of bird species observed per survey at Wicken Fen NNR? 

Provide the total sum of Black Headed Gull observed at Roswell Pits. 

How many observations were recorded at Cambridge Botanic Garden? 

How many observations of exotic birds were there? 

Which is the most common bird observed? 

Which is the least common bird observed? 

What are the 3 most common birds at Coe Fen? 

Rank the top 10 most common bird species observed at Grantchester Meadows. 

What is the total count of Carrion Crows observed in Cambridgeshire? 

What is the total number of Carrion Crows by observation count ? 

What are the 3 most common birds in Cambridgeshire? 

What are the 3 most common birds by observation count? 

What is the average number of bird species observed per survey at Grafham Water? 

Provide the total count of Arctic Tern observed at Fen Drayton Lakes RSPB Reserve. 

How many surveys were conducted on 5th May? 

How many observations were there on 5th May? 

How many unique species were seen on 5th May? 

How many exotic bird species were observed at Grafham Water. 

What is the total count of birds observed at Dernford Reservoir in the first week of May? 

Provide the average duration of observer effort per survey at Paradise LNR. 

How many surveys conducted at Paradise LNR included Mallard? 
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List all the bird species observed at Grantchester Meadows before 5pm on May 10th. 

What is the least common bird species observed at Grafham Water? 

Where was the most northerly sighting of the Barn Owl? 

What is the average number of bird species observed per survey at Grafham Water during 

May? 

What was the median duration effort? 

Which location has the highest number of individual observers? 

Which bird is most often seen stationary? 

What is the scientific name for the Barn Owl? 

Where are Common Buzzards more abundant, at Grafham Water or at Smithy Fen? 

Which species are never spotted at Grantchester Meadows but are spotted elsewhere? 

Which two species are most likely to be observed together in the same survey? 

Which three species are most likely to be observed together in the same survey at 

Grantchester Meadows? 

Which two species are most likely to be observed together in the same survey at Wicken 

Fen? 

Which bird species can only be observed before 8am at Fen Drayton Lakes RSPB Reserve? 

Which bird species can only be observed after 2pm at Fen Drayton Lakes RSPB Reserve? 

What is the third most abundant bird species at Smithy Fen? 

Which bird species are only observed once at Emmanuel College? 

Where are Mallards more likely to be observed, at Grafham Water or at Smithy Fen? 

Which bird species are most likely to be observed in a stationary position at Smithy Fen? 

What is the scientific name for the Little Egret? 

Where are Common Chiffchaffs more abundant, at Grafham Water or at Roswell Pits? 

At which locality am I most likely to see a Ruddy Shelduck (by sightings)? 

At which locality am I most likely to see a Ruddy Shelduck (by abundance)? 

Which two species are most likely to be observed together in the same survey at Emmanuel 

College? 

Can a Dunnock be seen after 4pm at Emmanuel College? 

Are more birds observed in the morning or in the afternoon? 

Are more bird species observed in the morning or in the afternoon? 
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What is the second rarest bird species at Coe Fen? 

Where are Gray Herons more likely to be observed, at Wicken Fen or at Coe Fen? 

Which observer has the highest count of Western Marsh Harrier observations? 

Which observer has the lowest count of Western Marsh Harrier observations? 

Are Gray Herons more likely to be seen in the same surveys as Black-headed Gulls or 

Eurasian Wrens? 

At which location are Gray Herons and Black-headed gulls most commonly seen together? 

Which two species are most commonly observed together at Grantchester Meadows? 

Which two species are least commonly observed together at Grantchester Meadows? 

Which location has the least temporally consistent data? 

What is the scientific name of the most abundant bird species at Wicken Fen? 

Which bird species is usually observed earliest every day at Smithy Fen? 

Where are Anas platyrhynchos more likely to be observed, at Grafham Water or at Roswell 

Pits? 

What is the average number of Garganeys spotted per observation? 

What species have not been reported at Cambridge Botanic Garden but could potentially be 

found there? 

Which species are rarely observed but have been spotted in high numbers when seen? 

Which species are more commonly observed but have been spotted in low numbers when 

seen? 

Were any unusual behaviours noted among the birds in the dataset? 

Was any breeding activity observed at Fen Drayton? 

Which bird species was seen with the most breeding activity at Fen Drayton? 

Were any hunting behaviours observed in Cambridgeshire? 

How do birds interact with their environment? 

Which bird species are not seen in the northwest of Cambridgeshire but are seen elsewhere? 

What sensitive species were observed in Cambridgeshire? 

Which is the southernmost species of plover? 

Which species are always solitary? 

At which location was the largest group of the same bird species observed? 
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Which location has the highest diversity of birds? 

Which location has the lowest diversity of birds? 

Which birds have been seen on cloudy days? 

Were any predatory behaviors observed at Roswell Pits? 

How do birds in the community at Grantchester Meadows interact with their environment? 

Which 5 bird species are most commonly seen in fens? 

What reasons are given for unapproved observations? 

What species are most commonly reported by group surveys? 

Which bird species are most likely to have species notes? 

Find the observer with the highest average number of species per checklist 

Were any unusual behaviours noted among the birds at Roswell Pits? 

What time of day am I most likely to spot a Mallard? 

Which birds are seen on cloudy days at Paradise LNR? 

Which birds are overrepresented? 

Are weekdays or weekends better for observing different types of birds? 
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Appendix Table 1: A summary table of the prompts used in the testing of the eBird 683 

Langchain chatbot. All full prompts and additional code can be found: 684 

https://github.com/BioDivHealth/eBird_testing/tree/main/scripts/python  685 

 686 

Mode

l # 

OpenAI GPT 

Model used 

Description  Github Link 

1 3.5-turbo No prompt https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/Python/1_basic_ebird_dashbo

ard.py  

2 3.5-turbo Column metadata from eBird https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/python/2_metadata_prompt_e

bird_dashboard.py  

3 3.5-turbo Column metadata from eBird + 

explanations of ecological concepts (e.g. 

abundance)  

https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/python/3_thorough_metadata_

prompt_ebird_dashboard.py  

4 3.5-turbo Column metadata from eBird + 

explanations of ecological concepts + 

example responses (e.g. how to interpret 

time variables) 

https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/python/4_thorough_metadata_

examples_prompt_ebird_dashbo

ard.py  

5 3.5-turbo Column metadata from eBird explanations 

of ecological concepts + example 

responses  [Cambridgeshire data and 

questions from Appendix List 2] 

https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/python/5_camb_throrough_me

tadata_examples_prompt_ebird

_dashboard.py  

6 4o-mini Column metadata from eBird explanations 

of ecological concepts + example 

responses  

https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/python/6_4o_habitatprompt_e

bird.py  

7 4o-mini Column metadata from eBird explanations 

of ecological concepts + example 

responses + Wolfram Alpha LangChain 

Tool 

https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/python/7_wolfram_4o_habitat

prompt_ebird.py  

8 4o-mini Column metadata from eBird explanations 

of ecological concepts + example 

responses [and additional data sources, 

using a work-in-progress LangGraph 

orchestration] 

 

https://github.com/BioDivHealt

h/eBird_testing/blob/main/script

s/python/8_langgraph_mutli_ag
ent_rag_sql_graphing.py  
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