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12
Abstract13

14
The evolution of biological morphology is critical for understanding the diversity of15
the natural world, yet traditional analyses often involve subjective biases in the16
selection and coding of morphological traits. This study employs deep learning17
techniques, utilizing a pretrained ResNet34 model capable of recognizing over 10,00018
bird species, to explore avian morphological evolution. We extracted weights from the19
model's final fully connected (fc) layer to create vector representations of avian20
species and assessed their similarities using cosine similarity metrics. The results21
demonstrated multiple clustering patterns with or without biological meaning. Some22
clustering results are consistent with traditional classifications based on morphology,23
some are consistent with modern cladistic classifications, and some show behavioural24
and ecological similarities. We utilized the variance of vectors based on Euclidean25
distance to assess the morphological disparity among various taxa and evaluated the26
association between morphological disparity and species richness. The result showed27
Despite these insights, some clusters indicated the influence of non-biological image28
features on clustering outcomes. This study underscores the potential and limitations29
of using deep learning approaches in morphological evolution studies.30
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Introduction37
38

The evolution of biological morphology plays a crucial role in shaping the diverse39
natural world we observe today. It provides insight into the adaptation and survival of40
species over time, influencing various ecological interactions and the functioning of41
ecosystems. Traditionally, analyses of morphological evolution have involved42
subjective elements, as even quantitative analyses based on morphological traits43
require human intervention in the selection and coding of these traits (Clark et al.,44
2023; Crouch & Ricklefs, 2019). This subjectivity can introduce biases, affecting the45
accuracy and reliability of evolutionary interpretations.46

47
To address these limitations, our research employs advanced deep learning48
technologies, specifically Convolutional Neural Networks (CNNs). CNNs,49
popularized by LeCun et al. (1989), are designed to automatically learn hierarchical50
features from image data, making them exceptionally suited for visual recognition51
tasks. By utilizing CNN image classification models, we can leverage the learned52
weights as indicators of morphological traits of various species, providing a more53
objective basis for understanding biological evolution.54

55
In our study, we utilized the model trained by Sun (2025) and calculated the cosine56
similarity between species using the weights extracted from the last fully connected57
layer (fc). This methodology enabled us to perform hierarchical clustering based on58
the cosine similarities, yielding insights into the morphological evolution of avian59
species. Furthermore, we will utilized Euclidean distance-based vector variance to60
assess the morphological disparity among families and orders. Spearman’s rank61
correlation coefficient (ρ) was then employed to evaluate the association between62
morphological disparity and species richness.63

64
While this approach shows promise, it is important to note that it has some limitations,65
some results may lack biological meaning. However, as the development of deep66
learning technologies and more photos from citizen science, there is substantial67
potential for these methods to enrich our understanding of morphological evolution in68
the future.69

70
Materials and Methods71

72
Materials73

74
In our study, we utilized the model by Sun (2025), which is based on the ResNet3475
architecture and is capable of recognizing over 10,000 bird species with an accuracy76
of approximately 90%. The original weight data for this model is available on77
Hugging Face, a popular platform for sharing machine learning models and datasets.78
The model was trained on a dataset based on IOC (International Ornithological79
Congress) World Bird List 10.1 (Gill et al., 2021), while we reassigned the orders and80



families of all species to align with the IOC 15.1 (Gill et al., 2025).81
82

We began by extracting the weights from the final fully connected layer (fc) of the83
ResNet34 model. Each species's weights were treated as a vector to analyze the84
relationships between different avian species based on these representations.85

86
Similarity analysis87

88
To assess the similarity between various species, we employed cosine similarity.89
Initially, all vectors were subjected to L2 normalization to ensure that they each had a90
unit length. Following this normalization, we performed dot product calculations on91
the normalized vectors. This method is equivalent to computing the cosine similarity92
of the original vectors, providing a meaningful metric for evaluating the relationships93
among the species. For this implementation, we utilized built-in functions from the94
PyTorch library, which facilitated efficient computation (Ansel et al., 2024).95

96
Next, we conducted agglomerative hierarchical clustering using the average linkage97
method to merge clusters. This was executed with the hierarchical clustering98
functionalities implemented in the SciPy library (Gommers et al., 2025). The99
hierarchical structure of the clusters was output in Newick format, a widely used100
format in computational biology for tree structures. Finally, we utilized ETE3 to101
export the clustering dendrogram in SVG format (Huerta-Cepas et al., 2016).102

103
To analyzing the clustering result, we applied a recursive top-down analysis to the104
tree, evaluating each internal node for taxonomic “purity.” For a given node, we105
defined taxonomic purity as the proportion of the majority taxon. A node with a106
taxonomic purity of more than 85% was considered taxonomically consistent. For107
taxonomically consistent nodes, all of their child nodes were excluded from further108
checks. For such nodes, we further examined all species to identify and annotate109
taxonomical outliers, which belong to taxa that different from the majority taxon of110
this branch. Finally, we conducted manual review to confirm whether outliers had111
biological similarity with the majority taxa of their branches and what kinds of112
similarity do they have. The above pipeline was carried out in both order-level and113
family-level.114

115
Disparity analysis116

117
Before proceeding with this analysis, we removed 122 species whose weight vectors118
were identified as lacking biological significance during the manual review process.119
The specific reasons are detailed in the discussion section.120

121
To assess the morphological disparity among taxa, we employed Euclidean122
distance-based vector variance. Additionally, we calculated the Pearson correlation123
coefficient and the Spearman’s rank correlation coefficient to examine the124



relationship between diversity and morphological disparity. We computed the125
Spearman’s coefficient and linear, log-linear, and power-law relationships of the126
Pearson coefficient both including and excluding monospecific taxa. Based on the127
correlation results, we fitted the relationship function using the model that exhibited128
the highest correlation. This analysis was conducted at both order and family levels.129

130
Result131

132
Our clustering process was successfully conducted, resulting in a comprehensive133
hierarchical clustering output. The agglomerative clustering technique applied to the134
cosine similarity measures of the weight vectors yielded a dendrogram that illustrates135
the relationships between the different avian species based on their morphological136
features learned by the ResNet34 model.137

138
In the taxonomic consistence analysis, we identified a total of 391 branches with high139
taxonomic consistency at the family level and 94 branches at the order level.140
Additionally, we found 474 family-level outlier species and 533 order-level outlier141
species. The clustering result with collapsed high-purity branches are illustrated in142
Figure 1.143

144
The orders and families with the greatest and least disparity are as follows (excluding145
monospecific taxa): The three orders with the greatest disparity are Anseriformes,146
Charadriiformes, and Pelecaniformes. Conversely, Struthioniformes, Aegotheliformes,147
and Apterygiformes had the least disparity.148

149
At the family level, the three families with highest disparity included Laridae,150
Anatidae, and Ciconiidae, while the families with the least disparity were151
Atrichornithidae, Salpornithidae, and Melampittidae.152

153
Regarding the relationship between order-level disparity and diversity, the154
Spearman’s coefficient was calculated at 0.60, with a p-value of 1.40×10-5. For155
family-level analysis, the Spearman’s coefficient was 0.70, with a p-value of156
1.05×10-39. After removing all monospecific taxa, the Spearman’s coefficient157
decreased to 0.51, with significant p-values of 3.4×10-16 in family-level and 6.4×10-4158
in order-level. The Pearson coefficients for power-law relationships after the removal159
of monospecific taxa were found to be closest to the Spearman coefficients. All160
coefficients are listed in Table 1. Therefore, we derived the following power-law161
fitted relationship functions (Figure 2):162

163
Fitted model in family level: � = 2.3 × 10−4 ∙ �0.2038164
Fitted model in order level: � = 3 × 10−4 ∙ �0.1343165

166
Discussion167

168



Similarity analysis169
170

The results of our clustering analysis highlight some critical insights as well as171
important limitations of deep learning techniques in studying morphology. One172
significant concern is the issue of interpretability in deep learning models. These173
models often seek local optima rather than global solutions, leading to clustering174
outcomes that may not possess real biological meanings.175

176
Currently, the discussion section covers only a limited number of taxa, and we aim to177
report potential patterns that may carry biological relevance. Notably, the four genera178
referred to as “fulvetta,” which were traditionally considered similar and related179
(Pasquet et al., 2006), did not fall into a single cluster. Instead, we found that Fulvetta180
and Lioparus clustered with most parrotbills (Paradoxornithidae), aligning with their181
modern taxonomic classification. On the contrary, the genera Schoeniparus182
(Pellorneidae) and Alcippe (Alcippeidae) fell into two separate but adjacent clusters,183
which suggests that deep neural networks can tell the morphological differences184
among the “fulvettas.”185

186
Another intriguing finding involves the Pseudopodoces humilis, a species187
morphologically similar to the genus Podoces, while is classified within the family188
Paridae based on molecular phylogeny. However, this species clustered with the189
“snowfinches” (Onychostruthus, Pyrgilauda, Montifringilla), indicating possible190
behavioural and ecological similarities. Both are secondary cavity-nesting birds, often191
found cohabiting with members of the family Ochotonidae in the Tibetan Plateau (Lu192
et al., 2011).193

194
We observed that Galliformes and Tinamiformes were nested into a single cluster,195
pointing to similar morphology traits according to the model. Moreover, the clustering196
of most species of Strigiformes and Caprimulgiformes s. l. (including197
Steatornithiformes, Nyctibiiformes, Podargiformes and Aegotheliformes, but not198
Apodiformes) fell into adjacent clusters, potentially suggesting morphological199
convergence due to adaptations for nocturnality. Alternatively, this could merely200
reflect that most images were captured at night, leading the deep learning model to201
consider them similar.202

203
Nonetheless, several groupings identified in our analysis evidently lack biological204
significance. For instance, Nymphicus hollandicus was shown to be most similar with205
Melopsittacus undulatus, while not aligned with other members of Cacatuidae. This is206
likely due to their wide captivity, leading the model to learn human presence or207
man-made objects in the images. Additionally, many extinct species clustered together,208
possibly due to their representation via skeletal images, artistic reconstructions, or209
other non-biological patterns. Furthermore, some of the recently described species or210
newly separated cryptic species grouped together, which might reflect insufficient211
image data, leading to underfitting of the model.212



213
This highlights the duality of using Convolutional Neural Networks (CNNs) in214
morphological analysis: they can capture morphological differences that may not be215
discernible to the human eye, while they are also influenced by data noise. This216
underscores the necessity for human researchers to use their biological knowledge and217
practical experience to distinguish meaningful patterns from the noise when utilizing218
deep learning for morphological evolution studies. Thus, researchers can maximize219
the strengths of these technologies while avoiding their limitations.220

221
Looking ahead, we plan to expand our analysis by developing code to assess the222
morphological disparity among different orders. We believe that this methodology223
may also contribute to the study of avian vocalizations.224

225
Morphological Disparity226

227
In our analysis of the correlation between morphological disparity and species228
richness, we removed monospecific taxa from consideration. The variance of a vector229
group containing only a single vector is inherently zero, representing a statistical230
technicality rather than indicating a lack of morphological evolution in their231
evolutionary history. Such zero values result in a series of repeated minimum ranks232
within Spearman's rank correlation analysis, leading to an overall correlation233
coefficient that deviates from the norm. After excluding monospecific taxa,234
Spearman's rank correlation coefficients decreased from 0.60 at the order level and235
0.70 at the family level to approximately 0.51. This suggests that the original236
correlation was inflated by a substantial number of zero variances. While the237
correlation values declined after removal, the significance remained extremely robust,238
with the p-value of 3.4e-16 at the family level and of 6.4e-4 at the order level. The239
Spearman's rank correlation coefficients for both morphological disparity and species240
richness remained at 0.51, indicating a potential stability of this value across different241
taxonomic levels. It suggested a moderate positive correlation between morphological242
disparity and species richness.243

244
The Pearson correlation coefficient was higher under the power-law relationship245
(log-log model), approximately 0.51, closely aligning with the Spearman rank246
correlation coefficient and exceeding the value of around 0.45 seen in the log-linear247
relationship (Y ~ log(X) model). This indicates that the relationship between the data248
showed higher correlation when examined on the power-law relationship.249

250
The exponents of 0.2038 and 0.1343 in the fitted models being less than 1 imply a251
marginally decreasing trend in morphological diversity as species richness increases.252
This phenomenon may be linked to limitations in ecological niches and limited253
resource availability. It suggests that morphological disparity rapidly expanded in the254
earlier phases of adaptive radiation, while newer species in later stages tended to255
exhibit greater similarity in morphological traits.256
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Table 1. All correlation coefficients and corresponding p-values calculated in the326
analysis, including the Pearson correlation coefficient for linear, log-linear and327
power-law models, as well as Spearman’s rank correlation coefficient.328

329
Figure 1. Morphological clustering result, taxonomically consistent branches are330
collapsed.331

332
(See next page.)333

334
Figure 2. The power-law fitted relationship functions between diversity (species335
richness) and morphological disparity (vector variances) on order and family levels.336

337

338
339

Types of
correlation coefficient

Order level Family level
coefficient p-value coefficient p-value

Including
monospecific
taxa

Spearman’s 0.6043 1.4*10-5 0.7045 1.1*10-39

Pearson (linear) 0.0810 0.60 0.3770 4.5*10-10

Pearson (log-linear) 0.5757 4.3*10-5 0.6502 3.7*10-32

Pearson (power-law) N/A (logarithm is undefined for 0)

Excluding
monospecific
taxa

Spearman’s 0.5110 6.4*10-4 0.5164 3.5*10-16

Pearson (linear) 0.0540 0.74 0.2958 9.3*10-6

Pearson (log-linear) 0.4607 2.4*10-3 0.4541 1.9*10-12

Pearson (power-law) 0.5144 5.8*10-4 0.5190 2.3*10-16






