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Abstract and keywords  53 

Aim 54 

Landscape heterogeneity is a key driver of biodiversity, ecosystem functioning, and 55 

resilience. However, the complex relationships among different components of heterogeneity—56 

compositional, configurational, vertical, and temporal—remain underexplored for large areas 57 

such as at the national scale. This study examines the associations among multiple landscape 58 

heterogeneity components across land-cover types to refine their use in ecological research. 59 

Location 60 

Germany 61 

Time Period 62 

Mainly 2017-2020  63 

Major Taxa Studied 64 

Not taxa-specific; focuses on landscape heterogeneity as an ecological driver. 65 

Methods 66 

We analysed nationwide spatial datasets at very high resolution (10–30 m resolution) of 67 

land-cover types, dominant tree species, canopy height, and time-series of crop types as well as 68 

grassland mowing frequency. We applied Structural Equation Modeling (SEM) to assess the 69 

statistical relationship between heterogeneity indices and their interactions. Specifically, we 70 

examined (i) compositional vs. configurational heterogeneity (i.e., Shannon diversity vs. edge 71 

density), (ii) configurational heterogeneity vs. connectivity, (iii) horizontal vs. vertical and 72 

temporal heterogeneities, and (iv) heterogeneities across multiple land-cover types based on 73 

grid cells of 3 x 3 km2. 74 



 

5 
 

Results 75 

Our findings reveal that compositional and configurational heterogeneities exhibit 76 

positive correlations, but their relationships are moderated by the proportions of land-cover 77 

types. Configurational heterogeneity does not enhance connectivity; after controlling for land-78 

cover proportions, its partial association with connectivity is negative. Vertical and temporal 79 

heterogeneities show limited associations with horizontal compositional and configurational 80 

heterogeneities, suggesting relative independence. Principal component analysis indicates that 81 

landscape heterogeneity is primarily driven by heterogeneities of forest and overall land-cover, 82 

e.g., edge densities of forest dominant tree species and overall land-cover types, whereas 83 

cropland heterogeneity, e.g., Shannon diversity of crop types, contributes negatively. 84 

Main Conclusions 85 

Our study underscores the importance of accounting for land-cover proportions when 86 

analysing landscape heterogeneity relationships. Failing to do so can distort the model due to 87 

potential hidden collinearity. Additionally, our findings highlight the need to capture the multi-88 

dimensional nature of landscape heterogeneity in biodiversity and ecosystem studies. 89 

Landscape heterogeneity is shaped by the interdependencies between prevailing land-cover 90 

patterns, likely influenced by land-use decisions and history as well as social-ecological 91 

contexts, highlighting the need for cross-national or cross-administrative studies. 92 

 93 

Keywords 94 

compositional heterogeneity, configurational heterogeneity, connectivity, land-cover 95 

proportions, landscape heterogeneity, remote sensing, structural equation modelling, temporal 96 

heterogeneity, vertical heterogeneity.  97 
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Main text  98 

1. Introduction  99 

Landscape heterogeneity has been studied in biodiversity research for several decades and is 100 

regarded as a foundational characteristic essential for maintaining biodiversity (MacArthur and 101 

MacArthur 1961; Fahrig et al. 2011; Stein et al. 2014). More recently, landscape heterogeneity 102 

has also attracted attention for its role as a buffer against disturbances, potentially enhancing 103 

ecosystem resilience (Papanikolaou et al. 2017; Zhang et al. 2020; Seidel and Ammer 2023). 104 

As research has progressed, the effects of landscape heterogeneity on biodiversity have been 105 

shown to vary across taxonomic groups, environmental domains (e.g., climate, topography, 106 

land-cover), and spatial scales (Stein et al. 2014; Heidrich et al. 2020).  107 

The concept has evolved from a focus on compositional heterogeneity— the number and 108 

proportions of different elements—to also encompass configurational heterogeneity, referring 109 

to the spatial arrangement and shape of those elements (Fahrig et al. 2011); we refer to these as 110 

two core attributes of landscape heterogeneity in this study (Fig. 1). In parallel, the study of 111 

landscape heterogeneity in complex ecosystems has grown more sophisticated, expanding from 112 

two-dimensional (2-D) to three-dimensional (3-D) perspectives and, more recently, to include 113 

the temporal dimension. This shift has been facilitated by advances in scientific and technical 114 

tools, particularly remote sensing (Davies and Asner 2014; Coops et al. 2019; Torresani et al. 115 

2023). Although landscape heterogeneity has traditionally been defined as the spatial 116 

heterogeneity of landscape features such as land-cover types, vegetation composition and 117 

physiognomy, and abiotic factors (Stein et al. 2014), we expand this definition to include 118 

temporal heterogeneity in response to the growing interest in its ecological relevance (Allan et 119 

al. 2014; Schellhorn et al. 2015; Coops et al. 2019; Fijen et al. 2025) (Fig. 1). 120 
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Given the expansion in our understanding of landscape heterogeneity, it is becoming 121 

increasingly important to understand the unique effects of each component of landscape 122 

heterogeneity on ecosystem function, disentangling multiple forms of heterogeneity in complex 123 

landscapes. In biodiversity research, disentangling configurational and compositional 124 

heterogeneity has become increasingly important, as they have been shown to play distinct roles 125 

in shaping animal communities. For instance, these two attributes of heterogeneity filter 126 

different arthropod traits and help mitigate biotic homogenisation (Gámez-Virués et al. 2015). 127 

Configurational heterogeneity has also shown strong positive effects on trait dominance within 128 

communities, while compositional heterogeneity had strong positive effects on taxonomic 129 

diversity (Perović et al. 2015). Additionally, configurational heterogeneity is receiving more 130 

attention for its potential to enhance ecosystem resilience, for example, in regard to pests 131 

(Zhang et al. 2020).  132 

In terms of the dimension expansion of landscape heterogeneity, the development of 133 

remote sensing technologies, such as airborne LiDAR (Light Detection and Ranging), SAR 134 

(Synthetic Aperture Radar), and UAV (Unmanned Aerial Vehicles) photogrammetry, have 135 

illuminated the effects of 3-D heterogeneity on biodiversity over the past two decades, from 136 

forest habitats to grasslands (Davies and Asner 2014; Bae et al. 2019; Torresani et al. 2024). 137 

Over the last decade, high-resolution satellite data, such as Sentinel-1 and Sentinel-2, now allow 138 

creating time-series of national maps depicting landscape features, e.g. dominant tree species, 139 

crop types, crop rotation or mowing frequency (Schwieder et al. 2022; Blickensdörfer et al. 140 

2022, 2024). These maps facilitate the calculation of landscape heterogeneity within an 141 

individual land-cover type (e.g., crop type heterogeneity in croplands, dominant tree species 142 

heterogeneity in forests, mowing frequency heterogeneity in grasslands) at a national level, 143 

which was previously impossible based on field surveys or airborne data. Furthermore, multi-144 

temporal maps enable the exploration of temporal heterogeneity—such as inter-annual 145 
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heterogeneity in grassland mowing frequencies and crop sequences—although its effects on 146 

biodiversity are still to be understood in more detail. The impact of temporal heterogeneity on 147 

biodiversity is contentious, with some arguing for positive impacts due to increased temporal 148 

niche separation and diversification (Allan et al. 2014; Doležal et al. 2019; Fijen et al. 2025), 149 

while others suggest negative impacts due to decreased stability (Schellhorn et al. 2015; Coops 150 

et al. 2019).  151 

In light of the growing interest in available data on landscape heterogeneity, exploring 152 

the relationships between the different components of heterogeneity and embracing the 153 

complexity of landscape heterogeneity can enhance its application in ecological studies. As a 154 

notable example, compositional and configurational heterogeneities have been assumed to be 155 

correlated, and it is recommended to select sampling points where both heterogeneities show 156 

less correlation from the outset of the study design (Fahrig et al. 2011; Pasher et al. 2013; 157 

Perović et al. 2015). The collinearity between these two heterogeneity variables has been tested 158 

in individual study areas to maintain statistical robustness (Perović et al. 2015; Gámez-Virués 159 

et al. 2015). Furthermore, as horizontal and vertical landscape heterogeneities can sometimes 160 

be highly correlated, previous studies have been cautious in their selection of variables to avoid 161 

collinearity (Jung et al. 2012; Heidrich et al. 2020). As such, due to possible correlations 162 

between diverse types of landscape heterogeneity, their relationships have been examined in 163 

individual study areas. However, to the best of our knowledge, the overall correlation patterns 164 

of landscape heterogeneity—across multiple dimensions, attributes, and land-cover types (see 165 

Fig. 1)—have not yet been systematically investigated at large spatial scales. Such research is 166 

essential for refining the selection of heterogeneity indices, informing site stratification, and 167 

accounting for key covariates or interactions in ecological analyses. 168 

In this study, we explored the nationwide relationships among diverse components of 169 

landscape heterogeneity, both across all land-cover types (hereafter, LC) and within individual 170 
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land-cover types—specifically forests, croplands, and grasslands. For the horizontal 171 

heterogeneity, we first examined the association between compositional and configurational 172 

heterogeneities —two core attributes of landscape heterogeneity. We then explored how both 173 

compositional and configurational heterogeneities relate to connectivity. While landscape 174 

connectivity is not a form of heterogeneity itself, configurational heterogeneity is often assumed 175 

to enhance landscape connectivity and is sometimes confused with it (Fahrig 2017; Estrada-176 

Carmona et al. 2022). Thus, we explored whether configurational heterogeneity enhances 177 

landscape connectivity. We then assessed the strength of associations between horizontal 178 

heterogeneity and both vertical and temporal heterogeneities—representing additional 179 

dimensions of landscape heterogeneity. Finally, we examined how landscape heterogeneity 180 

across multiple land-cover types—for example, between forest-related and cropland-related 181 

heterogeneity—is interrelated. Utilising open-access data, we tested the relationships between 182 

heterogeneities via correlation tests and Structural Equation Modelling (SEM). Based on the 183 

generally strong associations reported in the literature among different components of 184 

landscape heterogeneity, we assumed positive associations across all four types of comparisons.  185 

In addition, abiotic factors such as topography and soil properties can influence land-use 186 

decisions and, in turn, the spatial distribution of land-cover types. For instance, regions with 187 

more productive soils may be associated with a higher proportion of cropland and a lower 188 

proportion of forest. The dominance of particular land-cover types—potentially shaped by such 189 

abiotic factors—can influence landscape heterogeneity. Likewise, land-cover proportions 190 

(hereafter % land-cover), which may significantly affect biodiversity, have been assumed to 191 

correlate with landscape heterogeneity (Fahrig 2017) and were recently shown to interact with 192 

configurational heterogeneity in relation to biodiversity (Martin et al. 2019). Thus, we included 193 

abiotic factors and % land-cover in our SEM as an intermediate variable in association chains 194 

to examine the partial relationships between heterogeneity variables and explore the potential 195 
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role of % land-cover in mediating relationships (see Method section 2.3 for details). We 196 

hypothesised that the relationships among heterogeneity components may also depend on their 197 

associations with % land-cover. 198 

2. Materials and methods  199 

2.1. Study area 200 

This study was conducted across Germany, covering approximately 357,000 km², with 201 

elevations ranging from 0 m to about 2,900 m a.s.l. The land cover comprises 35.8% forest, 202 

32.6% cropland, and 22.4% grassland, with the remaining area distributed among categories 203 

such as artificial land, wetlands, and water bodies (Fig. S1) Recent biodiversity studies in 204 

Germany analysing landscape-scale effects tested plot-diameters between 1 and 6 km, with 2 205 

or 4 km proving most effective in explaining ecological responses (Gámez-Virués et al. 2015; 206 

Seibold et al. 2019; Fricke et al. 2022; Le Provost et al. 2022). Based on these findings, we 207 

divided Germany into 41,060 grid cells of 3 x 3 km² for statistical analyses of landscape 208 

heterogeneity. 209 

2.2. Data source and calculation of heterogeneity 210 

Germany-wide spatially explicit data on land cover and land management practice were 211 

used. These included satellite-derived maps (10-30 m resolution) for land cover (Pflugmacher 212 

et al. 2018), crop types (Blickensdörfer et al. 2022), dominant forest tree species 213 

(Blickensdörfer et al. 2024), grassland mowing frequency (Schwieder et al. 2022), and canopy 214 

height (Lang et al. 2022). Additionally, agricultural census data on average farm size at a 5 km 215 

resolution (Federal Statistical Office and the statistical offices of the Länder 2020) were 216 

incorporated (Fig. 2). 217 
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Compositional heterogeneity was quantified using the Shannon diversity index (H') for 218 

categorical data and standard deviation for numerical data. Configurational heterogeneity was 219 

assessed via edge density (ED) and average size (Table 1; Note S1 for equations of H' and ED). 220 

Temporal heterogeneity was derived from available yearly time-series maps, i.e., crop type and 221 

mowing frequency maps (2017-2020). Temporal compositional heterogeneity was calculated 222 

using H' across four years, while temporal configurational heterogeneity was determined using 223 

the interannual change rate (Fig. S2). We could not capture all components of landscape 224 

heterogeneity due to limited or unsuitable data for certain aspects. For example, compositional 225 

heterogeneity of numerical variables such as mowing frequency and canopy height was 226 

assessed using standard deviation. However, we considered it inappropriate to derive 227 

configurational heterogeneity from these variables. 228 

Woody vegetation and grassland connectivity were each assessed using dedicated 229 

connectivity indices. Woody vegetation connectivity was calculated by combining forest areas 230 

(Blickensdörfer et al. 2024) with small woody features derived from the crop type map 231 

(Blickensdörfer et al. 2022), treating them as habitat patches for the connectivity index. 232 

Grassland connectivity was assessed using all grassland areas identified from mowing 233 

frequency maps (Schwieder et al. 2022), which served as habitat patches in the connectivity 234 

analysis. Connectivity was calculated in each 3 x 3 km grid cell using Graphab (R package 235 

graph4lg). Habitat patches were connected using Euclidean distances and nearest-neighbour 236 

relationships, providing a practical approximation of a fully connected network (see details in 237 

Fig. S3). Connectivity was quantified using the Equivalent Connectivity index, calculated as 238 

the square root of the summed product of patch areas weighted by interaction probability (Saura 239 

et al. 2011). This index allows for intuitive interpretation, as it is expressed in area units and 240 

can be directly compared to the size of a single habitat patch that would provide an equivalent 241 

level of connectivity. The Equivalent Connectivity index was then computed: 242 
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Equivalent Connectivity = √∑ ∑ 𝑎𝑖𝑎𝑗𝑒−𝛼𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 243 

n is the number of patches, ai is the area of the patch i, dij is the distance between patches 244 

i and j, and 𝑒−𝛼𝑑𝑖𝑗  is the probability of movement between the patches i and j. The parameter α 245 

is defined as the rate of decline in probability when distance increases, calculated as 246 

− log(𝑝𝑚𝑖𝑛)
𝑑𝑚𝑎𝑥

⁄ , where pmin is the minimum probability of movement with the default value 247 

of 0.05 at the maximum dispersal distance of species (dmax). Although specific species were not 248 

defined for the connectivity analysis, the selected threshold distance (dmax) of up to 3 km is 249 

ecologically relevant for several spore-dispersing groups—such as bryophytes, lichens, and 250 

fungi—as well as flying vertebrates like birds and bats, and large insects such as bumblebees. 251 

(Westphal et al. 2006; Abrego et al. 2018; Komonen and Müller 2018).  252 

Abiotic factors potentially influencing % land-cover were collected, including 253 

topography (NASA Shuttle Radar Topography Mission (SRTM) 2013), soil texture and soil 254 

moisture (Hiederer 2013; Deutscher Wetterdienst (DWD) 2021), and climate data (Fick and 255 

Hijmans 2017) (see all abiotic factors before variable selection in Table S1). Following 256 

multicollinearity analysis, only slope and soil moisture were retained in the further analysis due 257 

to their strong correlation with % land-cover and low collinearity between each other 258 

(Spearman's rho < 0.6). % Land-cover is calculated for each individual land-cover type and 259 

labeled accordingly; for example, % forest represents the proportion of forest cover. 260 

2.3. Statistical analysis 261 

Spearman's rank correlation was used to assess relationships among heterogeneity 262 

indices, as it is more robust than Pearson's correlation and better captures nonlinear 263 

dependencies. To examine how % land-cover influences the relationship between H' and ED, 264 
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quantile correlation tests were performed for deciles of % land-cover using Spearman's 265 

correlation.  266 

SEM quantified direct and indirect paths/relationships and residual covariance of 267 

relationships among abiotic factors, % land-cover, and multiple landscape heterogeneity 268 

components using the maximum likelihood method. SEM explores correlations within a 269 

defined network, including association chains, such as "A relates to B, which relates to C". This 270 

strength of SEM facilitates the measurement of indirect or cascading linkages. SEM estimates 271 

a partial regression coefficient (hereafter, path coefficient) that indicates the strength of a single 272 

predictor variable on the response while simultaneously considering the relations of other 273 

variables in the model (Grace and Keeley 2006). SEMs were used in this study to model the 274 

relationships (1) between compositional and configurational heterogeneities both across LC and 275 

within individual land-cover types—forests and croplands (see full variables and model in Fig. 276 

S5), (2) between configurational heterogeneity and connectivity for woody vegetation and 277 

grasslands (Fig. S7), respectively, (3) between horizontal and vertical forest heterogeneity (Fig. 278 

S12a), and (4) between horizontal and temporal heterogeneity for croplands and grasslands, 279 

respectively (Fig. S12b-d). To keep data consistent in each SEM, the same datasets were used 280 

for % land-cover and horizontal heterogeneity calculations within each SEM. For example, 281 

when calculating % forest, we used a land cover map for an SEM for LC (% LC forest; Fig. 3a) 282 

while using a dominant forest tree species map for an SEM for forests (% forest; Fig. 3c). SEMs 283 

could not capture all relationships due to the absence of certain components of landscape 284 

heterogeneity, such as the configurational heterogeneity of grasslands (see Section 2.2.). 285 

SEMs were modelled using the R packages lavaan, and standardised parameter estimates 286 

(std. est.) were calculated for regressions and covariances and plotted using the R packages 287 

semPlot. Variables with skewed distributions were transformed by square-root or cube-root (see 288 

details in Table S3), and orthogonal quadratic terms of % land-cover and heterogeneity indices 289 
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were added to account for nonlinear relationships (e.g., Fig. S4). Linear terms described the 290 

association direction between variables, i.e., positive or negative, and quadratic terms 291 

represented the bending shape of parabolic curves, i.e., concave up or down. All variables were 292 

Z-transformed before modelling. 293 

Principal component analysis (PCA; R package vegan) explored relationships among 294 

multiple landscape heterogeneity components across land-cover types. It supports interpreting 295 

and visualising complex high-dimensional datasets by reducing dimensionality while 296 

preserving variations. Standardising variables to zero mean and unit standard deviation was 297 

performed during PCA. 298 

3. Results  299 

3.1. Compositional and configurational heterogeneities 300 

Spearman's correlation and Structural Equation Modeling (SEM) analyses revealed 301 

positive correlations between H' and ED both across LC and within individual land-cover types. 302 

The association level in SEM here means partial correlation after controlling for % land-cover 303 

and abiotic factors on H' and ED and accounting for the indirect effects along a compound path 304 

(see Fig. S5 and Table S2 for the full variables). LC H' and LC ED showed a strong correlation 305 

(rho = 0.73; Fig. 3b) and a substantial SEM association (std. est. = 0.64; Fig. 3a). Notably, the 306 

correlation between LC H' and LC ED varied with % LC croplands, ranging from 0.50 to 0.82 307 

(Fig. 3b). Given that % LC croplands had the most substantial impact on LC heterogeneities 308 

among the three land-cover types (Fig. 3a), we analysed correlations per decile of % LC 309 

croplands. The % LC croplands was associated with LC ED by ‒0.52 and ‒0.26 of std. est. for 310 

the 1st and 2nd factors, respectively, and with LC H' by ‒0.38 and ‒0.46 with the 1st and 2nd 311 

factors, respectively (Fig. 3a; Fig. S6b; Fig. S6e). However, a strong negative correlation 312 

between % LC forests and % LC croplands was found (std. est. = ‒0.73), indicating a potential 313 
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trade-off between forests and croplands across land-cover compositional gradients (Fig. 3a). 314 

Thus, we additionally examined decile correlations between LC H' and LC ED for % LC forests, 315 

ranging from rho = 0.45 to 0.72 (Fig. S16). Despite collinearity induced by the high mutual 316 

correlation of % land-cover with both LC H' and LC ED, the partial correlation between LC H' 317 

and LC ED remained strong in both decile correlations. 318 

Focussing on forests, a weak correlation between Tree H' and Tree ED was observed (rho 319 

= 0.17; Fig. 3d), but SEM revealed a high partial correlation (std. est. = 0.79; Fig. 3c). Analysing 320 

landscapes with similar % forest at ten-percentile intervals, Tree H' and Tree ED correlations 321 

ranged from rho = 0.39 to 0.93, higher than the overall grid correlation (Fig. 3d). It 322 

corresponded with a larger SEM partial correlation than bivariate correlation between Tree H' 323 

and Tree ED. In croplands, a moderate correlation between crop H' and crop ED was found 324 

(rho = 0.52; Fig. 3f), but SEM indicated a low partial correlation (std. est. = 0.25; Fig. 3e). 325 

Contrary to forests, correlations between crop H' and crop ED per decile of % croplands were 326 

low (rho = 0.03 to 0.39) and disappeared in landscapes with minimal % cropland (Fig. 3f). It 327 

corresponded with the finding that the partial correlation between crop H' and crop ED was 328 

relatively low in SEM. This suggests that the moderate overall correlation between crop H' and 329 

ED is likely driven by strong positive effects of % croplands on both indices rather than a direct 330 

association. Thus, partial correlations between H' and ED were significant in forests but weak 331 

in croplands when accounting for % land-cover effects. 332 

SEM analyses revealed opposite effects of % forests on Tree H' and Tree ED—one 333 

negative and one positive (Fig. 3c)—while % croplands had positive effects on both crop H' 334 

and ED (Fig. 3e). Correlation tests for deciles of % land-cover provided additional information 335 

about these relationships. In landscapes with minimal forests (e.g., <5%), diverse dominant tree 336 

species (high Tree H') were present, indicating that forest diversity is relatively independent of 337 

% forest, with a slight negative association (Fig. 3c). Conversely, Tree ED was limited in less 338 
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forested landscapes, showing significant restriction for % forest (see red dots and line in Fig. 339 

3d). In extensively forested landscapes (e.g., >75%), both Tree H' and Tree ED varied widely 340 

and were highly correlated (rho = 0.93; see blue dots and line in Fig. 3d). Some large forests 341 

were dominated by a single species (e.g., spruce or beech), resulting in very low H' and ED (see 342 

an example in Fig. S14a).  343 

In croplands, increases in % croplands corresponded with increases in crop H' and ED. 344 

Landscapes with low % croplands had low values for both indices, while those with high % 345 

croplands exhibited high values for both. Thus, a strong correlation of % croplands with both 346 

crop H' and ED induced superficial collinearity between these indices, even though their pure 347 

correlation was low. In extensively cropped landscapes, multiple crop types (high crop H') with 348 

regular patch shapes and sizes were common, inducing less variance in crop ED (see an 349 

example in Fig. S14b). Similar patterns were observed in the quantile correlation between H' 350 

and mean patch size, another classical configurational heterogeneity index (Fig. S15). 351 

3.2. Heterogeneities and connectivity 352 

Although connectivity is often assumed to increase with configurational heterogeneity, 353 

our results suggest a more nuanced relationship. While ED and connectivity exhibited a strong 354 

positive correlation in simple pairwise analyses, SEM revealed a weak or negative path 355 

coefficient (here, partial regression coefficient) after accounting for % land-cover effects. The 356 

connectivity of woody vegetation showed a high correlation with forest ED (rho = 0.74; Fig. 357 

S9). However, in SEM, where collinearity with % land-cover was controlled, this relationship 358 

weakened and even became slightly negative (std. est. = ‒0.09 and 0.02 for the 1st and 2nd 359 

factors, respectively; Fig. 4a, Fig. S8b). This suggested that the apparent positive correlation 360 

was largely driven by the co-variation of % forest with both woody connectivity and forest ED 361 
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rather than a direct link. Indeed, SEM indicated that % forest had strong positive effects on both 362 

woody connectivity and forest ED (linear std. est.=1.07 and 0.76, respectively; Fig. 4a). 363 

A similar pattern was observed for grasslands, where grass connectivity and grass ED 364 

were highly correlated (rho = 0.94; Fig. S11). However, SEM revealed a strong negative 365 

association between grass connectivity and grass ED after controlling for % grasslands (std. 366 

est. = ‒0.71 and 0.12 for the 1st and 2nd factors, respectively; Fig. 4b; Fig. S8f). The strong 367 

pairwise correlation stemmed from % grassland influencing both grass connectivity and grass 368 

ED (linear std. est. = 1.67 and 0.97; Fig. 4b). Quantile correlations supported this negative 369 

association, ranging from −0.08 to −0.5 for woody features and −0.12 to −0.54 for grasslands, 370 

except in extreme deciles (Fig. S17). 371 

3.3. Horizontal, vertical, and temporal heterogeneities 372 

Despite moderate correlations between multi-dimensional heterogeneities (rho = 0.33–373 

0.64; Fig. S10, S11), SEM revealed weaker partial correlations when accounting for % land-374 

cover and land management practice. The standard deviation (SD) of canopy height, a vertical 375 

heterogeneity measure, had a limited SEM association with horizontal heterogeneities. SEM 376 

path coefficients for canopy height SD with Tree ED were 0.28 (linear) and -0.36 (quadratic), 377 

while with Tree H', they were 0.06 and 0 (Fig. 5a, S13b, S13c). Temporal heterogeneities also 378 

showed limited associations with horizontal heterogeneities in SEM, except for horizontal and 379 

temporal crop H' (std. est.=0.65 and 0.05 for the 1st and 2nd factors, respectively; Fig. 5b). The 380 

associations between horizontal and temporal crop ED (interannual change rate) and horizontal 381 

and temporal grass SD were weaker (std. est.=0.07 and ‒0.04 for the 1st and 2nd factors, 382 

respectively, for the former and std. est.=0.25 and 0.08 for the 1st and 2nd factors for the latter, 383 

respectively; Fig. 5c, 5d).  384 
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3.4. Heterogeneities between multiple land-covers  385 

While heterogeneities within single land-cover types were predominantly positively 386 

correlated (e.g., rho = 0.59 for horizontal and temporal crop H'), certain forest-related 387 

heterogeneities showed negative correlations (Fig. 6a). Between different land-cover types, 388 

correlations varied from negative (e.g., rho = −0.48 for crop ED and woody connectivity) to 389 

positive (e.g., rho = 0.58 for Tree ED and LC ED). Grassland-related heterogeneities exhibited 390 

minimal correlations with other land-cover heterogeneities. In the PCA, the first two principal 391 

components (PCs) explained 47% of the variance in multiple dimensions, land-cover types, and 392 

attributes of heterogeneities (Table S4). The first principal component (PC1; 29% variance) 393 

was positively influenced by forest- and LC-related heterogeneities but negatively by crop 394 

heterogeneities (Fig. 6b, Table S5). The second principal component (PC2; 18% variance) 395 

primarily represented grassland-related heterogeneities (Fig. 6b). 396 

4. Discussion 397 

Landscape heterogeneity has been shown to enhance biodiversity, ecosystem services, 398 

and resilience (van Nes and Scheffer 2005; Stein et al. 2014; Le Provost et al. 2022). However, 399 

further studies are needed to explore the relationships among different components of landscape 400 

heterogeneity, including vertical and temporal heterogeneity, as new data become available. 401 

Such research will help refine the selection of heterogeneity indices, guide site stratification, 402 

and control for key covariates or interactions in ecological analyses. This study examined 403 

complex relationships among multiple land-cover types, attributes, and dimensions of 404 

landscape heterogeneity at the national scale in Germany. Our findings highlight a strong 405 

association between horizontal heterogeneities, a weaker link between horizontal, vertical, and 406 

temporal heterogeneities, a negative association between heterogeneity and connectivity, and 407 

distinct contributions of different land-cover types to overall landscape heterogeneity. 408 
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Structural equation modelling revealed the significant influence of % land-cover on landscape 409 

heterogeneity and the collinearity among heterogeneity indices, emphasising the need to 410 

account for % land-cover effects when analysing landscape heterogeneity relationships. 411 

4.1. Compositional and configurational heterogeneities 412 

Previous studies have acknowledged the interdependency between compositional and 413 

configurational heterogeneities, recommending stratified random sampling to minimise 414 

correlation biases (Fahrig et al. 2011; Pasher et al. 2013; Perović et al. 2015). Our findings 415 

further emphasise the necessity of controlling for % land-cover when designing stratification 416 

approaches to study ecological responses to heterogeneity. Without such controls, site selection 417 

may inadvertently favour landscapes with biased % land-cover distributions. For instance, 418 

landscapes with high edge density of all land-cover types (high LC ED) are more likely to have 419 

low shares of cropland (low % LC croplands) (Fig. 3a; Fig. S5a; Fig. S6b). We also found that 420 

the relationship between compositional (H') and configurational heterogeneity (ED) varied 421 

between forests and croplands, likely due to the differing interactions of % land-cover with 422 

these heterogeneities. Forests exhibited a weak correlation but a significant partial correlation 423 

between Tree H' and Tree ED when controlling for % forests, whereas croplands displayed a 424 

moderate correlation but a weaker partial correlation in SEM when controlling for % croplands. 425 

These results at broad spatial scales suggest that failing to account for % land-cover can conceal 426 

collinearity, like in German forests, or exaggerate it, like in German croplands.  427 

Configurational heterogeneity (often referred to as habitat fragmentation) and % land-428 

cover should also be disentangled when assessing their effects on ecological responses (Fahrig 429 

2017). While a meta-analysis on croplands found no intrinsic correlation between % land-cover 430 

and configurational heterogeneity (Martin et al. 2019), our study revealed a practical association 431 

in German forests and croplands at a national scale and 3 km landscape grain. This relationship 432 
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may vary with spatial scale, necessitating further investigation across different extents and grain 433 

sizes (see comparison with 2-km landscape grain in Fig. S18). 434 

Although pairwise correlations between compositional and configurational 435 

heterogeneities, as well as between % land-cover and configurational heterogeneity, have been 436 

assessed in previous studies, the broader correlation patterns involving % land-cover have 437 

rarely been explored. Our study provides new insights by demonstrating that the relationship 438 

between compositional and configurational heterogeneities is mediated by % land-cover, with 439 

distinct patterns observed across forests, croplands, and all land-cover types.  440 

4.2. Heterogeneities and connectivity 441 

Although connectivity is not strictly a form of heterogeneity, it is often assumed that 442 

increased configurational heterogeneity enhances functional connectivity, thereby benefiting 443 

biodiversity (Fahrig 2017). In a literature review, higher connectivity was the most frequently 444 

speculated reason for the positive effects of fragmentation on ecological responses (Fahrig 445 

2017). Some studies have even used connectivity and configurational heterogeneity 446 

interchangeably (Estrada-Carmona et al. 2022; Tonetti et al. 2023). As expected, we found a 447 

positive correlation between edge density and connectivity in forests and grasslands (Fig. S9, 448 

Fig. S11). However, after controlling for % land-cover, the partial association between edge 449 

density and connectivity turned negative in SEM for woody features and grasslands, supported 450 

by quantile correlation analysis (Fig. S17). In landscapes with similar % land-cover, those with 451 

lower edge density exhibited higher connectivity (Fig. S19). This suggests that increasing 452 

configurational heterogeneity reduces connectivity by increasing fragmentation (i.e., patch 453 

isolation). Our study again underscores the importance of considering % land-cover when 454 

interpreting the relationship between configurational heterogeneity and connectivity, as their 455 

pure association may be negative rather than positive.  456 
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4.3. Horizontal, vertical, and temporal heterogeneities 457 

The associations among multi-dimensional heterogeneities were generally weak but 458 

consistently positive. Since MacArthur and MacArthur (1961), the significance of vertical 459 

heterogeneity for biodiversity has been widely recognised, and advancements in remote sensing 460 

have even expanded research on 3-D structural complexity (Müller et al. 2010; Davies and 461 

Asner 2014; Seidel et al. 2020). However, the broader collinearity patterns between horizontal 462 

and vertical heterogeneity remain underexplored. Our findings suggest that vertical 463 

heterogeneity (canopy height SD) is largely independent of horizontal heterogeneities. 464 

Interestingly, SEM analysis revealed a negative relationship between Tree H' and canopy height 465 

SD with % forest, challenging the expectation that heterogeneity scales positively with the area 466 

(Stein et al. 2014). Our SEM analysis of forests might explain why a previous meta-analysis 467 

could not find positive effects of the area on plant diversity and vegetation complexity (Stein et 468 

al. 2014) (please see more discussion on Tree H' in session 4.1).  469 

Temporal heterogeneity displayed diverse associations across land-cover types and 470 

attributes. In croplands, strong correlations between horizontal and temporal H' suggest that 471 

compositional heterogeneity in crop types is closely linked to interannual crop diversity. This 472 

implies that farmers who cultivate more diverse crops change crop types more frequently over 473 

the years. However, cultivation on small split fields (high crop ED) was not associated with 474 

frequent changes in crop type by year (high temporal crop ED) (Fig. 5c). Grasslands exhibited 475 

only weak correlations between horizontal and temporal heterogeneity. Variations in mowing 476 

frequency in landscapes within a single year were only lightly associated with temporal 477 

variations in mowing frequency across years. While temporal heterogeneity is increasingly 478 

recognised as a key factor influencing biodiversity (Vasseur et al. 2013), its effects remain 479 

inconsistent across studies. Some studies found positive effects of temporal variability of 480 

productivity, crop type, or management on biodiversity (Allan et al. 2014; Doležal et al. 2019; 481 
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Martínez-Núñez et al. 2022), while others found negative (Alavi and King 2020) or varied 482 

effects by functional groups (Coops et al. 2019; Beyer et al. 2021). Even though environmental 483 

conditions along the temporal dimension are determinant factors for the extinction rate of most 484 

populations, temporal heterogeneity was barely explored due to the cost of frequent collection 485 

of species and land cover data. Using recently published crop type and mowing frequency maps 486 

across four years, we first checked the general correlation between conventional horizontal and 487 

interannual heterogeneity at a national extent, showing varied but mostly strong independence 488 

of vertical or temporal heterogeneities. These results underscore the importance of considering 489 

multi-dimensional heterogeneities in landscapes. Further investigation is needed to study how 490 

temporal heterogeneity can differ by grain scale, e.g., intra-annual or inter-annual scale, and 491 

how such difference can influence the association between multi-dimensional heterogeneity 492 

across land-covers and attributes.  493 

4.4. Heterogeneities between multiple land-covers 494 

Correlations and PCA among landscape heterogeneities of multiple dimensions, 495 

attributes, and land-covers revealed overarching patterns of landscape heterogeneity at a 496 

national scale. Positive correlations were predominant within single land-cover types, while 497 

heterogeneities across different land-covers were generally negatively correlated. Notably, 498 

cropland heterogeneities exhibited negative correlations with forest and LC heterogeneities, 499 

which were positively correlated. 500 

PCA further underscored the unique contributions of forest-, crop-, and grassland-related 501 

heterogeneities to overall landscape heterogeneity. On a national scale, overall landscape 502 

heterogeneity is primarily driven by forest and LC heterogeneities, with cropland 503 

heterogeneities contributing negatively. This divergence likely reflects the influence of % land-504 

cover—for instance, a decrease in % forest is often accompanied by an increase in % cropland 505 
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(Figs. 3a and S20a), inducing a decrease in forest heterogeneities and an increase in cropland 506 

heterogeneities. Thus, the trade-off between forests and croplands for land-cover likely shapes 507 

the divergence between forest and cropland heterogeneities. Meanwhile, LC heterogeneity 508 

showed a trend similar to that of forest heterogeneity, both decreasing with increasing cropland 509 

heterogeneity—likely driven by a rise in % cropland (see also Figs. 3a and 3e). In Germany, 510 

the conversion of forests to intensively managed croplands likely would lead to a reduction in 511 

overall landscape heterogeneity, particularly in configurational attributes, given the more 512 

regular shape of cropland patches (Figs. 3a, 3c; Fig. S14b). In contrast, grassland 513 

heterogeneities showed limited correlations with those of other land-cover types, emphasising 514 

their distinct contribution as captured by the second principal component. 515 

4.5. Limitation 516 

It is important to recognise that heterogeneity can be quantified in numerous ways—not only 517 

by land-cover type, attribute, and dimension but also by the specific equations, parameters, 518 

spatial resolutions, classification schemes, or temporal resolutions employed. Consequently, 519 

the choice of heterogeneity indices should be tailored to the objectives of each study, as no 520 

single universal index exists. Moreover, the observed associations among landscape 521 

heterogeneities may differ with alternative methodological choices, as well as with variations 522 

in land-use history, landform, and socio-economic factors that shape trade-offs among land-523 

cover types. For instance, the average field size in German croplands differs from that in Korea 524 

or the USA (Fritz et al. 2015), suggesting that heterogeneity associations within and between 525 

croplands and other land-cover types could vary across countries. Studies across countries or 526 

administrative regions—likely differing in social context—are therefore needed to generalise 527 

these findings. 528 
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5. Conclusion 529 

Overall, our study challenges classical assumptions about landscape heterogeneity. First, as % 530 

land-cover mediates correlations between compositional and configurational heterogeneities, 531 

controlling for its effects is crucial to avoid biased interpretations. In particular, our findings 532 

highlight the importance of accounting for % land-cover when designing stratification 533 

approaches to study ecological responses to landscape heterogeneity. Second, as % land-cover 534 

also mediates the relationship between configurational heterogeneity and connectivity, their 535 

presumed positive correlation should be reconsidered—calling into question their mixed 536 

interpretation without empirical testing. Third, the relative independence of vertical and 537 

temporal heterogeneities from horizontal heterogeneities opens new avenues for investigating 538 

how ecological responses vary along these additional dimensions. Lastly, landscape 539 

heterogeneity is shaped by interactions between land-cover types, with forests enhancing and 540 

croplands reducing configurational heterogeneity; however, heterogeneity patterns vary with 541 

index, regional context, and land-use history, highlighting the need for cross-national studies. 542 

 543 
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Figure legends 

Figure 1. Components of landscape heterogeneity. 

Figure 2 Workflow for calculating metrics from publicly available GIS data and conducting 

statistical analyses. 

Figure 3. Relationship between Shannon diversity (H’) and edge density (ED) of land-covers, 

forests, and croplands. 

Figure 4. SEMS for the relationship between ED and connectivity of (a) forests and small 

woody features in croplands and (b) grasslands. 

Figure 5. SEMS for the relationship between (a) horizontal H’ and ED and vertical standard 

deviation (SD) in forests, (b) between horizontal and temporal H’ and (c) between horizontal 

and temporal ED in croplands, and (d) horizontal and temporal SD in grasslands. 

Figure 6. Association between heterogeneity of multiple land-covers analysed by (a) 

Spearman’s correlation and (b) principal component analysis. 

Figure 7. Summary of association (partial regression in SEM) between heterogeneities of 

multiple attributes, dimensions, and land-covers. 
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Figures 

 

Figure 1. Components of landscape heterogeneity.  

Landscape heterogeneity is characterised across three dimensions—horizontal, vertical, and 

temporal—based on two core attributes—compositional and configurational heterogeneity, 

along with spatial connectivity. These components can be quantified using land-cover types 

and land management practices, both across all land-cover types (hereafter LC) and within 

individual land-cover types, specifically forests, croplands, and grasslands. Although 

connectivity is not a form of heterogeneity, it is closely related and, therefore, included in the 

framework, indicated with a lighter colour. Heterogeneity components employed in this study 

are highlighted at their corresponding positions using the following visual indicators: falling 

diagonal lines for land-cover-based indices, rising diagonal lines for land management-based 

indices (applied only to grasslands), and intersecting falling and rising diagonals for metrics 

incorporating both (applied only to croplands). 
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Figure 2 Workflow for calculating metrics from publicly available GIS data and conducting statistical analyses.  

Descriptions of all metrics are provided in Table 1. SEM = Structural Equation Modeling; PCA = Principal Component Analysis. 
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Figure 3. Relationship between Shannon diversity (H’) and edge density (ED) of land-covers, 

forests, and croplands.  

Structural equation modellings (SEMs) for the relationship between H’ and ED of (a) all 

land-cover types, (c) dominant tree species in forests, and (e) crop types. In SEM, 

unidirectional arrows represent regressions, while bidirectional solid arrows covariances and 

dashed arrows correlation. Only significant relationships were denoted as arrows with 

standardised parameter estimates (std. est.). On the arrows of regressions, the std. est. of first- 

and second-order factors (1st and 2nd), in order, were denoted. Blue arrows and numbers 

denoted positive relationships, and red arrows and numbers denoted negative ones for 

regressions, covariances, and correlation. For regressions, if the arrow included two 

relationships of the 1st- and 2nd-order factors, the colour of the arrows followed the signs (+ or 

‒) of the 1st-order factor, meaning positive or negative relationship, and the shape of arrows 

differs by the signs of the 2nd-order factor, meaning hump-shaped or U-shaped curve. Full 

SEM relationships can be found in Fig. S5, and the relationship of each partial regression in 

Fig. S6. Spearman’s correlation between H’ and ED (b) of all land-cover types, (d) of forests, 

(f) of croplands by deciles of coverage. Points from the red to blue spectrum indicate each 

10th decile of 3×3 km2 grid cells from 0‒10th decile to 90th ‒100th decile and lines linear 

regression lines per decile. Squares represent median values of H’ and ED per decile with 

corresponding colours. Each Spearman’s rho is written in the bracket of the legend. The % 

land-cover ranges of grids for each decile can be found in Table S6a. 
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Figure 4. SEMS for the relationship between ED and connectivity of (a) forests and small 

woody features in croplands and (b) grasslands.  

Full SEM relationships can be found in Fig. S10 and the relationship of each partial 

regression in Fig. S11. 
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Figure 5. SEMS for the relationship between (a) horizontal H’ and ED and vertical standard 

deviation (SD) in forests, (b) between horizontal and temporal H’ and (c) between horizontal 

and temporal ED in croplands, and (d) horizontal and temporal SD in grasslands.  

Full SEM relationships can be found in Fig. S12 and the relationship of each partial 

regression in Fig. S13. 
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Figure 6. Association between heterogeneity of multiple land-covers analysed by (a) 

Spearman’s correlation and (b) principal component analysis.  

(a) Positive correlations are displayed in blue, and negative ones in red. Colour intensity is 

proportional to the correlation coefficients. (b) PCA-biplot with the projected directionality 

and strength of the heterogeneity metrics on the first two principal components (PC1 and 

PC2). Green vectors represent forest-related, yellow crop-related, light-green grass-related, 

and black land-cover-related heterogeneity. 
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Figure 7. Summary of association (partial regression in SEM) between heterogeneities of 

multiple attributes, dimensions, and land-covers.  

Blue colour denotes positive relationships, and red denotes negative ones. The colour 

brightness has been scaled based on the magnitude of the SEM standardised parameter 

estimates. If the relationship included two relationships of the first- and second-order factors, 

the colour and estimate followed the relationship of the first-order factor. 
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Table legends 

 

Table 1. Indices of horizontal (2-D), vertical (3-D), and temporal heterogeneity in 

compositional (compn) and configurational (config) heterogeneities and spatial connectivity 

(connect) by land-cover types (LC) and land management practice (LM).
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Tables 

Table 1. Indices of horizontal (2-D), vertical (3-D), and temporal heterogeneity in compositional (compn) and configurational (config) 

heterogeneities and spatial connectivity (connect) by land-cover types (LC) and land management practice (LM).  

H’ denotes Shannon diversity, ED edge density, EC Equivalent Connectivity, SD standard deviation, and SWF small woody features. 

Dimension Land-cover  Attrib Index name Data Year Res. 

Heterogeneity indices 

Sp
at

ia
l h

et
e

ro
ge

n
ei

ty
 +

 c
o

n
n

ec
ti

vi
ty

 

2-D 

LC 

Heterogeneity of all land-cover types 
Compn LC H’ 

Land cover map (Pflugmacher et al. 2018) 2015 30m 
Config LC ED 

Crop type heterogeneity 
Compn Crop H’ 

Crop type map (Blickensdörfer et al. 2022) 2020 30m 
Config Crop ED 

Dominant tree species heterogeneity 
Compn Tree H’ Dominant forest tree species map (Blickensdörfer 

et al. 2024) 
2017, 
2018 

30m 
Config Tree ED 

Forest edge density Config Forest ED  Dominant forest tree species map 
2017, 
2018 

30m 

SWF edge density Config SWF ED Crop type map 2020 30m 
Grass edge density Config Grass ED  Mowing frequency map (Schwieder et al. 2022) 2020 30m 

Connectivity of woody vegetation Connect Woody Connect SWF in crop type map + Forest map 
2017, 
2018 

30m 

Grassland connectivity Connect Grass Connect Mowing frequency map 2020 30m 

LM 
Crop management heterogeneity Config Avg FarmSize 

Average farm size on a 5 km grid (Federal Statistical 
Office and the statistical offices of the Länder 2020) 

2020 5km 

Mowing frequency heterogeneity Compn MowInt SD Mowing frequency map 2020 30m 

3-D  LC Canopy height heterogeneity Compn 
Canopy Height 
SD 

Canopy height model (Lang et al. 2022) 2020 30m 

Te
m

p
o

r
al

 
h

et
er

o
g

en
ei

ty
 

 
LC Crop temporal heterogeneity 

Compn Crop Temp H’  
Crop type map  

2017-
2020 

30m 
Config Crop Temp ED 

LM 
Mowing frequency temporal 
heterogeneity 

Compn MowInt Temp SD Mowing frequency map 
2017-
2020 

30m 

Non-heterogeneity indices     
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A
b

io
ti

c 
fa

ct
o

rs
   

Top
ogra
phy 

Mean slope  Slope 
SRTM DEM (NASA Shuttle Radar Topography 
Mission (SRTM) 2013) 

2000 
1 arc-

second 

  Soil Mean soil moisture 
  

Soil moisture 
Daily soil moisture (Deutscher Wetterdienst (DWD) 
2021)  

1993-
2022 

1km 

Sp
at

ia
l c

o
m

p
o

si
ti

o
n

  
LC 

Proportion of forests in land cover map   % LC Forest 

Land cover map 2015 30m 
Proportion of grasslands in land cover 
map 

 % LC Grass 

Proportion of croplands in land cover 
map 

 % LC Crop 

Proportion of forests in dominant forest 
tree species map 

  % Forest Dominant forest tree species map 
2017, 
2018 

30m 

Proportion of forests in crop type map  % Crop Crop type map 2020 30m 
Proportion of SWF in crop type map   % SWF  Crop type map 2020 30m 

 
Proportion of grasslands in mowing 
frequency map 

 % Grass Mowing frequency map 2020 30m 

 LM Mean mowing frequency    Mowing intensity Mowing frequency map 2020 30m 
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Supplementary legends 

Supplementary figures 

Figure S1. Pie chart of main land-cover types in Germany based on land cover map 

(Pflugmacher et al. 2018). 

Figure S2. Calculation of temporal heterogeneity in compositional and configurational 

attributes 

Figure S3. Process to calculate woody vegetation connectivity on each 3 x 3 km grid cell. 

Figure S4. Spearman’s correlation between (a) land-cover Shannon diversity (H’) and 

coverage of forests, grasslands, and croplands and (b) land-cover edge density (ED) and 

coverage of forests, grasslands, and croplands. 

Figure S5. Full structural equation modellings (SEMs) of Fig. 3 between H’ and ED of (a) 

across all land-cover types, (b) forests, and (c) croplands. 

Figure S6. Relationship of partial regressions between predictors and response variables of 

each SEM in Fig. 3. 

Figure S7. Full SEMs of Fig. 4 for the relationship between ED and connectivity of (a) 

forests and small woody features and (b) grasslands. 

Figure S8. Relationship of partial regressions between predictors and response variables of 

each SEM in Fig. 4. 

Figure S9. Spearman’s correlation between coverage, H’, ED, connectivity, and standard 

deviation of canopy height in forests. 

Figure S10. Spearman’s correlation between coverage, H’, ED, and temporal H’, temporal 

ED (interannual change rate) of crop types in croplands. 

Figure S11. Spearman’s correlation between coverage, ED, connectivity, mean mowing 

frequency, H’ and temporal SD of mowing frequency in grasslands. 

Figure S12. Full SEMS of Fig. 5 for the relationship between (a) horizontal H’ and ED and 

vertical standard deviation (SD) in forests, (b) between horizontal and temporal H’ and (c) 

between horizontal and temporal ED in croplands, and (d) horizontal and temporal SD in 

grasslands. 

Figure S13. Relationship of partial regressions between predictors and response variables of 

each SEM in Fig. 5. 
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Figure S14. Comparison between (a) dominant tree type map and (b) crop type map in grid 

cells with high % forests and % croplands, respectively. 

Figure S15. Spearman’s correlation between H’ and mean patch size by deciles of coverage 

of (a) forests and (b) cropland. The mean patch size was transformed by cube root. 

Figure S16. Spearman’s correlation between H’ and ED of land-cover by deciles of % forest. 

Figure S17. Spearman’s correlation between ED and connectivity by deciles of coverage of 

(a) forests and small woody features and (b) grasslands. 

Figure S18. Spearman’s correlation between between H’ and ED of all land-cover type with 

2-km landscape grain. 

Figure S19. Association between ED and connectivity. 

Figure S20. Partial correlation plots between % forests, % croplands, and % grasslands in 

SEM of Fig. 3. 

Supplementary tables 

Table S1. All abiotic factors before variable selection 

Table S2. Parameter estimates for the structural equation models (SEMs) shown in Figures 3–

5. Variables shown in grey indicate non-significant effects (p ≥ 0.05). 

Table S3. Description of variables in SEMs in Figures 3-5. All variables in SEMs are 

described with their labels in Figures 3-5, variable names in Table S1, and transformation due 

to skewness of data distribution. 

Table S4. Importance of components of principal component analysis (PCA) to explore 

datasets of horizontal, vertical, and temporal landscape heterogeneity indices. 

Table S5. Coordinates of the arrowheads of horizontal, vertical, and temporal landscape 

heterogeneity indices 

Table S6. Coverage ranges (% land-cover) of 3 × 3 km grids for each decile for quantile 

correlation between H’ and ED of (a) land-cover types, (b) forest, and (c) croplands 

Supplementary notes 

Note S1. Equations of Shannon diversity index (H’) and edge density (ED) 

References 
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Supplementary figures 

 

Figure S1. Pie chart of main land-cover types in Germany based on land cover map 

(Pflugmacher et al. 2018).  

 

 

Figure S2. Calculation of temporal heterogeneity in compositional and configurational 

attributes 
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Figure S3. Process to calculate woody vegetation connectivity on each 3 x 3 km grid cell.  

Woody vegetation connectivity was calculated by combining forest areas (Blickensdörfer et 

al. 2024) with small woody features derived from the crop type map (Blickensdörfer et al. 

2022), treating them as habitat patches (dark green patches) for the connectivity index. 

Connectivity was calculated in each 3 x 3 km grid cell using Graphab (R package graph4lg). 

Least-cost paths between habitat patches (called a link set, denoted by light green lines) were 

generated using Euclidean distance and planar topology without a threshold distance. The 

planar link set, which limits connections to neighbouring patches identified by Voronoi 

polygons, serves as a reliable proxy for the complete link set. Connectivity was quantified 

using the Equivalent Connectivity metric, calculated as the square root of the summed 

product of patch areas weighted by interaction probability (Saura et al. 2011) 
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(a) 

 

(b) 

Figure S4. Spearman’s correlation between (a) land-cover Shannon diversity (H’) and 

coverage of forests, grasslands, and croplands and (b) land-cover edge density (ED) and 

coverage of forests, grasslands, and croplands. 

 

Figure S5. Full structural equation modellings (SEMs) of Fig. 3 between H’ and ED of (a) 

across all land-cover types, (b) forests, and (c) croplands.  

The simple version is shown in Fig. 3. In SEM, unidirectional arrows represent regressions, 

while bidirectional solid arrows covariances and dashed arrows correlation. Blue arrows 

denote positive relationships, and red arrows denote negative ones. The path thickness has 

been scaled based on the magnitude of the SEM standardised parameter estimates. Only 

significant relationships were denoted as arrows with standardised parameter estimates.  
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Figure S6. Relationship of partial regressions between predictors and response variables of 

each SEM in Fig. 3. 
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Figure S7. Full SEMs of Fig. 4 for the relationship between ED and connectivity of (a) 

forests and small woody features and (b) grasslands. 
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Figure S8. Relationship of partial regressions between predictors and response variables of 

each SEM in Fig. 4. 
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Figure S9. Spearman’s correlation between coverage, H’, ED, connectivity, and standard 

deviation of canopy height in forests. 
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Figure S10. Spearman’s correlation between coverage, H’, ED, and temporal H’, temporal 

ED (interannual change rate) of crop types in croplands. 
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Figure S11. Spearman’s correlation between coverage, ED, connectivity, mean mowing 

frequency, H’ and temporal SD of mowing frequency in grasslands. 
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Figure S12. Full SEMS of Fig. 5 for the relationship between (a) horizontal H’ and ED and 

vertical standard deviation (SD) in forests, (b) between horizontal and temporal H’ and (c) 

between horizontal and temporal ED in croplands, and (d) horizontal and temporal SD in 

grasslands. 
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Figure S13. Relationship of partial regressions between predictors and response variables of 

each SEM in Fig. 5. 
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(a) (b) 

 
Figure S14. Comparison between (a) dominant tree type map and (b) crop type map in grid 

cells with high % forests and % croplands, respectively. 

 

Figure S15. Spearman’s correlation between H’ and mean patch size by deciles of coverage 

of (a) forests and (b) cropland. The mean patch size was transformed by cube root. 
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Figure S16. Spearman’s correlation between H’ and ED of land-cover by deciles of % forest. 

 

Figure S17. Spearman’s correlation between ED and connectivity by deciles of coverage of 

(a) forests and small woody features and (b) grasslands. 
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Figure S18. Spearman’s correlation between between H’ and ED of all land-cover type with 

2-km landscape grain.  
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Figure S19. Association between ED and connectivity.  

(a) higher connectivity of woody features in landscapes with lower ED. (b) lower 

connectivity of woody features in landscapes with higher ED. % land-cover of woody 

features is similar in landscape (a) and (b) with a 40‒50 percentile of % land-cover of woody 

features over Germany. (c) higher connectivity of grasslands in landscapes with lower ED. 

(d) lower connectivity of grasslands in landscapes with higher ED. % grasslands is similar in 

landscape (c) and (d) with a 40‒50 percentile of % grasslands over Germany. 
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Figure S20. Partial correlation plots between % forests, % croplands, and % grasslands in 

SEM of Fig. 3.
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Supplementary tables 

Table S1. All abiotic factors before variable selection 

Subject Metric Data Year Res. 

T
o

p
o

g
ra

p
h

y
 

Elevation Mean SRTM DEM (NASA Shuttle 

Radar Topography Mission 

(SRTM) 2013) 

2000 
1 arc-

second Slope Mean 

S
o

il
 Soil moisture Mean 

Daily soil moisture (Deutscher 

Wetterdienst (DWD) 2021)  

1993-

2022 
1km 

Soil texture PCA 
Clay, sand, and silt  contents 

(Hiederer 2013) 
2006 1km 

C
li

m
at

e 

Annual Mean Temperature, maximum 

temperature of Warmest Month, 

minimum temperature of Coldest 

Month, Annual Precipitation, 

Precipitation of Wettest Month, 

Precipitation of Driest Month 

Mean 
WorldClim ver. 2 (Fick and 

Hijmans 2017) 

1970-

2000 

30 

second

s 

 

Table S2. Parameter estimates for the structural equation models (SEMs) shown in Figures 3–

5. Variables shown in grey indicate non-significant effects (p ≥ 0.05). 

Figure 3a     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

LC_ShannDiv ~    
SoilMoisture -0.01 0.00 -1.72 0.09 

Slope2 0.02 0.00 5.24 0.00 

Forest_pct2_P1 0.12 0.01 22.92 0.00 

Forest_pct2_P2 -0.28 0.00 -89.76 0.00 

Crop_pct2_P1 -0.38 0.01 -81.19 0.00 

Crop_pct2_P2 -0.46 0.00 -140.21 0.00 

Grass_pct2_P1 -0.10 0.00 -25.52 0.00 

Grass_pct2_P2 -0.33 0.00 -122.77 0.00 

LC_EdgeDens ~    
SoilMoisture 0.15 0.00 35.08 0.00 

Slope2 0.06 0.01 11.95 0.00 

Forest_pct2_P1 0.02 0.01 2.95 0.00 

Forest_pct2_P2 -0.14 0.01 -30.21 0.00 

Crop_pct2_P1 -0.52 0.01 -74.63 0.00 

Crop_pct2_P2 -0.26 0.01 -53.18 0.00 

Grass_pct2_P1 -0.08 0.01 -15.27 0.00 

Grass_pct2_P2 -0.30 0.00 -75.87 0.00 

     
Covariances:     

 Estimate Std. Err z-value P(>|z|) 

.LC_ShannDiv ~~    
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.LC_EdgDns 0.19 0.00 104.95 0.00 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.LC_ShnnDv 0.20 0.00 138.24 0.00 

.LC_EdgDns 0.44 0.00 138.24 0.00 

     
R-Square:     

 Estimate    
LC_ShnnDv 0.80    
LC_EdgDns 0.56    

     

Figure 3c     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

Tree_EdgeDens2 ~    
Slope2 0.06 0.00 20.24 0.00 

TreeTyp_pct2_P1 0.85 0.00 312.62 0.00 

TreeTyp_pct2_P2 -0.16 0.00 -70.68 0.00 

Tree_ShannDiv ~    
Slope2 -0.12 0.01 -20.14 0.00 

TreeTyp_pct2_P1 -0.12 0.01 -20.35 0.00 

TreeTyp_pct2_P2 -0.21 0.01 -44.00 0.00 

     
Covariances:     

 Estimate Std. Err z-value P(>|z|) 

.Tree_EdgeDens2 ~~    

.Tree_ShannDiv 0.34 0.00 123.97 0.00 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.Tree_EdgeDens2 0.20 0.00 141.24 0.00 

.Tree_ShannDiv 0.91 0.01 141.24 0.00 

     
R-Square:     

 Estimate    
Tree_EdgeDens2 0.80    
Tree_ShannDiv 0.09    

     

Figure 3e     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

Crop_EdgeDens ~    
Slope2 0.14 0.00 46.51 0.00 

CropTyp_pct_P1 0.84 0.00 286.17 0.00 

CropTyp_pct_P2 -0.28 0.00 -102.63 0.00 

Crop_ShannDiv ~    
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Slope2 -0.24 0.00 -54.45 0.00 

CropTyp_pct_P1 0.41 0.00 94.67 0.00 

CropTyp_pct_P2 -0.36 0.00 -91.54 0.00 

     
Covariances:     

 Estimate Std. Err z-value P(>|z|) 

.Crop_EdgeDens ~~    

.Crop_ShannDiv 0.10 0.00 49.04 0.00 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.Crop_EdgeDens 0.28 0.00 142.96 0.00 

.Crop_ShannDiv 0.60 0.00 142.96 0.00 

     
R-Square:     

 Estimate    
Crop_EdgeDens 0.72    
Crop_ShannDiv 0.40    

     

Figure 4a     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

CI_EC2 ~    
Slope2 -0.01 0.00 -14.59 0.00 

TreeTyp_pct2_P1 1.07 0.00 873.28 0.00 

TreeTyp_pct2_P2 0.06 0.00 78.10 0.00 

Frst_EdgDn2_P1 -0.10 0.00 -72.60 0.00 

Frst_EdgDn2_P2 0.02 0.00 31.39 0.00 

SWF_pct2_P1 0.20 0.00 124.89 0.00 

SWF_pct2_P2 0.00 0.00 1.63 0.10 

SWF_EdgDns2_P1 -0.02 0.00 -13.78 0.00 

SWF_EdgDns2_P2 0.02 0.00 22.49 0.00 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.CI_EC2 0.01 0.00 137.59 0.00 

     
R-Square:     

 Estimate    
CI_EC2 0.99    

     

Figure 4b     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

Grass_CI2 ~    
SoilMoisture 0.00 0.00 -1.54 0.12 

MowInt_pct2_P1 1.67 0.00 579.41 0.00 
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MowInt_pct2_P2 -0.03 0.00 -24.10 0.00 

Grss_EdgDn2_P1 -0.71 0.00 -240.29 0.00 

Grss_EdgDn2_P2 0.11 0.00 76.56 0.00 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.Grass_CI2 0.01 0.00 135.04 0.00 

     
R-Square:     

 Estimate    
Grass_CI2 0.99    

     

Figure 5a     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

CHM_SD ~    
Slope2 0.09 0.01 16.56 0.00 

TreeTyp_pct2_P1 -0.50 0.03 -19.84 0.00 

TreeTyp_pct2_P2 -0.08 0.01 -7.10 0.00 

Tree_EdgDns2_P1 0.28 0.03 10.78 0.00 

Tree_EdgDns2_P2 -0.36 0.01 -34.06 0.00 

Tree_ShnnDv_P1 0.06 0.01 6.83 0.00 

Tree_ShnnDv_P2 0.00 0.01 0.31 0.76 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.CHM_SD 0.76 0.01 140.99 0.00 

     
R-Square:     

 Estimate    
CHM_SD 0.24    

     

Figure 5b     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

Crop_TDiv ~    
Slope2 -0.05 0.00 -11.73 0.00 

CropTyp_pct_P1 0.19 0.00 46.52 0.00 

CropTyp_pct_P2 0.11 0.00 28.90 0.00 

Crop_ShnnDv_P1 0.65 0.00 154.04 0.00 

Crop_ShnnDv_P2 0.05 0.00 14.42 0.00 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.Crop_TDiv 0.43 0.00 142.94 0.00 

     
R-Square:     
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 Estimate    
Crop_TDiv 0.58    

     

Figure 5c     
Regressions:     

 Estimate Std. Err z-value P(>|z|) 

MowInt_TDiv ~    
MowI_Mean_P1 0.23 0.01 37.98 0.00 

MowI_Mean_P2 0.04 0.01 9.16 0.00 

MwInt_ShnnD_P1 0.25 0.01 41.13 0.00 

MwInt_ShnnD_P2 0.04 0.01 8.67 0.00 

     
Variances:     

 Estimate Std. Err z-value P(>|z|) 

.MowInt_TDiv 0.81 0.01 139.97 0.00 

     
R-Square:     

 Estimate    
MowInt_TDiv 0.19    

 

Table S3. Description of variables in SEMs in Figures 3-5. All variables in SEMs are 

described with their labels in Figures 3-5, variable names in Table S1, and transformation due 

to skewness of data distribution.  

Fig Label in Figures 
Variable in Table 

S1 
Description 

Transf

ormati

on  

Fig

. 3a 

Soil Moist SoilMoisture Mean soil moisture - 

Slope Slope2 Mean slope 
Square 

root 
 Forest_pct2 Percentage of forests in LC map 

Square 

root 
LC Forest cover1 Forest_pct2_P1 Orthogonal first-order polynomial of Forest_pct2 

LC Forest cover2 Forest_pct2_P2 
Orthogonal second-order polynomial of 

Forest_pct2 
 Crop_pct2 Percentage of croplands in LC map 

Square 

root 
LC Crop cover1 Crop_pct2_P1 Orthogonal first-order polynomial of Crop_pct2 

LC Crop cover2 Crop_pct2_P2 
Orthogonal second-order polynomial of 

Crop_pct2 
 Grass_pct2 Percentage of grasslands in LC map 

Square 

root 
LC Grass cover1 Grass_pct2_P1 Orthogonal first-order polynomial of Grass_pct2 

LC Grass cover2 Grass_pct2_P2 
Orthogonal second-order polynomial of 

Grass_pct2 

LC EdgeDens LC_EdgeDens Edge density of LC map - 

LC ShannDiv LC_ShannDiv Shannon diversity of LC map - 

Fig

. 3c 

  TreeTyp_pct2 Percentage of forests in the forest map 

Square 

root 
Forest cover1 TreeTyp_pct2_P1 

Orthogonal first-order polynomial of 

TreeTyp_pct2 

Forest cover2 TreeTyp_pct2_P2 
Orthogonal second-order polynomial of 

TreeTyp_pct2_P1 
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Tree EdgeDens Tree_EdgeDens2 Edge density of dominant forest tree species map  
Square 

root 

Tree ShannDiv Tree_ShannDiv 
Shannon diversity of dominant forest tree species 

map  
- 

Fig

. 3e 

  CropTyp_pct Percentage of croplands in crop type map 

- Crop cover1 CropTyp_pct_P1 
Orthogonal first-order polynomial of 

CropTyp_pct_P1 

Crop cover2 CropTyp_pct_P2 
Orthogonal second-order polynomial of 

CropTyp_pct_P1 

Crop EdgeDens Crop_EdgeDens Edge density of crop type map - 

Crop ShannDiv Crop_ShannDiv Shanno diversity of crop type map - 

Fig

. 4a 

  Frst_EdgDn2 Edge density of forest in the forest map  

Square 

root 

Forest 

EdgeDens1 
Frst_EdgDn2_P1 

Orthogonal first-order polynomial of 

Frst_EdgDn2 

Forest 

EdgeDens2 
Frst_EdgDn2_P2 

Orthogonal second-order polynomial of 

Frst_EdgDn2 

 SWF_pct2 
Percentage of small woody features in crop type 

map 
Square 

root 
SWF cover1 SWF_pct2_P1 Orthogonal first-order polynomial of SWF_pct2 

SWF cover2 SWF_pct2_P2 
Orthogonal second-order polynomial of 

SWF_pct2 

 SWF_EdgDns2 
Edge density of small woody features in the crop-

type map 

Square 

root 
SWF EdgeDens1 SWF_EdgDns2_P1 

Orthogonal first-order polynomial of 

SWF_EdgDns2 

SWF EdgeDens2 SWF_EdgDns2_P2 
Orthogonal second-order polynomial of 

SWF_EdgDns2 

Woody Connect CI_EC2 
Woody connectivity index of forests and small 

woody features 

Square 

root 

Fig

. 4b 

  MowInt_pct2 
Percentage of grasslands in mowing frequency 

map  

Cube 

root 
Grass cover1 MowInt_pct2_P1 

Orthogonal first-order polynomial of 

MowInt_pct2 

Grass cover2 MowInt_pct2_P2 
Orthogonal second-order polynomial of 

MowInt_pct2 

 Grss_EdgDn2 
Edge density of grasslands in mowing frequency 

map 

Square 

root 

Grass 

EdgeDens1 
Grss_EdgDn2_P1 

Orthogonal first-order polynomial of 

Grss_EdgDn2 

Grass 

EdgeDens2 
Grss_EdgDn2_P2 

Orthogonal second-order polynomial of 

Grss_EdgDn2 

Grass Connect Grass_CI2 Grassland connectivity index of grasslands 
Cube 

root 

Fig

. 5a 

Tree EdgeDens1 Tree_EdgDns2_P1 
Orthogonal first-order polynomial of 

Tree_EdgeDens2 
  

Tree EdgeDens2 Tree_EdgDns2_P2 
Orthogonal second-order polynomial of 

Tree_EdgeDens2 
 

Tree ShannDiv1 Tree_ShnnDv_P1 
Orthogonal first-order polynomial of 

Tree_ShannDiv 
 

Tree ShannDiv2 Tree_ShnnDv_P2 
Orthogonal second-order polynomial of 

Tree_ShannDiv 
 

Canopy Height 

SD 
CHM_SD Standard deviation of canopy height model - 

Fig

. 5b 

Crop 

TempShannDiv 
Crop_TDiv 

Temporal Shannon diversity of crop type map 

across 4 years 
  

Crop ShannDiv1 Crop_ShnnDv_P1 
Orthogonal first-order polynomial of 

Crop_ShannDiv 
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Crop ShannDiv2 Crop_ShnnDv_P2 
Orthogonal second-order polynomial of 

Crop_ShannDiv 
  

Fig

. 5c 

MowInt 

TempShannDiv 
MowInt_TDiv 

Temporal Shannon diversity of mowing intensities across 4 

years 
 MowI_Mean Mean mowing frequency 

 
Mowing 

intensity1 
MowI_Mean_P1 

Orthogonal first-order polynomial of 

MowI_Mean 

Mowing 

intensity2 
MowI_Mean_P2 

Orthogonal second-order polynomial of 

MowI_Mean 
 MwInt_ShnnD Shannon diversity of mowing frequency map 

 
MowInt 

ShannDiv1 
MwInt_ShnnD_P1 

Orthogonal first-order polynomial of 

MwInt_ShnnD 

MowInt 

ShannDiv2 
MwInt_ShnnD_P2 

Orthogonal second-order polynomial of 

MwInt_ShnnD 

 

Table S4. Importance of components of principal component analysis (PCA) to explore 

datasets of horizontal, vertical, and temporal landscape heterogeneity indices.  

 PC1 PC2 PC3 PC4 PC5 

Eigenvalue 4.38 2.70 2.02 1.26 1.06 

Proportion Explained 0.29 0.18 0.13 0.09 0.08 

Cumulative Proportion 0.29 0.47 0.61 0.69 0.76 

 

Table S5. Coordinates of the arrowheads of horizontal, vertical, and temporal landscape 

heterogeneity indices 

 PC1 PC2 PC3 PC4 PC5 

DomTree_ShannDiv -0.69 -0.01 -3.63 -1.22 5.06 

DomTree_EdgeDens 5.60 -2.12 -1.53 -1.12 1.67 

Wood_Conn 5.95 -2.29 0.63 -0.91 -0.25 

Canopy_Height_SD -2.24 1.57 -2.83 0.57 0.46 

Crop_ShannDiv -4.27 -1.46 -3.53 0.18 -0.73 

Crop_EdgeDens -3.78 2.49 -3.85 1.85 -1.00 

Avg_FarmSize -3.70 -0.96 1.29 -1.96 3.50 

Crop_TempShannDiv -5.37 -3.33 -1.80 -0.70 -0.75 

Grass_EdgeDens 1.22 6.30 -0.37 1.50 0.91 

Grass_Conn 0.66 5.87 1.89 0.95 1.74 

MowInt_ShannDiv 0.33 4.00 -1.62 -3.59 -2.17 

MowInt_TempShannDiv -0.54 2.60 -0.41 -5.67 -0.98 

LC_ShannDiv 4.05 -0.52 -4.44 0.18 -0.18 

LC_EdgeDens 4.74 0.29 -4.43 0.80 -0.55 
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Table S6. Coverage ranges (% land-cover) of 3 × 3 km grids for each decile for quantile 

correlation between H’ and ED of (a) land-cover types, (b) forest, and (c) croplands 

(a) (b) (c) 

Percentile 

(n=39,991) 

Cropland 

coverage 

Percentile 

(n=39,894) 

Forest 

coverage 

Percentile 

(n=39,976) 

Cropland 

coverage 

Under 10th  0 – 1.4% Under 10th  0 – 5.8% Under 10th  0 – 1.4% 

10th – 20th  1.4 – 6.6% 10th – 20th  5.8 – 11.3% 10th – 20th  1.4 – 6.7% 

20th – 30th 6.6 – 13.8% 20th – 30th 11.3 – 16.9% 20th – 30th 6.7 – 13.9% 

30th – 40th 13.8 – 21.5% 30th – 40th 16.9 – 23% 30th – 40th 13.9 – 21.5% 

40th – 50th 21.5 – 29.4% 40th – 50th 23 – 30% 40th – 50th 21.5 – 29.4% 

50th – 60th 29.4 – 37.4% 50th – 60th 30 – 38% 50th – 60th 29.4 – 37.4% 

60th – 70th 37.4 – 46.2% 60th – 70th 38 – 47.4% 60th – 70th 37.4 – 46.2% 

70th – 80th 46.2 – 55.8% 70th – 80th 47.4 – 59.2% 70th – 80th 46.2 – 55.8% 

80th – 90th 55.8 – 68.5% 80th – 90th 59.2 – 75.4% 80th – 90th 55.8 – 68.5% 

90th – 100th 68.5 – 99.5% 90th – 100th 75.4 – 99.8% 90th – 100th 68.5 – 99.5% 
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Supplementary notes 

Note S1. Equations of Shannon diversity index (H’) and edge density (ED) 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 (𝐻′) = − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑆

𝑖=1

 

S = total number of land-cover types 

pi = Proportion covered by land-cover type i 

𝐸𝑑𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐸𝐷) =
𝐸

𝐴
 

E = total length of all edge segments (in meters) 

A = total landscape area of a 3 x 3 km grid cell (900 ha) 
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