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Abstract
Large scale monitoring is fundamental for reliably tracking the fate of animal popu-
lations under changing environments and land-use practices. A common application
of large scale population monitoring data is to produce indices of temporal change
in species abundances, which are used in environmental policy assessments of species
and biodiversity statuses. For index estimation, spatio-temporal models can be used
to take advantage of the spatial component of large scale data in order to better
capture and understand spatial variation in population change. This paper presents
a generalized approach to estimating indices of relative population change across
different spatial and temporal scales from fits of spatio-temporal models to population
monitoring data. Using flexible specifications of baselines for indices, the approach
can be used for a range of different comparisons of abundance across space and time,
aggregated at small as well as large spatial and short as well as long term temporal
scales. This is illustrated in an application to Swedish monitoring data of the common
cuckoo, for which we estimate a range of national, county-wise and fine scale indices.
An R-package, spotr, that aids computation of indices from fitted models accompanies
the paper.
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1 Introduction

Estimating the magnitude and nature of population change is
of primary interest for assessing the status of species and bio-
diversity, particularly in light of current and past land-use and
climate change. Long-term wildlife monitoring programs cov-
ering large spatial areas form a backbone for such assessments
at regional and national levels. Data from such programs are
often used to produce indices of absolute or relative population
size over time. These indices may be used as official indicators
of species status, as building blocks for biodiversity indicators,
or may be used among a set of other nature indicators with the
more general purpose of assessing ecosystem health (Gregory
& Strien, 2010).

Indices of species abundance over time are typically derived
from statistical models of the original data. These models
sometimes assume that population change is constant over
large spatial areas such as entire countries or large strata. In
practice population change is likely to vary also within large
areas (Conn et al., 2015), and there has been an increasing
recent interest in models that can deal with spatial varia-
tion in more detail (Johnson et al., 2024; Smith et al., 2019;
Wikle, 2003). Ignoring spatial variation in population change
when it is present could lead to poor model fits, possibly

adversely affecting inference of large scale trends, but more
importantly to missed opportunities for assessing change at
finer spatial resolutions. Mitigation measures, management
plans, or grassroots initiatives are often implemented at local
scales and may be better informed by status assessments at
those scales (Davey et al., 2010). Responses of populations to
climate change may require more fine scale spatial estimation
(Barnett et al., 2021) as such changes can be slow and occur
mainly at edges of species ranges. Similarly, responses to
land-use change may be localized to areas undergoing change.
Inference about when and where changes in populations have
occurred can further provide clues for underlying mechanisms
that may be obscured at the level of regional or national status
assessments (Bowler et al., 2021).

Spatio-temporal analyses of population change include mod-
els assuming separate trends across different discrete spatial
areas (Sauer & Link, 2011) or habitat types (Newson et al.,
2009), models that link trends to multiple environmental co-
variates via machine learning (Smith et al., 2019), models
with trends as an explicit spatio-temporal statistical process
(Breivik et al., 2021; Vanhatalo et al., 2017), models assuming
linear but spatially varying trends (Thorson et al., 2023), and
models including spatio-temporal smoothing (Harrison et al.,
2014). They range in generality from being customised and tai-
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lored to certain species (Wikle, 2003) or monitoring programs
(Sauer & Link, 2011) to specifications that can be estimated
using more generic model fitting tools, such as general purpose
R packages for GLMM or GAMs.

Abundance indices are usually defined from annual aggre-
gates of (possibly weighted) abundance estimates across the
whole of a study area or over a smaller administrative area
(Harrison et al., 2014; Sauer & Link, 2011), or from aggregate
abundance estimates over the season (Dennis et al., 2013). To
estimate an index of change, these annual aggregates are then
compared to an aggregate over the same area in a baseline
year or a mean over a period of years (Gregory et al., 2019;
Knape, 2023). Here, we use more flexible specifications of
both the numerator and baseline (denominator) to present a
generalized definition of abundance indices. By allowing the
numerator and baseline to be defined from arbitrary time pe-
riods as well as arbitrary spatial configurations, a wide range
of comparisons of absolute or relative abundances or densities
across both space and time fits in under this definition. In
a case study, we fit four spatio-temporal models based on
hierarchical GAMs (Pedersen et al., 2019) to data from the
Swedish bird survey. We show how different specification of
indices for these models can be used to visualise an array of
aspects of spatio-temporal changes and their uncertainties at
various spatial and temporal scales. An R-package, spotr,
assisting extraction of indices from spatio-temporal models
fitted to population monitoring data via the R packages mgcv
or brms, or directly from posterior simulations, is provided
with the paper.

2 Methods
2.1 Data
We consider data in the form of observed abundances, yi,t, of
some organism at a set of sites i = 1, . . . , S spread out across
a spatial area (e.g. a country) and for times t = 1, . . . , T . We
will sometimes refer to observed abundances as counts since
for birds, the target of the case study below, monitoring is
usually conducted by counting all individuals heard or seen.
However, other abundance measures such as presence absence
or non-integer data such as biomass also fit into the general
framework (section 2.2.2). Similarly we will often refer to time
points as years, but time can also be measured in weeks, days,
or other units and need not be evenly spaced in time.

Counts at the same site i are repeated across time so that
there is a longitudinal structure to the data. Typically counts
from some sites will be missing in some years.

Locations of sites should preferably be randomly or system-
atically selected. However, to facilitate volunteer participation
some survey designs let observers choose sites opportunisti-
cally. In this case existing sites may disappear and new sites
enter the survey as time passes. To mitigate bias due to
systematic appearance or disappearance of survey sites with
lower or higher abundances, site effects are often included in
models fitted to data (Thomas, 1996; van Strien et al., 2000).

2.2 Estimating population indices
We first review a general approach for computing population
indices for spatial areas from large scale survey data. We focus
on relative abundance indices since absolute abundance can

often not be reliably estimated from population monitoring
data. When data are informative about absolute abundances,
the approach can however be adapted by dropping the denom-
inator.

A standard base model for estimating overall population
indices is built around site and time effects (Fewster et al.,
2000; ter Braak et al., 1994),

E(yi,t) = exp(αi + βt)

where αi are the site and βt the time effects. The stochasticity
of the response is typically modelled via some appropriate
distribution, such as a Poisson or negative binomial for counts.
To compute global population indices for the whole study area
in a target year t from a fit of such a model, one may predict
population size across a set of sites for year t and divide by
a predicted baseline population size in a reference year (here
the first year):

It =
∑

i N̂i,t∑
i N̂i,1

= exp(βt − β1)

The site effects thus cancel when computing the indices and
only the time effects are needed to compute the index. This
is due to the fundamental assumption of the model that the
time effects are the same across the surveyed area.

2.2.1 Indices over geographical areas

More generally, models may include variation in population
trends across space, and there may be interest in estimating
local as well as global abundance indices. Generalising the
model above to encompass spatially varying trends, as well as
nuisance effects, we may write

E(yi,t) = exp(µ(si, t) + η(i, t))

where µ(si, t) is a predictor of population size at the spatial
location si of site i and η(i, t) contains nuisance effects that
capture variation in counts that are not of primary biological
interest, such as observer effects or effects capturing variation
in effort or detectability etc. The idea is that µ(si, t) will be
used in computing indices while η(i, t) will be controlled for
in estimation but not included when predicting abundance.

Now consider computing an index for a spatial area S,
which could be the full area that the survey is targeting such
as a country, a subregion of that area, for example a county or
region, the area covered by a specific habitat type, or just a
single small-scale pixel. Ideally, the index would be computed
by integrating the predicted relative abundance over all spatial
locations in the area:

N̂S,t =
∫

s∈ S

exp(µ(s, t))

and the index for S formed from

IS,t = N̂S,t

N̂S,1

Depending on the model, these integrals may be more or less
easily computed. For example, if µ(s, t) can be decomposed
into additive temporal and spatial effects over S (but not nec-
essarily across the full spatial extent) then the spatial effects
may be ignored in computing IS,t because the spatial effects
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cancel in the same way as they did for the base model (e.g.
Sauer & Link, 2011).

In general it may be difficult to exactly calculate the in-
tegrals. Instead, they may be approximated by finite sums
across a set of prediction points, p1, . . . , pK , in area S (e.g.
Breivik et al., 2021). The prediction points do not have to
be identical to the locations of the observed data. Assuming
that the prediction at point pk represent an area Ak of S,
with

∑
Ak = area of S, the predicted abundance in S may be

approximated by the area weighted sum

N̂S,t ≈
∑

k

AkN̂pk,t

A good selection of prediction points is important for ensur-
ing that the approximation is accurate, but will be model
dependent. For example, if abundances vary discretely in
space, i.e. they are constant within each of several discrete
geographic units or habitat types within S, a single predic-
tion point within each discrete unit may be selected and the
Ak set to the area of each discrete unit divided by the area
associated with the prediction (e.g. Sauer & Link, 2011). On
the other hand if abundances vary continuously in space, a
grid of prediction points whose density depends on the spatial
resolution of the spatial variation of µ(si, t) is a better choice
(e.g. Bled et al., 2013; Breivik et al., 2021; Harrison et al.,
2014).

The unit of measurement of Ak does not affect relative in-
dices. It is then sufficient to define AK as relative weights, for
example they could be scaled to sum to 1 across the prediction
points.

2.2.2 General indices

Indices can be extended by including more general summaries
of predictions, both in the target (numerator) and the baseline
(denominator), as well as more general weights.

For this, we let P be a set of times over which we want to
aggregate abundance, for example a set of years or days of a
season in a specific year. Weights wk,t represent the amount
that the predicted abundance in point pk at time t contribute
to abundance in S across the times in P so that

N̂S,P =
∑

pk∈S,t∈P

wk,tN̂pk,t

A general relative index can now be computed by using the
aggregated abundance over a set of sites W , which may or may
not be the same as S, and a time period B as the reference.
For the reference, abundance is estimated as

N̂W,B =
∑

pk∈W,t∈B

w∗
k,tN̂pk,t

where the weights w∗
k,t correspond to the amount that pre-

dicted abundance in site pk at time t contribute to the ag-
gregate abundance in the reference. The index targeting
abundance in S over the times in P relative to abundance in
W over times in B is then defined as

IS,P = N̂S,P

N̂W,B

.

Often each site has the same proportional contribution for all
time points and it may be suitable to aggregate over time by

taking the mean abundance over all the time points in P . The
weights for the target then simplify to

wk,t = 1
|P |

wk

and the weights for the reference to

w∗
k,t = 1

|B|
w∗

k

where |P | and |B| are the number of time points in P and
B. If S and W are identical, different weights wk and w∗

k

are typically not needed and the superscript may be dropped.
Weights proportional to the number of time points can be
used for instance to compare average abundance between time
periods, or to compare abundance across years for seasonal
organism like insects.

The generalization to using different sets of sites in the
numerator and denominator (S and W ) can be used to ex-
plore spatio-temporal changes in abundance, rather than local
changes within S. This may be relevant for example for species
undergoing spatial expansions, where the baseline might be
set to the population density in a source area at the beginning
of the expansion.

Note that the weights used here are weights for predictions
from previously fitted models, they should not be confused
with weights used during model fitting.

2.3 Case study
We use data on common cuckoo (Cuculus canorus) from the
Swedish bird survey (Lindström & Green, 2020) to illustrate
how indices at different spatial scales can be computed and
visualised using the approach described above. Worked R-code
for the case study is included in Appendix A.

The Swedish bird survey scheme started in 1996 and uses
a design where survey sites are systematically placed on a
regular grid across Sweden. Sites are surveyed once per year
by volunteers doing line transect counts of all species heard
or seen along the edges of a 2x2 km square. Not all sites
are surveyed every year, particularly in the northern parts
of Sweden that are sparsely populated and where sites are
generally less accessible. On average, between 400 and 500
out of 716 sites are surveyed annually but fewer sites were
surveyed in the first few years.

We fit four different GAMM models to annual site-wise
counts of the common cuckoo between 2000 and 2020. The
data are restricted to be within the convex hull of all sites
where the species has been found at least once. All models
use a negative binomial response distribution with a log-link
and have the same overall structure,

yi,t ∼ NegBin(exp(µ0 + f1(t) + f2(si) + f3(t, si) + αi + γt)),

with an intercept µ0, a smooth temporal component f1, a
smooth spatial component f2 and a spatio-temporal interac-
tion f3. In addition there are random site effects, αi, and
random year effects, γt. The four models share the same
specification of the temporal and spatial main effects (f1 and
f2) and random effects (αi and γt), and differ only in how the
spatio-temporal interaction term (f3) is specified. The fac-
torization into main effects and a spatio-temporal interaction
facilitates model comparisons, e.g. making it easy to compare
models with and without a spatio-temporal component, but
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more importantly allows modelling the different components
with different degrees of complexity. With spatio-temporal
bird data, there is usually large spatial variation but less pro-
nounced temporal variation. For the spatial main effect we
therefore use a smooth two dimensional function with a high
dimensional basis (k = 60) to allow capturing fine scale spatial
variation in the intercept, for the temporal main effect we use
a smooth function with a moderate basis dimension (k = 9)
to allow non-linear that are not overly wiggly (Fewster et al.,
2000), and for spatio-temporal interactions we use moderate
basis dimensions for both space and time (k = 25 and k =
9, respectively). The four models treat the spatio-temporal
interaction as either missing or as smooth or discrete in time
and space:

• Model M0 has no spatio-temporal interaction (f3 = 0).
• Model Mss fits a smooth spatio-temporal surface. The

spatio-temporal interaction is constructed from a tensor
product of temporal and spatial bases using an mgcv
interaction of the form ti(yr, lat, lon, k = c(9,
25), d = c(1,2)). The model is a variant of the GAM
of Harrison et al. (2014), but separating the spatio-
temporal variation into main effects and interaction and
including random site and year effects, αi and γt.

• Model Msd fits temporal smooth curves that vary dis-
cretely in space among counties. The spatio-temporal
interaction f3 is here modelled as county specific de-
viations from the overall trend f1, assuming similar
smoothness for each county. This is done using an mgcv
interaction of the form s(yr, county, k = 9, bs =
"fs"). The area specific deviations have penalized first
derivatives. This may be thought of as random smooth
curves with random slopes, i.e. county specific trends
are shrunk towards the overall trend f1 (Pedersen et al.,
2019). On a technical note the bs = "fs" term includes
random county intercepts which we force to zero to re-
duce confounding with the random site effects and make
the models more easily comparable.

• Model Mds fits smooth spatial surfaces discretely in time
using an mgcv interaction of the form s(factor(yr),
lon, lat, k = c(25), bs = "fs"). Here, the
spatio-temporal interaction is modelled as smooth devia-
tion surfaces for each year, assuming similar smoothness
for all years. First derivatives are penalized so that
the model may be viewed as random surfaces shrunk
towards the overall smooth surface f2.

We fit the models using the gam function from the mgcv pack-
age (Wood, 2017) with smoothing penalties selected using
REML. For all smooth components we use reduced rank thin-
plate regression spline bases, which are the default in mgcv.
These basis do not depend on knots and therefore avoid the
need to determine their placement. Full details of model
specification and fitting are given in Appendix A.

An assumption behind the models is that detection rates
do not change considerably over time or space. A trend in de-
tection rates over time would bias trend estimates if it cannot
be controlled for via covariates. Spatial variation in detec-
tion that cannot be controlled for could cause bias in indices
comparing abundance between areas, but could also lead to
bias in temporal trends when abundance trends vary across
space. Detection rates are not known for the Swedish data,
but counts follow a standard protocol aimed to reduce the risk

of trends in these rates.

2.3.1 Other models

Many variations on and alternatives to the above model types
can be fit with mgcv, or alternatively brms, including gen-
eralized linear models, models with spatially varying slopes,
models with random slopes, and models with discrete spa-
tial structure interacting with temporal components. These
packages also support bases for the smooths other than thin
plate regression splines, including cyclic smooths, gaussian
processes, and markov random fields. For an overview of some
of the possibilities of mgcv, see Wood (2017) and Pedersen et
al. (2019).

2.3.2 Assessing model fit

We assessed model fit using standard tools available in the
mgcv package, and using additional checks of randomized quan-
tile residuals (Dunn & Smyth, 1996) and random effects. The
checks include investigating the negative binomial response
distribution, and the geographical and temporal patterns of
residuals and random effects (Appendix B).

2.3.3 Index estimation

To compute indices for the fits of the models to the cuckoo
data, we use a grid of points across Sweden with distances
of 25 kilometers to construct the prediction points, with one
point per grid cell and year. The grid is restricted to be within
the convex hull of all the routes where the species has been
observed in the same way that the data was restricted.

We first compute indices for the whole country. I.e. letting
S be the full spatial extent of the data and using all the grid
points to carry out the numerical integration. Second, we
compute indices for each of the 21 counties of Sweden. For
this we let S be the individual counties and use all the points
in the grid within the counties for the numerical integration.
Third, we compute indices for each grid point to map changes
at a higher spatial resolution.

In prediction for computing indices, we treat site effects as
nuisance parameters (part of η). Year effects are treated either
as nuisance parameters, producing less variable and typically
more smooth estimates of long-term population change, or
are included in predictions, which will produce non-smooth
estimates of annual indices (Knape, 2016). Weights are simply
set to 1 as each grid point represents the same spatial area. For
an example of use of non-constant areal weights, see Appendix
A.

To illustrate use of non-trivial weights and comparisons
across space we compute indices of how population density
in the Swedish counties has changed relative to the overall
density in year 2000. We then use the inverse of the num-
ber of prediction points of counties as weights for the target,
wk,t = 1

nS
where nS is the number of prediction points in the

county S. For the baseline we use the average density across
all of Sweden so that W is the whole study area and with
weights w∗

k,1 = 1
n where n is the total number of prediction

points.
Index computations were done using the index function of

the spotr package (section 2.4).
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2.4 spotr
The R-package spotr accompanying this paper implements
computation of indices via post-processing of models fitted
via frequentist or Bayesian approaches.

To estimate an index, the user first needs to fit an abun-
dance model to the data using the R-packages mgcv (Wood,
2017) or brms (Bürkner, 2018). Next a set of prediction points
and any associated covariates that the indices should be com-
puted over needs to be defined. The spotr function index
uses the fitted model and the prediction points to compute
indices for spatial areas. Uncertainty estimates for indices are
approximated via simulation. In the case of mgcv, a normal
approximation is used for simulation (Wood, 2006). Multiple
random samples are first drawn from an approximate normal
posterior distribution of parameter values (including spline
coefficients). The simulated parameter values for each sample
are then used to compute simulated indices, For brms, sim-
ulated indices are computed from samples of the posterior
distribution. In both cases, uncertainty is estimated from the
variation in indices across simulations. Estimates of indices
can alternatively be computed directly from simulations across
prediction points. This may be used for models that are not
directly supported by spotr.

Posterior simulation can be computationally intensive if
there are many prediction points and/or time points. The
implementation therefore uses customised C-code for computa-
tional efficiency and to avoid numerical issues when computing
sums of exponentiated terms. For the case study, estimating
one type of index for a single model took up to 20 seconds on
a standard desktop computer.

The package may be used to compute indices over geo-
graphical or environmental space (e.g habitat categories or
environmental gradients), or over combinations of environmen-
tal and geographic space.

3 Results
All four models showed similar fit, which was deemed accept-
able, while not perfect (Appendix B). The main discrepancy
the checks identified was that the random site and year ef-
fects deviated from a normal distribution, with somewhat
wider tails for the site random effects, and a few years with
lower counts than expected for the year effects. Importantly,
however, there were no clear temporal or spatial patterns to
residuals or random effects.

3.1 National indices
There was strong support for spatio-temporal interaction terms
for all three models with such terms (Mss, Mds, and Msd, Ap-
pendix A). Population indices at the national scale were similar
for all four models (Fig. 1). Indices treating random year
effects as nuisance show increases during the first half and
decreases during the second half.

Including year effects in the index suggests strong inter-
annual variation overlaying the long-term trends. In particular,
there were a few years with lower counts than otherwise ex-
pected (Fig. 1), as also indicated by checks of the random
year effect residuals (Appendix B).

3.2 County indices
County-wise indices differ more among the different mod-
els than nation-wide indices, but all spatio-temporal models
suggest strong increases in the first half for many counties,
particularly in southern and central Sweden, and more stable
or declining trends in the northern counties, followed by stable
or declining trends in the second half (Fig 2).

To map change across counties we consider two options.
The first is to select two time points and estimate the change
between them (using the first of the time points as the baseline
for the index of the second time point). Using the first and
last years as the time points shows that long-term change over
the entire study period (2000-2020) cuckoos declined in the
northernmost counties but increased in many of the southern
counties, and with unclear changes in central and southern-
most Sweden (Fig. 3, upper panels). Such estimates can be
sensitive to the selection of time points (Knape, 2023), espe-
cially if random year effects are included in the computation.
Random year effects were therefore treated as nuisance.

The second options is to estimate change in average abun-
dance between two time periods. Lower panels in Fig. 3 show
the estimated change from the first to the second decade of the
study. That is, indices are computed from averages over 2010-
2019 relative to averages over 2000-2009. Here, random year
effects were included in the prediction since averages across
multiple years are less sensitive to short term variation. The
results show less strong change but also less uncertainty than
when using the first and last years, which may be expected
as the time period for the comparison is shorter and averages
improving the estimation (although the additional variation
from the year effects could have countered this effect).

As a concise option for illustrating uncertainty, a difficulty
for maps, we plot the smallest possible change compatible
with confidence intervals (Fig 3). In other words, if confidence
intervals for the change are entirely positive (at the log scale)
we show the lower confidence limit, and if confidence intervals
are entirely negative we show the upper limit.

3.3 Indices at higher resolution
Change can also be investigated at finer spatial resolution, par-
ticularly for models Mss and Mds that have spatio-temporal
interactions that do not follow county borders. As for the
county indices, one can map the change between two time
points but instead using all the points on the prediction grid
(Fig. 4). Maps of change for model Msd follows county borders
as its interaction term depends on space only via the county.

Static maps ignore some information as they do not show
when changes occurred, which is often of interest. One possibil-
ity is to to show the index map for each year, or a sub-sequence
of years. Another is to visualise change against a one dimen-
sional gradient (e.g. von Brömssen et al., 2021). Because of
the elongated shape of Sweden, we use the latter approach
to show how the estimated index changes across a latitudinal
gradient (Fig. 5).

One may also use this approach to illustrate changes be-
tween consecutive years (Fig. 6), these can be seen as estimates
of annual growth rates. The two models with small scale tem-
poral smoothing (Mss and Msd) show similar inter-annual
changes, while the model with only global temporal smooth-
ing (Msd) indicate erratic but mostly uncertain changes in
specific years.
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Figure 1: National popupulation indices for the four models. The baseline for the index is the first ten years (2000-2009). Random year
effects are treated as nuisance in left column but included in index computation in right column.
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Figure 2: Population indices for three select counties in southern (Skåne), central (Dalarna) and northern (Norrbotten) Sweden for the
four models. The baseline for the index is the first ten years (2000-2009). Gray borders are shown around counties if the confidence
intervals for change do not include zero. Random year effects were treated as nuisance.
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Figure 3: Estimated relative change (log scale) per county between year 2000 and year 2020 (upper panels) and from the first and
second decade (lower panels) for the three models with spatio-temporal interactions. Inset plots show show uncertainty via the smallest
change within 95% confidence intervals. Counties for which confidence intervals overlap 0 are shown in grey. Random year effects were
treated as nuisance in upper panels but included in lower panel estimates.

7



20
00

−
20

20
Mss

Msd Mds

log(index)

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8

Figure 4: Estimated relative change (log scale) from 2000 to 2020 across a grid for the three models with spatio-temporal interactions.Inset
plots show show uncertainty via the smallest change within 95% confidence intervals, with grey representing points where confidence
intervals overlap zero. Random year effects were treated as nuisance.
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Figure 5: Estimated index from 2000 to 2020 across a latitudinal gradient for the three models with spatio-temporal interactions, using
the first year as the reference. Borders around squares indicate that 95% confidence intervals for change relative to year 2000 include 0.
Random year effects were treated as nuisance.
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Figure 6: Estimated annual growth rates from 2000 to 2020 across a latitudinal gradient for the three models with spatio-temporal
interactions. Borders around squares indicate that 95% confidence intervals of growth rates include 0. Random year effects were treated
as nuisance.

3.4 Population density
The above indices have all been local, contrasting population
size over an area to population size in the same area but
another time point or period. Information about how abun-
dance is distributed across space is then lost. Visualising this
information (Fig. 7) shows that the high densities in the north
of Sweden have been replaced by high densities in the central
and south-eastern parts of Sweden.

4 Discussion
The general definition of abundance indices across space and
time presented here relies on aggregating abundance through
sums of weighted model predictions. The aggregations may be
done at small or large spatial scales, and at short or long time
scales, to highlight different features of population change.
Annual population indices for birds produced from spatio-
temporal models (Harrison et al., 2014; Sauer & Link, 2011),
as well as annual indices from data with seasonal structure,
similar to official indices derived from butterfly counts (Dennis
et al., 2013), are included under this definition. The approach
however also extends to comparisons across space, such as
comparing population densities or totals across over space and
time as illustrated in the case study (Fig. 7).

The population indices could be computed from a wide class
of models fitted to survey data. For GAMs, models can include
seasonal and/or spatial and spatio-temporal non-linear compo-
nents (Bürkner, 2018; Pedersen et al., 2019; Wood, 2017). For
insect data collected annually over the season, tensor product
terms of seasonal curves interacting with year could be used
to accommodate changes in phenology over time, or models
with seasonal curves as smooth random effects could be used
to incorporate variability in insect emergence among years.
Models could alternatively have trends that vary by habitat
types (Newson et al., 2009), across environmental gradients,
or have combinations of geographical and environmental com-
ponents. Indices could also be computed from fits of model
types other than GAMs, e.g. from spatial and spatio-temporal
random effects models (Vanhatalo et al., 2017), or from mod-
els estimated by machine learning approaches (Smith et al.,

2019).
The indices are computed by aggregating weighted pre-

dicted abundances across space and/or time. To estimate
uncertainty for these non-linear transformations of linear pre-
dictors, one can use a matrix of predictions whose rows cor-
respond to prediction points and whose columns represent
uncertainty via random draws. The random draws can be sim-
ulations from the posterior predictive distribution of Bayesian
models, or randomised representations of uncertainty of fre-
quentist models (Fewster et al., 2000; Wood, 2006). Some
care is required in the computation of the weighted sums,
particularly when log-links are used, as sums of exponential
terms are sensitive to numerical overflow. Computations han-
dling these issues are implemented in the spotr package for
mgcv and brms models, or for a matrix of random predictions
representing uncertainty.

Using weighted predictions to estimate indices can be seen
as a variant of post-stratification, a technique to adjust esti-
mates of population level quantities from unbalanced samples
(Anganuzzi & Buckland, 1993). With this technique, predic-
tions are weighted and averaged after fitting to correct for the
sample imbalance. In our case study, data are more sparse in
the northern parts of Sweden, particularly in the first years
of the survey program. This imbalance, could potentially
lead to biased trends. Post-stratifying by allowing trends to
vary geographically, then using prediction across a spatially
representative grid can lead to more accurate estimates. How-
ever, while our models suggest differences in trends between
northern and southern Sweden, we found little difference in
national scale indices between models allowing spatial vari-
ation and a model assuming identical relative change across
space. Indicating that geographical imbalance is not a main
issue for the cuckoo indices.

The connection to post-stratification could potentially be
taken further than considered here using ideas behind multi-
level regression with post-stratification (Gelman & Little, 1997)
for inference from samples lacking a proper sampling design
(Boyd et al., 2023). In the context of estimating indices from
unbalanced data, this approach could use a set of factors that
are thought to affect trends and are measured at sampled sites
and whose total amount are known across the target area.
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Figure 7: Estimated population density per county for year 2000, 2010 and 2020 relative to overall density in 2000. Estimates are based
on model Mss, random year effects were treated as nuisance.

These could be included in models using random effects and
smoothing to deal with small sample sizes, and corrected at
the aggregate level via weights (Authier et al., 2021). Factors
could for example be habitat and land-use types, including
temporal changes in such variables. As with most techniques
to adjust for imbalance, the success of such an approach to
correct for imbalance hinges on important factors affecting
species trends being identified and measured (Anganuzzi &
Buckland, 1993; Conn et al., 2015), and is not a replacement
for careful sampling design.

The increased flexibility of spatio-temporal models com-
pared to models assuming static trends across space opens
up for the possibility of more accurately capturing popula-
tion change and makes it possible to estimate local change at
higher resolution (Harrison et al., 2014). However, as sam-
ple size decreases at smaller spatial scales, there is a greater
risk of noise being mistaken for signal and for bias due local
sampling inconsistencies. I.e. generally larger contributions of
stochastic events affecting estimates and stronger sensitivity to
model assumptions. The extent of improvements gained from
spatio-temporal models will therefore depend on the ability
of models to capture the true spatial structure of variation
in population change. An important component in analysis
is therefore to assess that models can reasonably capture im-
portant features of the data. Strategies for checking models
used to produce abundance indices has received fairly little
attention in the literature. A perfectly well fitting model is
usually hard to achieve for large data sets, as seen in the case
study, but not all lack of fit will have consequences for derived
indices. Future research could focus on identifying what model
assumptions are most crucial for estimating reliable indices
under specific circumstances, and develop targeted checks of
such assumption.

4.1 Conclusions
Many types of indices of absolute or relative population abun-
dances, or of biodiversity, can be formed from weighted sums
of predictions from spatio-temporal abundance models. Im-
portantly, indices at small scales can form an evidence base
for local population and biodiversity management and conser-
vation actions. At these local scales data are usually limited
and it is too costly to carry out local monitoring with suffi-
cient precision. The model based approach uses information
throughout the study area to improve precision. The success
of this hinges on model assumptions being reasonably accurate,
but if well specified, spatio-temporal models could mitigate
some of the sparseness of local data. Future work could look
into the gains in precision at local scales that spatio-temporal
models can provide under various scenarios, and what types
of models best provide them.
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