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ABSTRACT 47 

Human impacts on ecosystems have intensified water variability for terrestrial life, thus challenging 48 

the maintenance of water balance, or hydroregulation. The accelerated development and 49 

accessibility of technologies and computational models over the past decade have enabled 50 

researchers to predict changes in animal hydroregulation and environmental water with greater 51 

spatial and temporal precision. Focusing on reptiles and amphibians, we discuss current methods, 52 

limitations and advances for quantifying ecologically relevant metrics of environmental water 53 

stressors and organismal responses to both acute and long-term water stress that are applicable for 54 

conservation and management. We also highlight approaches that integrate environmental water 55 

data with an organism's water balance and physiological, behavioural and life-history traits to 56 

predict the limits of species' responses and assess their vulnerability to climate change. Finally, we 57 

outline promising future directions and opportunities in hydroregulation studies with a conservation 58 

focus, including broader inferences about acclimation responses, linking gene expression to 59 

functional changes, and exploring inter- and transgenerational plasticity and adaptive evolution. 60 
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Advances in these fields will facilitate more accurate assessments of species' capacities and the 61 

limits of hydroregulation in response to a more variable and unpredictable future climate. 62 

Keywords: dehydration, drought, ectotherm, exposure, sensitivity, vulnerability, water balance 63 

MAIN TEXT 64 

The colonisation of land presented substantial physiological and morphological challenges 65 

associated with water balance for early terrestrial animals (Gray, 1928; Dial et al., 2015), yet 66 

allowed opportunities for novel evolutionary strategies that enabled an explosion of animal diversity 67 

on land (Minter et al., 2017). Nevertheless, environmental dryness continues to pose a major 68 

challenge for land animals, with biodiversity being highest in humid tropical rainforests and lowest 69 

in desert environments (Owen, 1989; Biber et al., 2023; Coelho et al., 2023). Global trends towards 70 

aridification can therefore compromise biodiversity, a major conservation concern given accelerated 71 

changes in climate and land use, leading to unpredictable changes in water variability and 72 

availability (Moustakis et al., 2021; Moss et al., 2024; Zhang et al., 2024). Understanding 1) how 73 

environmental water changes over time and space, 2) how animals respond to water variability, and 74 

3) how they differ in resilience and response capacity is necessary to assess vulnerability, and it is a 75 

first step in managing extinction risk amid the current global biodiversity crisis. Progress towards 76 

these answers has been notable, due to enhanced computational power, novel statistical models, and 77 

more temporal and spatially detailed climate data (Brun et al., 2022; Klinges et al., 2024). 78 

Additionally, our understanding of hydroregulation strategies across biological levels and species 79 

has become more comprehensive (Navas and Carvalho, 2010; Lillywhite, 2017; Rozen‐Rechels et 80 

al., 2019; Riddell et al., 2021). A key challenge for the management and conservation of species at 81 

risk due to climate change is to predictively link ecologically relevant water stressors (exposure 82 

risk) with the capacity of animals to maintain water balance (species sensitivity) (Fig. 1).  83 

This paper reviews current knowledge on terrestrial water availability for assessing 84 

environmental exposure risk, species’ short- and long-term responses to water deficits for 85 

evaluating sensitivity, and models predicting vulnerability to environmental drying. We examine 86 

key topics and conclude proposing future directions for refining predictions of species' vulnerability 87 

in a drying world. Our focus on amphibians and reptiles highlights their role in the aquatic-88 

terrestrial transition and the contrasting hydroregulation strategies that enable them to thrive and 89 

reproduce despite dehydration challenges. 90 

1. Environmental exposure risk 91 
1.1 Water availability on land 92 

Water availability can be quantified and interpreted in many ways, and it is heavily influenced by 93 

the stochastic nature of the water cycle (Chahine, 1992; Oki and Kanae, 2006) and by the local 94 
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environment (Kinlaw, 1999; Geiger et al., 2003). Broadly, water enters a terrestrial environment 95 

through precipitation, and exits through evapotranspiration and runoff (Oki and Kanae, 2006). The 96 

ratio between precipitation and evapotranspiration can be used to calculate the aridity index (Zomer 97 

et al., 2022), broadly define climate classifications (Beck et al., 2018), and quantify annual site 98 

water balance. In climates with strong seasonal rainfall, precipitation can predict the phenology of 99 

breeding events (Gould et al., 2022; Thompson et al., 2022) and the seasonal primary productivity 100 

of ecosystems (Lieth, 1973). Once in the environment, water can be stored in the ground, in the air, 101 

or accumulated in water bodies (Table 1). Water content in the air is typically measured as the 102 

pressure of gaseous water, or water vapor pressure (Gates, 1980) which serves as a basis for 103 

calculating relative humidity (RH), a common meteorological metric. However, RH is often less 104 

relevant for assessing physiological responses in organisms compared to water vapor pressure 105 

(Anderson, 1936; Kurta, 2014; Wu, N. C. et al., 2024b). Finally, water vapor pressure and 106 

temperature are inherently linked (Campbell and Norman, 2000), and incorporating temperature 107 

allows for the calculation of vapor pressure deficit (VPD), a key driver of physiological processes in 108 

plants and animals (Adolph, 1932; Novick et al., 2024; Wu, N. C. et al., 2024a). For example, in 109 

two environments with the same humidity, that with higher air temperatures will increase VPD (Fig. 110 

1).  111 

Water in the soil matter most for species that rely on underground microrefugia (Wu et al., 112 

2015; Giacometti and Tattersall, 2023), or for many amphibians, which obtain water directly from 113 

the substrate (Hillman et al., 2009; Comanns et al., 2017). Water fluxes depend on soil properties 114 

(Campbell and Norman, 2000), with extreme examples in sand and clay. Wet sands have an open 115 

texture and dry quickly, whereas wet clays exhibit high soil moisture tension and dry slowly. In 116 

comparison, wet peats dry rapidly and are difficult to rehydrate. However, a valid generalisation is 117 

that below-ground climates maintain higher humidity than surface environments, reducing 118 

dehydration risk to animals (Fig. 1), for example in species that shelter underground (Carvalho et 119 

al., 2010), and especially desert dwellers (Woodbury, 1954; Bulova, 2002). 120 

1.2 Quantifying water variability and drought indices  121 

Quantifying spatiotemporal shifts in hydric patterns can be approached in various ways to 122 

determine whether an environment is drier than usual. Precipitation and moisture levels, whether in 123 

the air or soil, can be measured long-term via weather stations, or short-term using miniature 124 

environmental data loggers, with Bramer et al. (2018) and De Frenne et al. (2024) providing 125 

examples of commercially available loggers and field deployment considerations. When long-term 126 

datasets are available, various hydrological extreme metrics can be calculated (Pisor et al., 2023). 127 

For instance, using a monthly rainfall example from Sydney, Australia (Fig. 2), one can calculate 128 
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the duration (D) of high rainfall (above 90th percentile; high likelihood of flooding) and low rainfall 129 

events (below 10th percentile; high likelihood of drought), frequency of extreme rainfall events, and 130 

measures of intensity (I)—the average of extreme rainfall events—magnitude (M)—the maximum 131 

rainfall event—and severity (S)—the cumulative total of extreme rainfall events. Changes in 132 

permanent water sources such as lakes, ponds, streams, and rivers can be quantified via drones 133 

(Spence and Mengistu, 2016; Woodget et al., 2017), satellites (Nath and Deb, 2010; Zhou et al., 134 

2021), or directly using standard environmental monitoring tools, enabling spatiotemporal 135 

quantification of water body dynamics, particularly relevant for species reliant on temporary or 136 

permanent aquatic habitats (Table 1). 137 

Relevant for policy makers, quantifying environmental drying risk requires simplification of 138 

complex metrics and variables. One option is relying on meteorological drought indices reflecting 139 

the interplay between the climate variables mentioned in the previous section (Table 1). However, 140 

theses indexes have no absolute value, meaning that changing indexes relate to species-specific 141 

effects that may change among individuals, populations and communities. The simplest drought 142 

index is the Standardised Precipitation Index (SPI), which relies only on precipitation data (McKee 143 

et al., 1993). Complex counterparts include the Palmer Drought Severity Index (PDSI), which 144 

incorporates the hydrological cycle (Palmer, 1965; Wells et al., 2004), and the Normalized 145 

Difference Vegetation Index (NDVI), which relies on satellite imaging to quantify vegetation 146 

‘greenness’ (Rouse Jr et al., 1974). Each index has strengths and weaknesses (Zargar et al., 2011), 147 

and all have been used for predicting drought risks, but they are more valuable for long-term 148 

appraisals. The utility of drought indices in analysing short-term biological impacts, particularly in 149 

animals capable of behavioural and physiological adjustments, remains uncertain. However, 150 

integrating drought indices with other environmental processes presents a promising research 151 

direction, as shown by a recent assessment proposed by Crausbay et al. (2024), which integrates 152 

drought indices with vegetation types, canopy cover, slope, time since fire, and other environmental 153 

features, and develops region-specific management actions for decreasing further exposure. These 154 

actions include managing environmental water, restoring sites affected by deforestation and 155 

urbanisation, and promoting ecosystem persistence under drought conditions (Mathwin et al., 156 

2021). Despite the enormous potential of such analyses, caution is required before implementing 157 

actions, especially those related to water supplies to landscapes, which might damage existing 158 

habitats or favour the accumulation of predators (Mathwin et al., 2021). 159 

The analytical context discussed here requires moving from quantifying environmental 160 

drying risk to calculating case-specific exposure risks to drought. This process is challenging, 161 

partially because hydrological variables such as rainfall, evapotranspiration, and soil moisture 162 
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content exhibit greater uncertainty than temperature trends, due to the stochastic nature of 163 

atmospheric processes (Wu, Y. et al., 2024). Nonetheless, the expanding availability of independent 164 

hydrological models (Table 1) offers a timely opportunity to refine predictions of how reptiles and 165 

amphibians will respond to environmental water availability. Once ecologically-relevant water 166 

variables are quantified, numerous approaches may integrate them explicitly with biological traits 167 

across different levels of organization—from molecules to phenotypes to communities. The 168 

interplay between exposure—typically to stressors such as water shortages or drought periods—and 169 

biological response is key to understanding structural and functional consequences, providing 170 

indicators of sensitivity and vulnerability. The following section discuss sensitivity and 171 

vulnerability assessments, with a particular focus on the central theme of this review: 172 

hydroregulation. 173 

1.3 Linking Exposure, Sensitivity, and Vulnerability 174 

The vocabulary of ecological climate change research has become complex, with many terms 175 

defining interrelated, yet different concepts, including Sensitivity, Vulnerability, Risk, and 176 

Resilience. These terms have gained prominence across scientific and political discussion, as they 177 

are embedded in global agendas on sustainable development, disaster risk reduction, and climate 178 

change, and biodiversity loss (Williams et al., 2008; Scholz et al., 2012; Birkmann and McMillan, 179 

2020). While we acknowledge this conceptual variability, our focus is on identifying the most 180 

relevant information for predicting future trends and anticipating species declines. To this end, 181 

various methodological tools and conceptual frameworks have been employed to assess how 182 

organisms and species respond to climate changes. However, quantifying responses is inherently 183 

complex, as environmental variability operates across all possible spatial and temporal scales, and 184 

science requires operationalisation to specific cases. For instance, both exposure to climate change 185 

and species sensitivity to environmental shifts can differ dramatically within reptiles and 186 

amphibians. Linking exposure, sensitivity, and vulnerability is a goal benefitted by advances in 187 

computational power, more sophisticated statistical models, and large databases, which promote 188 

conceptual and disciplinary bridges. For example, connecting environmental changes not only with 189 

physiology and behaviour but also with conservation biology and ecosystem ecology (Cooke et al., 190 

2013; Madliger et al., 2018). Methodological approaches have also evolved rapidly, and the most 191 

advanced tools explicitly link climate variables with organismal response by considering the 192 

underlying physiological and behavioural mechanisms that govern their survival and distribution 193 

(see ‘4.  Assessing vulnerability: integrating exposure and sensitivity’ section).  194 

Porter et al. (1973) and Tracy (1976) developed general microclimate models for 195 

quantifying the energy, heat and water budgets of organisms that have been revisited taking into 196 
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consideration current computing power. Nowadays, it is possible to calculate microclimate at any 197 

location, and with fine temporal resolutions (reviewed in Meyer et al., 2023; Kemppinen et al., 198 

2024). Some programs even integrate microclimate (Table 1) with the calculated heat and water 199 

budgets of organisms (Kearney and Porter, 2020; Kearney and Enriquez‐Urzelai, 2023) to estimate 200 

tolerance and distribution limits of organisms under real or any simulated climate (Kearney et al., 201 

2018; Cheng et al., 2023). Relative to correlational models (Elith and Leathwick, 2009; Peterson et 202 

al., 2011), these developments have added capacity for mechanistic predictions based on 203 

physiological limits of vulnerability to climate change (Riddell et al., 2021; Briscoe et al., 2023; 204 

Pottier et al., 2025), bringing physiological data into the equation.  205 

2. Species sensitivity risk: short-term impacts 206 

Many acute and long-term responses to environmental drying are parallel to those triggered by other 207 

generalised stressors (e.g., temperature, pollutants, food restriction), including altered metabolism, 208 

cardiovascular responses, growth, cellular oxidative stress, neuroendocrine pathways, and gene 209 

expression. These common biomarkers are well-documented in the literature, both in terms of 210 

methodology and interpretation (Bustin et al., 2009; Ribou, 2016; Moretti et al., 2017; Madliger et 211 

al., 2018; Lighton, 2019). In this section, we highlight some common responses to drying, with a 212 

focus on water-specific responses and minimally invasive methods, outlined in Table 2. Most 213 

comparative studies compare arid adapted and non-arid adapted species, while experimental studies 214 

often involve subjecting animals to restricted water sources or increased environmental dryness. 215 

2.1 Genetic responses 216 

Genetic responses to environmental stress are broad across the literature. Here, we focus on three 217 

areas of hydroregulation: (1) the skin barrier, (2) water reabsorption, and (3) cellular repair and 218 

immunity (Fig. 3). At the site of evaporation, the skin barrier of reptiles is regulated by the 219 

epidermal differentiation complex (EDC) gene cluster, which encodes proteins essential for 220 

keratinised cells in amniote skin. Among these, corneous beta-proteins (CBPs) genes are crucial for 221 

forming the outer layer of the skin, the stratum corneum (Holthaus et al., 2024), while the Loricrin 222 

gene supports alpha-keratinisation in lizard epidermis (Holthaus and Eckhart, 2024). Under arid 223 

conditions, the upregulated expression of CBPs and Loricrin increases the thickness and strength of 224 

the stratum corneum, enhancing resistance to dehydration. Comparative genomics between the 225 

desert tortoise (Gopherus agassizii) and the temperate aquatic western painted turtle (Chrysemys 226 

picta bellii) have identified multiple positively selected genes associated with drought resistance. 227 

These genes include CSTA and SDR16C5 (Fig. 3), which are involved in keratin formation and 228 

lipid-based waterproofing, respectively (Tollis et al., 2017). In contrast, amphibians rely on mucous 229 

secretions to minimise water loss, along with other functional roles. For example, Xenopus laevis 230 
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upregulates genes (e.g., grp94 and grp75) related to glucose-regulated protein during dehydration, 231 

promoting the synthesis and secretion of protective glycoproteins to reduce water loss while 232 

preserving skin moisture (Malik et al., 2023). 233 

Animals adapted to arid conditions exhibit a strong capacity for water reabsorption, enabling 234 

them to produce highly concentrated urine while maintaining salt balance. Several genes are 235 

essential for cellular water reabsorption, particularly those encoding membrane proteins forming 236 

water channels such as aquaporins (AQP). Aquaporin genes, widely present in amphibians and 237 

reptiles (Fig. 3), and the proteins they encode are crucial for osmoregulation, including transcellular 238 

water and solute transport (Suzuki and Tanaka, 2009; Shibata et al., 2014; Chen et al., 2019; Wu et 239 

al., 2019). On the other end of osmoregulation, water balance can also be regulated by moving 240 

chloride along with sodium or potassium, creating osmotic gradients between cells and their 241 

surrounding environment, which drive water reabsorption through osmosis. This process requires 242 

ion transport proteins, including those in the Solute Carrier 12 (Slc12) family of cation-coupled 243 

chloride cotransporters (Fig. 3) (Motoshima et al., 2023). The proteins encoded by these genes 244 

facilitate sodium reabsorption in renal structures like the distal convoluted tubule and thick 245 

ascending limb, generating a hyperosmotic environment that drives water reabsorption via osmosis 246 

(Marra et al., 2012). 247 

The kidney is the epitomic organ in water homeostasis, filtering waste while regulating water 248 

and ion balance, making it particularly vulnerable to dehydration stress. Thus, impaired kidney 249 

function figures among the various forms of stress imposed by chronic water deprivation in 250 

amphibians and reptiles. Systems of protection have evolved in lizards and turtles adapted to arid 251 

environments, a condition thought to positively select genes associated with kidney repair, such as 252 

DCHS2, related to cell adhesion, and CD34, linked to vascular repair (Fig. 3) (Tollis et al., 2017; 253 

Araya‐Donoso et al., 2022). Another physiological challenge caused by dehydration is disruption of 254 

cellular homeostasis, leading to oxidative stress traduced in the accumulation of reactive oxygen 255 

species, causing tissue damage (Dupoué et al., 2020c; Ritchie and Friesen, 2022). However, 256 

amphibians and reptiles adapted to arid environments activate antioxidant defence mechanisms to 257 

mitigate dehydration-induced oxidative stress (Moreira et al., 2020; de Amaral et al., 2024). For 258 

instance, numerous antioxidant and detoxification genes are regulated by the transcription factor 259 

erythroid 2-related factor 2 (Nrf2), a key regulator of oxidative stress responses under elevated 260 

reactive oxygen species levels (Fig. 3) (Malik and Storey, 2009). With declining genetic sequencing 261 

costs and expanding analytical capacity, the coming years hold promise for advancing our 262 

understanding of the genetic responses of amphibians and reptiles to hydric stress. 263 
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2.2 Neuroendocrine responses 264 

One of the most well-documented effects of pond drying are neuroendocrine responses, which have 265 

been extensively studied in amphibians. Water-dependent tadpoles can adjust their developmental 266 

rate and, therefore the timing of metamorphosis in response to environmental changes (Newman, 267 

1988; Lai et al., 2002; Benard, 2004; Wu and Kam, 2009; Higginson and Ruxton, 2010; Thompson 268 

and Popescu, 2021; Sinai et al., 2022). These environmental cues stimulate the central nervous 269 

system, activating the hypothalamo-pituitary-interrenal/adrenal axis to initiate survival mechanisms. 270 

During pond drying, the hypothalamus increases the production of a corticotropin-releasing 271 

hormone (CRH), stimulating the release of the adrenocorticotropic hormone (ACTH) and thyroid-272 

stimulating hormone (TSH) from the pituitary. This, in turn, activates the thyroid and interrenal 273 

glands, elevating thyroid hormones (THs) and corticosterone (CORT) in the bloodstream, which 274 

help manage stress, metabolism, and developmental transitions (Kikuyama et al., 1993; Denver, 275 

1997; Kirschman et al., 2017; Ruthsatz et al., 2020). Increased hormone production accelerates 276 

metamorphosis, thus shortening the larval period and improving survival as aquatic habitats shrink 277 

(Denver, 2013). This hormonal plasticity highlights the resilience of some amphibians, enabling 278 

them to cope with environmental fluctuations and complete their life cycle under harsh conditions. 279 

Some hormones, such as CORT, are released into surrounding waters through various mechanisms 280 

(e.g., secretion and diffusion), and remain stable long enough to be quantified. Therefore, it can be 281 

measured non-invasively from water samples, allowing researchers and managers to monitor stress 282 

in both laboratory and field settings (Ruthsatz et al., 2023a; Ruthsatz et al., 2023b), However, 283 

waterborne and plasma CORT levels may vary across species (Millikin et al., 2019) and depend on 284 

environmental contexts (Mausbach et al., 2022). 285 

 In terrestrial amphibians and reptiles, acute dehydration triggers fluid balance responses, via 286 

mineralocorticoid hormones, including arginine vasopressin, angiotensin, and aldosterone, all of 287 

which play key roles in water metabolism, helping organisms retain water and maintain circulatory 288 

stability under dehydration stress (McCormick and Bradshaw, 2006; Uchiyama and Konno, 2006; 289 

Dantzler and Bradshaw, 2008; Hillman et al., 2009). CORT also contributes to hydroregulation 290 

through its mineralocorticoid actions (McCormick and Bradshaw, 2006; Dupoué et al., 2016; 291 

Brusch et al., 2020), though it may not consistently correlate with plasma osmolality within a 292 

species (Dezetter et al., 2022b). Elevated CORT may mobilise energy reserves via muscle 293 

catabolism, reallocating bound water to maintain hydration (Brusch et al., 2018; Dezetter et al., 294 

2021). These hormones also regulate other interrelated processes, including energy metabolism, 295 

reproduction, social behaviour, and thermoregulation (Ladyman et al., 2006; Bleu et al., 2013; 296 

Carsia et al., 2023; Crino et al., 2024). Therefore, when evaluating hormonal responses to 297 
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dehydration, researchers should consider these overlapping physiological functions and assess 298 

additional traits linked to hydration and water balance. 299 

2.3 Physiological responses 300 

Physiological responses and regulation to acute environmental drying include osmoregulation, 301 

cardiovascular function, metabolism, immunity, and the renin-angiotensin-aldosterone system (as 302 

mentioned above) are well documented in the literature for amphibians (Feder and Burggren, 1992; 303 

Hillman et al., 2009) and reptiles (Pough and Gans, 1982; Dantzler and Bradshaw, 2008; Bradshaw, 304 

2012). Here, we focus on traits commonly measured with conservation relevance, emphasising 305 

minimally invasive protocols (Table 2). These can be broadly classified into (1) water loss through 306 

evaporation, (2) hydration state, and (3) daily water flux. 307 

Evaporative water loss (EWL) is of considerable interest because it responds immediately to 308 

low air humidity (Mautz, 1980; Hillman et al., 2009). Evaporation depends on both biophysics 309 

(Foley and Spotila, 1978; Campbell and Norman, 2000) and hydration state (Anderson et al., 2017; 310 

Senzano and Andrade, 2018; Weaver et al., 2022), but also on physiology, so that the rate of water 311 

loss tends to be lower in comparable counterparts from more arid environments, across populations 312 

and species (Bentley and Schmidt-Nielsen, 1966; Roberts and Lillywhite, 1983; Cox and Cox, 313 

2015; Salazar and Miles, 2024). EWL mainly occurs through respiratory and cutaneous pathways, 314 

with some influence from ocular and cloacal pathways (Fig. 1)(Hillman et al., 2009; Pirtle et al., 315 

2019), and the combination of these pathways (total EWL, or TEWL) can be measured simply by 316 

the mass loss of the animal (or mass gain of a desiccant) over time, or by respirometry methods 317 

(Hillman et al., 2009; Lighton and Halsey, 2011). Physical models (Senzano et al., 2022) or 318 

mathematical approaches (Riddell et al., 2017) can be used to quantify EWL, but special 319 

consideration of boundary layers is required. These thin layers of fluid (air or water) that form at the 320 

interface between an organism’s body and its surrounding environment, usually affect heat, water, 321 

and gas exchange. Experimentally, respiratory and cutaneous EWL (REWL and CEWL, 322 

respectively) can be distinguished by placing a mask with separate airflow for the lungs and skin 323 

(Withers, 1977; Senzano and Andrade, 2018) or by using an impervious membrane to isolate body 324 

regions (Dmiel, 2001). CEWL can also be measured directly with an evaporimeter in a flux 325 

chamber (Lillywhite et al., 2009; Tingley et al., 2012; Oufiero and Van Sant, 2018), a method that 326 

has the added benefit of focusing on specific body regions (Weaver et al., 2022; Weaver et al., 327 

2023). For broader comparisons, global databases of EWL for frogs and squamates are available to 328 

statistically tease out environmental and phylogenetic drivers of EWL (Cox and Cox, 2015; Le 329 

Galliard, J. F. et al., 2021; Wu, N. C. et al., 2024a). However, EWL datasets for other herpetofauna 330 
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groups, such as Crocodilia, Testudines, Caudata, and Gymnophiona, remain relatively scarce 331 

compared to those for frogs and squamates. 332 

Animals in dry environments survive by efficiently storing water, producing metabolic 333 

water, mobilising water from tissues, and tolerating low body water content (Cloudsley-Thompson, 334 

1999; Hillman et al., 2009; Lillywhite, 2017). The water content in the body of an animal is 335 

expressed as a percentage of whole mass or dry mass and has historically been measured by fully 336 

desiccating specimens (Thorson, 1955; Pough et al., 1983; Taigen et al., 1984). Amphibians 337 

typically have 77–83% water content by body weight (Hillman et al., 2009), while reptiles range 338 

from 63–74% (Thorson, 1968). Shifts in body water allocation may support water balance when 339 

facing dehydration, and the nature of such pathways varies across lineages. For example, 340 

amphibians can absorb water from their bladders (Sawyer and Schisgall, 1956; Schmuck and 341 

Linsenmair, 1997; Suzuki et al., 2015), while snakes and lizards rely on CORT-mediated muscle 342 

catabolism to release water originally associated with proteins (bound water), and may obtain water 343 

as a byproduct of lipid metabolism (Brusch et al., 2018; Dezetter et al., 2021). Internal water 344 

mobilisation can be tracked through changes in blood nutrients, proteins, triglycerides, uric acid, 345 

mineralocorticoid hormones, as well as transcriptome and proteome changes in blood and tissue 346 

samples (Suzuki et al., 2015; Brusch et al., 2018). Given recently established pathways for muscle 347 

catabolism in snakes and lizards, non-invasive methods, such as specimeters, now quantify muscle 348 

changes as proxies for water balance in reptiles (Lourdais et al., 2005; Dezetter et al., 2021). In 349 

amphibian research, a method to assess hydration states involves measuring the body mass of field-350 

captured individuals, then allowing them to fully rehydrate in a field lab, and recording the 351 

subsequent mass. The difference between the initial field mass and the fully hydrated mass indicates 352 

the degree of dehydration experienced in their environment. For instance, a study on tropical frog 353 

species found that hydration behaviours and voluntary tolerance of dehydration varied with habitat 354 

use, even among closely related species within the same family (Tracy et al., 2014). This approach 355 

provides insights into species-specific water balance strategies and their adaptability to varying 356 

environmental conditions. 357 

 Blood biochemistry parameters, such as plasma osmolality and haematocrit, serve as 358 

indirect measures of hydration status (Table 1) in three dominant contexts, field studies (Capehart et 359 

al., 2016; Moeller et al., 2017; Brischoux and Cheron, 2019; Weaver et al., 2024), laboratory 360 

experiments (Dupoué et al., 2017; Wu et al., 2017; Dezetter et al., 2022b; Chabaud et al., 2023), and 361 

veterinary applications (Perry et al., 2020; Cameron et al., 2024). Plasma osmolality is a direct 362 

indicator of hydration, and is best measured using vapor pressure or freezing-point depression 363 

osmometers (Nevarez et al., 2012; Wright et al., 2013; Buchmiller et al., 2024), as formulas based 364 
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on solute concentrations often show poor agreement with direct measurements (Dallwig et al., 365 

2010; Nevarez et al., 2012; Perry et al., 2020). Haematocrit is determined by centrifuging blood in 366 

microcapillary tubes, and it is frequently used as a proxy for hydration status, although it responds 367 

to multiple influencing factors such as blood oxygen-carrying capacity (Brischoux et al., 2011; 368 

Lourdais et al., 2014; Bodensteiner et al., 2021) and does not consistently correlate with plasma 369 

osmolality (Dupoue et al., 2015; Dezetter et al., 2021). Therefore, interpreting haematocrit changes 370 

as indicators of hydration requires caution, considering additional factors affecting blood viscosity 371 

and oxygen transport. Ecologically relevant osmolality measurements should incorporate species-372 

specific normosmotic values, tolerance to variation, temporal dynamics of osmolality shifts, and 373 

threshold effects on physiological and behavioural water balance regulation (Dessauer, 1970). 374 

Notably, species from xeric environments tolerate greater osmolality fluctuations than those from 375 

mesic habitats, underscoring the importance of species-specific considerations in hydration studies 376 

(Nagy and Medica, 1986; Brusch and DeNardo, 2017). 377 

 Whole-animal water flux, encompassing influx, storage, and efflux (Fig. 1), can be 378 

quantified using doubly labelled water (DLW), which estimates field metabolic rate and water flux 379 

over extended periods (Table 1) (Nagy, 1989). DLW has been widely applied to measure daily 380 

water flux in reptiles across diverse field conditions (Beaupre, 1996; Christian et al., 1999; 381 

Christian et al., 2007; Roe et al., 2008; Harden et al., 2014). For instance, velvet geckos from arid 382 

zones exhibit lower water flux rates year-round compared to those in tropical regions, reflecting 383 

adaptive water conservation strategies (Christian et al., 1998). The ability to estimate both field 384 

metabolic rate and water flux makes DLW a powerful tool for field-based physiological research. 385 

However, certain assumptions in DLW-derived metabolic rates can introduce measurement errors 386 

(Nagy, 1980). For example, high humidity can overestimate metabolic rates due to excessive water 387 

vapor exchange through cutaneous and respiratory surfaces, whereas total water flux aligns more 388 

reliably with gravimetric estimates of TEWL (Anderson et al., 2003). Additionally, DLW is 389 

unsuitable for species with high water flux, such as semi-aquatic reptiles, because rapid water 390 

turnover depletes isotopes too quickly, preventing accurate measurements (Booth, 2002; Jones et 391 

al., 2009). The method has limited use for amphibians due to their high water fluxes, but if the 392 

primary objective is to assess water turnover, the method could be applied to more terrestrial 393 

amphibian species. This would offer valuable insights into the water cost of activity and dispersal 394 

under field conditions. 395 

2.4 Behavioural responses 396 

Terrestrial amphibians and reptiles employ diverse behavioural strategies to regulate water balance, 397 

which can be broadly classified into (1) water-conserving behaviours, (2) water-seeking behaviours, 398 
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and (3) moisture-harvesting behaviours. These strategies mitigate EWL, optimise hydration, and 399 

enhance survival in desiccating environments. Water-conserving behaviours are those minimising 400 

exposure to drying conditions. When avoidance of dehydration is no longer viable, animals may 401 

engage in water-seeking behaviours, actively locating and consuming water to restore hydration, or 402 

actively collecting and absorbing water from their surroundings. A most universal water-conserving 403 

behaviour involves reducing or shifting diel activity and selecting microhabitats that provide 404 

moisture, such as burrows, and this type of behaviour have been observed in the field (Daltry et al., 405 

1998; Davis and DeNardo, 2010; Kearney et al., 2018; Moore et al., 2018) and experimentally 406 

(Navas et al., 2002; Székely et al., 2018; Rozen‐Rechels et al., 2020; Dezetter et al., 2023). Also, 407 

water-conserving behaviours relate to body temperatures, which usually enhances rates of water 408 

loss (Tracy et al., 2008; Dupoué et al., 2015; Lourdais et al., 2017). Therefore, shifts in 409 

thermoregulatory behaviour, including thermal depression, can contribute to water-conserving 410 

strategies (Ladyman and Bradshaw, 2003; Anderson and Andrade, 2017; Le Galliard, J.-F. et al., 411 

2021; Camacho et al., 2023). Although the interplay between water and heat budgets complicates 412 

the disentangling of hydroregulation and thermoregulation mechanisms (Pintor et al., 2016; Rozen‐413 

Rechels et al., 2019), recent modelling approaches considering both joint mechanisms and 414 

microclimatic data are improving our understanding of behavioural responses to drying and heating 415 

(Kearney et al., 2018; Moore et al., 2018; Encarnación-Luévano et al., 2021). By strictly controlling 416 

for temperature, experimental studies have demonstrated hydroregulation behaviours through the 417 

active selection of moister microclimate in both wet-skinned amphibians (Mitchell and Bergmann, 418 

2016) and dry-skinned reptiles (Dezetter et al., 2023). This behaviour mitigates the acute effects of 419 

desiccating conditions. These findings suggest that both resistance to water loss and hydric 420 

performance response curves may influence the timing of behavioural responses to drying in 421 

reptiles and amphibians. 422 

Some animals can reduce water loss by modifying body posture and preferring those that 423 

reduce the exposed area to the environment (Table 2). Placing limbs against the body and using 424 

skin folds to cover ventral surfaces against the substrate, as in Anura (Pough et al., 1983) or coiling 425 

in Caudata (Cohen, 1952) greatly reduce TEWL (Spotila and Berman, 1976). In addition to postural 426 

changes, several species of arboreal frogs use limbs to spread waxy films over their body surfaces 427 

during dry seasons or produce cocoons to reduce CEWL (Lillywhite, 2006). By manipulating the 428 

hydration state via moisture gradients and assessing postural adjustments, experimental studies can 429 

examine the determinants of these behaviours and their benefits for maintaining hydration (Navas et 430 

al., 2002; Mitchell and Bergmann, 2016). In reptiles, behaviours such as coiling in snakes or 431 

adopting tucked-in postures in lizards may also confer water-saving benefits. However, this aspect 432 
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has received comparatively limited attention, mostly restricted to studies on egg-brooding behaviour 433 

in snakes, where subtle postural shifts can reduce egg surface exposure and limit water loss from 434 

the egg clutch (Lourdais et al., 2007; Stahlschmidt et al., 2008; Stahlschmidt and DeNardo, 2010). 435 

Finally, the simple closure of eyes can help reduce water loss through the permeable eye membrane 436 

in lizards (Pirtle et al., 2019). 437 

When avoiding and restricting drying is no longer possible, reptiles and at least some 438 

amphibians will seek water to restore their hydration state (Table 2). Experimental systems called 439 

“olfactometers” designed by Grubb (1973), and follow-up studies with maze designs, have 440 

demonstrated that frogs and lizards can detect and locate free-standing water via olfactory cues 441 

(Navas et al., 2002; Madelaire et al., 2020; Ouellet et al., 2020; Lorrain-Soligon et al., 2022; 442 

Northrop, 2024). However, generalising is not possible for amphibians. Finding generic water for 443 

hydration and finding specific waters for reproduction seem to be independent processes, and both 444 

have been identified in some species. For example, telemetric studies show that poison frogs rely on 445 

odour cues from stagnant water to find new breeding pools (Serrano-Rojas and Pašukonis, 2021). 446 

However, this ability varies across species (Reshetnikov, 1998; Maia, 2014) and may relate to 447 

drying tolerance and habitat aridity (Cruz-Piedrahita et al., 2018; Galindo et al., 2024). Particularly, 448 

some anuran species rely on structured water search strategies, while others find water by erratic 449 

exploration (Maia, 2014). Finally, drinking matters for some species only as others will rely on a 450 

specialized, richly vascularized region of the pelvic skin (Willumsen et al., 2007). It has also been 451 

reported for snakes subjected to field experimental dehydration or rehydration after capture 452 

(Brischoux et al., 2017; Dezetter et al., 2022b) and is triggered by physiological thresholds such as 453 

hydration status (Sandfoss and Lillywhite, 2019; Edwards et al., 2021). Quantifying water-seeking 454 

behaviour (e.g. time to find water source) should be of consideration for habitat restoration 455 

managers when optimising water resources for herpetofauna to persist and flourish in a given 456 

habitat (Mathwin et al., 2021). 457 

Moisture and rain-harvesting behaviours are also observed in reptiles (Sherbrooke, 1993; 458 

Joel et al., 2017), These behaviours include snakes coiling and flattening their bodies, lizards 459 

flattening their bodies, and both lizards and tortoises raising their abdomen and lowering their heads 460 

and tails (Repp and Schuett, 2008; Glaudas, 2009; Yenmiş et al., 2024). Similarly, some postural 461 

adjustments in amphibians can facilitate moisture and water uptake through the skin, particularly 462 

through the pelvic patch (McClanahan Jr and Baldwin, 1969; Bentley and Main, 1972; Hillyard et 463 

al., 1998; Word and Hillman, 2005). Overall, water-searching behaviours and related adaptations 464 

are critical for understanding species sensitivity and resilience to aridification. For instance, 465 
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invasive frogs at the forefront of their invasion show distinct water-searching tendencies, with stress 466 

differentially affecting this behaviour (Madelaire et al., 2020). 467 

2.5 Life history responses 468 

Water stress can impact life history by influencing (1) growth and the rate of development, (2) body 469 

size, and (3) reproduction. Animals can adjust their rate of development under different 470 

environmental conditions (see hormonal control under the ‘2.3 Neuroendocrine responses’ section). 471 

This developmental plasticity can be either adaptive or maladaptive, depending on whether the 472 

developmental environment matches the conditions an individual experiences later in life 473 

(Monaghan, 2008; Beaman et al., 2016). For the larval stages of amphibians, reduced water 474 

availability, such as pond drying, can accelerate larval development, leading to smaller body sizes 475 

or incomplete metamorphosis due to resource constraints, crowding, poorer water quality, and 476 

increased predation risk (Márquez‐García et al., 2010; Gomez-Mestre et al., 2013; Albecker et al., 477 

2023). Some species, however, do not show changes in developmental rate nor exhibit delayed 478 

larval development under drying conditions (Richter‐Boix et al., 2011), promoting the importance 479 

of species-specific responses. It is also clear that developmental plasticity to pond drying can have 480 

carry-over effects on post-metamorph individuals and adults. Under pond drying conditions, 481 

metamorphs have lower thermal tolerance, are less exploratory and more stressed, and have lower 482 

jumping performance and lower immunity (Gervasi and Foufopoulos, 2008; Crespi and Warne, 483 

2013; Charbonnier et al., 2018; Brannelly et al., 2019; Ohmer et al., 2023; Nolan et al., 2025; Wu et 484 

al., 2025). Size is particularly important because larger individuals are associated with increased 485 

survival rate, performance (Cabrera-Guzmán et al., 2013), and lower risk to disease progression for 486 

the same pathogen load (Brannelly et al., 2018; Wu et al., 2018). 487 

Water availability also plays a critical role in the reproductive success of egg-laying reptiles, 488 

influencing both egg survival and offspring development. For species that lay eggs on land, eggshell 489 

thickness and composition are key determinants of desiccation risk. Flexible-shelled eggs, which 490 

lack or have minimal calcareous layers (most squamates and some chelonians), are more porous and 491 

susceptible to water loss compared to rigid-shelled eggs with a well-developed calcareous layer 492 

(crocodilians, some chelonians, and a few squamates) (Legendre et al., 2022). A meta-analysis 493 

showed that substrate moisture had a small but significant effect on hatchling length and mass for 494 

reptiles, as well as on sex ratios specifically for chelonians, but not on incubation duration (Bell et 495 

al., 2025). However, this meta-analysis did not consider differences in eggshell type due to 496 

phylogenetic biases in categorising shell type. Species that nest in arid environments tend to have 497 

highly absorbent eggshells and thicker shells, suggesting that species with flexible eggshells may be 498 

more vulnerable to environmental drying (D'Alba et al., 2021; Debruyn et al., 2023). At the other 499 
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extreme, excessive moisture can also be detrimental, leading to reduced oxygen availability in nests, 500 

lower hatchling success, and high embryo mortality (Marco and Díaz-Paniagua, 2008; Gatto and 501 

Reina, 2022; Warner et al., 2023). These findings underscore that water management in nesting 502 

habitats of reptiles is as crucial for egg and juvenile survival as it is for adult life history strategies 503 

in response to environmental dryness. 504 

Drying stress during reproduction and early life can impact reproductive output and 505 

offspring phenotypes in reptiles (Dupoué et al., 2018; Dupoué et al., 2020b; Dezetter et al., 2021). 506 

Successful reproduction requires substantial water investment, particularly during gravidity in 507 

oviparous reptiles (Brusch et al., 2019; Dupoué et al., 2020a), and even more so in viviparous 508 

species, where pregnant females experience increasing hydration demands as embryos develop in 509 

utero (Dupoue et al., 2015; Lourdais et al., 2015; Lourdais et al., 2017). To reduce water loss, gravid 510 

females may adjust their behaviour, seeking moister microhabitats (Lourdais et al., 2017). However, 511 

under limited water availability, they face a trade-off between self-maintenance and offspring 512 

investment, often prioritizing embryonic water allocation at their own physiological expense 513 

(Dupoue et al., 2015; Dupoué et al., 2020a; Dezetter et al., 2021). Maternal dehydration can have 514 

severe reproductive consequences, including follicular resorption at early stages (Capehart et al., 515 

2016; Zani and Stein, 2018), reduced investment in eggs, and thinner eggshells with altered immune 516 

function (Brusch et al., 2019). In later stages, maternal water deprivation increases embryonic 517 

mortality (Dezetter et al., 2021), potentially contributing to drought-driven population decline 518 

(Madsen et al., 2023). These demographic costs may be exacerbated by fecundity trade-offs, as 519 

larger females carrying more embryos experience greater physiological stress (Dupoue et al., 2015; 520 

Lourdais et al., 2015; Dezetter et al., 2021). However, the generality of maternal-offspring water 521 

trade-offs remains uncertain, as some species, such as Anolis sagrei, exhibit no observable effects of 522 

maternal dehydration on fecundity, egg size, or egg hydration (Wayne et al., 2025). 523 

3. Species sensitivity risk: long-term impacts 524 

Beyond the immediate effects of drying, animals must also cope with longer periods of desiccation 525 

for populations to survive. Understanding the long-term implications of water limitation requires an 526 

integrative approach that incorporates adaptation, developmental plasticity, and demographic shifts 527 

through experimental and field-based studies. This section explores three key aspects of long-term 528 

water deficit impacts: (1) the role of heritability and acclimation in hydroregulation traits, and (2) 529 

the influence of water availability on body size evolution. 530 

3.1 Heritability and acclimation of hydroregulation traits 531 

Repeatability and heritability experiments are key to determining whether hydroregulation traits are 532 

targets of natural selection. Although often labour-intensive, repeatability measures the consistency 533 
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of a trait within individuals under similar physiological conditions, whereas heritability assesses its 534 

genetic transmission across generations (Wolak et al., 2012). However, our understanding of the 535 

repeatability and heritability of hydroregulation traits remains limited. Empirical studies provide 536 

some insights into the genetic and phenotypic basis of these traits. For instance, covariance between 537 

thermal traits and skin resistance to water loss has been observed in Plethodon metcalfi (McTernan 538 

and Sears, 2022), significant repeatability of EWL in Sceloporus consobrinus (Oufiero and Van 539 

Sant, 2018), and the moderate heritability of desiccation tolerance in Lampropholis skinks (Martins 540 

et al., 2019). While these studies suggest that hydroregulation traits exhibit some degree of 541 

plasticity, large-scale assessments of frog populations across natural climatic gradients indicate low 542 

variation in EWL rates, suggesting potential constraints on plasticity (Davies et al., 2015; Bovo et 543 

al., 2023). These findings emphasize the need for broader geographic and taxonomic coverage 544 

(White et al., 2021; Herrando-Pérez et al., 2023) to clarify the magnitude of variation in 545 

hydroregulation traits and how they scale over time to shape long-term responses to environmental 546 

change. 547 

Acclimation, the ability of organisms to adjust to changing environmental conditions, is 548 

another key aspect of survival in fluctuating climates, especially in water-scarce environments. Our 549 

understanding of the acclimation potential of hydroregulation traits is limited compared to thermal 550 

physiological counterpart traits (Seebacher et al., 2015), although some studies have explored how 551 

organisms modify hydroregulation in response to thermal acclimation (Davies et al., 2015). For 552 

example, thermal acclimation during development can lead to changes in TEWL that persist until 553 

adulthood in snakes (Dezetter et al., 2022a), while the TEWL of lizards decreased in response to 554 

warmer temperatures (Vicenzi et al., 2021). Riddell et al. (2019) highlighted that temperature is an 555 

important cue for developing a desiccation-resistant phenotype, by regulating water loss through the 556 

regression and regeneration of capillary beds in the skin. The growing literature on disentangling 557 

the differences in acclimation effects of temperature and drying exposure on hydroregulation 558 

provides a promising area for understanding long-term water restrictions or simulated drying to 559 

assess the plasticity of these traits across different species (Kobayashi et al., 1983; Kattan and 560 

Lillywhite, 1989; Moen et al., 2005; Riddell et al., 2018a; Rozen-Rechels et al., 2020; Weaver et al., 561 

2023).  562 

3.2 Water availability and body size evolution 563 

One notable potential long-term effect of changes in precipitation is altered body size (Gouveia and 564 

Correia, 2016; Guo et al., 2019; Pincheira‐Donoso et al., 2019). Two contrasting mechanisms have 565 

been proposed to explain this relationship: (1) the ‘resource hypothesis’, where higher rainfall 566 

boosts primary productivity, supporting larger individuals due to greater food availability 567 
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(Rosenzweig, 1968), and the ‘water conservation hypothesis’, where arid environments favour 568 

larger individuals because lower surface-area-to-volume ratios reduce evaporative water loss 569 

relative to smaller individuals (Nevo, 1973; Gouveia and Correia, 2016). Evidence from reptile 570 

communities supports the resource hypothesis, with some species increasing in size as precipitation 571 

rises (Stanley et al., 2020). However, amphibians show a more complex pattern, with body size 572 

correlating with higher precipitation in cooler climates but with lower precipitation in warmer 573 

regions, possibly indicating a transition from resource-driven to desiccation-resistance-driven 574 

selection (Sheridan et al., 2022). Despite these findings, body size responses to climatic water 575 

balance remain debated (Servino et al., 2022). In contrast with reptiles, the permeable skin of 576 

amphibians makes them particularly vulnerable to desiccation. This key difference may contribute 577 

to diverging size trends between reptiles and amphibian communities in response to water 578 

availability. To clarify these patterns across sites, long-term body size monitoring in conjunction 579 

with environmental data—including analyses of museum specimens with historical climate 580 

records—can help elucidate the drivers of body size evolution. Further research is needed to assess 581 

long-term changes in skin permeability and their potential correlation with body size variation. 582 

4. Assessing vulnerability: integrating exposure and sensitivity  583 
4.1 Vulnerability indices and organismal traits 584 

A number of vulnerability indices of physiological stress, extinction risk, activity time constraints, 585 

habitat suitability, or range shifts have been proposed depending on the question of interest 586 

(Deutsch et al., 2008; Kearney and Porter, 2009; Sinervo et al., 2010; Lertzman‐Lepofsky et al., 587 

2020; Souza et al., 2023). These indices are projected across space and time and are based on the 588 

experimental estimation of fitness-related traits. Some indices relate environmental variables with 589 

physiological thresholds (e.g., desiccation tolerance, performance curves; Greenberg and Palen, 590 

2021; Anderson et al., 2023), whereas more complex counterparts are based on biophysical models 591 

designed to reflect energy and water exchanges between animals and their microclimatic 592 

environments (Kearney et al., 2013; Kearney et al., 2018; Briscoe et al., 2023). Importantly, thermal 593 

biology information characterises most indexes (Taylor et al., 2020) despite the high relevance of 594 

hydroregulation for water-sensitive groups such as amphibians (Lertzman‐Lepofsky et al., 2020; 595 

Greenberg and Palen, 2021; Wu, N. C. et al., 2024a).  596 

Models and indexes have been used to predict biological constraints on fitness, using as proxies’ 597 

development, growth, activity, reproduction, and survival (Sinervo et al., 2010; Kearney et al., 598 

2018). This is because fitness-related traits are key to informing vulnerability to a given source of 599 

physiological stress. Yet disagreements exist on whether traits and what traits are good predictors 600 

for informing causal links of environmental changes on populations and species (Calosi et al., 2008; 601 
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Beissinger and Riddell, 2021). For example, common modelling variables related to 602 

hydroregulation include hydration level, rates of water loss, measures of water acquisition (seeking 603 

out water sources or specific microhabitats that enhances water uptake or maintenance), and the 604 

concentration of body fluids (Table 2). Hydroregulation traits are integrated with various functions 605 

related to gas exchange, energetics, thermoregulation, and reproduction as previously highlighted in 606 

section ‘2.1 Species sensitivity risk: short-term impacts’. Thus, and according to the physiology of 607 

the target groups, models exclusively based on hydroregulation may under- or overestimate 608 

vulnerability to climate change (Riddell et al., 2018a; Rozen‐Rechels et al., 2019). The use of 609 

multiple physiological thresholds such as thermal tolerance, reproduction, and growth with 610 

hydroregulation through experimental manipulation of environmental stressors or inputting 611 

appropriate parameters to mechanistic models will provide more holistic estimations of 612 

vulnerability to climate change. 613 

4.2 Challenges in predicting vulnerability 614 

Predicting vulnerability to environmental stressors and how this may scale-up to population or 615 

species-level responses remains a key challenge for the conservation of biodiversity (Bovo et al., 616 

2018). Practical limitations include characterising with appropriate data species-specific 617 

microclimates, both temporally and spatially (Briscoe et al., 2023). These limitations extend to 618 

single-population estimates, and the sometimes-related use of an average value to represent a 619 

whole-species. The validity of such approaches is context-specific, but they may not reflect across-620 

population variation in sensitivity to thermal (Herrando‐Pérez et al., 2019; Senior et al., 2019; Bovo 621 

et al., 2023) and/or drying as well as population plasticity/adaptation to drying condition. The same 622 

principle applies to studies using closely related species to represent threatened counterparts 623 

(Reemeyer et al., 2024). Mechanistic models that embrace population variability and plasticity in 624 

response to environmental drying will allow more explicit predictions of vulnerability across a 625 

species range (see ‘Future directions’). Validating these predictions is essential, particularly for 626 

models that estimate survival, reproduction, and activity, which should be tested against 627 

observational data to ensure accuracy. Natural history observations (Greene, 2005), and large-scale 628 

longitudinal field and laboratory studies, particularly when there are geographically biased data 629 

(White et al., 2021; Herrando-Pérez et al., 2023), can help validate mechanistic models when 630 

predicting biological impacts of climate change across a species range or communities (Kearney et 631 

al., 2018; Enriquez‐Urzelai et al., 2019; Riddell et al., 2019; Briscoe et al., 2023). 632 



20 
 

5. Future directions 633 
5.1 Linking gene expressions to functional changes in response to environmental drying 634 

Whole genome sequencing is becoming increasingly affordable and accessible for researchers and 635 

conservationist (Theissinger et al., 2023; Hogg, 2024). As we previously highlighted, several genes 636 

have been identified that are linked to an animal’s hydroregulation. Understanding how the 637 

expression of these genes translates into functional changes in an animal’s water balance is key to 638 

uncovering the genetic mechanisms underlying plasticity in response to environmental drying 639 

(Somero, 2010). Riddell et al. (2019) identified, in salamanders, over 500 genes in response to 640 

acclimation to different temperatures and vapour pressure deficits. Network analysis of these genes 641 

revealed suites of gene networks associated with the plasticity of skin resistance and the regulation 642 

of skin blood vessel growth. For example, the expression of hydroperoxide isomerase (ALOXE3), a 643 

gene involved in regulating transepidermal water loss, was highlighted. This study underscores an 644 

important research direction for identifying which genes are targets of selection when inferring the 645 

adaptive potential of species to warming and drying environments. Epigenome-wide association 646 

studies represent a promising approach for establishing causal relationships between changes in the 647 

epigenome and phenotypic plasticity (Fanter et al., 2022). 648 

5.2 Inter- and transgenerational plasticity in response to environmental drying 649 

Parental environments can shape offspring phenotype via epigenetic mechanisms such as DNA 650 

methylation, histone modifications, and non-coding RNAs (Galloway and Etterson, 2007; Beaman 651 

et al., 2016; Loughland et al., 2021; Husby, 2022). Intergenerational and transgenerational plasticity, 652 

which describe epigenetic inheritance across one or multiple generations, could buffer populations 653 

against environmental change, particularly if parental and offspring environments match (Shama 654 

and Wegner, 2014; Pettersen et al., 2024). However, despite growing interest in these mechanisms, 655 

few studies have explored these processes in amphibians and reptiles. One promising research 656 

direction is to experimentally test whether epigenetic modifications induced by water stress persist 657 

across generations and whether they enhance desiccation resistance. This could involve controlled 658 

desiccation experiments, tracking epigenetic changes and hydroregulation traits across multiple 659 

generations (Dupoue et al., 2015; Dupoué et al., 2018), or comparing populations from 660 

environments with different hydric regimes to assess whether ancestral exposure to aridity 661 

influences offspring water balance. Finally, we identify a critical question remaining unanswered: 662 

do hydroregulation strategies have an evolutionary limit? Studies on thermal tolerance suggest that 663 

plasticity alone may not be enough to ensure survival under extreme climate shifts (Morgan et al., 664 

2020), but we lack similar insights for hydroregulation. Addressing this could inform conservation 665 

strategies, helping predict whether species can adjust to future drying events or if their 666 

physiological flexibility has constraints. 667 
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5.3 Modelling plasticity and adaptation in response to environmental drying 668 

Animals can remodel their phenotype (physiology, morphology, and behaviour) to maintain optimal 669 

performance across a broad range of environments. This plastic response is a well-recognised 670 

phenomenon in predicting adaptive responses to climate change (Seebacher et al., 2015; Urban et 671 

al., 2016). Models that incorporate plasticity or adaptation tend to better predict a species' extinction 672 

risk or range contraction (Riddell et al., 2018b; Kellermann et al., 2020). Therefore, we encourage 673 

modelling studies to explicitly incorporate plasticity to provide realistic assessments of vulnerability 674 

to climate change (Bush et al., 2016; Gallegos et al., 2024). There is a substantial body of literature 675 

on plastic responses to pond drying in tadpoles (Gomez-Mestre et al., 2013; Székely et al., 2017; 676 

Delgadillo Méndez et al., 2024; Wu et al., 2025) and responses to soil moisture during embryo 677 

development in reptiles (reviewed in Bell et al., 2025). However, in studies of terrestrial drying, 678 

many acclimation experiments aimed at quantifying plastic responses have primarily focused on 679 

temperature effects on hydroregulation traits. This can confound causal inferences between the 680 

effects of temperature and drying (see ‘3. Species sensitivity risk: long-term impacts’ section). For 681 

instance, the temperature effects on EWL may partially arise from the temperature-dependent nature 682 

of the metabolic rate (MR), as MR and the rate of gas exchange are closely linked to respiratory 683 

EWL (Woods and Smith, 2010), but see Riddell et al. (2024). It is possible that plasticity to water 684 

restrictions may differ from plasticity to temperature changes, potentially altering model predictions 685 

of extinction risk. Further studies across a broader range of species are needed to make biologically 686 

meaningful statements about the generality of within- and across-generation plasticity to drying, 687 

and to improve inferences in modelling vulnerability to future environmental drying scenarios. 688 

Finally, models explicitly testing adaptive evolution of traits should be more widespread used 689 

(Hansen, 2012; Moen et al., 2022).  690 

5.4 Translating knowledge for managing habitats 691 

Incorporating knowledge on hydroregulation strategies with projected changes in environmental 692 

water into land management and conservation planning, particularly at the microhabitat scale, could 693 

help mitigate the impacts of habitat modification and climate change on reptiles and amphibians 694 

(Nowakowski et al., 2018; Pottier et al., 2025). Complex microhabitats, such as heterogeneous 695 

vegetation patches and burrows, provide hydric refuges during droughts, which reptiles and 696 

amphibians can exploit through behavioural hydroregulation to avoid desiccation (see ‘2.4 697 

Behavioural responses’ section). Conservation efforts should thus prioritise the protection, 698 

restoration, or creation of such microhabitats within the range of the focal species to support 699 

persistence under increasingly drying conditions (Moore et al., 2018; Weaver et al., 2024). For 700 

example, protecting swamps from groundwater loss and surface water contamination has also been 701 

recommended for conserving Eulamprus leuraensis, an endangered swamp-specialist skink in 702 
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Australia (Gorissen et al., 2017). Interventions aimed at extending hydroperiods may protect some 703 

amphibians from larval desiccation and enhance population viability by increasing recruitment 704 

(Hamer et al., 2016; Mathwin et al., 2021; Mathwin et al., 2023). Likewise, habitat water 705 

supplementation through mist irrigation can extend activity time in reptiles and amphibians under 706 

arid conditions (Ackley et al., 2015; Mathwin et al., 2021) and support reproduction and dispersal in 707 

amphibians (Mitchell, 2001; Channing et al., 2006; Hoffmann and Mitchell, 2022). Providing 708 

supplemental hydration, such as drinking water for targeted individuals, could also be an effective 709 

conservation strategy for small, range-limited species (Weaver et al., 2024), particularly benefiting 710 

gravid or pregnant females by mitigating physiological and reproductive costs during severe 711 

droughts (Capehart et al., 2016; Dezetter et al., 2021; Bedard et al., 2025). However, the feasibility 712 

of such interventions is questionable (Mathwin et al., 2021; Weaver et al., 2024) and further 713 

research is needed to assess the effectiveness, potential negative, and species-specific outcomes of 714 

hydrological manipulation and micro-habitat scale management as a conservation tool. To facilitate 715 

the global implementation of conservation, informed by recent and emerging hydroregulation 716 

research, publications are also needed in more accessible and taxa- and region-specific journals and 717 

government reports (Amano and Berdejo-Espinola, 2024; Choi et al., 2024). 718 
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TABLES 1464 
Table 1. Environmental water variables and example indices of environmental dryness with definitions and calculations of the variables, their interpretation for reptiles and 1465 
amphibians, the temporal resolution scale available, and non-exhaustive examples of online global datasets to extract environmental water variables and indices. 1466 

Name Definition and calculation Interpretation Resolution Online database 
Environmental water 
Precipitation (P) Amount of rainfall per unit area (mm or 

kg m2).  
Less rainfall = less water 
available for animals to 
rehydrate. 

Hourly to yearly CHIRPS: Global daily rainfall from 1981 to near-present 
(Funk et al., 2015). 
WorldClim 2: Average yearly precipitation and 
seasonality from 1970 to 2000 (Fick and Hijmans, 2017). 
CHELSA: Precipitation, and potential evapotranspiration 
(1981–2010) with future scenarios at three future time 
periods (2011–2040, 2041–2070, and 2071–2100) under 
three shared socioeconomic pathways (SSP126, SSP370, 
SSP585) and across five Earth system models (Brun et 
al., 2022). CHELSA-EarthEnv: Global daily rainfall from 
2003 to near-present (Karger et al., 2021). 
TerraClim: Average (1958–2019) global rainfall with 
future scenarios of +2°C and +4°C (Abatzoglou et al., 
2018). 

Atmospheric 
moisture content 
(RH or e) 

Amount of moisture (water vapour) the 
air holds. Typically expressed as 
relative humidity (%), absolute 
humidity (g cm3), or actual vapour 
pressure (ea; kPa) 

Less moisture in the air = higher 
evaporation of water through 
evaporative surfaces. 

Seconds to yearly CHELSA: Near-surface relative humidity (1981–2010) 
with future scenarios at three future time periods (2011–
2040, 2041–2070, and 2071–2100) under three shared 
socioeconomic pathways (SSP126, SSP370, SSP585) 
and across five Earth system models (Brun et al., 2022). 
TerraClim: Average (1958–2019) global vapor pressure 
with future scenarios of +2°C and +4°C (Abatzoglou et 
al., 2018). 
MODIS: 5-minute interval global water vapour data 
(https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/science-domain/water-vapor/#modis). 
MODIS: 8-day to annual interval global 
evapotranspiration data 
(https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/science-domain/evapotranspiration/). 

Soil moisture 
content (Φ) 

Amount of water the soil holds. 
Expressed as volume (m3), weight (kg) 
or water potential (kPa). 

Relevant for animals that use 
burrows to acquire (from the 
soil/substrate), conserve (no 

Seconds to yearly NicheMapR: Above and below-ground microclimate 
from various sources (Kearney and Porter, 2017). 
Microclimc: Above and below-ground microclimate 
(Maclean and Klinges, 2021). 
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water exchange) and reduce 
water loss. 

Water surface area Land area covered by freshwater (%) 
e.g. lakes, rivers. 

Amount of large-bodied 
freshwater sources for animals to 
rehydrate and/or breed. 

Average over set 
years. 

HYDROSHEDS: Global hydrographic products such as 
catchment boundaries, river networks, and lakes at 
multiple resolutions and scales (www.hydrosheds.org). 

Environmental dryness indices 
Aridity index (AI) 
or climate moisture 
index (CMI) 

AI = P/PET 
CMI (mm or kg m2 month-1) = P - PET 
 

The difference (CMI) or ratio (AI) 
between the average annual 
precipitation (P) and potential 
evapotranspiration (PET). 

Indicator of the degree of 
dryness of the climate. 

Depending on P 
and PET 
resolution, but 
typically monthly 
to yearly average. 

CHELSA: CMI (1981–2010) with future scenarios at 
three future time periods (2011–2040, 2041–2070, and 
2071–2100) under three shared socioeconomic pathways 
(SSP126, SSP370, SSP585) and across five Earth system 
models (Brun et al., 2022). 
Global-AI_PET_v3: Global hydro-climatic data averaged 
(1970–2000) monthly and yearly (Zomer et al., 2022). 

Drought index Standardised index representing 
meteorological drought based on 
different formulas: 
• Palmer Drought Severity Index 

(PDSI)  
• Standardised Precipitation Index (SPI) 
• Normalized Difference Vegetation 

Index (NDVI) 

Indicator of change in 
environmental dryness relative 
to ‘normal’ conditions of the 
location. The intensity, 
frequency, and duration of 
drought events can be calculated 
from these indices. 

Monthly to 
decades. 

TerraClim: Average (1958–2019) global PDSI with 
future scenarios of +2°C and +4°C (Abatzoglou et al., 
2018). 
Dai_et_al_2004: global PDSI under three shared 
socioeconomic pathways: 1870–2002, SSP245, and 
SSP585 (Dai et al., 2004). 
MODIS: 16-day and monthly interval global NDVI 
(https://modis.gsfc.nasa.gov/data/dataprod/mod13.php).  

Vapour pressure 
deficit (VPD) 

VPD (kPa) = es - ea 
The difference between the amount of 
moisture in the air (ea) and how much 
moisture the air can hold when it is 
saturated at known temperature (es). 

Determines desiccation risk and 
relates to the primary 
productivity of ecosystems 
(plant growth, food availability). 

Depending on es 
and ea resolution, 
but typically 
monthly to yearly 
average. 

CHELSA: VPD (1981–2010) with future scenarios at 
three future time periods (2011–2040, 2041–2070, and 
2071–2100) under three shared socioeconomic pathways 
(SSP126, SSP370, SSP585) and across five Earth system 
models (Brun et al., 2022). 
TerraClim: Average (1958–2019) global VPD with future 
scenarios of +2°C and +4°C (Abatzoglou et al., 2018). 

1467 
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Table 2. Example measurements to estimate of an animal’s water loss/balance with definitions and calculations, and 1468 
their interpretation for reptiles and amphibians. 1469 

Name Definition/calculation Interpretation 
Evaporative water loss Water loss through evaporative surfaces. Typically 

expressed as rate of water loss per unit time (g h-1), or 
resistance to water loss (s cm-1) Measurements of EWL 
can be whole-body, regional (e.g. ocular, dorsal, ventral, 
cloacal), exposed cutaneous surface area, or respiratory. 

Indicator of the animals' risk of drying to 
the environment. 

Water content Whole-body mass: The amount of water in the animal. 
Typically expressed as percentage of whole mass or dry 
mass (%) in relation to standard (hydrated) body mass. 
Muscle: The amount of water in a sample of muscle 
tissue. 

How much water is stored and available 
for the animal to use. Note that fat storage 
is another source of water through aerobic 
metabolism. 

Blood biochemistry Osmolality: Biomarker that measures the concentration 
of dissolved solutes in the blood. Typically expressed as 
milliosmoles per kilogram or litre of solvent (mosmol 
kg-1, mosmol l-1). 
Haematocrit: Proportion of blood volume occupied by 
red blood cells. Expressed as percentage of blood 
volume (%). 

Indicator of dehydration status. 

Water flux Isotopic analysis of doubly labelled water which traces 
the movement of water molecules between the 
organism and environment. Typically expressed as ml 
kg-1 day-1. 

Estimate of daily water flux from free-
ranging animals. Usually not suitable for 
semi-aquatic and aquatic species. 

Water-seeking or 
conserving behaviour 

Behaviours associated with seeking water (directional 
movement) and/or saving water (posture to diminish 
exposed body surface areas, shelter seeking, inactivity). 

Indicator of behavioural focus on water 
balance. 
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FIGURES 1471 

 1472 

Fig. 1 | Overview of the landscape hydrology and animal hydroregulation. Blue text indicates environmental water 1473 
that can influence hydroregulation such as precipitation and evapotranspiration, atmospheric and soil moisture content, 1474 
water bodies (outlined in Table 1), and their interaction with external factors such as wind speed, temperature, thermal 1475 
radiation, and substrate composition. The landscape includes habitats with different water stressors represented by vapour 1476 
pressure deficit (VPD in kPa), which is calculated from measured air temperature (°C) and atmospheric moisture content 1477 
(e.g. relative humidity in %). Hydroregulation includes water gain/loss, water storage and their interaction with extrinsic 1478 
and intrinsic factors. Representative landscape and animals are based on Borneo’s ecosystem. The representative 1479 
terrestrial lizard is the earless monitor lizard (Lanthanotus borneensis), the representative arboreal frog is the Wallace 1480 
flying frog (Rhacophorus nigropalmatus), and the representative subterranean caecilian is the Metang caecilian 1481 
(Ichthyophis biangularis). Illustration by S. Buttimer. 1482 

 1483 
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 1484 

Fig. 2 | Example variation in monthly precipitation in Sydney, Australia from 1970–2024. Monthly precipitation 1485 
data represented by thin grey lines from the Australian Government Bureau of Meteorology, with the 5-year rolling 1486 
mean in thick black lines. The 10th and 90th month-specific percentiles represent dry and wet thresholds, respectively. 1487 
Example durations (D) for extremely dry (red points) or wet (blue points) months are shown which is calculated as the 1488 
number of months consecutive months above the wet and below the dry thresholds. Example calculations of intensity 1489 
(I), magnitude (M), and severity (S) is also shown for a 3-month wet event (D = 3) with a departure of i1, i2 and i3 from 1490 
the threshold. Frequency can be calculated as the number of times the monthly precipitation is above the wet and below 1491 
the dry thresholds. 1492 

 1493 

 1494 

 1495 

Fig. 3 | Example genes identified in response to water stress. Genes are grouped by the following functions: skin 1496 
water preservation, osmoregulation, damage repair, and immunity. Specific functions of the genes are described on the 1497 
right side with the taxon in which the function has been demonstrated.  1498 
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