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Abstract 11 

1. Species inventories are the most basic form of ecological data. They provide information 12 

both about species richness and about community assembly rules. Fitting species abundance 13 

distribution models yields such information. Previous distributions either fit the data badly, 14 

assume that all species are equivalent, or ignore sampling processes. A distribution called the 15 

compound exponential-geometric series (CEGS) assumes that species vary randomly in their 16 

underlying abundances and that inventories are random draws reflecting this variation. 17 

2. The predictive power of CEGS and of four rival distributions is tested in two ways. First,  18 

richness estimates for entire inventories are used to predict recomputed estimates after 19 

randomly winnowing of individuals. Second, counts for local inventories are used to predict 20 

counts for matched samples that represent the same ecological groups and biogeographic 21 

realms. 22 

3. CEGS yields the best count predictions and is rarely rejected by the data. Its richness 23 

estimates are precise and nearly unbiased, so it outperforms not only other theoretical 24 

distributions but the benchmark Chao 1 extrapolation index. 25 

4. Because of its solid performance, simple theoretical basis, and ability to yield absolute 26 

species richness estimates that are not lower bounds, CEGS may solve the twin problems of 27 

describing abundance distributions and estimating diversity. 28 
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1  |  INTRODUCTION 35 

 36 

Lists of species found in particular places at particular times are the bedrock foundation of 37 

community ecology. When combined with counts of individuals belonging to each species, 38 

they provide a powerful tool for understanding ecological structure (Fisher et al., 1943; 39 

Preston, 1948; Hurlbert, 1971; Hill, 1973; Hubbell, 2001). Two aspects of structure are 40 

considered to be paramount: species richness and the shape of count distributions. 41 

The ecological literature has focused more and more on treating both things as aspects of 42 

"diversity" to be measured at once using indices called Hill numbers, such as Shannon's H 43 

and Simpson's D (Hill, 1973; Chao et al., 2014; Moreno et al., 2017; Roswell et al., 2021). 44 

This approach is problematic. First, there is no a priori basis for deciding which number is 45 

most informative, explaining why workers in this camp tend to present multiple values. 46 

Second, the more extreme indices virtually ignore rare species: indeed, singletons are almost 47 

entirely zeroed out by the sample-size corrected form of D (Hurlbert, 1971). Third, Hill 48 

numbers say nothing about the underlying processes that generate the data. Finally, it would 49 

seem trivial to argue that any two statistical properties should be measured with two statistics. 50 

A second approach is to ignore the shape problem and simply try to estimate the total 51 

richness of a species pool by extrapolation. There are many particular strategies (Colwell & 52 

Coddington, 1994), but the most popular method in this class is called Chao 1 (Chao, 1984). 53 

Chao 1 is important because it yields values very tightly correlated with those provided by 54 

alternatives such as the abundance coverage estimator (ACE: Chao & Lee, 1994) and 55 

interpolation and extrapolation with Hill numbers (iNEXT: Chao et al., 2014). The problem 56 

with all of these well-known estimators is that they are designed to provide lower-bound 57 

values only, so they are literally intended to be inaccurate. Hardly any branch of science 58 

favours methods that are intrinsically biased. 59 

Calculating a relative measure of species richness by interpolation, a.k.a. rarefaction, is a 60 

third way to estimate diversity – if not other structural properties. The premise is that 61 

extrapolation is just too imprecise and inaccurate to be useful, but it is trivial to say how 62 

many species would be recovered in a sample with a given number of individuals (Hurlbert, 63 

1971) or with a given level of frequency distribution coverage (Alroy, 2010; Chao & Jost, 64 

2012). Rarefaction is deeply unsatisfying because relative richness says nothing about shape; 65 

total species richness is intrinsically interesting; and relative richness can only be understood 66 

in the context of a specified sampling quota. 67 
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Here I advocate a final strategy: fitting a theoretical model of abundance that yields both a 68 

richness estimate and a description of shape. An example is the Poisson log normal 69 

distribution (PLN: Bulmer, 1974; Connolly et al., 2005). The log normal in any guise has 70 

long been understood to be a reasonable descriptor of count distributions (Preston, 1948; 71 

Antão et al., 2021; Callaghan et al., 2023). A second option is the Weibull distribution (see 72 

Ulrich  et al., 2018), which can provide richness estimates when its discretised version 73 

(Nakagawa & Osaki, 1975) is used. Despite having received considerable support (Baldridge 74 

et al., 2016), the log series (LS: Fisher et al., 1943) does not specify richness because its 75 

equation assumes that the "zero class" of counts is infinitely large. It does, however, yield the 76 

powerful statistic called Fisher's a, which is the sole governing parameter of the distribution. 77 

This paper focuses on a novel distribution called the compound exponential-geometric 78 

series (CEGS). Like the PLN, it assumes an underlying distribution: exponential instead of 79 

log normal. It also assumes a sampling process that yields the actual counts: geometric 80 

instead of Poisson. The open question is whether this approach better predicts the two 81 

fundamental structural properties of communities. 82 

Predictions of richness are tested here with a validation approach that depends on 83 

degrading each species inventory: methods that yield much the same richness estimates for 84 

full and subsampled inventories are to be preferred. Predictions of shape are tested by fitting 85 

each model to each inventory, and then seeing how these fits project onto count distributions 86 

for similar samples representing the same geographic regions and biotic groups. For example, 87 

the fit for each Neotropical butterfly inventory is used to predict the counts for another one 88 

that is of much the same size. 89 

The results indicate that the only close rival to CEGS is the unrealistic log series. Thus, 90 

many or even most real communities might obey its basic model. 91 

 92 

2  |  MATERIALS AND METHODS 93 

 94 

2.1  |  Data 95 

 96 

The data are species inventories drawn from a global, openly available literature compilation 97 

called the Ecological Register (Alroy, 2015, 2017, 2024). This data set is unusual because (1) 98 

it is highly and evenly dispersed among taxonomic groups and geographic areas, and (2) 99 

every inventory is matched with a list of integer counts, making it possible to fit theoretical 100 



 4 

abundance distributions and diversity estimators. The organisms include trees and terrestrial 101 

animals. Major groups that dominate particular inventories include ants (161 inventories), 102 

bats (276), birds (336), butterflies (211), carnivores (211), dung beetles (182), frogs (162), 103 

lizards (91), mosquitoes (185), odonates (134), orthopterans (90), rodents (277), and trees 104 

(435). Other groups may be present within a given inventory (e.g., ungulates within 105 

carnivore-dominated ones). Additional inventories are dominated by groups such as spiders 106 

that are less well-represented. These are included in the diversity analysis but not the analysis 107 

that involves predicting distribution shapes. 108 

 109 

2.2  |  Theoretical abundance distribution 110 

 111 

CEGS is derived by assuming that the expected value of a draw from the underlying 112 

exponential distribution equals the expected count produced by imposing a geometric 113 

sampling process upon it. Let U be a random uniform variate. –ln U yields an exponential 114 

distribution; call this E. The expected value of E is just E divided by a scaling constant called 115 

l. Also conventionally, p is the governing parameter of the geometric series. The expected 116 

count is well-known to be (1 – p)/p = 1/p – 1. Also assume that p can be varied by taking a 117 

root, meaning a shape parameter denoted 1/g. So we have: 118 

 119 

  1/p1/g – 1 = ò E/l 120 

  p = ò 1/(E/l + 1)g        (1) 121 

 122 

The expression is integrated in this study using the built-in integrate function in the R 123 

programming language. 124 

The CEGS species abundance distribution (SAD) is just the probability mass function 125 

pX(x) of the log series, which predicts the chance of obtaining a given count x such as the 126 

number of singletons or number of doubletons: 127 

 128 

   pX(x) = (1 – p)x p        (2) 129 

 130 

The richness estimator is trivial because the chance of obtaining a zero count under the 131 

geometric series is just p: (1 – p)0 p = p. Therefore, if R is the total size of the species pool 132 

and S is the raw number of observed species, then: 133 
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 134 

  R = S/(1 – p)         (3) 135 

 136 

2.3  |  Distribution fitting method 137 

 138 

The standard maximum likelihood (ML) function for handling SADs (Grøtan & Engen, 2008; 139 

Prado et al., 2018) could have been used to fit the model. In this context, the likelihood is just 140 

the product of the probabilities of observing the individual counts based on a given SAD. So 141 

if the SAD is 0.5, 0.2, 0.1... and the counts are 1, 1, 2, and 3, then the joint likelihood is 0.52 x 142 

0.2 x 0.1 = 0.005. 143 

However, ML solutions tend to be unstable. To reduce sampling error, likelihood 144 

differencing (LD) was used instead. LD assumes that best parameter estimates are located 145 

near regions of rapid changes in likelihoods. After all, when parameters are implausible 146 

neighbouring likelihoods are all close to zero, so differences are small. Rates of change 147 

should be high near likelihood peaks or high ridges because they should have steep sides. 148 

The LD procedure involves computing a grid of likelihoods representing combinations of 149 

l and g. In the current analysis, the 250 grid points for each parameter had values of 251/i – 1 150 

where i was the rank of each point. Therefore, the grid dimensions spanned 250 to 0.004. 151 

Separate, orthogonal matrices for each parameter called L and G were defined. A matrix of 152 

sums of the absolute values of the differences in raw likelihoods L between each point i and 153 

its neighbours was computed, as in |Li – Li–1| + |Li – Li+1|. The sums were scaled to their total 154 

to produce a difference-based weight matrix D, D was multiplied separately across L and G, 155 

and the summations of the products were used to infer expected values of l and g. 156 

LD has the advantage of not being dependent on the grid configuration, unlike Bayesian 157 

estimates that assume point sampling. If the grid is already fine, this is because adding points 158 

splits the differences in values of neighbouring likelihoods. So if there are x as many points in 159 

a region as there were previously, then each one has 1/x as much weight, so the total in the 160 

region is largely unchanged. 161 

 162 

2.4  |  Alternative distributions 163 

 164 

In addition to CEGS, four interesting and plausible models are considered. (1) As applied to 165 

SADs, the geometric series (GS) is structurally related CEGS. It predicts flat distributions, 166 
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with relatively few singletons and many species with subequal counts. (2) The log series 167 

(Fisher et al., 1943) is not only the oldest one-parameter model in the literature, but a highly 168 

popular one (Baldridge et al., 2016). It is problematic because it does not predict richness by 169 

itself. Also, it can be interpreted either as a sampling distribution (Fisher et al., 1943) or as 170 

the result of a birth-death process (Kendall, 1948; Hubbell, 2001), but not both at once. (3) 171 

As mentioned, the Poisson log normal (Bulmer 1974) is biologically realistic and has 172 

received much support (Connolly et al., 2005; Antão et al., 2021; Callaghan et al., 2023). (4) 173 

The discretised Weibull distribution (Nakagawa & Osaki, 1975) is not compound and has no 174 

sampling model, but it does allow for very high and low counts being found in the same 175 

inventory. 176 

 177 

2.5  |  Alternative diversity estimators 178 

 179 

In addition to richness estimates provided by CEGS, the PLN, and the Weibull, three other 180 

diversity metrics are considered: Fisher's a, the powerful diversity stand-in that governs the 181 

log series; Chao 1; and rarefied richness estimated with the method called shareholder 182 

quorum subsampling in its algorithmic form (Alroy, 2010) and coverage-based rarefaction 183 

(CBR) in its analytical form (Chao & Jost, 2012). A quorum (= target coverage level) of 0.5 184 

was used to guarantee that a large majority of species inventories would yield a CBR 185 

estimate. Higher values would exclude many of them. 186 

Hill numbers other than richness itself, such as Simpson's D and Shannon's H (Hill, 1973), 187 

are not considered here because they are not parameters of distributions such as Fisher's a 188 

and are not intended as proxies for richness per se. Briefly, D and H perform poorly when a 189 

two-parameter distribution operates because they are very sensitive to the presence of an 190 

occasional high count. They are also strongly correlated with the values yielded by CBR, 191 

making it redundant to analyse them. 192 

 193 

2.6  |  Richness prediction test 194 

 195 

Returning the same value regardless of the size of a data set is a hallmark feature of a good 196 

statistical estimator. To test for this property, species richness estimates were generated using 197 

all of the above methods, all of the inventories were harshly degraded, and the estimates were 198 

recomputed. The algorithm was to randomly draw two individuals from each inventory for 199 
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each species in the full set. For example, when 10 species were present in the raw data 20 200 

individuals were drawn. Not all inventories are this large: 2359 of the 3042 consistently 201 

analysable inventories could be used here. 202 

 203 

2.7  |  Matched inventory prediction test 204 

 205 

In many cases, rival distribution models ape each other closely when fitted to the same 206 

inventory. Thus, conventional decriptive statistics such as the corrected Akaike information 207 

criterion (Hurvich & Tsai, 1993) are of limited utility. A more powerful approach is to 208 

predict the shape of each inventory's distribution by first fitting the model to another 209 

inventory matching it both in biological terms and in terms of sampling intensity. After all, 210 

the goal of science is to test strong predictions. 211 

Here, matches were identified by sorting all inventories into bins based on their dominant 212 

ecological groups (see above) and biogeographic realms. For example, all ants from the 213 

Afrotropics were considered to be a set. Next, the inventories were ordered from worst to best 214 

sampled on the basis of geometric mean counts. For example, counts of 1, 1, 1, and 10 yield a 215 

mean of 1.78 and counts of 2, 2, 2, and 2 yield one of 2, so the second inventory is better 216 

sampled. Each model was fit to the worst-sampled inventory and projected onto the second-217 

worst, and so on. Therefore, the worst-sampled one in each bin was fitted to predict its 218 

neighbour but not predicted itself, and vice versa for the best-sampled. Fit was evaluated by 219 

computing the log likelihood with the standard equation. 220 

 221 

3  |  RESULTS 222 

 223 

Degrading the inventories through random subsampling creates large problems for most 224 

methods. PLN and Weibull estimates are often nearly random (Figs. 1E, F), while raw 225 

counts, GS estimates, and Chao 1 index values are well below the line of unity (Figs. 1A, C, 226 

G). CBR yields consistent values (Fig. 1H), but this is no surprise because the same target for 227 

frequency distribution coverage (0.5) is used in all cases. The real issues with CBR are that it 228 

provides relative estimates only and that it is highly sensitive to random variation in high 229 

counts, as could be shown with additional analyses. The basic pattern is much the same for 230 

CEGS and Fisher's a (Figs. 1B, D). However, the latter assumes the one-parameter log series 231 

model and provides a generic diversity statistic, so it is unrealistic and uninformative about 232 
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species richness. In sum, CEGS offers the only consistent and reasonably precise true species 233 

richness estimates. 234 

In terms of abundance distribution shapes, samples falling in the same categories with 235 

respect to dominant groups and biogeographic realms predict each other consistently better 236 

with CEGS (Fig. 2). Although support is split for many small inventories, CEGS comes out 237 

well ahead of the other two-parameter models in terms of strong support (defined as a 238 

likelihood ratio of 10 or more). Tallies are 732 wins out of 827 comparisons against the PLN 239 

(88.5%), and 700 out of 759 against the Weibull (92.2%). CEGS overtakes the GS even more 240 

frequently (2015 wins out of 2127 comparisons = 94.7%). Finally, it beats the LS by a 241 

substantial margin (484 wins out of 812 comparisons = 59.6%) . Many large differences in 242 

log likelihoods favour CEGS over all rivals (Fig. 2), including the LS (Fig. 2B). 243 

 244 

4  |  DISCUSSION 245 

 246 

4.1  |  Could CEGS account for a large majority of ecological communities? 247 

 248 

CEGS is decisively better than the alternative two-parameter models tested here, and based 249 

on this it could describe almost all terrestrial inventories. Conventionally, decisive support 250 

for a model equates to a likelihood ratio of about 100. By this standard, CEGS fits 48 251 

matched samples unambiguously better than all of its rivals. Most of the remaining models 252 

are much worse: the GS is strongly supported in just 12 cases, the PLN in six, and the 253 

Weibull in two. This is surprising because the PLN and Weibull in particular are very good at 254 

mimicking a CEGS distribution, since all three include both shape and scale parameters. 255 

Meanwhile, the LS comes out well ahead of everything 144 times. This difference is 256 

misleading because CEGS support is clear when the similar-seeming PLN and Weibull aren't 257 

considered. In head-to-head comparisons, 285 cases favour CEGS and 163 favour the LS. 258 

On top of that, the CEGS prediction is not decisively rejected (ratio < 100) in 2432 out of 259 

2639 cases (92.2%), as opposed to 86.9% for the LS, which is the runner-up. Even with a 260 

milder likelihood ratio cutoff of < 10, CEGS is not rejected in 2167 of 2639 cases (82.1%). 261 

So there is no real wiggle room here for advocates of the LS, PLN, and Weibull. If the 262 

ecological world isn't governed by CEGS, it is either governed by no one model in particular 263 

or it is governed by something very similar to CEGS. The former notion is unparsimonious 264 

– broad scientific explanations are better than non-explanations. The latter is special 265 

pleading. 266 
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 267 

4.2  |  What about the exceptions? 268 

 269 

The partial success of the log series probably indicates poor sampling that obscures the 270 

underlying abundances, or possibly slow birth-death-immigration processes (Kendall, 1948; 271 

Hubbell, 2001) instead of the rapid geometric sampling process assumed to be important by 272 

CEGS. Meanwhile, the PLN should result when many factors governing distributions are 273 

summed. That's the point of the central limit theorem. The fact that it is a poor model (Figs. 274 

1E, 2C) indicates that most community inventories reflect more than just a summation of 275 

many independent and jointly uninteresting processes. And although the poorly-performing 276 

Weibull is good at predicting high-variance distributions, it has no real biological basis 277 

because it incorporates no sampling process: it assumes an instant transition between 278 

underlying abundances and counts. 279 

 280 

4.3  |  What about overlooked models? 281 

 282 

There are many models in the literature (Matthews & Whittaker, 2014), including for 283 

example the zero-sum multinomial (ZSM: Hubbell, 2001). In practice, the ZSM makes 284 

predictions that very closely track those of the LS, which explains why this paper omits it. 285 

Another option is the gambin (Ugland et al., 2007), but this model has not been formulated to 286 

fit species abundance distributions sensu strico (= counts of species sharing counts). Finally, 287 

a series of mostly one-parameter niche partitioning models has been proposed, but these are 288 

not held in high regard by contemporary reviewers (e.g., Baldridge et al., 2016). They tend to 289 

make strong assumptions about competition that seem unnecessary. None of the models 290 

considered here do such a thing, so arguably all of them are ecologically neutral in the 291 

general sense. To put this another way, if another really good, really simple model already 292 

exists then I am not aware of it, and if not, then coming up with one would seem like a tall 293 

order. 294 

 295 

4.4  |  What about other systems? 296 

 297 

There is some chance that some model other than CEGS might work better for marine 298 

organisms or microbes. Finding out whether that is true would be a good path for future 299 

research. However, when it come to terrestrial macroscopic organisms, it seems hard to argue 300 
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that the current data set omits anything important in terms of geographic and taxonomic 301 

scope: all biogeographic realms and 13 of the most commonly-studied groups are each 302 

represented by at least scores of inventories compiled with no agenda from the primary 303 

literature. 304 

 305 

4.5  |  Do we still need other methods of estimating species richness? 306 

 307 

CEGS has a barely visible sample size bias and perhaps could be more precise (Fig. 1B). 308 

However: (1) it has an explicit basis in realistic SAD theory, whereas lower-bound models 309 

like Chao 1 generally assume uniform distributions (Alroy, 2017); (2) it is straightforward 310 

and minimal in terms of formulation and computation; (3) it does specifically aim to provide 311 

an accurate estimate, unlike lower bound methods; (4) it presents absolute values, unlike 312 

rarefaction methods; and (5) it presents values in units of species, unlike Fisher's a, which 313 

rests on a distribution (the log series) that assumes unlimited richness. 314 

If another robust method of quantifying diversity is left to be found, it would only be 315 

universally acceptable if it provided absolute species richness figures. Furthermore, 316 

proponents of any rival method would have to provide evidence that it meets two necessary 317 

conditions for any good estimator: yielding internally consistent values and depending on a 318 

realistic model. 319 
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Figure 1.  Diversity estimates obtained by analysing complete species inventories (x-axes) 409 

and by analysing subsampled inventories (y-axes). Each inventory is randomly sampled so 410 

that the number of individuals equals twice the original number of species. (A) Raw richness. 411 

Residual standard error (RSE) around the line of unity = 0.656; median distance of the points 412 

from the line on a log scale (offset) = –0.551. (B) Estimates based on fitting the CEGS model 413 

(RSE 0.420, offset –0.150). (C) Geometric series (GS) model estimates (RSE 0.488, offset –414 

0.307). (D) Fisher's a (RSE 0.368, offset 0.051). (E) Poisson log normal (PLN) model 415 

estimates (RSE 1.213, offset –0.310). (F) Weibull model estimates (RSE 1.803, offset –416 

0.254). (G) Chao 1 index values (RSE 0.634, offset –0.440). (H) Coverage-based rarefaction 417 

estimates based on a target coverage level (quorum) of 0.5 (RSE 0.184, offset 0.004). 418 

  419 



 16 

 420 
Figure 2.  Differences in log likelihoods (LLs) between CEGS and four rival distributions 421 

when models are fit to each inventory and projected onto a match. For any given inventory, 422 

the match is the next most heavily sampled inventory dominated by the same ecological 423 

group and coming from the same biogeographic realm. Ranges of x-axes vary across panels; 424 

y-axes are logged to illustrate patterns in the tails of distributions. (A) CEGS LLs minus LLs 425 

yielded by the geometric series (GS). (B) CEGS LLs minus log series (LS) LLs. (C) CEGS 426 

LLs minus Poisson log normal (PLN) LLs. (D) CEGS LLs minus Weibull LLs. 427 
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