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Abstract11

1. The variational properties of biological systems are an increasing focus of current research,12

and statistical methods are required for drawing inferences about the processes that determine13

them.14

2. Double-hierarchical generalised linear models (DHGLM) are ideally suited for studying vari-15

ational properties since they provide a direct way of modelling the distribution of variances.16

3. Although DHGLM have mainly been used to model heterogeneous residual variances over17

groups, models have been proposed that also allow heterogeneous random effect variances.18

However, these multi-way DHGLM make the assumption that the residual variance of a group19

is independent of its random effect variance. Here, using a Bayesian approach, we extend20

multi-way DHGLMs so that the correlation between residual and random-effect variances can21

be estimated.22

4. Using simulated data, the performance of the model is compared with the non-DHGLM models23

that have traditionally been used to estimate such correlations. The proposed model is shown24

to perform well at estimating all model parameters, and in particular performs better than25

alternative models at estimating the correlation among variance components.26

5. Numerical analyses are complemented with theoretical work showing the expected bias when27

using non-DHGLM models. In some cases, commonly-used non-DHGLM models are even28

expected to get the sign of the correlation wrong.29

1 Introduction30

For many questions in ecology and evolution, we want to make inferences about parameters that31

we do not directly observe. Historically, this has often involved estimating parameters in individual32

models and making inferences across model estimates. However, not accounting for uncertainty in33

these estimates can easily lead to the wrong conclusions and, indeed, there are several clear cases34
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of this in ecology and evolution (e.g. Morrissey & Hadfield, 2012, Morrissey, 2016). Currently, the35

most common way to deal with this uncertainty is to use meta-analysis, a method developed to36

make inferences from estimates scattered across the literature using reported sampling variances.37

However, this approach is limited by the loss of information in such summary statistics and should38

not be a replacement of appropriate methodology to analyse raw data.39

Decomposing phenotypic variance into components caused by genetic and environmental factors40

is central to quantitative genetics and led to the development of the mixed model in the 1950’s (Hen-41

derson et al., 1959). Since its development, the mixed model (referred to as HGLM - hierarchical42

generalised linear model - henceforth) is now widely used across the sciences, and is one of the main43

modelling frameworks used by evolutionary biologists and ecologists (Nakagawa & Schielzeth, 2010;44

Bolker et al., 2009). The variance decomposition of a quantitative trait often assumes that variance45

components are homogeneous, with a single variance being estimated for each set of random effects46

and/or the residuals. However, an increasing number of studies have shown that the variances47

of random effects or residuals can vary across groups. For example, between-individual (environ-48

mental) variances have been shown to vary over herds of livestock (Brotherstone & Hill, 1986),49

and more recent work in behavioural ecology has shown within-individual (residual) variances, or50

repeatability, of behaviour to vary over individuals (Schwagmeyer & Mock, 2003; Westneat et al.,51

2013; Stamps et al., 2012; Martin et al., 2017). Appropriate methodology has been developed to52

estimate the variance of variances directly (see below). However, studies have also suggested that53

variance components that vary over the same groups might be correlated, yet currently there is no54

methodology for estimating this correlation directly. In lieu of an appropriate methodology, studies55

have instead estimated the correlation between estimates of variances. For example, mutational,56

genetic and/or environmental variances have been estimated for several groups (traits) using HGLM57

(e.g. Houle, 1992) or even non-HGLM (e.g. Landry et al., 2007), and the correlations in the esti-58

mates across traits have been used to draw important conclusions about the determinants of genetic59

variation. However, these correlations are expected to reflect, in part, the sampling (co)variances of60

the estimates which will increase in magnitude as the information to estimate a variance component61

decreases. This problem can be acute in some high-throughput methodologies where it is cheap to62
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measure many groups, but the replication within a group necessary to estimate the variance may63

be modest. For example, microarray and RNA-seq technologies allow many groups (genes) to be64

measured simultaneously, but the level of within-group replication might be small: for example, in65

Landry et al. (2007) the mutational variance in expression for each gene was estimated from only66

five lines with four replicates per line. In contrast to other central inference problems in ecology and67

evolution (Morrissey, 2016) the implications of using estimates, rather than true values, to estimate68

the correlation in variances has not been well studied.69

Several models and inference procedures have been put forward to deal with and estimate70

heterogeneous variances. Traditionally, heterogeneous variances were dealt with by estimating71

variance components separately for each group, such as herd or year, using hierarchical generalised72

linear models (HGLM, of which the linear mixed model is a particular case). This is essentially73

equivalent to modelling variances as fixed effects with no shrinkage to an underlying distribution74

(Hill, 1984). Multiple studies have used this approach to compare estimates of genetic and/or75

environmental variances across groups such as traits (e.g. Houle, 1992) or years (e.g. Nicolaus76

et al., 2013) and the methodology is still advocated for studying heterogeneous variances (Royauté77

& Dochtermann, 2021). However, treating variance components as fixed effects is expected to78

give poor results when the sample size is small per group, with variation in variance components79

being overestimated due to sampling error. Hill (1984) suggested addressing the problems of the80

HGLM method by shrinking the variance component estimates towards their mean according to81

some (prior) distribution, i.e. treat the variance parameters as random effects. Gianola et al.82

(1992) developed an empirical Bayes approach using a scaled inverse chi-squared distribution for the83

variances, but only the mean of this distribution was estimated, not it’s dispersion. Consequently,84

the degree of shrinkage was not informed by the data but set a priori. Using a log-normal distribution85

for the variances, Foulley et al. (1992) came up with a strategy for estimating both the mean and86

dispersion, and this model is now known as a double-hierarchical generalised linear model (DHGLM)87

(Lee & Nelder, 2006). Most DHGLM used in the literature only allow the residual variance to88

be heterogeneous over groups, although San Cristobal et al. (1993) extended Foulley (1992) et89

al ’s method to also accommodate differences in random-effect (genetic) variances among groups.90
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Such DHGLM are hereon referred to as multi-way DHGLM. Related to, but independent of this91

work, stochastic variance models were developed in econometrics whereby the residual variance was92

allowed to vary over time according to an autoregressive process (Taylor, 1982). These models were93

later extended to deal with multiple assets, allowing correlations between the residual variances of94

different response variables at a given time (Harvey et al., 1994).95

While the models described above deal with and quantify the heterogeneity of variance, to the96

best of our knowledge no multi-way DHGLM has been implemented to accurately determine the97

correlation between sets of variances that vary over the same groups. Here, we extend the model of98

San Cristobal et al. (1993) so that the correlation between random-effect and residual variances can99

be estimated. Using simulated data we assess the accuracy of the multi-way DHGLM model and100

compare it to alternative non-HGLM and HGLM methods. A more general treatment of non-HGLM101

and HGLM methods is also given using analytical results.102

2 Methods103

Here, we describe a multi-way DHGLM, which includes a parameter for the covariance between104

variance components (on the log scale) that vary over the same groups. We then briefly describe105

the alternative non-HGLM and HGLM approaches and the results needed to derive theoretical106

expectations for their (co)variance estimates. Finally, we use a simulation scheme to evaluate the107

estimation accuracy of all modelling approaches.108

2.1 Double-Hierarchical Generalised Linear Model with Covariance Struc-109

ture110

To give biological motivation to the model described, we could imagine a researcher would like to111

assess whether environmental and genetic variances covary across traits (i.e. do traits with high112

genetic variance also have high environmental variance?). To answer this question, the researcher113

could have made measurements of multiple traits (groups) from multiple individuals from different114

clones or inbred lines (subgroups). In this design, the genetic variance can be estimated as the115
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between-subgroup variance (e.g. Denver et al., 2005, Landry et al., 2007, Huang et al., 2016,116

Lafuente et al., 2018, Chinchilla-Ramírez et al., 2020). The model used to analyse such data is117

described in two stages. First is the Mean Model that describes variation around the average118

value, and second is the Dispersion Model that describes how such variation (co)varies across119

groups. In the context of our example, the parameters of the Mean Model quantify the genetic and120

environmental variances for each trait, while those of the Dispersion Model quantify how genetic121

and environmental variances (co)vary over traits.122

The Mean Model is given by123

yijk = µ+ ti + uij + eijk, (1)

where yijk is the kth observation made on subgroup j (e.g. line) of group i (e.g. trait). µ is124

the intercept, representing the expected value for an observation irrespective of which group was125

measured. ti is the expected deviation of group i from the intercept (e.g. the average effect of trait126

i) and uij is the expected deviation caused by subgroup j from group i (e.g. average effect of line j127

on trait i). eijk is a residual effect associated with the specific observation. t, u and e are normally128

distributed random variables, and their distributions are given in Table 1.129

The Dispersion Model is where a double-hierarchical model is developed in which the variance130

of subgroup effects (Vu, e.g. between-line variance) and residual effects (Ve, e.g. environmental131

variance) are drawn from a joint distribution across groups. Specifically, the subgroup and residual132

variances for the groups are assumed to follow a multivariate log-normal distribution, with the133

logarithm of the subgroup variance for group (trait) i given by134

log(Vu(i)) = µlog(Vu) + dlog(Vu(i)) (2)

where µlog(Vu) is the mean subgroup variance across groups (i.e. the mean between-line variance135

across traits) and dlog(Vu(i)) is the deviation of the subgroup variance from the mean for group i (i.e.136

the degree to which the between-line variance of trait i deviates from that of the average trait), all137
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on the log-scale. Similarly, the logarithm of the residual variance for group i is given by138

log(Ve(i)) = µlog(Ve) + dlog(Ve(i)). (3)

The deviations of the log variances for each group, dlog(Vu(i)) and dlog(Ve(i)), are assumed to come139

from a multivariate normal distribution,140

dlog(Vu(i))

dlog(Ve(i))

 ∼ MVN(0,C). (4)

with zero mean and covariance matrix141

C =

 Vlog(Vu) Clog(Vu),log(Ve)

Clog(Vu),log(Ve) Vlog(Ve).

 (5)

Vlog(Vu) and Vlog(Ve) represent the variances of the log subgroup (between-line) and residual (within-142

line) variances, respectively, over groups, and the covariance143

Clog(Vu),log(Ve) = ρlog(Vu),log(Ve)

√
Vlog(Vu)Vlog(Ve), (6)

where ρlog(Vu),log(Ve) is the log-scale correlation between the two variance components. In formu-144

lating such a relationship between variance components, it is assumed that they covary linearly on145

the log-scale. These log-scale parameters can be transformed to the arithmetic scale if required (see146

Equations 10-12 below).147

Extensions to the Dispersion Model can be made to accommodate further sources of heterogene-148

ity in variance components that may be considered important. For instance, if residual (within-line)149

variances are believed to vary over subgroups (lines) as well as over groups (traits), then the Dis-150

persion Model should include subgroup as well as group random effects. Variance components may151

also vary systematically with respect to some classifying factor or continuous variable, in which152

case additional fixed effects other than the intercept can be included in the Dispersion Model. In153
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Table 1: Fixed and random effects, and their distributions

Model Symbol Parameter Distribution
M

ea
n

µ Intercept (average value of y) Constant
ti Average effect of group i on y Normal; mean 0 and variance Vt

uij Average effect of subgroup j from
group i

Normal; mean 0 and variance Vu(i) for each group
i

eijk Residual effect for observation i from
subgroup j from group i

Normal; mean 0 and variance Ve(i) for each group
i

D
is

p
er

si
on µlog(Vu) Mean log(Vu) Constant

µlog(Ve) Mean log(Ve) Constant
dlog(Vu(i)) Average effect of group i on log(Vu) Multivariate normal; mean 0 and covariance

matrix C (Equation 5)dlog(Ve(i)) Average effect of group i on log(Ve)

particular, ti or ti + uij from the Mean Model may be included as (log-scaled) covariates in the154

Dispersion Model in order to accommodate any mean-variance coupling. These extensions to the155

basic model are detailed in the Supporting Information.156

2.2 non-HGLM and HGLM157

The basic architecture of non-HGLM and HGLM (ANOVA-based methods, with fixed and random158

effects respectively) is the same as that of the DHGLM Mean Model (Equation 1). The key159

differences lie in the distributions of t and u. For t, the DHGLM most naturally assumes them160

to be random effects drawn from a normal distribution with variance Vt. In both non-HGLM and161

HGLM, groups are analysed one at a time and the group effects are then the intercepts of the162

models and hence fixed rather than random. Since the total number of observations per group is163

often likely to be large, this distinction is likely to have little effect since group (trait) means will164

be well estimated. The subgroup effects, and their (co)variances, are however treated differently in165

the three approaches and this is likely to have consequences.166

Non-HGLM (fixed-effect ANOVA): This model is similar to Equation 1 but the parameter uij167

is treated as fixed rather than random, and the estimate of the subgroup variance Vu(i) is obtained168

by taking the variance of the uij estimates. The subgroup variance is expected to be overestimated169

due to sampling variance contributing to the variance of the uij estimates. Estimates of how the170

subgroup and residual variances covary are obtained from the (co)variance of the Vu(i) and Ve(i)171

estimates rather than through a model of how they (co)vary. An example where this type of analysis172

was used to calculate the correlation between variance components can be found in Landry et al.173
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(2007) (in which groups are traits and subgroups are lines), to determine whether traits with higher174

mutational variance were also more prone to environmental variation.175

ANOVA-based HGLM (random-effect, or repeated-measures, ANOVA): This model is identical176

to Equation 1 and the subgroup effects are assumed to come from a distribution and hence treated177

as random. Estimates of the subgroup variance Vu(i) are known to be unbiased in the balanced178

case analysed below. However, estimates of how the subgroup and residual variances covary are179

obtained from the (co)variance of the Vu(i) and Ve(i) estimates and so the covariance will be biased180

when the sampling errors on Vu(i) and Ve(i) are correlated. This approach was adopted by Denver181

et al. (2005) to ask whether traits with more standing genetic variation are also more prone to182

mutational variation.183

REML-based HGLM: This model is identical to the ANOVA-based HGLM, although typically184

estimates of the variances are restricted to be non-negative and have better properties when the185

design is not balanced. Because estimates of the variances must be non-negative, the estimate of the186

subgroup variance is known to be upwardly biased when sample sizes are low (where large sampling187

error can generate negative variance estimates). It is currently the most widespread method for188

estimating variance components. An example of its application can be found in Hoffmann et al.189

(2016) where literature-derived estimates of (standardised) genetic and environmental variances190

were compared across livestock traits, and the majority of these estimates were obtained using191

REML.192

2.3 Theoretical expectations of ANOVA-based non-HGLM and HGLM193

The first and second moments of the sampling distribution for Vu and Ve can be obtained for194

ANOVA-based estimates when the design is balanced. Theoretical expectations are thus obtained195

for the expected values of the (co)variances of estimated variance components from ANOVA-based196

models (non-HGLM and HGLM). Throughout, HGLM estimates are denoted with hat symbols197

(e.g. µ̂Vu), while non-HGLM estimates are denoted with tilde symbols (e.g. µ̃Vu).198

For a variance component Vx (herein Vu or Ve) that varies over groups with mean µVx
and199

variance VVx
, the expected mean and variance of the estimates from an ANOVA-based HGLM200
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(random-effect ANOVA) are given by201

E[V̂x] = µVx
(7)

and202

E[V̂Vx
] = VVx

+ E[V ar(V̂x)], (8)

respectively, where E[V ar(V̂x)] is the expected sampling variance of Vx. Having CVx,Vy
as the203

covariance between Vx and Vy, the covariance between HGLM estimates of Vx and Vy is:204

E[ĈVx,Vy
] = CVx,Vy

+ E[Cov(V̂x, V̂y)], (9)

where E[Cov(V̂x, V̂y)] is the expected sampling covariance of Vx and Vy. Even though the full sam-205

pling distribution is intractable, well-known expressions for the variance of sums of squares expressed206

as quadratic forms can be used to obtain analytical expressions for the sampling (co)variances207

(Crump, 1946; Searle, 1956).208

Since the estimates of the variances in non-HGLM (fixed-effect ANOVA) are related to those209

of ANOVA-based HGLM (Ṽu = V̂u + 1
n V̂e and Ṽe = V̂e where n is the number of observations210

within subgroups) the expectations for non-HGLM estimates can be derived simply once the HGLM211

sampling (co)variances are obtained. The expected estimates from both the non-HGLM and HGLM212

are shown in the Results section with the full derivations provided in the Supporting Information.213

2.4 Simulated data214

Data (yijk) were simulated in R (R Core Team, 2022) according to the models described in Equations215

1-5. For the main set of simulations there were c = 4 subgroups and n = 5 observations per subgroup216

giving a total of N = nc = 20 observations per group. The reasoning for this data structure is to217

test whether the DHGLM can fill the methodological gap for data with few observations per group218

but many groups (e.g. RNAseq data where there are many genes/traits but few replicates) that219

alternative methods are unable to cope with (shown theoretically in the Results). For studies whose220

focus is on addressing questions regarding patterns of variation, the unit of replication is primarily221
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group (e.g. herds, traits, genes) rather than subgroup (e.g. individuals or lines). In our first set of222

simulations we set the number of groups to be large (1000) such that the amount of information223

in the data to estimate the covariance between variances was substantial. 1000 simulated data sets224

were generated using the same model parameters. In our second set of simulations we varied the225

number of groups from 10 to 1000 in increments of 10 (from 10− 500) or 25 (from 500− 1000) in226

order to assess how the performance of each method changes as a function of the number of groups.227

15 simulated data sets were generated for each group-size, again using the same model parameters.228

Biologically realistic parameter values were used (Table 2) and taken from an analysis by Gianola229

et al. (1992) on pedigreed lamb weight data, where additive genetic variance (subgroup variance)230

and environmental variance (residual variance) estimates were obtained for each herd (group). In231

Gianola et al.’s (1992) study, the two sets of variances were assumed to come from independent232

scaled inverse chi-squared distributions with degrees of freedom equal to 5 (νe = νu = 5) and233

scale parameters s2u = 0.36 and s2e = 0.32 for the between-subgroup (Vu) and residual (Ve) vari-234

ances, respectively. The expectation and variance of the variances for component x have the form235

E[Vx] = s2xνx/(νx−2) and V ar(Vx) = 2(s2xνx)
2/[(νx−4)(νx−2)2], giving E[Vu] = 0.6, E[Ve] = 0.533,236

V ar(Vu) = 0.72 and V ar(Ve) = 0.569. Variances were simulated from a multivariate log-normal237

distribution with these means and variances, which are here denoted µVu
, µVe

, VVu
and VVe

, re-238

spectively, and a correlation of 0.467 on the arithmetic scale, denoted ρVu,Ve (not given by Gianola239

et al. 1992 and chosen based on a preliminary analysis of gene expression traits in Saccharomyces240

cerevisiae (King et al. in prep.)). The intercept µ and between-group variance Vt were not given,241

and so to get realistic values a simple linear mixed model was fitted to the data from Gianola et al.242

(1992), with group as a random effect, where µ (4.97) is the estimated intercept and Vt the variance243

among group effects (0.143).244

To further assess the behaviour of the model in other regions of the parameter space, we explored245

two extreme situations: 1) where the correlation between Vu and Ve is zero, and 2) where the mean246

and variance in Vu are extremely low (µVu = VVu = 0.005).247

Finally, we also explored how different experimental designs affect the precision of estimates248

by simulating ten data sets from each of the possible 83 designs where the number of subgroups c249
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and the number of observations per subgroup c range between 2 and 40 and the total number of250

observations Ngnc is fixed at 3200.251

2.5 Model Fitting252

Simulated data sets were analysed using the Bayesian implementation of the DHGLM described253

above, as well as alternative models for comparison, including the non-HGLM (ANOVA), and both254

ANOVA and REML implementations of the HGLM. All analyses were performed on the same255

simulated data sets in order to directly compare methods.256

2.5.1 DHGLM implementation in STAN and Bayesian inference257

Model parameters were estimated by Bayesian inference with Markov Chain Monte Carlo (MCMC)258

sampling, using the programming language STAN v2.26.0 (Stan Development Team, 2020b) inter-259

faced with R v3.4.0 (R Core Team, 2022) with the rstan v2.26.1 package (Stan Development Team,260

2020a) (See Supporting Information for code). To increase computational efficiency, the Dispersion261

Model was parameterised for the standard-deviations rather than the variances, although on the262

log-scale moving from the standard-deviation to the variance parameterisation simply rescales the263

distribution by a factor of 2 (log(Vx) = 2log(
√
Vx)) and so the prior distributions are not expected264

to behave fundamentally differently under a variance parameterisation.265

The prior distributions used are as follows: The fixed effects µ (Mean Model), and µlog(
√
Vu)

and266

µlog(
√
Ve)

(Dispersion Model) were assigned normal priors with mean zero and variance 100. Random267

effects ti, uij , eijk from the Mean Model, and dlog(Vu(i)) and dlog(Ve(i)) from the Dispersion Model,268

were assigned priors with mean 0 and variances Vt, Vg(i), Ve(i), Vlog(Vu) and Vlog(Ve), respectively.269

Given that the dispersion random effects are on the log-scale, the recommendation by Gardini et al.270

(2021) was followed and priors were assigned to the dispersion variances (Vlog(
√
Vu)

and Vlog(
√
Ve)

)271

that follow a Generalized Inverse Gaussian (GIG) distribution with parameters λ = 1, δ = 0.01272

and γ =
√
3 + 9/Ng (where Ng is the number of groups) according to the notation of Gardini et al.273

(2021). According to the authors, GIG priors confer better behaviour than other commonly used274

priors when back-transforming parameter estimates from the logarithmic to the arithmetic scale (i.e.275
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when making inferences about µVu or VVu). For comparison, the same data were analysed using a276

half-Cauchy prior distribution with location 0 and scale 5 for the dispersion standard deviations (i.e.277 √
Vlog(

√
Vu)

). Lastly, the correlation between dlog(Vu(i)) and dlog(Ve(i)) (ρlog(Vu),log(Ve)) was assigned278

a Lewandowski-Kurowicka-Joe (LKJ) prior with shape parameter 1 (Lewandowski et al., 2009),279

which means that the prior probability density function for the correlation is uniform between -1280

and 1.281

To obtain results, a single MCMC chain was run for 5000 iterations, with 2500 iterations of282

burn-in, with starting values randomly sampled from the priors. For real data we advocate running283

multiple chains and checking for any convergence/mixing issues. For our single chains, we diagnosed284

any issues with MCMC chain convergence by recording the number of divergent transitions and285

calculating Geweke’s statistic - with few exceptions the algorithm seems to sample from the posterior286

density well (Supplementary Figure S2). While the Mean Model (Equation 1) related to outcomes287

on the arithmetic scale, the Dispersion Model (Equations 2-5) related to outcomes on the log-scale288

(i.e. log(Vu) and log(Ve)). However, the distribution of arithmetic-scale variances (i.e. Vu and Ve)289

can be obtained using well-known results for the log-normal distribution. The mean and variance290

of variance component Vx are given by291

µVx
= exp

[
µlog(Vx) +

Vlog(Vx
)

2

]
(10)

and292

VVx = (exp[Vlog(Vx)]− 1) exp[2µlog(Vx) + Vlog(Vx)]. (11)

The covariance of variance components Vx and Vy is293

CVx,Vy = (exp[Clog(Vx),log(Vy)]− 1) exp

[
µlog(Vx) + µlog(Vy) +

Vlog(Vx) + Vlog(Vy)

2

]
. (12)

The correlation on the arithmetic scale can be obtained as ρVx,Vy
= CVx,Vy

/
√

VVx
VVy

.294
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2.5.2 non-HGLM, ANOVA-based HGLM and REML-based HGLM295

In contrast to the DHGLM, which was implemented under a Bayesian framework encompassing all296

groups, non-HGLM, ANOVA-based HGLM and REML-based HGLM were implemented under a297

frequentist approach on a group-by-group basis. For each group, a linear model with intercept and298

subgroup effect was fitted using the function lm in R v3.4.0 (R Core Team, 2022). For non-HGLM,299

the variance components were estimated as300

Ṽu = MSEu

n

Ṽe = MSEe

(13)

where MSEu is the mean squared error among subgroups, n the number of observations per sub-301

group, and MSEe the mean squared error of the residuals. For ANOVA-based HGLM the variances302

were estimated as303

V̂u = MSEu−MSEe

n

V̂e = MSEe

(14)

with REML-based HGLM being the same, except that negative values of V̂u were set to 0.304

2.6 Intraclass correlation and coefficient of variation305

Posterior distributions for the intraclass correlations (ICC) and coefficients of variation (CV) can be306

obtained simply from the posterior samples of the DHGLM. The ICC for group i is defined as the307

ratio of the between-subgroup variance component for group i to the total variance within group i:308

ICC(i) =
Vu(i)

Vp(i)
=

Vu(i)

Vu(i) + Ve(i)
. (15)

The CV is defined as the ratio of the between-subgroup standard deviation to the group mean,309

which for group i is310

CV (i) =

√
Vu(i)

p̄i
(16)
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where the denominator (p̄i) denotes the mean value of group i. Assuming no covariates, p̄i = µ+ ti311

(the first two terms of Equation 1).312

However, neither the distribution of ICC nor CV can be obtained analytically from the inferred313

distribution of the variances and group means. Consequently, from the posterior predictive distri-314

bution, (co)variances and means were sampled for 10, 000 groups and Equations 15 and 16 were315

applied to obtain 10, 000 ICC and CV values. From these, summary statistics (mean, median and316

variance) were calculated.317

For the alternative methods, estimates of the variance components and mean group value (given318

by the model intercepts on each group) were used to calculate ICC and CV of each group, again319

using Equations 15 and 16. From these the mean, median and variance were calculated for each320

data set.321

3 Results322

3.1 Consistent bias in non-HGLM and HGLM (co)variance estimates323

Analytical expressions for the expected estimates of the mean and (co)variance of variance compo-324

nents that vary over groups (on the arithmetic scale; µVu
, µVe

, VVu
, VVe

and CVu,Ve
) are given for325

non-HGLM and HGLM ANOVA. In the Methods, the expected estimates of these parameters are326

shown to depend on their sampling (co)variances. Here, we show how these sampling (co)variances327

depend on the amount of within- and between-subgroup replication and how this generates bias in328

estimates. While the theoretical results shown in this section refer to ANOVA-based methods, we329

do not expect REML-based HGLM to be very different to ANOVA-based HGLM.330

Estimates of mean Ve are unbiased for both methods, i.e. on average they equal the true value331

regardless of the number of subgroups or observations per subgroup (E[µ̂Ve ] = E[µ̃Ve ] = µVe). This332

is also true for the mean Vu estimated by ANOVA-based HGLM (E[µ̂Vu
] = µVu

). However for333

non-HGLM, the mean Vu is overestimated by a factor of 1
nµVe

, tending to the true value as n tends334

to infinity, independently of the number of subgroups c (Searle, 1971). Consequently, the expected335

mean between-subgroup variance only approaches its true value in a non-HGLM when the number336
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of observations per subgroup is large and/or the mean within-subgroup variance (µVe) is small.337

Using results in Crump (1946) and Searle (1956) (with errors corrected), the expected (co)variances338

for HGLM are (see Supporting Information):339

E[V̂Vu
] = VVu

+
2

c− 1

[
N − 1

n2(N − c)

(
µ2
Ve

+ VVe

)
+

2

n

(
µVu

µVe
+ CVu,Ve

)
+

(
µ2
Vu

+ VVu

)]
, (17)

340

E[V̂Ve
] = VVe

+
2

N − c

(
µ2
Ve

+ VVe

)
(18)

and341

E[ĈVu,Ve ] = CVu,Ve −
2

n(N − c)

(
µ2
Ve

+ VVe

)
. (19)

For a non-HGLM, the expected (co)variances are342

E[ṼVu ] = VVu+
1

n
VVe+

2

c− 1

[
N − 1

n2(N − c)

(
µ2
Ve
+VVe

)
+
2

n

(
µVuµVe+CVu,Ve

)
+
(
µ2
Vu
+VVu

)]
− 1

n2

[
VVe+

2

N − c

(
µ2
Ve
+VVe

)]
,

(20)343

E[ṼVe
] = VVe

+
2

N − c

(
µ2
Ve

+ VVe

)
(21)

and344

E[C̃Vu,Ve ] = CVu,Ve +
1

n
VVe . (22)

Equations 17-22 show that all (co)variance estimates are to some degree biased in non-HGLM and345

HGLM (and generally upwardly biased, except the downwardly biased (co)variance by HGLM). In346

each case, the degree to which their expectation deviates from the true value (the bias) is represented347

by the terms following the first, and depends on the number of subgroups c and/or observations per348

subgroup n, in addition to the true magnitude of the mean and (co)variance of variance components.349

Figure 1 shows how this bias tends to decrease as the number of subgroups and observations per350

subgroup increase (1A-D), since the variance components are then more precisely estimated.351

Estimates of the variance in Vu (1A-B) only reach their true values in HGLM when c tends to352

infinity (green, 1A), since Vu is estimated perfectly for every group when the number of subgroups is353

infinite (conditional on there being at least two observations per subgroup). At the same limit, non-354
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Figure 1: Theoretical expectations of the (co)variance of variance components, when estimated by HGLM (green)
or non-HGLM (pink), as a function of the number of subgroups (left column) or the number of observations per
subgroup (right column). Their limits, when c or n respectively, tend to infinity are represented by dashed lines.
True values are represented by the black horizontal line: µVu = 0.6, µVe = 0.533,VVu = 0.72, VVe = 0.569 and
CVu,Ve = 0.299 (Table 2). In the left column the number of observations per subgroup is n = 5 and in the right
column the number of subgroups is c = 4. The star symbols indicate expectations when n = 5 and c = 4, as used in
the simulations.

17



-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20
true µVu

E
[ρ
V
V
u,

 V
V
e]

A

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20
true µVe

B

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20
true VVu

C

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20
true VVe

E
[ρ
V
V
u,

 V
V
e]

D

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
true CVu, Ve

E

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
true ρVu, Ve

F

Legend

Fixed-effect ANOVA (non-HGLM)

Random-effect ANOVA (HGLM)

True value

Figure 2: Expected correlation estimate among variance components as a function of model parameters. The
theoretical correlation is calculated for ANOVA-based HGLM (green) and non-HGLM (pink), based on their expected
(co)variances of variance components (Equation 23). In each panel (A-F) a single parameter is varying, while the
remaining parameters are held constant at the values given in Table 2. The number of subgroups, c, is assumed to
be 4 and the number of observations per subgroup, n, is 5. The star symbols indicate expectations for parameter
values used in the simulations (see Table 2) and the black line indicates the true value of the correlation.

HGLM remains biased by a factor of 1−n
n2 VVe , which may be large when the number of observations355

per subgroup is low and/or the variance in Ve is large. The different behaviour between HGLM356

and non-HGLM arises because in non-HGLM the estimate of Vu is essentially the HGLM estimate357

of Vu (i.e. V̂u) plus the estimate of Ve divided by n (see Supporting Information for more detail).358

Consequently, estimation error in Ve further inflates estimates of VVu
from non-HGLM and this359

only disappears when the number of observations per subgroup tends to infinity and the residual360

variance is perfectly estimated. At this limit, the bias in VVu arises solely from estimation error of361

Vu and is 2
c−1 (µ

2
Vu

+ VVu
) for both non-HGLM and HGLM, and becomes larger when the number362

of subgroups, c, is low or when the mean and/or variance in Vu is large.363

Estimates of the variance in Ve are identical for non-HGLM and HGLM (1C-D). In contrast to364

their means, the variances of Ve (VVe
) are upwardly biased, with the bias depending on the data365

structure (decreasing with the number of subgroups and observations per subgroup) and the mean366

and variance of the residual variances (µVe
and VVe

respectively). The bias only disappears when c367
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and/or n tend to infinity (conditional on there being some within-subgroup replication; n > 1) or368

the mean and variance in Ve tend to zero (Equations 18 and 21).369

The covariance between Vu and Ve (1E-F) is overestimated in a non-HGLM, and tends to the370

true value when the Ve are estimated perfectly (i.e. as the number of observations per subgroup371

tends to infinity; 1F, pink), while remaining invariant to the number of subgroups and thus to the372

accuracy of Vu estimates (1E, pink). In contrast, the covariance is underestimated in a HGLM,373

and tends to the true value when either variance component is estimated perfectly (i.e. when the374

number of subgroups and/or observations per subgroup tend to infinity; 1E,J, green).375

The expected estimate of the correlation between variance components, E[ρ̂Vu,Ve
], cannot be376

obtained analytically, but can be approximated using the expected estimates of the (co)variances377

among variance components:378

E[ρ̂Vu,Ve ] ≈
E[ĈVu,Ve ]√
E[V̂Vu ]E[V̂Ve ]

(23)

Simulations (see below) suggest that this approximation is accurate, and the approximation is shown379

for a range of values in Figure 1G-H. As the number of subgroups (c) tends to infinity, the estimate380

of the correlation from HGLM tends to the true value (1G, green) since the expectations of the381

corresponding estimates of the (co)variances reach their true values at this limit, assuming n > 1382

(1A,C,E, green). This is not the case for non-HGLM (1G, pink), however, where it is estimated as383

CVu,Ve +
1
nVVe√

(VVu + 1
nVVe − 1

n2VVu)VVe

. (24)

When the number of observations per subgroup (n) tends to infinity, the correlation tends to384

CVu,Ve√
(VVu

+ 2
c−1 (µ

2
Vu

+ VVu
))VVe

, (25)

for both non-HGLM and HGLM, which is an underestimate of the true value. As both the number385

of subgroups and observations per subgroup tend to infinity, the correlation tends to the true value386

in both non-HGLM and HGLM.387
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Figure 2 shows how the correlation between variance components varies as a function of the true388

means and (co)variances of variance components for the sampling design used in the simulations389

(c = 4 and n = 5). As the mean variances (µVu
and µVe

) increase, the expected correlation tends390

to decrease in magnitude, away from its true value, in both non-HGLM and HGLM (Figure 2A-B).391

In general, the magnitude of the correlation is underestimated by both non-HGLM and HGLM,392

although under certain parameter combinations the estimate of the correlation is expected to have393

the wrong sign. As the mean variances (µVu , and µVe) increase, the expected correlation estimate394

for non-HGLM tends towards zero. For HGLM, the same behaviour occurs for µVu
, but for µVe

the395

expected estimate actually becomes negative at large values (2A-B). In contrast, as the variances396

in variance components (VVu
and VVe

) increase, the correlation tends to get closer to the true value397

(2C-D) although they remain downwardly biased (except the non-HGLM method which is slightly398

upwardly biased at large values of VVe).399

Panels 2E-F show that the magnitude of the correlation is generally underestimated by both400

methods, although for non-HGLM methods the estimate is expected to be more positive than for401

non-HGLM methods leading to estimates that are expected to have the wrong sign when the true402

correlation is negative and small in magnitude. Figure S1 (Supporting Information) shows that403

when the number of subgroups and observations per subgroup are high (100), only the magnitude404

of the true mean Vu has a considerable effect on the correlation estimate, decreasing from the405

vicinity of the true value and tending towards zero as Vu increases. The true mean Ve has a very406

slight effect, while the remaining parameters have almost no effect.407

Overall, HGLM is a better method than non-HGLM for estimating the mean and (co)variance of408

variance components. When the number of subgroups is extremely large the (co)variance of variance409

components are estimated with little bias on average, given that both between- and within-subgroup410

variances are well estimated for each group. As a consequence, there is potential for HGLM to return411

unbiased estimates of correlation between variance components when the number of subgroups is412

large. However, when the number of subgroups and observations per subgroup are low, the accuracy413

of both methods tends to be highly dependent on the true magnitude of variance component means414

and (co)variances.415
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3.2 Simulation results and comparison of methods416

3.2.1 Accuracy of DHGLM estimation417

In order to compare inferences from the Bayesian DHGLM model with the frequentist point esti-418

mates from non-DHGLM models, we use the posterior median as a point estimator, following the419

recommendation of Pick et al. (2023) (in the Supporting Information we confirm that the posterior420

median (and mode) have better properties than the posterior mean: Figures S4 and S5). 95%421

highest posterior density (HPD) intervals were chosen to assess coverage of the DHGLM.422

The distribution of posterior medians for the DHGLM parameters estimated from data sets423

comprising 1000 groups, c = 4 subgroups and n = 5 observations per subgroup, are presented in424

Figure 3. With this data structure, both the log scale and arithmetic scale parameters are well425

estimated by the DHGLM with the mean of the point estimates coinciding with the true values.426

The method appears to have good coverage (see Table 2), with all parameters having a coverage427

probability close to 95%, although the average was slightly (and significantly; binomial test p-428

value: 0.00641) less: 94.6 (94.3, 94.9)%. The table also shows how often the HPD intervals fall429

below or above the true value, with true parameters more likely to fall below the interval than430

above, particularly the mean and (co)variances of arithmetic scale variance components (i.e. µVu
,431

µVe , VVu , VVe , and CVu,Ve).432

3.2.2 DHGLM outperforms alternative methods433

For the 1000 simulated data sets comprising 1000 groups, the distribution of estimates from non-434

HGLM, HGLM (ANOVA and REML-based) and DHGLM are presented in Figure 4. Most methods435

are shown to estimate the mean variance components reasonably well (4A,C), with little bias and436

relatively narrow interquartile ranges. Notably, however, µVe
(4A) is slightly downwardly biased by437

REML-based HGLM, due to the restriction that the subgroup variance Vu must be non-negative,438

and hence µVu
is slightly overestimated to compensate (4C). In addition, Vu is upwardly biased in the439

non-HGLM by an amount Ve/n (see Supporting Information) which leads to a strong upward bias in440

µVu . The (co)variances and correlation between variance components are overall better estimated441
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Figure 3: Model estimates from simulated data sets. The distributions of point estimates (posterior medians) are
shown for 1000 data sets comprising 1000 groups, 4 subgroups and 5 observations per subgroup. Curves are the
density distributions of posterior medians over data sets, black vertical lines are their means, and red vertical lines
their corresponding true values (Table 2). Model parameters, as well as their arithmetic scale transformations, are
divided into panels. A) Parameters from the Mean Model pertaining to the mean (µ) and variance between groups
(Vt). B) mean, (co)variances and correlation among log-scale variance components, and C) the corresponding
quantities on the arithmetic scale.

by the DHGLM, which shows little ‘bias’ and has narrower interquartile ranges (Figure 4B,D-442

F). With respect to the remaining methods, estimates of the variances in variance components443

(Figure 4B,D) are upwardly biased, particularly for the variance among subgroup variances (VVu).444

The estimates of the covariance (Figure 4E) are upwardly biased in the non-HGLM and slightly445

downwardly biased by the ANOVA-based HGLM. The estimates of the correlation (Figure 4F) have446

considerable downward bias for all non-DHGLM methods. Surprisingly, the non-HGLM appears447

to perform better at estimating the correlation than HGLMs, even though it does overall worse448

at estimating other parameters. However, according to the theoretical results (Figure 2F), this is449

expected when the true correlation between variance components is positive and is not a general450

result (when negative, the opposite would be observed). The accuracy of non-HGLM and HGLMs451

drops remarkably for the mean and variance of standardised variance components (CV and ICC;452

4G-L), whereas the DHGLM performs very well. With respect to the residual CV (CVe), both453

the estimates of the mean and variance are upwardly biased by all methods, particularly in non-454

HGLM and HGLM (the bias generated by DHGLM is very little in comparison). The estimate455

of the mean between-subgroup CV (CVu) is biased upward in non-HGLM, downwardly in HGLM456
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and unbiased in DHGLM, while its variance is only slightly downwardly biased in DHGLM and457

extremely upwardly biased in the remaining methods. In addition, the distribution of estimates458

among simulated data sets for the mean and variance in CV have long tails, probably due to the459

mean group values not being constrained to be positive and generating extreme estimates of the CV460

as they approach zero. The mean intraclass correlation (ICCg) is downwardly biased in all methods461

apart from the DHGLM, and the variance in intraclass correlations upwardly biased, particularly462

by the HGLM.463

Figure 5 shows how the accuracy of the different methods in estimating variance components464

(on the arithmetic scale) changes as a function of the number of groups. When the number of465

groups is low, point estimates obtained by the DHGLM are sometimes biased and presumably466

driven by prior information. The influence of the prior is particularly strong on the variance in467

variance components (5B,D) and their correlation (5F), and to a lesser degree on the mean variance468

components (5A,C) and the variance in intraclass correlation (5L). When using a non-GIG prior,469

such as a half-Cauchy, for the variance in variance components, the bias when the number of groups470

is low is even more significant (Figure S10, S11). However, despite being biased at low sample sizes471

(with respect to the number of groups) the posterior median from the DHGLM is found to be a472

consistent estimator, with estimates converging to the true value at high sample sizes. This is also473

the case in more extreme scenarios such as the true correlation between variance components being474

zero (Figure S6, S7) or when the mean and variance in random-effect variances Vu are extremely475

low (on the arithmetic scale, Figure S9, although not on the log-scale where prior sensitivity is476

considerable, Figure S8). By contrast, the remaining methods do not show a decrease in bias,477

which is also predicted by the theoretical results obtained for ANOVA-based methods given that478

Equations 17-22 and Figures 1-2 are independent of the number of groups. Non-HGLM and HGLM479

are therefore biased and inconsistent estimators of variance components. These results also hold on480

the log-scale, except that the non-HGLM appears to be consistent for the mean log-scale subgroup481

variance component and the covariance among variance components, although this is probably due482

to the particular choice of parameter values (Figure S3).483
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3.2.3 Optimal designs for DHGLM484

The posterior standard deviation of the log-scale correlation between variance components (ρlog(Vu),log(Ve))485

was used as a metric of precision, with low values indicating greater precision. The optimal design486

has a modest number of observations within each group (n = c = 5) but the number of groups487

is large (Ng = 128). Although many designs have comparable precision, ensuring the number of488

groups is at least as large as the number of observations per group seems warranted. When deciding489

how observations are partitioned within a group it seems best to keep the number of subgroups490

c and the number of subgroups n roughly comparable, or to slightly favour n over c (Figure ??).491

Although prioritising the number of groups is likely to be a general recommendation, the optimal492

design will vary as a function of the true model parameters and so the results here should be treated493

with some caution.494

4 Discussion495

Various studies in ecology and evolution have indicated that random-effect and residual variance496

components may vary over groups (e.g. Brotherstone & Hill, 1986, Westneat et al., 2013). Methods497

have been developed to deal with these heterogeneous random-effect and residual variances, by498

directly estimating the parameters of the distribution of variance components (Gianola et al., 1992;499

San Cristobal et al., 1993; Foulley & Quaas, 1995; Lee & Nelder, 2006; Smyth, 2004), and these500

methods have been advocated (Cleasby et al., 2015) and used (Westneat et al., 2013) in ecological501

and evolutionary studies. Some studies have also suggested that random-effect and residual vari-502

ances may also be correlated. For example, in quantitative genetics, the degree to which genetic,503

mutational and environmental variances vary and covary over traits has been explored (Price &504

Schluter, 1991; Houle, 1992, 1998; Hansen et al., 2011). To our knowledge, there is currently no505

method for directly estimating the correlation between variance components. Instead, studies have506

estimated the correlation between estimates of variance components, which are typically down-507

wardly biased by the sampling variance of estimates. Therefore, we suggest an alternative method508

where the correlation is modelled directly in a DHGLM framework.509
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The issue of estimating variance components for each group, and then using the (co)variances510

of the estimates as an estimator of the true (co)variances are identified. First, single-hierarchical511

(HGLM) and non-hierarchical (non-HGLM) methods are shown, both theoretically and empirically,512

to carry systematic bias (Figures 1-5) whereby estimates of the variances of variance components are513

upwardly biased and the covariance between variance components are either upwardly (HGLM) or514

downwardly (non-HGLM) biased (Eq 17-22). Second, a somewhat surprising result from the theory515

suggests that, even though HGLM generally outperform non-HGLM (Figure 4A-E), whether one516

model or the other is a better estimator of the correlation among variance components depends on517

the true value (Figure 2F), partly arising due to the opposite directions of bias of non-HGLM and518

HGLM for the covariance, and consequently the correlation.519

In an extension to the DHGLM proposed by San Cristobal et al. (1993), we allow the variance520

components to follow a multivariate log-normal distribution which gives unbiased and precise es-521

timates of the mean and (co)variances of the variance components when the number of groups is522

sufficiently large. This is achieved even when the number of subgroups and/or observations per523

subgroup are small (Figure 4 and 5) because, rather than estimating variance components with524

large sampling variance (due to the small sample sizes), which is carried into the mean and variance525

of variance components, the distribution of variance components is estimated directly.526

The typical study from the quantitative genetics and behavioural ecology literature obtains527

variance component estimates from HGLM (e.g. de Villemereuil et al., 2013; Stoffel et al., 2017).528

Often, these studies have data on a large number of subgroups, such as genotypes or individuals, and529

so the sampling variances might be expected to be small and the results accurate (the left column530

of Figure 1). However, such studies often fit other, partly confounded, random effects which may531

result in a much lower effective number of subgroups. For example, data may be collected on a large532

number of families in order to estimate the genetic variance, but genetic effects are often partly533

confounded with maternal or common-environment effects such that fewer observations are useful534

for estimating the genetic variance (Kruuk & Hadfield, 2007). Moreover, such studies often work535

with a small number of groups (e.g. 8 traits in Houle, 1998) and so even in cases where estimates536

of the correlation in variance components have little bias, the lack of replication at the appropriate537
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level tends to make the estimates very imprecise.538

For those studies that explicitly seek to test whether variances (co)vary over groups, the number539

of subgroups or observations per subgroup is often modest. For example, Westneat et al. (2013)540

considered heterogeneous residual variances in food provisioning among 27 female red-winged black-541

birds (Agelaius phoeniceus) with an average of only 20 observations per group (female). Similarly,542

Landry et al. (2007) and Denver et al. (2005) estimate genetic and environmental variances in gene543

expression traits for thousands of genes (groups) in Saccharomyces cerevisiae and Caenorhabditis544

elegans respectively, yet only have a maximum of 6 subgroups (lines) and 9 observations per sub-545

group. In these cases, we expect substantial sampling error in their estimates, as obtained by the546

non-HGLM (Landry et al., 2007) and HGLM (Denver et al., 2005) methodology used, and as conse-547

quence substantial bias when estimating how variance components are likely to vary and covary. In548

contrast, the DHGLM performs well in designs which prioritise group replication over replication549

at lower levels, and these designs are better suited to getting precise estimates of how variance550

components vary over groups. Indeed, empirical Bayes DHGLM procedures have been developed551

in the context of gene expression microarray/RNAseq analyses, albeit with the aim of increasing552

the power to detect differential expression at specific genes, rather than characterising patterns of553

(co)variation (Smyth, 2004). However, to our knowledge, these methods have only modelled the554

distribution of the residual variances across gene expression traits and do not accommodate other555

sources of dispersion variation or covariation.556

The DHGLM gains much of its estimation power from the number of groups and a dramatic557

drop in DHGLM performance was observable for certain parameters when the number of groups558

was low, presumably due to prior sensitivity. Careful selection of appropriate priors for the variance559

in variance components is therefore important when replication is low. A commonly used prior for560

covariance matrices is the inverse-Wishart distribution. However, as summarised by Alvarez et al.561

(2014) these have been shown to have several problems, including a priori dependencies between562

variances and correlations (Tokuda et al., 2011), marginal distributions for the variances (inverse-563

Gamma) with high density around zero (Gelman, 2006), and a single degree of freedom controlling564

all variances and correlations (Gelman et al., 2013). A separation strategy was proposed by Barnard565
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et al. (2000) that decomposes the covariance matrix so that priors can be placed on variances (or566

standard deviations) and correlations separately. Using the separation strategy, Huang & Wand567

(2013) suggested that the half-t family of priors (including half-Cauchy) are used as a prior for568

standard deviations, following Gelman’s (2006) recommendation. While these recommendations569

are likely to perform well when considering the (co)variances of the log-scale variances, results in570

Gardini et al. (2021) suggest that problems may occur if inferences are to be drawn about the571

distribution of arithmetic-scale variances. In particular, the posterior moments may be undefined572

for some parameters (e.g. the mean variance) when using the half-t family of prior distributions573

due to their very long right-tails on the arithmetic scale. As an alternative, Gardini et al. (2021)574

suggested the use of a Generalised Inverse Gaussian (GIG) prior distribution (Fabrizi & Trivisano,575

2012, 2016) which is a flexible family of distributions that performs well when variances are small576

(as the half-t family) while placing conditions that guarantee posterior moments for some aspects of577

the distribution of arithmetic-scale variances. Indeed, we found the GIG prior to outperform other578

priors in our simulations. However, when the mean and variance in random-effect variances was very579

low we showed that log-scale estimates behaved poorly (Figure S9) despite very good estimation580

on the arithmetic-scale (Figure S8). This probably arises in this extreme case because large shifts581

on the log-scale equate to extremely small effects on the arithmetic-scale such that there is little582

information in the data to distinguish large log-scale shifts. Whether priors can be found that work583

well on both scales for cases such as these remains an open question. With respect to priors on584

correlations matrices, the general approach is to have priors which either result in uniform (-1 to585

1) marginal priors for each correlation (Barnard et al., 2000), or more recently, are uniform on the586

space of the complete correlation matrix (LKJ prior; Lewandowski et al. (2009); Stan Development587

Team (2022)). These two priors are equivalent in the 2-dimensional case presented here, but with588

the exception of very high dimensional problems we recommend the LKJ prior.589

In our simple model, the residual variance is assumed constant across subgroups within a group,590

although this assumption could be relaxed by allowing subgroup random effects in the Dispersion591

Model. Indeed, if not dealt with, any heterogeneity in the residual variance between subgroups592

is likely to upwardly bias any estimates of the between-group variation in the residual/random-593
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effect variance. Similarly, heterogeneity in the residual variance at the level of the observation594

may also be present and would manifest itself as excess kurtosis in the residuals. This could be595

accommodated by including observation-level random effects in the Dispersion model, although the596

addition of a large number of weakly identified parameters may present computational difficulties.597

Switching from a log-normal to an inverse-gamma distribution for the observation-level random598

effects would solve this issue as the random effects can then be analytically marginalised by assigning599

the residuals a scaled-t rather than a normal distribution, with the estimated degree-of-freedom600

parameter controlling the amount of kurtosis. In addition, our basic model assumed that group601

means and variances are independent of each other, although parameters of the Mean Model could602

be included as predictors in the Dispersion Model in order to model any mean-variance coupling.603

For example, variances could be modelled as log-linear (or power law) functions of the mean by604

including group or subgroup means (or their logarithm) as predictors in the Dispersion Model.605

Such an extension would be necessary for those that believe that heterogeneity in variance is only606

interesting if it cannot be explained by scaling relationships, although this majority belief has been607

questioned (Wagner, 2023). In the Supporting Information we discuss these extensions in more608

detail, and provide code for model fitting.609

Our model also assumes that the subgroup and residual variances are themselves identically and610

independently distributed over groups, an assumption that may not be met. Many strategies exist611

for modelling dependency between random effects in standard HGLM, and these could in theory612

be applied to log-scale variances. Indeed, ARCH (Engle, 1982) and GARCH (Bollerslev, 1986)613

models use standard autoregressive models to model changes in variance over time. Dealing with614

more general and arbitrary patterns of dependence between variances would be more challenging,615

although latent variable or factor analytic approaches may prove feasible (Warton et al., 2015;616

Runcie & Mukherjee, 2013). However, in both cases it would seem preferential to allow some617

relationship between the dependency structures for the means and the variances. For example,618

we might expect the expression levels of two co-regulated genes (groups h and i) to covary over619

genotypes (subgroups, j) due to polymorphism in the binding affinity of their shared transcription620

factor (i.e. COV (uhj , uij) ̸= 0), and for the same reason we might also expect the genetic variances621
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for the two gene-expression traits (groups) to be more similar than the genetic variances of two622

randomly picked genes (i.e. COV (Vu(h), Vu(i)) > 0). Whether suitable low-parameter modelling623

strategies that allow dependency at the mean-level to mirror dependency at the variance-level can be624

found remains an open question, and any solutions may well prove to be computational prohibitive625

for many problems.626

Despite these issues, we recommend the use of the proposed model for studies interested in627

how two or more variance components covary over groups, especially in cases where replication628

within groups is limited but there are many groups. Present methods usually rely on precise629

variance component estimation achieved by large sample sizes within groups. However this might630

not be feasible, and might even be ill-advised if replication within groups comes at the cost of631

sampling fewer groups (the level of replication that is most important when assessing differences632

among groups in their variances). Specific examples of cases where it could be used include studies633

interested in the correlation between genetic and environmental variances across multiple classes634

of traits or multiple environmental conditions (Hansen et al., 2011). Other examples apply to635

behavioural ecology, where interest might be in how within-individual variation in behaviour can636

be partitioned into permanent environmental and genetic effects (Martin et al., 2017; Prentice et al.,637

2020). Given that the quantification of such correlations among components of variation can be638

important starting points for understanding the mechanistic causes of variation (Geiler-Samerotte639

et al., 2020), we hope that this model can facilitate future research in a wide range of fields.640
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6 Supplementary tables and figures799
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Figure S1: Theoretical correlation among variance components as a function of model parameters. The theoretical
correlation is calculated for HGLM (green) and non-HGLM (pink), based on their expected (co)variances of variance
components (Equations 17-19 and 20-22, respectively), ρE[VVg ],E[VVe ]. In each panel (A-F) a single parameter is
varying, while the remaining are held constant according to the true values in Table 2. The number of subgroups, c,
is assumed to be 100 and the number of observations per subgroup, n, is 100.
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Figure S2: MCMC convergence diagnostics of 1000 simulated data sets, each with a single MCMC chain. A)
Number of divergent transitions per MCMC chain (black dots). The yellow curve shows its distribution over 1000
MCMC chains. B) Geweke’s statistics (Z-score), based on the comparison of means of the first 10% and the latter
50% of each MCMC chain. The yellow curves show, for each parameter, the density distributions of Geweke’s
statistics over 1000 MCMC chains (1 per simulated dataset; grey dots). The red line marks a Z-score of zero, the
magenta lines a Z-score of −1 and 1 (1 standard deviation) and the blue lines a Z-score of −2 and 2 (2 standard
deviations) and the black lines a Z-score of −3 and 3 (3 standard deviation).
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Figure S3: Accuracy of different methods in estimating mean and variance of variance components, on the loga-
rithmic scale, as a function of the number of groups. The number of subgroups and observations per subgroup are
fixed at c = 4 and n = 5, respectively. A,C) Mean variance components. B,D) Variance in variance components. E)
Covariance among variance components. F) Correlation between variance components. Each data point is the mean
estimate obtained among 15 simulated data sets, with interquartile ranges shown by bars. True values are shown by
horizontal black lines.
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Figure S4: Accuracy of different central tendency measures of posterior distributions (posterior mean, median
and mode) in estimating the mean and variance of variance components and their standardisations (coefficients of
variation and intraclass correlation), on the arithmetic scale, as a function of the number of groups. The number
of subgroups and observations per subgroup are fixed at c = 4 and n = 5, respectively. A,C) Mean variance
components. B,D) Variance in variance components. E) Covariance among variance components. F) Correlation
between variance components. G,I) Mean coefficients of variation. H,J) Variance in coefficients of variation. K)
Mean intraclass correlation. L) Variance in intraclass correlation. Each data point is the mean estimate obtained
among 15 simulated data sets, with interquartile ranges shown by bars. True values are shown by horizontal black
lines.
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Figure S5: Accuracy of different central tendency measures of posterior distributions (posterior mean, median and
mode) in estimating the mean and variance of of variance components, on the logarithmic scale, as a function of the
number of groups. The number of subgroups and observations per subgroup are fixed at c = 4 and n = 5, respectively.
A,C) Mean variance components. B,D) Variance in variance components. E) Covariance among variance components.
F) Correlation between variance components. Each data point is the mean estimate obtained among 15 simulated
data sets, with interquartile ranges shown by bars. True values are shown by horizontal black lines.
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Figure S6: Accuracy of different methods in estimating the mean and variance of variance components and their
standardisations (coefficients of variation and intraclass correlation), on the arithmetic scale, as a function of the
number of groups, when their correlation is zero. The number of subgroups and observations per subgroup are
fixed at c = 4 and n = 5, respectively. A,C) Mean variance components. B,D) Variance in variance components.
E) Covariance among variance components. F) Correlation between variance components. G,I) Mean coefficients
of variation. H,J) Variance in coefficients of variation. K) Mean intraclass correlation. L) Variance in intraclass
correlation. Each data point is the mean estimate obtained among 15 simulated data sets, with interquartile ranges
shown by bars. True values are shown by horizontal black lines.
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Figure S7: Accuracy of different methods in estimating the mean and variance of variance components, on the
logarithmic scale, as a function of the number of groups, when their correlation is zero. The number of subgroups
and observations per subgroup are fixed at c = 4 and n = 5, respectively. A,C) Mean variance components. B,D)
Variance in variance components. E) Covariance among variance components. F) Correlation between variance
components. Each data point is the mean estimate obtained among 15 simulated data sets, with interquartile ranges
shown by bars. True values are shown by horizontal black lines.
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Figure S8: Accuracy of different methods in estimating the mean and variance of variance components and their
standardisations (coefficients of variation and intraclass correlation), on the arithmetic scale, as a function of the
number of groups, when the mean and variance in Vu are µVu = VVu = 0.005. The number of subgroups and
observations per subgroup are fixed at c = 4 and n = 5, respectively. A,C) Mean variance components. B,D) Variance
in variance components. E) Covariance among variance components. F) Correlation between variance components.
G,I) Mean coefficients of variation. H,J) Variance in coefficients of variation. K) Mean intraclass correlation. L)
Variance in intraclass correlation. Each data point is the mean estimate obtained among 15 simulated data sets,
with interquartile ranges shown by bars. True values are shown by horizontal black lines.
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Figure S9: Accuracy of different methods in estimating the mean and variance of variance components, on the
logarithmic scale, as a function of the number of groups, when the mean and variance in Vu are µVu = VVu = 0.005.
The number of subgroups and observations per subgroup are fixed at c = 4 and n = 5, respectively. A,C) Mean
variance components. B,D) Variance in variance components. E) Covariance among variance components. F)
Correlation between variance components. Each data point is the mean estimate obtained among 15 simulated data
sets, with interquartile ranges shown by bars. True values are shown by horizontal black lines.
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Figure S10: Accuracy of different methods in estimating the mean and variance of variance components and their
standardisations (coefficients of variation and intraclass correlation), on the arithmetic scale, as a function of the
number of groups, when using a half-Cauchy prior for the dispersion standard deviations (rather than the GIG
prior on the dispersion variances). The number of subgroups and observations per subgroup are fixed at c = 4
and n = 5, respectively. A,C) Mean variance components. B,D) Variance in variance components. E) Covariance
among variance components. F) Correlation between variance components. G,I) Mean coefficients of variation. H,J)
Variance in coefficients of variation. K) Mean intraclass correlation. L) Variance in intraclass correlation. Each data
point is the mean estimate obtained among 15 simulated data sets, with interquartile ranges shown by bars. True
values are shown by horizontal black lines.
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Figure S11: Accuracy of different methods in estimating the mean and variance of variance components, on the
logarithmic scale, as a function of the number of groups, when using a half-Cauchy prior for the dispersion standard
deviations (rather than the GIG prior on the dispersion variances). The number of subgroups and observations per
subgroup are fixed at c = 4 and n = 5, respectively. A,C) Mean variance components. B,D) Variance in variance
components. E) Covariance among variance components. F) Correlation between variance components. Each data
point is the mean estimate obtained among 15 simulated data sets, with interquartile ranges shown by bars. True
values are shown by horizontal black lines.
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Figure S12: Accuracy of different central tendency measures of posterior distributions (posterior mean, median and
mode) in estimating mean and variance of variance components and their standardisations (coefficients of variation
and intraclass correlation), on the arithmetic scale, as a function of the number of groups, when using a half-Cauchy
prior for the dispersion standard deviations (rather than the GIG prior on the dispersion variances). The number of
subgroups and observations per subgroup are fixed at c = 4 and n = 5, respectively. A,C) Mean variance components.
B,D) Variance in variance components. E) Covariance among variance components. F) Correlation between variance
components. Each data point is the mean estimate obtained among 15 simulated data sets, with interquartile ranges
shown by bars. True values are shown by horizontal black lines.
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Figure S13: Accuracy of different central tendency measures of posterior distributions (posterior mean, median
and mode) in estimating the mean and variance of variance components, on the logarithmic scale, as a function of
the number of groups, when using a half-Cauchy prior for the dispersion standard deviations (rather than the GIG
prior on the dispersion variances). The number of subgroups and observations per subgroup are fixed at c = 4 and
n = 5, respectively. A,C) Mean variance components. B,D) Variance in variance components. E) Covariance among
variance components. F) Correlation between variance components. Each data point is the mean estimate obtained
among 15 simulated data sets, with interquartile ranges shown by bars. True values are shown by horizontal black
lines.
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Bias when estimating the variances and covariances of variance
components

library(MASS)

In this notebook we consider properties of the sampling distribution for estimates of the between-subgroup
(Vu) and within-subgroup (Ve) variance using fixed-effects (non-HGLM) and random-effects (HGLM) ANOVA.
When these variances themselves are believed to vary over groups, the mean and variance of the estimated
variances are often used as estimates of the mean and variance of the true variances. We go on to derive
expressions for the bias in these estimates under a balanced design with c subgroups and n observations per
subgroup.

Sampling (co)variances of variance components in random-effect ANOVA (from
Searle (1956))
Sums of squares can be expressed as quadratic forms and well-known expressions for the variance of quadratic
forms can be used to obtain the sampling (co)variances of ANOVA-based variance component estimates, even
though the full sampling distribution is intractable (Crump 1946; Searle 1956). Searle (1956) derives the
expressions for random-effect ANOVA:

V AR(V̂u) = 1
f2

[
2V 2

e (N − 1)
(c − 1)(N − c) + 2VeVu(N2 − S2)

N(c − 1)2 + 2V 2
u (N2S2 + S2

2 − 2NS3)
N2(c − 1)2

]
,

V AR(V̂e) = 2V 2
e

N − c

and

COV (V̂u, V̂e) = (−1/n) 2V 2
e

N − c

When the design is balanced N = nc, f = n, S2 = Nn and S3 = Nn2. This leads to

V AR(V̂u) = 1
n2

[
2V 2

e (N−1)
(c−1)(N−c) + 2VeVu(N2−Nn)

N(c−1)2 + 2V 2
u (N3n+N2n2−2N2n2)

N2(c−1)2

]
= 1

n2

[
2V 2

e (N−1)
(c−1)(N−c) + 2VeVu(N−n)

(c−1)2 + 2V 2
u (Nn+n2−2n2)

(c−1)2

]
= 1

n2

[
2V 2

e (N−1)
(c−1)(N−c) + 2VeVu(N−n)

(c−1)2 + 2V 2
u n(N−n)
(c−1)2

]
= 2

n2

[
V 2

e (N−1)
(c−1)(N−c) + VeVun

c−1 + V 2
u n2

c−1

]
= 2

(c−1)n2

[
V 2

e (N−1)
N−c + VeVun + V 2

u n2
]

We implement these expressions in the function SVCV.vc which returns a 2x2 matrix with the sampling
variances of V̂u and V̂e along the diagonal and the sampling covariance on the off-diagonal:
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SVCV.vc<-function(Vu, Ve, n,c){
N<-n*c
V<-matrix(NA, 2, 2)
V[1,1]<-(2/nˆ2)*((Veˆ2)*(N-1)/((c-1)*(N-c))+Ve*Vu*(N-n)/((c-1)ˆ2)+(Vuˆ2)*n*(N-n)/((c-1)ˆ2))
V[1,2]<-V[2,1]<-(-2/n)*(Veˆ2)/(N-c)
V[2,2]<-2*(Veˆ2)/(N-c)
return(V)

}

Simulation to check the equations for the sampling (co)variances
To check the results in Searle (1956), we can simulate data, obtain estimates of Vu and Ve using random-effect
ANOVA (Vu.est and Ve.est) and fixed-effect ANOVA (see below: Vu.est.fixed and Ve.est.fixed) and
compare their variances to the predicted sampling variances. We can specify the variance parameters and a
specific design from which they are estimated:
c<-4 # number of subgroups
n<-7 # number of observations per subgroup
N<-n*c

Vu<-1 # variance in subgroup effects
Ve<-3 # residual variance

We can then simulate data under this design to obtain the distribution of estimates
n_sim<-100000 # number of simulations

fac<-gl(c,n) # subgroup factors

Vu.est<-Ve.est<-1:n_sim
Vu.est.fixed<-Ve.est.fixed<-1:n_sim
# vectors for storing estimates

for(i in 1:n_sim){

y<-rnorm(c,0,sqrt(Vu))[fac]+rnorm(N,0,sqrt(Ve))
# simulate observations

m1<-summary(aov(y~fac))
# fit linear model and get sum-of-squares

Vu.est[i]<-(m1[[1]]$`Mean Sq`[1]-m1[[1]]$`Mean Sq`[2])/n
Ve.est[i]<-Ve.est.fixed[i]<-m1[[1]]$`Mean Sq`[2]
# estimates from random-effect ANOVA

Vu.est.fixed[i]<-m1[[1]]$`Mean Sq`[1]/n
# estimates of Vu from fixed-effect ANOVA
# Ve estimate is the same as random-effect ANOVA

}

We can then compare the distribution to what we expect
SVCV.vc(Vu, Ve, n, c)
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## [,1] [,2]
## [1,] 1.0901361 -0.1071429
## [2,] -0.1071429 0.7500000
# predicted sampling (co)variances

cov(cbind(Vu.est, Ve.est))

## Vu.est Ve.est
## Vu.est 1.3849855 -0.1070139
## Ve.est -0.1070139 0.7468500
# observed sampling (co)variances

The sampling variance of V̂u seems larger than that predicted by the Equation in Searle (1956).

Rederivation of the results in Searle (1956): a factor of 2 is missing
From first principals, the estimate of Ve has the form:

V̂e = (y − ȳ)⊤F1(y − ȳ)/(N − c)

where ȳ is a vector of expected values of y (with the subgroup effects marginalised). The matrix, F1, is fixed
such that

V AR(V̂e) = 2Tr(VF1VF1)/(N − c)2

where V is the covariance matrix of (y − ȳ) and can be expressed as the direct sum

V = ⊕c (In(Vu + Ve) + JnVu)

where observations in the same subgroup are consecutive. V is referred to as C-type matrix in Searle (1956)
with a = Vu + Ve and b = Vu, and F1 is also a C-type matrix with a = (1 − 1/n) and b = −1/n. This gives

V AR(V̂e) = 2V 2
e

N − c

as given in Searle (1956).

The estimate of Vu has the form:

V̂u = (y − ȳ)⊤F2(y − ȳ)/n

such that

V AR(V̂u) = 2Tr(VF2VF2)/n2

where F2 is a C-type matrix with a = 0 and b = 1/(N − c) but with elements outside of the diagonal blocks
(i.e. elements corresponding to different subgroups) equal to k = −1/N(c − 1). This gives
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V AR(V̂u) = 2N
n2

[(
(n−1)Vu

N−c

)2
+ (n − 1)

(
Ve+(n−1)Vu

N−c

)2
+ (N − n)

(
− Ve+nVu

N(c−1)

)2
]

= 2N
n2

[
(n−1)2V 2

u

(N−c)2 + (n − 1) V 2
e +(n−1)2V 2

u +2(n−1)VeVu

(N−c)2 + (N − n) V 2
e +n2V 2

u +2nVeVu

N2(c−1)2

]
= 2N

n2

[
(n−1)V 2

e

(N−c)2 + (N−n)V 2
e

N2(c−1)2 + 2(n−1)2VeVu

(N−c)2 + 2(N−n)nVeVu

N2(c−1)2 + (n−1)2V 2
u

(N−c)2 + (n−1)3V 2
u

(N−c)2 + (N−n)n2V 2
u

N2(c−1)2

]
= 2N

n2

[
V 2

e

(
(n−1)

(N−c)2 + (N−n)
N2(c−1)2

)
+ VeVu

(
2(n−1)2

(N−c)2 + 2(N−n)n
N2(c−1)2

)
+ V 2

u

(
(n−1)2

(N−c)2 + (n−1)3

(N−c)2 + (N−n)n2

N2(c−1)2

)]
= 2N

n2

[
V 2

e

(
1

c2(n−1) + 1
c2(N−n)

)
+ VeVu

(
2
c2 + 2n

c2(N−n)

)
+ V 2

u

(
1
c2 + (n−1)

c2 + n2

c2(N−n)

)]
= 2N

n2

[
V 2

e

(
(N−n)+(n−1)
c2(n−1)(N−n)

)
+ VeVu

(
2(N−n)+2n

c2(N−n)

)
+ V 2

u

(
(N−n)+(n−1)(N−n)+n2

c2(N−n)

)]
= 2

n2

[
V 2

e

(
(N−1)

(N−c)(c−1)

)
+ 2VeVu

(
n

(c−1)

)
+ V 2

u

(
n2

(c−1)

)]
= 2

n2

[
V 2

e (N−1)
(N−c)(c−1) + 2VeVun

c−1 + V 2
u n2

c−1

]
= 2

n2(c−1)

[
N−1
N−c V 2

e + 2nVeVu + n2V 2
u

]
since N − c = c(n − 1) and N(c − 1) = c(N − n). Consequently, it seems Searle (1956) missed a factor of
2 from the second term in the sum. Consequently, we reimplement the function SVCV.vc with the correct
expressions (and with an additional argument random which we discuss latter):
SVCV.vc<-function(Vu, Ve, n,c, random=TRUE){

N<-n*c
V<-matrix(NA, 2, 2)
if(random){

V[1,1]<-(2/((c-1)*nˆ2))*((Veˆ2)*(N-1)/((N-c))+2*Ve*Vu*n+(Vuˆ2)*nˆ2)
V[1,2]<-V[2,1]<-(-2/n)*(Veˆ2)/(N-c)
V[2,2]<-2*(Veˆ2)/(N-c)

}else{
V[1,1]<-(2/((c-1)*nˆ2))*((Veˆ2)*(N-1)/((N-c))+2*Ve*Vu*n+(Vuˆ2)*nˆ2)-2*(Veˆ2)/((nˆ2)*(N-c))
V[1,2]<-V[2,1]<-0
V[2,2]<-2*(Veˆ2)/(N-c)

}
return(V)

}

This new function agrees with the simulations:
SVCV.vc(Vu, Ve, n, c)

## [,1] [,2]
## [1,] 1.3758503 -0.1071429
## [2,] -0.1071429 0.7500000
cov(cbind(Vu.est, Ve.est))

## Vu.est Ve.est
## Vu.est 1.3849855 -0.1070139
## Ve.est -0.1070139 0.7468500

Sampling (co)variances of variance components in fixed-effect ANOVA
The above sampling variances are from a random-effects ANOVA. If a fixed effects ANOVA was used, the
corresponding terms (denoted with a tilde) are easily derived since Ṽe = V̂e and

Ṽu = V̂u + 1
n

V̂e
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Since V̂u and V̂e are unbiased, then E[Ṽu] = Vu + 1
n Ve. The (co)variances are

V AR(Ṽu) = V AR(V̂u) + 1
n2 V AR(V̂e) + 2

n COV (V̂u, V̂e)
= V AR(V̂u) + 1

n2 V AR(V̂e) − 2
n2 V AR(V̂e)

= V AR(V̂u) − 1
n2 V AR(V̂e)

and

COV (Ṽu, Ṽe) = COV (V̂u + 1
n V̂e, V̂e)

= COV (V̂u, V̂e) + 1
n V AR(V̂e)

= 0

This is implemented in the function SVCV.vc but with random=FALSE and agrees with the simulation results
Vu+Ve/n

## [1] 1.428571
mean(Vu.est.fixed)

## [1] 1.429488
SVCV.vc(Vu, Ve, n, c, random=FALSE)

## [,1] [,2]
## [1,] 1.360544 0.00
## [2,] 0.000000 0.75
cov(cbind(Vu.est.fixed, Ve.est.fixed))

## Vu.est.fixed Ve.est.fixed
## Vu.est.fixed 1.3696519163 -0.0003210977
## Ve.est.fixed -0.0003210977 0.7468499652

Expected estimates of the (co)variance of variance components as estimated from
random-effect ANOVA
If the variance components themselves vary over groups with variance component x having mean µVx and
variance VVx

, we can work out the expected values for the estimates of these quantities by noting that
estimates of variance components from random-effect ANOVA are unbiased:

E[µ̂Vx
] = µVx

and

E[V̂Vx
] = VVx

+ E[V AR(V̂x)]

E[V AR(V̂x)] involves the expectations of V 2
x or VxVj which are equal to µ2

Vx
+ VVx and µVxµVj + CVx,Vj

respectively. Consequently, we have

E[V̂Vu
] = VVu

+ 2
n2(c − 1)

[
N − 1
N − c

(µ2
Ve

+ VVe
) + 2n(µVe

µVu
+ CVe,Vu

) + n2(µ2
Vu

+ VVu
)
]

E[V̂Ve
] = VVe

+ 2
N − c

(µ2
Ve

+ VVe
)
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and

E[ĈVu,Ve
] = CVe,Vu

− 2
n(N − c) (µ2

Ve
+ VVe

)

We implement these in the function Evarhat which takes arguments mu.vu and mu.ve for the mean subgroup
and residual variance respectively, v.vu and v.ve for the variance of the subgroup and residual variance
respectively, and c.vuve for the covariance between the two variances:
Evarhat<-function(mu.vu, mu.ve, v.vu, v.ve, c.vuve, n, c, random=TRUE){

N<-n*c

if(random){

Ev.vu<-v.vu+(2/((nˆ2)*(c-1)))*(((N-1)/(N-c))*(mu.veˆ2+v.ve)
+2*n*(mu.ve*mu.vu+c.vuve)+(nˆ2)*(mu.vuˆ2+v.vu))

# expected variance in subgroup variance estimates (random-effect ANOVA)

Ec.vuve<-c.vuve-2*(mu.veˆ2+v.ve)/(n*(N-c))
# expected covariance between subgroup and residual variance estimates (random-effect ANOVA)

}else{

Ev.vu<-v.vu+(v.ve/n)+(2/((nˆ2)*(c-1)))*(((N-1)/(N-c))*(mu.veˆ2+v.ve)
+2*n*(mu.ve*mu.vu+c.vuve)+(nˆ2)*(mu.vuˆ2+v.vu))-(v.ve+2*(mu.veˆ2+v.ve)/(N-c))/(nˆ2)

# expected variance in subgroup variance estimates (fixed-effect ANOVA)

Ec.vuve<-c.vuve+(v.ve/n)
# expected covariance between subgroup and residual variance estimates (fixed-effect ANOVA)

}

Ev.ve<-v.ve+2*(mu.veˆ2+v.ve)/(N-c)
# expected variance in residual variance estimates

return(c(Ev.vu, Ec.vuve, Ev.ve))
}

Simulations to check expressions for expected estimates of the (co)variance of
variance components
To check whether our expectations for the (co)variance of variance component estimates is correct, we
can simulate data for multiple groups, obtain estimates of Vu and Ve for reach group and compute their
(co)variances. By doing this a number of times we can then calculate the means of these (co)variances and
compare them to our expectations.

First we implement a function that takes the means and (co)varinaces of the variance components on the
arithmetic scale, and returns the means and (co)varinaces of the bivariate log-normal that are consistent with
this.
lognormal_par<-function(mu.vu, mu.ve, v.vu, v.ve, c.vuve){

l.mu.vu<-2*log(mu.vu)-0.5*log(mu.vuˆ2+v.vu)
l.v.vu<-log(mu.vuˆ2+v.vu)-2*log(mu.vu)

6



# obtain parameters of the log-normal from which the subgroup variances are drawn

l.mu.ve<-2*log(mu.ve)-0.5*log(mu.veˆ2+v.ve)
l.v.ve<-log(mu.veˆ2+v.ve)-2*log(mu.ve)
# obtain parameters of the log-normal from which the residual variances are drawn

c.l.vuve = log(1+c.vuve/exp(l.mu.vu+l.mu.ve+l.v.vu/2+l.v.ve/2))
# obtain the covariance on the log-scale

l.mu.v<-c(l.mu.vu, l.mu.ve)
l.v.v<-cbind(c(l.v.vu, c.l.vuve), c(c.l.vuve,l.v.ve))

return(list(mu=l.mu.v, Sigma=l.v.v))
}

We can then specify the mean and (co)variances of the variances on the arithmetic scale together with the
experimental design:
Ng<-1000 # number of groups
c<-4 # number of subgroups
n<-7 # number of observations per subgroup
N<-n*c

mu.vu<-1 # mean variance in subgroup effects
v.vu<-1 # variance in variance in subgroup effects

mu.ve<-3 # mean residual variance
v.ve<-2 # variance in residual variance

c.vuve<-0.5 # covariance between subgroup and residual variance

Then we can simulate data by drawing each group’s variance components from the log-normal and then
simulating Gaussian data according to the design and the variance components.
n_sim<-1000 # number of simulations

par<-lognormal_par(mu.vu, mu.ve, v.vu, v.ve, c.vuve)

fac<-gl(c,n) # subgroup factors

Var.V.est<-Var.V.est.fixed<-matrix(NA, n_sim,3)

# matrices for storing parameter estimates

for(i in 1:n_sim){

Vv<-exp(MASS::mvrnorm(Ng, par$mu, par$Sigma))

# simulate variances

Y<-matrix(rnorm(c*Ng,0,rep(sqrt(Vv[,1]), each=c)), c,Ng)[fac,]+matrix(rnorm(N*Ng,0,rep(sqrt(Vv[,2]), each=N)), N,Ng)
# simulate observations (each column is a group)

Vest<-apply(Y,2,function(x){summary(aov(x~fac))[[1]]$`Mean Sq`})
# get mean-squares for each group
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Vest[1,]<-Vest[1,]/n
# estimate of the subgroup variance for each group (fixed-effect ANOVA)
# Vest[2,] is an estimate of the residual variance

Var.V.est.fixed[i,]<-cov(t(Vest))[c(1,2,4)]
# variance in subgroup variance estimates
# covariance between subgroup and residual variance estimates
# variance in residual variance estimates

Vest[1,]<-Vest[1,]-Vest[2,]/n
# estimate of the subgroup variance for each group (random-effect ANOVA)
# Vest[2,] is an estimate of the residual variance

Var.V.est[i,]<-cov(t(Vest))[c(1,2,4)]
# variance in subgroup variance estimates
# covariance between subgroup and residual variance estimates
# variance in residual variance estimates

}

Comparing
c(v.vu, c.vuve, v.ve)

## [1] 1.0 0.5 2.0
# true (co)variances

colMeans(Var.V.est)

## [1] 3.1687140 0.3689505 2.9100788
# mean (co)variance estimates

varhat_random<-Evarhat(mu.vu, mu.ve, v.vu, v.ve, c.vuve, n, c, random=TRUE)
varhat_random

## [1] 3.1683673 0.3690476 2.9166667
# predicted mean (co)variance estimates

Expected estimates of the (co)variance of variance components as estimated from
fixed-effect ANOVA
The equivalent expressions for the fixed-effect ANOVA are:

E[ṼVu ] = VVu + 1
n VVe + 2

n2(c−1)

[
N−1
N−c (µ2

Ve
+ VVe) + 2n(µVeµVu + CVe,Vu) + n2(µ2

Vu
+ VVu)

]
− 1

n2

[
VVe + 2

N−c (µ2
Ve

+ VVe)
]

E[ṼVe ] = VVe + 2
N − c

(µ2
Ve

+ VVe)

and

E[C̃Ve,Vu ] = CVe,Vu + 1
n

VVe
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.

It may seem surprising that E[C̃Ve,Vu
] does not simply equal CVe,Vu

given COV (Ṽu, Ṽe) = 0. However, the
bias in the fixed-effect ANOVA estimates causes covariances between the sampling errors and the true values
that contribute to the expected covariance of estimates when the variances vary.

These equations can be evaluated using the function Evarhat but with random=FALSE.
c(v.vu, c.vuve, v.ve)

## [1] 1.0 0.5 2.0
colMeans(Var.V.est.fixed)

## [1] 3.3335178 0.7846761 2.9100788
varhat_fixed<-Evarhat(mu.vu, mu.ve, v.vu, v.ve, c.vuve, n, c, random=FALSE)
varhat_fixed

## [1] 3.3945578 0.7857143 2.9166667

Expected estimates of the correlation between variance components
Obtaining the expected estimate for the correlation is more difficult, but simply using the expectations of the
component parts seems to be reasonably accurate. For example, for random-effect ANOVA:
c.vuve/sqrt(v.vu*v.ve)

## [1] 0.3535534
mean(Var.V.est[,2]/sqrt(Var.V.est[,1]*Var.V.est[,3]))

## [1] 0.1214923
varhat_random[2]/sqrt(prod(varhat_random[c(1,3)]))

## [1] 0.1214007

and for fixed-effect ANOVA:
c.vuve/sqrt(v.vu*v.ve)

## [1] 0.3535534
mean(Var.V.est.fixed[,2]/sqrt(Var.V.est.fixed[,1]*Var.V.est.fixed[,3]))

## [1] 0.2543438
varhat_fixed[2]/sqrt(prod(varhat_fixed[c(1,3)]))

## [1] 0.2497064

Crump, S Lee. 1946. “The Estimation of Variance Components in Analysis of Variance.” Biometrics Bulletin
2 (1): 7–11.

Searle, SR. 1956. “Matrix Methods in Components of Variance and Covariance Analysis.” The Annals of
Mathematical Statistics, 737–48.
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Fitting multi-way DHGLM in Stan

library(rstan)
library(coda)
library(MASS)
library(tidyverse)

In this workbook we implement Stan code for fitting a simple multi-way DHGLM. The multi-way DHGLM
can be envisaged as a series of standard linear mixed models applied to subsets (groups) of the data. For
each group, a single set of random effects (subgroup effects) are fitted, leading to a subgroup variance and
a residual variance. The linear mixed models are linked in two ways: group means (the intercepts of the
standard linear mixed models) are treated as random over groups, and the pair of variances for each group
(residual and subgroup) are assumed to be drawn from a bivariate log-normal distribution over groups, the
parameters of which are estimated. We also provide a function for simulating data under this model assuming
a balanced design, and then fit the model to data generated using this function.

Stan code for fitting DHGLM
The data structure consists of integers specifying the total number of observations Nt, the number of groups
Ng and the number subgroups c, a real vector of observations y, and integer vectors group and subgroup
specifying the group and subgroup identifier for each observation. The data do not need to be balanced
(i.e. all subgroups present for all groups with equal replication) but the group and subgroup indices must be
integers in the sequence 1:Ng and 1:c respectively. muvar is an integer indicating whether a mean-variance
relationship over groups should be fitted (1) or not (0). The Mean Model is

yijk = µ + ti + uij + eijk,

where µ is the global intercept (beta) and ti is the group i effect (egroup), uij is the subgroup j effect
in group i (egroup_by_subgroup) and eijk is a residual. t are normally distributed with zero mean and
standard deviation

√
Vt (sgroup). The ui• and ei•• are normally distributed with zero mean and group

specific standard deviations
√

Vu(i) (sds[1,i])and
√

Vei
(sds[2,i]), respectively.

The Dispersion Model for the subgroup standard deviations is

log(
√

Vu(i)) = µu + βuti + du(i)

where µu and βu specify the intercept and slope for the logged standard deviation log(
√

Vu(i)) regressed on
the group effect ti and du(i) is the residual. An equivalent Dispersion Model is fitted for the residual standard
deviations as

log(
√

Ve(i)) = µe + βeti + de(i).

When muvar is 0 then beta_lsds=[µu, µe]
′

and the slopes are set to zero. When muvar is 1 then
beta_lsds=[µu, µe, βu, βe]

′
. Alternative models for the mean-variance relationship might be considered. For

example, rather than assuming the residual standard deviations are constant across sub-groups within a
group, the residual standard deviations could be regressed on the sub-group locations ti + uij rather than
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those of the group ti. Additionally, in many cases it might be more suitable to fit the log group means
(log(µ + ti)) as a covariate allowing the variances to follow a power law (Wagner 2023) of the form (for the
residual standard deviation):

√
Ve(i) = exp(µe + de(i))(µ + ti)βe

du(i) and de(i) are assumed to follow a bivariate normal distribution with zero mean and covariance matrix
parameterised in terms of a correlation r_lsds and a vector of standard deviations sigma_lsds. Note
that when mean-variance relationships are modelled, r_lsds measures the log scale correlation in variance
components after controlling for any mean-variance relationship. Calculating the unconditional log-scale
correlation under a log-linear mean-variance relationship would be straightforward: βeβuVt would have to
be added to the covariance, and β2

e Vt and β2
uVt added to the variances, respectively, before recalculating

the correlation. However, calculating the unconditional log-scale correlation under a power-law relationship
would be more difficult since Vt in the above expressions would have to be replaced by V ar(log(µ + t)) which
could only be approximated: using the Delta method, V ar(log(µ + t)) ≈ Vt/µ2).

As with the Mean Model, additional random effects for the Dispersion model may be considered. For example,
sub-groups within groups might have heterogeneous variances even after controlling for any mean-variance
relationship. Then, a model of the from:

log(
√

Ve(ij)) = µe + βe(ti + uij) + de(i) + de(ij).

where the de(ij) are treated as random variables might be more suitable. Similarly, there might be heterogeneous
variances at the level of the observation, which following the previous logic suggests the model:

log(
√

Ve(ijk)) = µe + βe(ti + uij) + de(i) + de(ij) + de(ijk).

Since there is only one observation per level of the observation-level random effect, de(ijk), the identifiability
of these parameters, and their variance, might be called into question. However, the effects are weakly
identifiable since their presence will cause the distribution of residuals within a group (or sub-group if de(ij)
is fitted) to have excess kurtosis with respect to the normal. Since the scaled t-distribution can be viewed
as a compound distribution of normals whose variances are drawn from an inverse gamma distribution, a
model that assumes the eijk are from a scaled-t, rather than a normal, is equivalent to fitting de(ijk) as a
random effect in the Dispersion Model but assuming they follow an inverse-gamma distribution rather than a
log-normal. While the t-distribution approach may be considered less satisfying in that the random effects
in the Dispersion Model are effectively following different distributions, a log-normal and inverse-gamma
that are matched for their mean and variance are often very similar. The advantage of the t-distribution
approach is that the de(ijk) are effectively integrated out analytically leaving only a single parameter to be
estimated (the degrees of freedom) where as the de(ijk) under the log-normal approach need to be integrated
out using MCMC which may be computationally prohibitive. Options for using the t-distribution approach
are commented out in the code below (see Juárez and Steel (2010) for a discussion of prior specifications for
the degrees of freedom).

Note that the parameterisations above are for the log standard deviations rather than the log variances given
in the main manuscript, hence the slightly different notation. However, on the log-scale, reparameterising
from the variances to the standard deviations simply scales location and standard deviation effects by
two and variances by four. Hence to obtain parameters under the log-variance parameterisation we can
multiply beta_lsds and sigma_lsds by two to get the fixed effects and standard deviations under a log-
variance parameterisation. The correlation r_lsds is equivalent for both parameterisations. In addition, the
mean-variance slopes (βu and βe) in the manuscript were omitted and effectively set to zero.

External priors are required for the ‘fixed effects‘, beta and beta_lsds, and the dispersion parameters
sgroup, r_lsds and sigma_lsds. Elements of beta and beta_lsds are assigned normal priors with zero
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mean and standard deviations of 10, and sgroup a half-Cauchy prior with location 0 and scale 5. r_lsds is
assigned a uniform prior from -1 to 1 (although parameterised through a Lewandowski-Kurowicka-Joe (LKJ)
prior). GIG_lpdf is a function (provided by Enrico Fabrizi) for calculating the log-density of the Generalised
Inverse Gaussian (GIG) distribution, although only integer values of γ are permitted. sqrtGIG_lpdf is a
function for calculating the density of a standard deviation had the variance come from a GIG distribution.
The elements of sigma_lsds squared (i.e. the variances) are assigned a GIG prior with λ = 1 , δ = 0.01 and
γ =

√
3 + 9/Ng (see Gardini, Trivisano, and Fabrizi (2021) for notation and details). However, commented

out code provides the option for using half-Cauchy priors on sigma_lsds instead. The following stan code
object is named DHGLM_stan.
functions{

// GIG prior: Enrico Fabrizi https://link.springer.com/article/10.1007/s11336-021-09769-y
// only integer lambda allowed

real GIG_lpdf(real y, int lambda, real delta, real gamma){
real log_p;
log_p=1.0*lambda*log(gamma/delta)-log(2.0)-log(modified_bessel_second_kind(lambda, delta*gamma))
+(1.0*lambda-1.0)*log(y)-0.5*(delta*delta/y+gamma*gamma*y);
return(log_p);

}

// GIG_lpdf calculates the log density of y given a GIG distribution.
// If y are variances, but we are working on the standard deviation scale, sqrt_y,
// we can calculate the same density as J*GIG(sqrt_yˆ2) where J is the Jacobian
// (the partial derivative of y with respect to sqrt_y (i.e 2 * sqrt_y)).

real sqrtGIG_lpdf(real sqrt_y, int lambda, real delta, real gamma){
real log_p;
log_p = log(sqrt_y)+log(2.0); // Jacobian
log_p += 1.0*lambda*log(gamma/delta)-log(2.0)-log(modified_bessel_second_kind(lambda, delta*gamma))
+(1.0*lambda-1.0)*log(sqrt_yˆ2)-0.5*(delta*delta/sqrt_yˆ2+gamma*gamma*sqrt_yˆ2);
return(log_p);

}

}

data{
int<lower=0> Nt; // total number of observations (Ng*Nt*c if balanced)
int<lower=0> Ng; // number of groups
int<lower=0> c; // number of subgroups
real y[Nt]; // observations
int group[Nt]; // group identifier
int subgroup[Nt]; // subgroup identifier
int muvar; // should the relationship between the mean and variance be modelled

}

parameters{

// MEAN MODEL

real beta; // intercept for the mean model

// standard-deviation standardised random effects for mean part of the model:

3



matrix[c,Ng] egroup_by_subgroup_star; // matrix of subgroup random effects within groups
row_vector[Ng] egroup_star; // vector of group random effects

real<lower=0> sgroup; // standard-deviations of the group effects

// VARIANCE MODEL (parameterised in terms of log-standard deviations)

row_vector[2+2*muvar] beta_lsds; // fixed effects for the variance part of the model
// [1] subgroup log-standard-deviation intercept
// [2] residual log-standard-deviation intercept
// if muvar==1
// [3] slope of subgroup log-standard-deviation on mean
// [4] slope of residual log-standard-deviation on mean

// standard-deviation standardised random effects for variance part of the model:

matrix[2,Ng] lsds_star; // matrix of group-specific random effects for the log standard-deviations
// Rows are subgroup (Vu) and residual (Ve)

vector<lower=0>[2] sigma_lsds; // standard deviations of the group-specific log standard-deviations

cholesky_factor_corr[2] Lr_lsds; // Cholesky factor of the correlation matrix
// of group-specific log standard-deviations

}

transformed parameters{

// MEAN MODEL

vector[Nt] mu; // linear predictor for mean part of the model

// unstandardised random effects for mean part of the model:

row_vector[Ng] egroup;

matrix[c,Ng] egroup_by_subgroup;

// VARIANCE MODEL

vector<lower=0>[Nt] SD; // residual standard deviation for each observation

// unstandardised random effects for the variance part of the model:

matrix[2,Ng] sds;

egroup = egroup_star*sgroup;

sds = diag_pre_multiply(sigma_lsds, Lr_lsds)*lsds_star;

sds[1,] += beta_lsds[1];
sds[2,] += beta_lsds[2];
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// adding the intercept to the log-standard-deviations

if(muvar==1){
sds[1,] += beta_lsds[3]*egroup;
sds[2,] += beta_lsds[4]*egroup;

}
// adding a slope (mean-variance relationship) to the log-standard-deviations

sds = exp(sds);
// exponentiate log-standard-deviations to get standard-deviations

// unstandardised random effects in Mean Model whose variance varies over groups:

for(i in 1:c){
egroup_by_subgroup[i,] = sds[1,].*egroup_by_subgroup_star[i,];

}

for(i in 1:Nt){
mu[i] = beta + egroup[group[i]] + egroup_by_subgroup[subgroup[i], group[i]];
SD[i] = sds[2,group[i]];

}
// mean and random parts of the model

}
model{

// MEAN MODEL

beta ~ normal(0, 10); // prior distributions for the fixed effects for the mean model

egroup_star ~ std_normal();
to_vector(egroup_by_subgroup_star) ~ std_normal();
to_vector(lsds_star) ~ std_normal();
// unit-normal prior distributions for the standardised random effects

sgroup ~ cauchy(0, 5);
// prior distributions for the standard-deviations of the group effects

// VARIANCE MODEL

beta_lsds ~ normal(0, 10); // prior for the fixed effects for the variance model

// priors for the variance of the subgroup/residual log standard-deviations
sigma_lsds[1] ~ sqrtGIG(1,0.01,sqrt(3.0+9.0/Ng));
sigma_lsds[2] ~ sqrtGIG(1,0.01,sqrt(3.0+9.0/Ng));

// sigma_lsds ~ cauchy(0, 5); // replaces the GIG prior if half-Cauchy used

Lr_lsds ~ lkj_corr_cholesky(1); // prior for the correlation matrix
// of group-specific log standard-deviations.

y ~ normal(mu, SD);
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// nu ~ gamma(2,0.1);
// y ~ student_t(nu, mu, SD)
// An alternative model to y ~ normal(mu, SD) that deals with observation-level heterogeneity.
// The residuals are assumed to be t-distributed rather than normal.

}

generated quantities{
matrix [2,2] r_lsds = multiply_lower_tri_self_transpose(Lr_lsds);
// returning correlation matrices in the model output from the Cholesky factors

}

Function for simulating observations from a DHGLM
A function is implemented for simulating data under the DHGLM described above assuming a balanced
design. n observations are simulated for each of c subgroups for each of Ng groups. beta specifies the overall
intercept (mean in this case) of the observations and sgroup the standard deviation of the group effects (the
Mean Model). beta_lsds can be of length two, in which case it specifies the intercept (mean in this case) of
the log standard deviations of subgroup effects followed by residual effects. If beta_lsds is of length four,
then the third and fourth elements specify the slope of the log standard deviations (subgroup and residual
respectively) on the group effects from the Mean Model. C_lsds is the 2x2 covariance matrix for the two log
standard deviations, with subgroup in row/column one, and residual in row/column two. beta_lsds and
C_lsds define the Dispersion Model.
sim_DHGLM<-function(Ng, c, n, beta, sgroup, beta_lsds, C_lsds){

#######################################################
# Function for simulating data from a multi-way DHGLM #
#######################################################

# Data Structure

# Ng: number of groups
# c: number of subgroups
# n: number of observations within subgroups

# Mean Model

# beta: intercept of the Mean Model
# sgroup: standard deviation of group effects

# Dispersion Model

# beta_lsds: fixed effects for log(sd) part of the model
# [intercepts followed by mean-log(sd) slopes]
# C_lsds: covariance matrix of log(sd)'s
# in beta_lsds and C_lsds, Vu is followed by Ve

###########################################
# set up a data-frame for balanced design #
###########################################

data <- as.data.frame(matrix(NA,Ng*c*n,3))
names(data) <- c("group","subgroup", "group_by_subgroup")
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data$group <- rep(1:Ng,c*n)
data$subgroup <- rep(1:c, each = Ng * n)
data$group_by_subgroup <- match(paste(data$group,data$subgroup),

c(t(outer(unique(data$group), unique(data$subgroup), paste))))
# gets group_by_subgroup indicies with subgroup varying the fastest
# (i.e. with groups 1,2 and subgroups a,b and c,
# group_by_subgroup indicies 1-6 index 1-a, 1-b, 1-c, 2-a, 2-b,2-c)

if(!length(beta)==1){
stop("beta (intercept) should be of length 1")

}
# check whether beta has the right number of fixed effects [1]]

if(!length(beta_lsds)%in%c(2,4)){
stop("beta_lsds should be of length 2 (intercepts only)

or of length 4 (intercepts + slopes on group effects)")
}
# check whether beta_lsds has the right number of fixed effects [2 or 4]]

if(any(!diag(C_lsds)>0)){
stop("C_lsds should be positive definite")

}
if(abs(C_lsds[2,1]/prod(sqrt(diag(C_lsds))))>1){

stop("C_lsds should be positive definite")
}

# check whether C_lsds is positive definite

ny<-Ng*n*c

egroup<-rnorm(Ng, 0, sgroup)
# simulate group random effects for mean part of the model

beta_muvar<-matrix(0,1,2)
if(length(beta_lsds)==4){

beta_muvar[c(1,2)]<-beta_lsds[c(3,4)]
}
# Slopes for the mean-log(sd) relationship organised into matrix form (1 x 2)
# When premutiplied by the group effects (Ng x 2) it gives the predicted log(sd) given the mean

mu_lsds<-t(beta_lsds[1:2]+t(egroup%*%beta_muvar))
# matrix (Ng x 2) of predicted log(sd)s form fixed effects

sds<-exp(mu_lsds+mvrnorm(Ng, rep(0,2), C_lsds))
# matrix (Ng x 2) of sds

egroup_by_subgroup = matrix(rnorm(Ng*c, 0, sds[,1]),Ng,c)
# simulate matrix of group by subgroup effects

mu<-beta+egroup[data$group]+t(egroup_by_subgroup)[data$group_by_subgroup]
# combine fixed and random effects

data$y<-rnorm(ny, mu, sds[data$group,2])
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# simulate observations conditional on linear predictors (fixed+random) and group specific Ve.

return(data)
}

Simulate data for a DHGLM and fit Stan model
Below, we simulate data, fit the DHGLM in Stan and plot the MCMC chains. Running multiple chains for
longer would be advisable.
Ng <- 1000 # number of groups
c <- 4 # number of subgroups
n <- 5 # number of observations within subgroups

beta <-10 # intercept of Mean Model
sgroup<-1 # between-group standard-deviation
beta_lsds<-c(-1, 0) # intercepts, no mean-variance relationship.

sigma_lsds <- c(0.8,0.9) # standard deviations of subgroup and residual log standard-deviations
r_lsds<-0.3 # correlation between subgroup and residual log standard-deviations

C_lsds<-matrix(r_lsds*prod(sigma_lsds), 2, 2)
diag(C_lsds)<-sigma_lsdsˆ2 # (co)varinaces for subgroup and residual log standard-deviations

sim_data<-sim_DHGLM(Ng=Ng, c=c, n=n, beta=beta, sgroup=sgroup, beta_lsds=beta_lsds, C_lsds=C_lsds)
# simulate data

sim_stan<-list(
Nt=Ng*c*n,
Ng=Ng,
c=c,
muvar=0,
y=sim_data$y,
group=sim_data$group,
subgroup=sim_data$subgroup

)
# stan list

model_output<-sampling(DHGLM_stan, data = sim_stan, chains = 1, refresh=-1)
# fit model

pars<-c("beta","beta_lsds[1]","beta_lsds[2]","r_lsds[1,2]","sgroup","sigma_lsds[1]","sigma_lsds[2]")
# parameters to plot

post<-mcmc(as.data.frame(model_output)[pars])
plot(post) # plot MCMC trace and density plot

Sampling designs
Given that DHGLM estimates of the (co)variance of variances cannot be obtained analytically, it seems
unlikely that exact expressions for how power changes with sampling design and effort could be found. Instead,
we simulate data sets of 3200 observations under the set of parameters defined above. We simulate 10 data
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sets for each of the 83 possible designs where n and c range between 2 and 40, analyse them using DHGLM_stan
and store the posterior standard deviation of the correlation of the log-scale variances.
design_obs<-expand.grid(2:40,2:40)
# generate all combinations of n and c for values ranging from 2 to 40.

design_obs<-design_obs[which(3200%%apply(design_obs,1, prod)==0),]
# save combinations where 3200/(nc)=Ng is integer

design_obs<-cbind(3200/apply(design_obs, 1, prod), design_obs, NA, NA)
# add Ng to design_obs and columns for storing the posterior mean and sd.

colnames(design_obs)<-c("Ng", "n", "c", "post.mean", "post.sd")

design_obs<-design_obs[rep(1:nrow(design_obs),10),]
# duplicate design_obs 10X.

for(i in 1:nrow(design_obs)){
# iterate through designs

Ng<-design_obs[i,"Ng"]
c<-design_obs[i,"c"]
n<-design_obs[i,"n"]
N<-n*c

sim_data<-sim_DHGLM(Ng=Ng, c=c, n=n, beta=beta, sgroup=sgroup, beta_lsds=beta_lsds, C_lsds=C_lsds)
# simulate data

sim_stan<-list(
Nt=Ng*c*n,
Ng=Ng,
c=c,
muvar=0,
y=sim_data$y,
group=sim_data$group,
subgroup=sim_data$subgroup)

# format data for stan

model_output<-sampling(DHGLM_stan, data = sim_stan, chains = 1, iter = 5000, refresh=-1)
# fit model

design_obs$post.mean[i]<-mean(model_output@sim$samples[[1]]["r_lsds[1,2]"][[1]])
design_obs$post.sd[i]<-sd(model_output@sim$samples[[1]]["r_lsds[1,2]"][[1]])
# store posterior mean and standard deviation of the log-scale correlation between variances
print(i)

}

We take the average posterior standard deviation (averaged over the 10 data sets for each design) and show
how it varies according to the number of groups (Ng) and how replication within a group is partitioned within
subgroup and between subgroups (n/c).
design_obs_means<-design_obs %>% group_by(Ng, c, n) %>%

summarise(
post.sd = mean(post.sd), post.mean = mean(post.mean)
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)

plot(design_obs_means$post.sd~design_obs_means$Ng, type="n", ylab="Posterior Standard Deviation", xlab="Number of Groups", bty="l")

design_obs_means$cn.ratio<-design_obs_means$c/design_obs_means$n

col_fac<-sort(unique(design_obs_means$cn.ratio))
design_obs_means$col_fac<-match(design_obs_means$cn.ratio, col_fac)

for(i in 1:length(col_fac)){
points(design_obs_means$post.sd[which(design_obs_means$col_fac==i)]~design_obs_means$Ng[which(design_obs_means$col_fac==i)], col=hcl.colors(length(col_fac), alpha=1)[i])

}
legend(50, 0.52, legend=formatC(round(col_fac[seq(1, length(col_fac), 2)],2),2, format="f"), fill=hcl.colors(length(col_fac), alpha=1)[seq(1, length(col_fac), 2)], ncol=6, title="Number of sub-groups /Observations per sub-group")
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The optimal design has a modest number of observations within each group (n = c = 5) but the number
of groups is large (Ng = 128). Although many designs have comparable precision, ensuring the number of
groups is at least as large as the number of observations per group seems warranted. When deciding how
observations are partitioned within a group it seems best to keep n and c roughly comparable, or to slightly
favour n over c. The leading designs are:
head(design_obs_means[order(design_obs_means$post.sd),1:4])

## # A tibble: 6 x 4
## # Groups: Ng, c [6]
## Ng c n post.sd
## <dbl> <int> <int> <dbl>
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## 1 128 5 5 0.182
## 2 80 4 10 0.186
## 3 200 2 8 0.188
## 4 64 10 5 0.192
## 5 50 16 4 0.199
## 6 200 4 4 0.199

The best design is likely to depend on the true underlying parameter values, and we advocate rerunning these
simulations before designing the experiment if it is believed the true underlying parameter values are likely to
deviate from those used.
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