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Abstract 
Ecological communities, and especially metacommunities, are complex and dynamic 
entities. Resolving the processes and mechanisms that shape these systems remains a 
central challenge in ecology. This challenge is compounded by the increasing 
entanglement of mechanisms, processes, and emergent patterns of biodiversity as 
scales of space, time, and biological organization expand. Here, we define and 
contextualize key issues, recent progress, and remaining challenges in interpreting 
basic metacommunity data and using predictive models to link processes to patterns. 

We find substantial progress in connecting pattern and process through improved data 
repeatability and scaling, enhanced analytical tools to quantify patterns, and 
increasingly sophisticated theoretical models that address ecological complexity. 
However, accurately matching observable patterns with process-oriented theory 
remains a persistent challenge. We identify potential pipelines connecting process and 
pattern and highlight areas for future progress. 

Key words: Communities, metacommunities, patterns, metrics, processes, mechanisms, 
disordered systems models, joint species distribution models. 

 

Introduction: 
Ecological communities are shaped by a complex interplay of a limited number of basic 
ecological processes—or 'forces'—that influence species colonization, growth when 
rare, and persistence after establishment. While the number of fundamental processes 
is considered small (Vellend 2010, 2015), their combinations generate a wide variety of 
recognized mechanisms that organize community dynamics and structure (a glossary of 
terms in bold is provided in Table S1). This complexity is especially pronounced in 
systems with many species and when local communities interact across space as 
metacommunities.   

The interplay among ecological processes (see below) gives rise to the patterns 
observed in metacommunity data. Recent advances in data collection and analytical 
methods have significantly improved our ability to detect, describe, and quantify 
metacommunity patterns. Yet, inferring the underlying processes and their relative 
importance from these patterns remains a major challenge in community ecology 
(Schaffer 1981; Sanderson and Pimm 2015; Leibold et al. 2022). 

Vellend (2010, 2015), drawing an analogy with evolutionary theory, proposed that 
community dynamics are shaped by a handful of basic processes that shape community 
assembly and long-term dynamics . As in Thompson et al. (2020) we reframe Vellend’s 
original processes to better align with contemporary ecological theory: 

a) Density-independent selection: Species growth and persistence depend on their 
responses to environmental conditions, often (though not exclusively) abiotic. We 

 



 

assume no feedback from the biota to these environmental factors over time scales of 
interest. 

b) Density-dependent selection: Biotic interactions with conspecifics or heterospecifics, 
including direct interactions and indirect effects mediated by other species and 
environmental factors that aren’t measured. 

c) Dispersal: Movement of organisms among local communities, influencing colonization 
ability and potentially leading to source–sink dynamics. Dispersal limitation restricts 
species to subsets of suitable sites, while dispersal excess allows persistence in 
otherwise unsuitable habitats. This could also include various forms of dormancy, which 
can be thought of as dispersal in time. 

d) Novelty and trait diversification: Includes speciation, evolutionary change, and 
species introductions due to biogeographic shifts or anthropogenic influence (e.g., 
introductions). This component remains underexplored in metacommunity studies (but 
see Borregaard et al. 2014; Germain et al. 2021; Leibold et al. 2023). 

e) Stochasticity: While stochasticity permeates all the above processes, we specifically 
highlight demographic stochasticity (random birth and death events, especially in small 
populations) and temporal environmental variation. These sources of variability are 
often conflated with measurement error (Shoemaker et al. 2020). Grouping them as 
variance components provides a practical way to account for their effects in ecological 
analyses of metacommunity data without the need for explicit mechanistic models. 

In nature, these processes interact to generate various mechanisms (e.g., resource 
partitioning, species sorting, mass effects, trophic cascades) with distinct effects on 
community patterns. Models often assume specific relationships among 
processes—e.g., trade-offs or context dependence—to represent ecological  
mechanisms, typically in simplified systems involving few species. Classic models like 
Lotka–Volterra (Lotka 1925; Volterra 1927) or resource competition models (MacArthur 
1974; Tilman 1982) illustrate how abiotic trade-offs and species interactions shape 
coexistence. Experimental validation of such models has occurred in simple plant, 
animal, and microbial communities (e.g., Gause 1932, 1934; Crombie 1944; 
Vandermeer 1965; Tilman 1980; see Kneitel and Chase 2004). 

However, as the number of species increases, the potential combinations of parameters 
grow exponentially (and sometimes even factorially!), and multiple mechanisms often 
operate simultaneously. Most natural patterns emerge not from isolated species 
interactions but from the intertwined web of biotic interactions and environmental 
effects—Darwin’s “entangled bank” (Darwin 1859; Schaffer 1981; Kéfi et al. 2016). 

While we understand how specific processes can generate different distributional 
patterns in metacommunities, reliably inferring the underlying processes and 
mechanisms from observed patterns remains a major challenge. Multiple distinct 
process-based models can predict similar patterns (e.g., Barbier et al. 2018). This 
many-to-one mapping is both an opportunity and a challenge for ecology. It means that 
our models may effectively forecast responses to change (e.g., under climate change 

 



 

scenarios) without explaining the causal mechanisms involved. Such predictive capacity 
is highly valuable for ecological applications, including policy and management.  

Yet, as René Thom noted, “To predict is not to explain” (Thom et al. 2016). As 
environmental changes push systems beyond the conditions that informed past 
predictions, explanatory understanding becomes essential. Identifying the processes 
underlying observed patterns is therefore critical for addressing contemporary 
environmental issues, grounding empirical ecology, and advancing ecological theory. 

We structure this essay as follows: 

1. We begin by defining “patterns” in metacommunities, contrasting those found in 
individual communities with those specific to metacommunities. 

2. We then explore “processes” along with associated concepts such as 
mechanisms and models. We contrast two modeling approaches: a reductionist, 
bottom-up strategy and a top-down approach inspired by statistical mechanics. 

3. We evaluate whether basic ecological processes can be robustly linked to 
patterns to test or validate models. 

4. We assess the inverse—how patterns might be used to infer underlying 
processes. 

5. Finally, we contextualize these discussions within current trends in community 
and metacommunity ecology, identifying opportunities to overcome outstanding 
challenges. 

Taken together, these points offer a roadmap for unifying process-based and 
pattern-based approaches in community and metacommunity ecology. Despite the 
difficulty of linking pattern and process, we argue that there are significant reasons for 
optimism. Progress in data generation, modeling, and theoretical frameworks positions 
community and metacommunity ecology for continued advancement.  

Data and Patterns 
We begin by clarifying what we mean by "data" in the context of metacommunities. Data 
are direct observations of community variation across localities within a region and are 
typically structured as site-by-species matrices. These matrices may represent 
presence/absence, abundance, relative abundance, biomass, or other descriptors of 
community composition. Data can originate from natural systems, experimental studies, 
or simulations of an ecological model. From these matrices, we derive "patterns": 
simplified, often quantitative, summaries of ecological structure or variation. 

Patterns range from local community attributes—such as species richness, diversity 
indices, species abundance distributions, and compositional turnover—to aggregated 
summaries across sites, such as beta-diversity or variability and synchrony in temporal 
fluctuations. Comparisons among sites often incorporate ancillary variables like 
environmental gradients, spatial structure, or spatial isolation. 

 



 

Metacommunity-level patterns consider spatially-structured assemblages of multiple, 
interconnected communities. This broader focus enables exploration of how spatial 
dynamics, such as dispersal, interact with other structuring forces, such as internal 
patch dynamics. For example, Leibold et al. (2002) proposed the "Elements of 
Metacommunity Structure" to characterize coexistence patterns in spatially explicit 
metacommunities. Similarly, Cottenie (2005) applied variation partitioning methods 
(Borcard et al. 1992; Peres-Neto et al. 2006) to separate spatial and environmental 
components underlying community variation, aiming to diagnose dominant ecological 
processes. 

Together, these methods yield a diverse menu of pattern metrics for characterizing 
communities and metacommunities (e.g., Ovaskainen et al. 2019; Guzman et al. 2022). 
Each metric serves as a potential clue about the processes and mechanisms shaping 
communities, though few are diagnostic on their own. 

For example, researchers frequently examine how observed patterns deviate from null 
models—baseline expectations assuming the absence of particular ecological 
processes. While null models can become complex and contentious (e.g., Peres-Neto 
et al. 2001), most patterns deviate significantly from null expectations in at least some 
systems (Gotelli and McCabe 2002; Cottenie 2005). 

More recent tools, such as Joint Species Distribution Models (JSDMs; Ovaskainen et al. 
2017), allow for explicit modeling of co-occurrence structures while accounting for 
environmental and spatial variation. JSDMs provide a powerful framework for inferring  
latent (unmeasured) influences beyond measured environmental and spatial variables 
or species trait variation, including potential effects of biotic interactions. 

However, such deviations alone do not identify the specific processes underlying 
metacommunity structure, as multiple models based on different mechanisms can 
produce convergent predictions. To improve inference, ecologists increasingly use 
cross-validation across multiple patterns (Holling and Allen 2002; Yanco et al. 2020). 
For instance, May et al. (2015) showed that while a neutral model (similar to Hubbell 
2001) could individually match several empirical patterns from Barro Colorado Island, it 
could not do so with consistent parameter estimates. As a result, the model was 
rejected due to inconsistencies across patterns. 

This strategy—testing models against suites of independent metrics—helps identify 
which mechanisms are more plausible. While not definitive, such multi-pattern 
approaches (e.g., Ovaskainen et al. 2019; Thompson et al. 2020; Guzman et al. 2021) 
represent a practical path toward more robust ecological inference. 

Processes, Models, and Mechanisms 
While patterns arise from data, we define "processes" as the underlying forces and 
interactions that generate those patterns. Unlike patterns, processes are not directly 
observable and must be inferred, often through modeling. This distinction—between 
what is observed and what is hypothesized to underlie the observations—has long 

 



 

posed a challenge in ecology, and definitions of processes vary widely in the literature 
(see S2 in the Supplementary Information). 

Although Vellend’s five-process framework remains comprehensive (Vellend 2010, 
2016), the ways in which these processes can interact to shape ecological patterns 
remain unclear. In theory, processes operate in a quasi-linear fashion in short-term 
models—such as metacommunity Lotka–Volterra models (Gravel et al. 2016) or 
colonization–extinction models (Leibold et al. 2022). Yet, over longer timescales or 
under more complex ecological dynamics, the effects of these processes become 
entangled in ways that obscure clear causal links. Understanding this entanglement is 
central to resolving how pattern and process are related in community and 
metacommunity ecology. 

Historically, ecologists have used mechanistic theories to explain patterns in ecological 
communities. One common strategy involves identifying a plausible mechanism—such 
as interspecific competition, predation, or mutualism—and modeling it with systems of 
differential (or difference) equations. For example, Lotka (1925) and Volterra (1927) 
modeled interspecific competition and predator–prey dynamics. These foundational 
models were empirically validated in microcosm experiments by Gause (1932, 1934) 
and others (e.g., Crombie 1945, 1946). 

Such experiments were instrumental in testing theories involving biotic 
interactions—processes that are density-dependent. However, they often overlooked 
density-independent processes such as environmental filtering (e.g., Choler et al. 2001; 
Qi et al. 2018) or the role of spatial dynamics and dispersal (Amarasekare 2003; 
Peres-Neto et al. 2012). 

Alternative models have focused on community patterns without assuming strong 
species interactions. These include spatial models assuming weak or no interspecific 
interactions (MacArthur and Wilson 1967; Connor and Simberloff 1979; Hart and 
Newman 2014) or neutral models in which all individuals are ecologically equivalent 
(Hubbell 2001). More comprehensive models that integrate species interactions, 
environmental filtering, and spatial dynamics are still relatively rare and often rely on 
complex simulations that are difficult to interpret, especially in species-rich or spatially 
structured systems. 

Bottom-Up versus Top-Down Perspectives 
As more species are included in models, their complexity increases dramatically (see 
Appendix 1). A bottom-up approach to managing this complexity is to model small sets 
of species using mechanistic modules (Holt and Hochberg 1999). These modules allow 
for detailed analysis of interactions, including indirect and higher-order effects, often in 
relation to environmental or spatial contexts (e.g., Tilman 1982; Holt et al. 1995; Leibold 
1996). However, such models become analytically intractable with more than a few 
species—even three-species systems can be difficult to analyze (e.g., Ranjan et al. 
2024). While they serve as an informative starting point, these modules inevitably 

 



 

oversimplify the dynamics of natural communities, which involve complex webs of direct 
and indirect interactions (Schaffer 1981; Kéfi et al. 2016). 

An alternative is a top-down approach that seeks to explain patterns at the aggregate 
level, using simplified assumptions about species interactions. As a classic example, 
May (1972) used random matrix theory to analyze stability in large communities. He 
assumed that interaction coefficients among species were randomly distributed, and 
showed that community stability occurs when the number of species (S), the 
connectance (c), and the standard deviation of interaction strengths ( ) obey the σ
inequality: 

 σ 𝑐 (𝑆 − 1) <  𝑚

where  is the mean intraspecific self-limitation term. According to this inequality, 𝑚
communities with too many strongly connected species as compared with self-limitation 
are unlikely to be stable. Gravel et al. (2016) extended this model to metacommunities, 
showing that when dispersal and environmental heterogeneity are added, the stability 
condition becomes: 

  σ 𝑐 (𝑆 − 1)/𝑁 <  𝑚

where N represents the effective number of uncorrelated local interaction matrices—a 
measure of environmental complexity that is always . This model suggests that ≥  1
metacommunities may support more species than local communities due to source–sink 
dynamics and spatial heterogeneity. 

These "disordered systems" models rely on minimal assumptions and treat interaction 
networks as random objects, summarized by statistical moments (means, variances). 
However, many ecologists are uncomfortable with their oversimplified assumptions. For 
instance, Yodzis (1981) noted that trophic structure was a missing component in May’s 
original formulation. 

To address this, researchers have developed "partially structured" models (Ahmadian et 
al. 2015; Barbier et al. 2018; Carugno et al. 2022; Servan et al. 2025) that incorporate 
limited structure into interaction matrices—such as distinct subgroups (guilds), body 
size scaling, trophic levels, or evolutionary relationships. Reviews by Akjouj et al. (2024) 
and Cui et al. (2024) explore how such partial structure can be introduced into 
community matrices to increase realism without full complexity. 

A clear question arises: how much structure should we impose? While including trophic 
structure might seem essential, further structure (e.g., spatial correlations or functional 
traits) risks reverting to highly constrained, bottom-up models. If over-structured, these 
models may become as complex and difficult to analyze as the bottom-up models they 
were intended to complement. 

In sum, we can approach ecological modeling from two strategic directions (Figure 1). 
The bottom-up approach starts with simple population models and incrementally adds 
complexity. Predicted patterns are closely linked to mechanisms, but this approach is 

 



 

limited to small systems. The top-down approach, inspired by statistical mechanics, 
uses randomized or partially structured models (e.g., interaction matrices) to make 
robust but coarse-grained predictions in large systems. Each strategy has limitations: 
bottom-up models lack scalability, while top-down models lack mechanistic detail. A 
promising direction may lie in hybrid approaches that blend these strategies, enabling 
cross-validation of predictions and mechanisms. For instance, Miller et al. (2024) 
showed that specific mechanistic models (in their case, patch colonization–extinction 
dynamics) can be embedded within disordered systems models to explore how pairwise 
processes scale up in complex, realistic communities. 

 

Figure 1: Two “strategic” approaches to modeling in community ecology.  The more conventional 
“bottom-up” approach starts from the left and moves to the right. This is based on starting from single 
species population models, which can be arbitrarily complex to begin with, and adding species 
interactions in a structured way. For example, pairwise interactions may be combined to build up small 
sets of species as “modules” (Holt 1997).  In principle, this could eventually lead to the analysis of 
realistically complex communities (center) that better represent those we find in nature, but progress 
seems to be exponentially harder as diversity increases. Alternatively, it is possible to think about 
communities as much more diffuse in nature. This approach is usually embodied by using random 
matrices to model species interactions (e.g., Random Lotka-Volterra Matrix or “RLVM” models), allowing 
the application of powerful mathematical methods. By progressively adding structural constraints on these 
models (e.g. distinct submatrices within the RLVM), they are converted into “partially structured models” 
that may approach realistic complex communities from another direction (right to left). 

Linking Process to Patterns: 
Both modeling approaches can be used to explore how a limited set of processes act 
together to shape metacommunity patterns. One important application of 
metacommunity models is to identify patterns that are associated with specific sets of 
mechanisms, as a key step toward inferring relevant processes from metacommunity 
patterns. By comparing predicted patterns – linked to specific mechanisms – against 
empirical patterns, it may be possible to diagnose the mechanisms that are acting in the 
metacommunity. 

The bottom-up approach attempts to link process to pattern in a relatively direct way. 
Using bottom-up models to link processes to patterns is typically most successful when 
few species are involved, and when systems are relatively simple. Models of such 
systems frequently produce specific predictions that match empirical patterns both 

 



 

qualitatively and, in some cases, quantitatively (e.g., Vandermeer 1969; Friedman et al. 
2017; Saavedra et al. 2017). 

As previously noted, it is difficult to extend such models to systems with many species 
Aside from the challenge of building and analyzing models with many species, 
increasing complexity also makes it hard to identify a simple mapping between 
mechanisms and diagnostic patterns. This is an issue of convergence between models: 
different process-based models, even those grounded in distinct mechanisms, can 
produce similar or indistinguishable patterns. For example, McGill (2010) demonstrated 
that six mechanistically-distinct models could generate similar predictions for five widely 
used community patterns. None of the patterns were uniquely diagnostic of any specific 
model. 

Given these challenges, one possible way to proceed is a "brute force" approach: 
associating modeled mechanisms with a larger suite of metrics or patterns (an 
illustrative list is shown in Table 1) to find unique combinations of predictions.This 
approach makes it possible to extend the one-to-one mapping between processes and 
patterns further into complex settings. Holling and Allen (2002) and Yanco et al. (2020) 
argue that evaluating models in this way can help eliminate less plausible candidates. A 
more targeted variation on this approach would identify a smaller subset of particularly 
informative or complementary metrics, which might enhance diagnostic power and 
increase efficiency (ruling out more mechanisms with less data). 

Table 1: A representative set of possible metrics and patterns that can be derived from 
the site-by-species data matrix. Illustrative examples adapted and extended from 
Guzman et al. 2022. These represent a limited selection of a very large number of 
statistics and derived patterns that ecologists have explored and are meant to assist in 
our narrative of linking patterns to processes.  

Metric or Pattern Examples 

Simple Descriptive Ecological Statistics 

Summaries Means or variances of abundance, biomass, 
relative and absolute density, functional traits. 

Distributions Of abundances, incidences, functional traits, 
biomass, spatial or temporal occupancy, 
species-abundance distributions. 

Diversity Alpha and gamma, Hill numbers,  functional and 
phylogenetic diversity. 

Simple Derived Patterns 

Turnover Spatial or temporal beta diversity; distance-decay, 
environmental-decay (with ancillary data). 

 



 

Scaling relationships Species-area, Taylor power, rarefaction or 
sampling curves. 

Network structure Nestedness, co-occurrence, centrality. 

Second Order Derived Patterns 

Species network structure that 
varies as a function of 
environmental variation.  

Metacommunity model with landscape 
fragmentation; time-varying trophic interactions. 

Model Derived Outputs 

Variation partitioning 
only in space and environment 

Variation partitioning of space and environment.  
Latent variables for each and their interactions. 

Variation partitioning in 
time and space 

Same as above but also with time. 

Results from distribution models 
incorporating species 
covariances    

Variation partitioning of space, environment, time, 
and species co-distributions; e.g., from JSDMs and 
similar approaches. 

 

Ultimately, the brute force approach functions as a model selection procedure: models 
that fail to explain the full pattern set are rejected. However, this approach does not 
necessarily confirm the remaining models, since new and untested alternatives may 
perform as well or better. For example, Ovaskainen et al. (2019), Thompson et al. 
(2020), and Guzman et al. (2021) applied sets of idealized and alternative models to 
test against a panel of pattern metrics. They found that while brute force filtering could 
efficiently rule out some models, it was often inconclusive in narrowing down to a single 
best-fit model. Including more or better metrics may help, but data will often become 
limiting in empirical systems. 

A complementary alternative is inspired by disordered systems (top-down) modeling. 
Instead of seeking a one-to-one correspondence between detailed process-based 
models and observed patterns by enlarging the set of patterns to keep pace with the 
larger and larger parameter space of models, this approach seeks specific features of 
models that remain uniquely associated with specific patterns even as the system of 
interest becomes very complex. For example, Barbier et al. (2021) used data from 
grassland plots to predict relative yield distributions based on mean and variance in 
interspecific interaction strengths— linking summary statistics of interactions to a 
specific pattern without attempting to parameterize specific pairwise interactions. 
Similarly, in another study, Barbier et al. (2023) found that pairwise correlations in 
species abundances could reflect interaction variances and carrying capacity 
heterogeneity, even when actual interaction coefficients were poorly known. 

 



 

The key to this approach is to identify high-level parameters or parameter combinations 
that characterize specific ecological mechanisms and relate them to specific, diagnostic 
patterns. In contrast to brute force approaches, this top-down strategy targets robust, 
emergent features of community structure as signatures of underlying processes. 
However, by design, this approach cannot resolve low-level mechanistic details of 
metacommunity dynamics. 

While this dichotomy between bottom-up and top-down approaches is simplified, it 
highlights contrasting philosophies in ecological modeling, and how both can be applied 
to link process to pattern. Hybrid strategies that integrate these 
perspectives—particularly through partially structured models—may offer another path 
forward. Appendix 1 further explores some nuances in combining these frameworks. 

Linking Patterns to Processes: 
In the section above, we considered how metacommunity models can be used to link 
processes to patterns, providing, in turn, a way to link observed patterns back to 
underlying processes. This approach to inference relies on first building out a map 
between processes and patterns, but this is complicated by the breakdown of a 
one-to-one mapping as the systems of interest become more complex. The bottom-up 
and top-down modeling strategies suggest two distinct approaches to coping with this 
issue: a brute force approach, where larger sets of patterns are used to maintain the 
one-to-one mapping, and a disordered systems approach where one seeks higher-level 
mappings between summary statistics or other emergent features of models and data. 
Both of these approaches are inherently limited – by data availability or by the ability to 
identify diagnostic patterns. 

Is there an alternative approach that avoids these limitations? One possibility is to use 
methods that more directly decompose the sources of variation in community patterns. 
Ovaskainen et al. (2017) proposed a method for doing this using Joint Species 
Distribution Models (JSDMs), which decompose observed variation in species 
distributions into components attributable to environment, space, species co-distribution 
(potentially indicative of interactions), and stochasticity. 

Following the logic of traditional species distribution models, “classic” JSDMs apply a 
sequential partitioning of variation: first accounting for environment, then for spatial 
effects, and finally for residual co-distribution among species. If environmental 
predictors are comprehensive, any remaining co-distribution may reflect biotic 
interactions. Figure 2a illustrates this sequential variation partitioning. 

However, JSDMs can also be used in a non-sequential framework, in which each 
component—environment, space, co-distribution—is estimated simultaneously. This 
leads to a more complex pattern of shared and unique contributions (Figure 2b), where 
the interpretation of overlaps becomes ambiguous. For instance, two species might be 
mutually exclusive along an environmental gradient because of direct environmental 
filtering, competitive exclusion, or both. Without further assumptions, these effects 
cannot be disentangled (Dormann et al., Blanchet et al. 2018, Poggiatto et al. 2020). 

 



 

 

Figure 2:  Variation partitioning alternatives for JSDM represented by Venn diagrams.  The total variation 
in community composition in the metacommunity is encompassed by the outer square and is equal to 1.  
The white part of the figure is the unexplained or residual variation that is not accounted for by any of the 
predictors in the model.  a) Accounting for predictors in a sequential order:  First the measured 
environmental predictors are used and their contribution to the community variation is quantified as 
represented by the green area.  Then spatial predictors are used to further account for community 
variation and their marginal contribution is shown in blue.  Finally, the non-random latent correlations 
among the species are described, and their marginal contribution is quantified by the orange area. b) A 
non-sequential variation partitioning approach. Here, unique contributions from environmental, spatial, 
and codistribution components are represented (i.e., fractions without overlaps). Additionally there are a 
number of components that account for community variation that cannot be uniquely described (fractions 
representing predictor intersections).  An interesting possibility is to compare the results of JSDM or other 
related methods across different metacommunities (e.g. Khattar and Peres-Neto 2024, Peak et al. 2024) 

Thus, while JSDMs offer powerful tools for detecting and predicting community patterns, 
they do not necessarily provide unambiguous inference about underlying ecological 
processes. Nevertheless, they represent one of the most promising methods currently 
available for linking pattern to process. 

A key direction for future progress may involve refining process models to better align 
with the data structures used in pattern-based inference. For example, Leibold et al. 
(2022) proposed analyzing the internal structure of metacommunities by parsing JSDM 
components across species and sites. This decomposition reveals how different species 
respond to environmental and spatial variation and how their distributions co-vary. 

Unlike traditional pattern metrics, which aggregate across species, this approach allows 
process inference to operate at the species level. In doing so, it opens the possibility of 
aligning species-specific effects with bottom-up models that operate on subsets of 
interacting taxa. This could eventually allow for a true integration of bottom-up and 
top-down perspectives, as outlined in Figure 3. 

 



 

 

Figure 3:  Pipelines between ‘Process’ (left) and ‘Pattern’ (right). We distinguish between approaches that 
aggregate parameters and/or data (upper pipeline) and those that focus on maintaining detailed 
parameters and predictors (lower pipeline).  We defined process-based approaches as those that 
combine basic processes to make predictions about resulting patterns within landscapes that consider 
levels of heterogeneity and spatial structure (left side of the figure).  There is a ‘top-down approach’ that 
uses ‘disordered’ or ‘partially structured’ models by aggregating parameters (typically, into mean, 
variances and covariances of these parameters) to predict robust patterns (but that ignore ‘fragile’ 
detailed components of those patterns).  Alternatively, there is a ‘bottom-up’ approach that specifies 
parameters, typically in models with relatively few species, and uses detailed model specifications (e.g., 
using individually based models (IBMS), Lotka-Volterra models with specified parameters, or other 
simulation models).  Such models can also predict some of the same general patterns as the top-down 
models but aim to be able to make more detailed predictions that may produce detailed fit to data.  There 
is a parallel structure for approaches to deriving patterns from data (typically the site-by-species matrix, 
along with ancillary data on species traits/interrelations and/or explicit landscape features).  One 
approach derives aggregated pattern descriptors. These include a wide array of ‘metrics’ such as species 
area relations, diversity and related methods, etc. A more recent effort has been directed at identifying 
parameter values from data. These metrics provide means of rejecting particular hypotheses (5. and 6., 
magenta and blue lines) but do not normally parameterize the processes. A prominent example is the use 
of JSDMs to infer metacommunity mechanisms (e.g. Ovaskainen et al. 2017, Leibold et al. 2022).  While 
JSDMs are powerful methods to identify patterns, neither they nor related methods are able to resolve the 
entanglement of the five processes to clearly parameterize mechanistic models (dashed green line).  In 
the absence of such detailed inference of models, Barbier et al. 2023 proposed that the detailed output of 
such studies can be broken down into the predictions of means, variances, and other moments, and thus 
providing another way to link top-down models to data (7. red arrow).  An intriguing point is to explore how 
bottom-up and top-down methods might be cross-validated (yellow arrow). 

Figure 3 illustrates potential inference pipelines that connect process-based models and 
data-based metrics. The top half of the figure emphasizes aggregated descriptors (e.g., 
means, variances), while the bottom half highlights parameter-specific models. Arrows 
show how models and metrics can reject or support hypotheses, and where gaps in 
inference still remain—particularly the persistent entanglement of processes such as 
dispersal, environmental filtering, and species interactions. 

In summary, the mapping from patterns to processes remains complex and often 
ambiguous. However, methodological advances—particularly JSDMs and species-level 
decomposition—offer a promising route forward. Further refinement of both models and 

 



 

inference tools may help to close the gap between observed community patterns and 
the underlying processes that generate them. 

Prospectus 
We have outlined the conceptual and methodological challenges involved in linking 
processes and patterns in ecological communities and metacommunities. These issues 
trace back to the origins of community ecology, yet recent decades have seen 
tremendous progress. The development of metacommunity theory has notably 
reshaped how we interpret spatial biodiversity patterns (Leibold and Chase 2018). On 
the analytical side, species distribution models have evolved from environmentally 
focused predictors to those incorporating spatial effects and species co-distributions, 
thereby increasing predictive power from roughly 20–30% to 70–80% (Leibold and 
Peres-Neto, in prep). 

Despite these advancements, substantial challenges remain. Chief among them is the 
uncertainty of current inference approaches. This problem is especially clear in JSDMs, 
where the effects of density-independent environmental filtering and density-dependent 
biotic interactions are often conflated. Similar ambiguity arises in multi-metric brute force 
approaches, as illustrated by McGill (2010), and in simulation studies (Chave et al. 
2002, Ovaskainen et al. 2019; Thompson et al. 2020; Guzman et al. 2021) that failed to 
uniquely support any single mechanistic model. 

It is important to acknowledge that many existing methods were not designed to infer 
mechanisms with high specificity. Often, the goal has been to reject null models or 
generate predictive models without mechanistic interpretation. While such approaches 
are valuable—particularly in applied contexts—the need for mechanistically grounded 
prediction grows as we face novel environmental conditions. 

Encouragingly, the field is evolving. Developments in data collection, modeling, and 
computation suggest a promising trajectory rather than a fixed endpoint. We anticipate 
major progress in the coming years, driven by: 

● Improved data streams that enhance sampling coverage, temporal resolution, 
and accuracy. 

● Greater computational capacity to analyze complex datasets and run more 
sophisticated models—including those incorporating machine learning or artificial 
intelligence. 

● Advances in process modeling, both in modular bottom-up approaches (e.g., for 
eco-evolutionary dynamics) and in statistical-mechanics-based top-down 
approaches, particularly through partially structured models. 

● Increased emphasis on validation and prediction, to better link model outputs 
with empirical data and strengthen the integration of metrics and models. 

To accelerate progress, we suggest several promising directions: 

 



 

1. Integrate temporal dynamics and multi-scale data: Most metacommunity data 
remain spatial, but temporal metrics offer powerful insights. For example, 
Guzman et al. (2022) showed how time-based metrics improve interpretation of 
dynamics. Temporal data also facilitate causal inference via concepts like 
Granger causality, which can help infer directionality in species 
responses—something not possible from spatial data alone. 

2. Design and incorporate experimental manipulations: Experiments can validate 
observational inferences and provide stronger process-based insights (Werner 
2001; Grace 2024). Effective experimental designs—such as manipulating 
species presence/absence across environments—could directly test candidate 
mechanisms identified in models. Excitingly, advances in sequencing and 
high-throughput culture methods have fostered an explosive growth in 
experimental microbial ecology; the unique tractability of microbial 
(meta)communities makes them a promising platform for such experimental 
manipulations. 

3. Bridge top-down and bottom-up approaches: Rather than treating these as 
oppositional approaches, hybrid strategies can combine mechanistic insights 
from modules with the robustness of statistical aggregation. Partially structured 
models are one way to integrate these perspectives. For instance, Barbier et al. 
(2018) showed how modest structure imposed on random matrices could shift 
predictions significantly, combining both realism and analytical tractability. 

Community ecology, and particularly metacommunity theory, is undergoing a 
methodological and conceptual transformation. Understanding the links between 
processes and patterns remains a central goal. Doing so not only enhances ecological 
theory but also improves prediction under environmental change. Purely predictive 
models will struggle as conditions diverge from historical baselines. Mechanistic 
understanding, while harder to achieve, provides a necessary complement to maintain 
predictive power. By reviewing current approaches and their limitations, while 
highlighting promising future directions, we aim to support and accelerate progress in 
this critical area. Ultimately, bridging the gap between pattern and process is not only an 
heuristic ambition but also an essential step toward predictive and causal ecology. By 
leveraging the complementary strengths of diverse approaches and fostering integration 
across empirical, theoretical, and computational fronts, we can move closer to a unified 
framework for understanding the dynamics of biodiversity. 
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Appendix 1: Glossary of terms: 
Table S1. An annotated glossary of terms used in this essay.Their intended definition is 
to refine how we link patterns to processes in metacommunities (here, our system of 
study).  

Term  Definition 

Data Direct observations of the focal elements in a 
system. Here, usually represented by a 
site-by-species-by-time matrix of 
presence/absence, abundance/biomass, or relative 
abundance/biomass. 

Pattern Informative or interesting regularities within a 
system often described as simplified  
representations of data. 

Mechanism Specific configurations of processes and 
constraints driving processes that produce 
particular or relevant outcomes. Mechanisms 
enable the stages of a process to occur by 
providing the elements necessary for each step in 
a process     .  

Processes Fundamental elements of the ecological dynamics 
of a system.   
A series of steps necessary to achieve a particular 
pattern or behaviour in a system.     These are 
reasonably well summarized by Vellend’s (2010) 
suggestion to link to well-developed evolutionary 
theory. 

Parameters Variables or constants used to define and/or 
control the behavior or characteristics of a system 
or process. 

Module Small set of (possibly interacting) 
species/taxa/entities. 

Model A simplified representation of an ecological 
system, constructed to understand, analyze, and 

 



 

predict outcomes within an ecological system such 
as a population, a community, or a 
metacommunity. Models are usually encoded in 
mathematical equations which track variables 
whose dynamics are modulated by parameters. 

 

 

Appendix 2: How are communities and metacommunities 
represented by matrices? 
When there are more than a few (say 3) species, using individual equations to solve their 

mathematical effects becomes difficult.  Fortunately, mathematicians have developed tools that 

greatly facilitate this using matrix algebra.  This applies to linked sets of equations, those that 

depend on the parallel structure of linear equations that are linked to each other because they 

have the same parameters.  In community ecology this means taking a matrix that does this to 

the Lotka-Volterra models, then solving for a possible equilibrium point and linearizing the 

equations near that point to get something called “the Jacobian” of the matrix.  It is then 

possible to solve for the dynamic behavior of these equations near the equilibrium.  With this, 

the most important point is resolving whether this point is realistic and then stable/unstable.  

For an ecologist using Lotka-Volterra models, the first thing is to find out if the equilibrium point 

has any negative values; if so, this would mean negative densities and be meaningless. The 

second is that if it checks out (all positive values), then solving to find the conditions (if any) 

when the point is stable.  This is done by calculating the ‘dominant eigenvalue’ that describes 

the tendency of the whole system to come back to equilibrium.  Stability here is inferred if the 

‘real part’ of this eigenvalue is less than 0.   

May (1972) did this by developing the idea of the “community matrix”, which can be expressed 

as the Jacobian of the matrix describing the interactions among a group of species in a single 

local community (see Novak et al. for more details on this).  This matrix is often denoted by the 

letter “A” and is the Jacobian of the interactions in the community. 

 

 

 



 

 

Figure B1:  Going from local interaction matrices that describe how all species interact with each 

other (here this is the A matrix) by adding dispersal parameters to obtain the equivalent 

metacommunity matrix.  This is done by lining up all the local matrices (keeping in mind that 

their separate values can be arbitrarily different) along the diagonal of the metacommunity 

matrix (darkly shaded part of the J matrix).  Dispersal can then be described by other entries 

that are off diagonal light shading (matrices that have the structure shown in the D matrix.  

These matrices describe the dispersal rate (going from the column to the equivalent row 

elements of this matrix.  They will only have entries along the main diagonal since species 

cannot change their identities while they disperse. 

When May (1972) used this method on the A matrix where all off-diagonal entries were 

sampled randomly, he found that the system tended to have a very distinct stability only when: 

 σ 𝑐 (𝑆 − 1) <  𝑚

Where S is the number of species present, c is the proportion of interactions that are not 
zero,  is the variance in interspecific interaction strength, and m is the average δ
intraspecific interaction strength. 

Gravel et al. (2016) expanded this very basic model by asking how this would manifest 
in a metacommunity.  To do so, they linked multiple local communities via dispersal as 
described in Figure B1.  The stability criterion was then: 

  σ 𝑐 (𝑆 − 1)/𝑁 <  𝑚

Where N was the ‘effective number of ecologically distinct’ local matrices.  That is to 
say, May’s inequality was modified because ecologically distinct communities acted 

 



 

multiplicatively to enhance diversity in the metacommunity. This was also true in each 
local community since dispersal at these levels allowed them to do so in each locality as 
sink populations as well.  

Of course, there are many other ways that multispecies ecology has used matrices such 
as the Jacobian of the community (and now the metacommunity), but the comparison of 
May (1972) and Gravel et al. (2016) illustrates some of the major features that allow the 
modeling of purely local interactions (May 1972), here modeled as a completely 
disordered system, and metacommunity (Gravel et al 2016) dynamics, here modeled as 
a partially structured extension of May’s (1972) work.   

Appendix 3: Contrasting challenges for modeling approaches at 
the interface between patterns and processes  
Figures in the main text present a simplified contrast between approaches to modeling 
communities, focusing mainly on the “bottom-up” and “top-down” perspectives. In fact, 
there are other important axes of variation between models, implying different methods 
and difficulties when trying to bridge the process-to-pattern gap. 

To understand why different modeling approaches may encounter distinct challenges, 
we categorize them as follows: 

1. How the model is selected/tested against patterns 
a. Qualitative prediction: The model predicts the presence or absence of 

some qualitative feature in the data, e.g. environment filtering suggests a 
positive correlation between phylogenetic relatedness and co-occurrence. 
This is often the case of simple theoretical scenarios such as the main 
metacommunity paradigms (Leibold et al. 2004), and one common 
challenge is finding ways to compare how strongly the evidence supports 
one paradigm over another. 

b. Fitting: Alternatively, a model can also generate a range of hypothetical 
outcomes, among which we identify the best match(es) to our 
observations by quantitative model fitting. One important challenge is the 
risk of mis-specifying the model, so that the best fit within its range is not 
the most appropriate picture of the world. 

c. Cross-pattern consistency: If the model is successful at predicting one 
pattern, does it correctly predict other patterns?  As the number of 
congruent patterns increases, they each act to more strongly validate the 
model.   

2. How it represents processes  

 



 

a. As qualitative assumptions: The model, explicitly or sometimes implicitly, 
makes a statement about the presence or importance of one or more 
processes (e.g. absence of dispersal, dominance of abiotic filtering). This 
is especially relevant when we want to consider scenarios that differ in 
many ways (e.g. aquatic vs terrestrial biomes, wind dispersal vs 
chemotaxis) so that they are more easily represented as distinct 
archetypes rather than on a very multidimensional continuum. The risk is 
not knowing how different assumptions would have changed the model’s 
predictions. 

b. As parameters: Quantitative knobs relating to processes (e.g. rate of each 
process).This is especially tractable when we want to consider scenarios 
that differ continuously in a few significant ways. One challenge is 
interpreting parameter values and how they relate to predictions, for 
instance interaction rates and dispersal rates are in different units and 
cannot easily be compared to determine which of the two processes is 
most important, and theoretical analysis is needed to know how strong 
dispersal must be to homogenize a metacommunity. 

3. Level of description: 
a. Disaggregated: We retain species identities by characterizing them by 

their species-specific parameters, and we seek to derive their individual 
contributions to overall community-level patterns. The usual problem in 
metacommunities is the lack of sufficient statistical power to resolve these 
properties for up to hundreds of species. 

b. Aggregated: We lose species-specific labels, and instead look at overall 
distributions or summary parameters and metrics. This method 
characterizes “disordered systems models” described in text. It can, 
however, produce meaningless results when we aggregate variables that 
cannot be (for instance, it is not obvious that we can sum biomasses or 
richness of species at different trophic levels). 

We note that both may be used together. For example, Guisan and 
Rahbek (2011) combine macroecological constraints and SDMs to obtain 
more informative predictions.  Or we can fit a JSDM at the species level 
(as in Leibold et al. 2022) and then aggregate some components over all 
the species. We also note that, in principle, there can be some sort of 
intermediate level aggregation such as described for “partially structured 
models”. 

 



 

4. Process interplay: How does our model assume that different processes (e.g. 
environments, dispersal, interactions, including all the processes that make up 
the “context” e.g. biome type) come together? 

a. Totally separable: we can ask of each process type what is its contribution 
to patterns, irrespective of what others are doing (possibly after some 
transformation, e.g. GLMs and GAMs). For instance, an SDM attempts to 
quantitatively partition variance in species abundance into effects of 
spatial fluxes and environment. 

b. Totally entangled: Various specific combinations/rankings of processes 
can give various outcomes, without any way to separate them into 
contributions of each process. For instance, the “patch dynamics” 
metacommunity paradigm captures the effects of having dispersal and 
stochasticity and local interactions acting together, without being able to 
meaningfully separate these processes. 

c. Dynamical models: A special case where we assume that processes are 
totally separable in the short-term rate of change (often not measured), 
but entangled in outcomes such as observed abundances. 

d. Multiple regimes can be seen within the same model (often seen for 
dynamical models), several “regions” within which processes have 
consistent (and at least conceptually, if not practically/quantitatively, 
separable) effects on patterns/outcomes, but these effects differ from 
region to region – e.g. the notion of “limiting factor”, with a region of 
limitation where increasing the factor steadily increases its importance and 
consequences, then a region without limitation where changing it has no 
impact.  

5. How a model is interpreted: Do we try to use the model to infer underlying 
mechanisms and resolve causal relations that link process and pattern? (Our 
ability to do so is conditioned by the choices made along the previous axes.) 

a. Prediction only: Model assumptions and parameter values are not 
interpreted in any way, but only used to predict patterns in other similar 
situations. Processes thus only intervene in building the model (e.g. 
deciding which parameters and relations to include), but not in interpreting 
it. This includes the usual practice involving SDMs and JSDM to forecast 
future changes in species distributions under changing environmental or 
landscape conditions. 

b. Qualitative agreement: If the model correctly predicts patterns, we 
interpret this as suggesting that its qualitative assumptions regarding 

 



 

processes are correct (for instance, seeing a spatial checkerboard pattern 
is interpreted as indicative of competition). 

c. Partitioning: The values of model parameters are not necessarily 
meaningful in themselves, but they are used to deduce the relative 
importance of various processes e.g. by variance partitioning. 

d. Theory: Model assumptions and parameter values must be analyzed 
theoretically to clarify their ecological implications (for instance, we have a 
theory of how strong interactions should be to induce nonequilibrium 
dynamics within a patch). 

 

Some Examples: 

We find that models linking processes and patterns span much of (if not all of) the range 
of attributes described above. To illustrate this, Table S1 classifies model attributes used 
across a wide array of studies, with many of these coming from our own work as 
individual researchers. 

Example patterns, processes, and interpretations for various models typically used in 
metacommunity research. 

Model Selection 
by data/ 
patterns 

Representati
on of 
processes 

Level of 
descriptio

n 

Process 
interplay 

Interpretati
on 

Competitive 
checkerboard 
vs null model 

Presence 
or absence 
of specific 
pattern 

Categorical: 
competition 
vs 
stochasticity 

Species Single 
dominant 
process 

Qualitative 

Functional 
trait 
over/underdis
persion 

Presence 
or absence 
of specific 
pattern  
 

Categorical: 
competition 
vs env. 
selection 

Species Single 
dominant 
process 

Qualitative 

Biodiversity-F
unction 
relations 

Fitting a 
specific 
pattern 

Parameters: 
selection/co
mplementarit
y 

Communi
ty 

Separable Partitioning  

Environmenta
l niche model 

Fitting to 
full 
compositio

Parameters Species Separable Partitioning 

 



 

nal data 

Joint Species 
Distribution 
Model 

Fitting to 
full 
compositio
nal data 

Parameters Species Separable Partitioning 

Fitted gLV Fitting to 
full 
compositio
n or time 
series data 

Parameters Species Dynamical, 
multi-regim
e 

Requires 
theory 

Probabilistic 
macroecology 
(Grilli) 

Fitting 
several 
distribution
s 

Categorical: 
species 
fitness + 
stochasticity 

Communi
ty 

Separable Qualitative 

Disordered 
systems 
model 

Global 
means 
and 
variances 
(covarianc
es) of 
parameter
s  

Parameters Commun
ity 

Separable Requires 
theory 

Partially 
structured 
model 

Subsetted 
means 
and 
variances 
(covarianc
es) of 
parameter
s  

Parameters Commun
ity 

Separable Requires 
theory 
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