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Abstract  11 

Social media platforms have emerged as a promising source of data for biodiversity monitoring, 12 

due to the vast amounts of user-generated visual content. However, the unstructured and noisy 13 

nature of social media data poses challenges for accurate species identification. Foundation 14 

vision models present an innovative methodology for identifying a large diversity of species from 15 

photographs, however, they are yet to be robustly tested on messy social media data. This 16 

study explores the utility of foundation vision models in identifying species from social media 17 

images, focusing on charismatic species such as lions, cheetahs, and gorillas. We manually 18 

labeled a dataset of images from Flickr, taken in zoos across the United States, to establish a 19 

ground truth for species presence. We evaluated the performance of three models: (i) CLIP with 20 

binary prompts ("species name is present/species name is not present"), (ii) a categorical model 21 

with common object categories (e.g., “plant,” "building," "vehicle," and "expected species 22 

name"), and (iii) BioCLIP, a fine-tuned version of CLIP designed specifically for species 23 

identification. Our analysis revealed that the binary presence/absence model struggled with the 24 

noisy social media data, leading to low accuracy. The categorical model showed an 25 

improvement in true positive rates but continued to produce a large number of false positives. 26 

BioCLIP, while not achieving the highest accuracy, demonstrated superior performance in 27 

minimizing false positives, which is crucial for biodiversity monitoring where incorrect detections 28 
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can have significant consequences. Precision-recall analysis using presence-only data indicates 29 

their potential in real-world applications where presence detection is prioritized. Our findings 30 

suggest that foundation vision models show promise for scaling biodiversity monitoring through 31 

social media data. 32 

 33 

Introduction 34 

Biodiversity monitoring is crucial for understanding trends and drivers of biodiversity change, 35 

identifying effective conservation measures, and assessing progress toward global conservation 36 

targets, yet significant taxonomic, spatial, and temporal gaps hinder these efforts despite 37 

ongoing international commitments (Kühl et al., 2020). To increase our capacity to identify and 38 

record species sightings, there is a need for scalable approaches that overcome the limitations 39 

of traditional biodiversity surveying methods which are time-intensive even across smaller 40 

spatial-temporal scales (Schmeller et al., 2017). One such promising avenue is the growing 41 

interest in harnessing the vast amounts of visual data available through citizen-sourced image 42 

collections from social media websites, such as Flickr and Instagram (Ghermandi et al., 2023; 43 

Schirpke et al., 2023). Social media posts can be a useful indication of species sightings, adding 44 

to our understanding of their spatial-temporal distributions and patterns, including endangered, 45 

invasive, and migratory species (Allain, 2019; Barve, 2014; Fox et al., 2020; Hartmann et al., 46 

2022; Jeawak et al., 2018; Sbragaglia et al., 2022). However, leveraging social media data for 47 

validating species sightings poses several challenges, particularly in terms of data quality and 48 

reliability. 49 

 50 

Social media images,  shared by users globally at high temporal resolution, present a unique 51 

opportunity to track species' presence across diverse geographic regions and timeframes. One 52 

of the primary challenges is the inherent messiness of social media data (Fox et al., 2020). 53 

Unlike citizen-sourced biodiversity datasets such as iNaturalist, where contributors often follow 54 
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specific protocols for identifying species to research-grade observations (Campbell et al., 2023; 55 

Di Cecco et al., 2021), social media posts are generally unstructured and lack validated species 56 

identification. Vague or incomplete descriptions may accompany images on platforms like Flickr, 57 

and the associated metadata, such as tags or titles, may not accurately reflect the content of the 58 

image (Barve, 2014; Fox et al., 2020).  59 

 60 

Previous studies have often assumed that the presence of a species name in textual metadata 61 

is indicative of positive sightings; however, the lack of reliability in social media text identification 62 

means that without further validation, self-reported species identifications may be false positive 63 

sightings (Johnston et al., 2023). Often species validations of social media data rely on the 64 

manual inspection of images to confirm the presence of the intended species (Allain, 2019). 65 

However, manual validation is rarely feasible due to the vast size of social media datasets 66 

(Schirpke et al., 2021). The use of computer vision (CV), a branch of machine learning where 67 

computers can recognize and label objects in images, may allow for rapid and automatic 68 

identification of species from within images (August et al., 2020).  69 

 70 

CV models can accurately detect species from photographs, across the diverse taxa of flora to 71 

fauna (Wäldchen & Mäder, 2018; Weinstein, 2018). Many of the current CV models for species 72 

identification are supervised learning models, which are built using labeled photographs of 73 

species to train the model (Weinstein, 2018). However, building accurate CV models requires a 74 

large labeled dataset of example images for each species, which may not be readily available 75 

(Fernandes et al., 2020). Furthermore, CV models are often fine-tuned to identify a single 76 

species, several species, or specific geographic contexts (Weinstein, 2018). With the vast 77 

amount of species across diverse geographic contexts captured in social media imagery, it is 78 
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unlikely that the application of supervised learning models will be transformative in providing 79 

rapid validation of species from social media. 80 

 81 

Given these challenges, the use of foundation vision models may increase our capacity for 82 

species identification from social media images. Foundation models are those in which a model 83 

is trained on diverse data, allowing it to be applied across a wide range of use cases (Li et al., 84 

2024). For CV tasks, the innovative CLIP (Contrastive Language-Image Pretraining) model is a 85 

machine-learning model developed by OpenAI that can understand images and text together 86 

(Radford et al., 2021). These models can generalize across various tasks, including species 87 

identification, without requiring task-specific fine-tuning. Fine-tuning is a process where a pre-88 

trained model is further trained on a specific, often smaller, dataset (i.e., images of tigers) to 89 

enhance it for more specialized tasks while retaining the general knowledge acquired during the 90 

initial training. The key feature of CLIP is its ability to work in a zero-shot manner, meaning it 91 

can make predictions on tasks it was not explicitly trained for by leveraging its understanding of 92 

language. For example, it can classify images based on text prompts like "a photo of a tiger" 93 

without having been trained on a specific dataset of tiger photos. In benchmarking tests, the 94 

CLIP model outperformed other CV models in identifying certain taxa such as birds and flowers 95 

(Radford et al., 2021). 96 

 97 

Though CLIP is a robust tool for identifying certain species, its general training and 98 

benchmarking, which were aimed at a variety of tasks all within specific contexts, may not 99 

generalize effectively to the identification of other species (Radford et al., 2021). To improve the 100 

potential shortcomings of CLIP for species identification, the BioCLIP model was trained 101 

specifically for species identification (Stevens et al., 2024). Leveraging the same underlying 102 

architecture as CLIP, BioCLIP has been trained on a vast dataset that includes over 450,000 103 

species, enabling it to accurately recognize and classify various plants, animals, and other 104 
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organisms from images. This specialized training makes BioCLIP particularly effective for tasks 105 

involving identifying species in complex, real-world scenarios that might extend to social media 106 

images. By combining the flexibility of CLIP with domain-specific knowledge, BioCLIP offers a 107 

powerful tool for ecological research, conservation efforts, and biodiversity data analysis. 108 

BioCLIP’s benchmarking tests saw significant improvements in species identifications compared 109 

to other CV models (Stevens et al., 2024). 110 

 111 

Though both CLIP and BioCLIP have previously demonstrated robust methods for species 112 

identification, the effectiveness of these models in handling the unique challenges posed by 113 

social media data has yet to be tested and remains an open question. This study, therefore, 114 

aims to assess the utility of foundation vision models for species identification in social media 115 

images. By comparing the performance of three different models: CLIP with binary prompts, 116 

CLIP with categorical prompts, and BioCLIP, we seek to determine which approach offers the 117 

best balance of accuracy and reliability for identifying species from social media images. 118 

 119 

Methods 120 

Dataset Collection 121 

For this study, we selected a dataset of images from Flickr, a popular social media platform 122 

where users frequently share photos of wildlife. To ensure a focused analysis, we limited our 123 

selection to images taken in zoos across the United States (Fig. 1). We used the photosearcher 124 

R package (Fox et al., 2020) to return all Flickr images from within the footprints of zoos within 125 

the US taken from OpenStreetMap (OpenStreetMap, 2024). We then extracted any of the 126 

images that contained taxa common names within the photographs' titles, descriptions, or tags. 127 

Our final list of assessed species included two big cats (lion and cheetah), two primates (gorilla, 128 
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orangutan), three birds (flamingo, ostrich, penguin), one bear (polar bear), and one marsupial 129 

(koala). 130 

 131 

Figure 1. Overview of methods: data collection from Flickr API using a zoo boundary shapefile 132 

and filtering results by a target species name, manual and computer vision model labeling of 133 

species presence in photographs, and comparing human and AI labels. 134 

 135 

We opted to use images taken in zoos as our primary dataset due to the unique combination of 136 

expected and challenging conditions they present. Zoos are environments where the presence 137 

of certain species is highly likely, making them a controlled setting for assessing model 138 

performance. However, zoo images also tend to be messy, reflecting real-world challenges such 139 

as incorrect species tagging, the inclusion of multiple species in a single image, images of 140 

people, features of their captivity that may obscure them (e.g., behind cages or glass), and the 141 

potential for images of non-biological subjects (e.g., zoo signage, buildings) to be mislabeled 142 

with animal names (Fox et al., 2020; Kulkarni & Di Minin, 2023; Spooner & Stride, 2021). This 143 

mix of expected species presence and inherent data noise provides a robust test for the model's 144 

ability to accurately identify species in unstructured social media data. 145 

 146 

The species selected for this study were chosen to represent a diverse range of taxa, thereby 147 

allowing us to assess the generalizability of the foundation vision models. This cross-taxa 148 
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selection is crucial for evaluating whether the models can reliably identify species beyond a 149 

narrow taxonomic focus. Furthermore, due to the biases in what species citizens choose to 150 

upload to Flickr (Marshall & Strine, 2019), these species were chosen due to their widespread 151 

recognition and the likelihood of being featured in both images and associated text 152 

(Mangachena & Pickering, 2023; Tenkanen et al., 2017). This provided a reliable test-bed of 153 

accurate species tags, which are often lacking in social media content, for testing these 154 

foundational models. 155 

 156 

Manual Labeling Process 157 

To establish a ground truth for the presence or absence of the targeted species in each image, 158 

we manually labeled the dataset. For each of the selected taxa, if the species name was 159 

mentioned in the textual metadata, we visually assessed the photograph for that taxa. We then 160 

labeled the images as present or absent for that taxa. Most taxa were identified to the species 161 

level; however, we note that where the searched taxa do not belong to one specific species 162 

(e.g. gorilla, flamingo, and penguin), here were only manually identified to the higher taxonomic 163 

level (e.g. family, or genus).  164 

 165 

To establish a reliable ground truth for the presence or absence of the target species in the 166 

images, we employed a two-step validation process. In the first step, one author conducted the 167 

initial labeling of each image. In the second step, a second author verified these labels 168 

independently. If discrepancies were identified during the verification process, the image would 169 

be re-evaluated jointly to reach a consensus. However, in this study, there was complete 170 

agreement between the two authors, with no discrepancies found. This approach was 171 

complemented by the use of predefined criteria for species identification, focusing on distinctive 172 

morphological characteristics and contextual cues. Although inter-rater reliability metrics like 173 

Cohen’s kappa were not applicable due to the nature of the process, the two-step confirmation 174 
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method ensured a robust and accurate labeled dataset, which served as the ground truth for 175 

evaluating the computer vision models. 176 

 177 

If there was no visual identification of the taxa, the image was labeled as not containing that 178 

species. This manual labeling process was critical for evaluating the accuracy of the foundation 179 

vision models used in the study. Whilst manually labeling the images, we also noted frequent 180 

objects in images where a species was mentioned but not present (e.g. a photo of a building). 181 

We used these false sightings to inform the categorical model's candidate labels. 182 

 183 

Foundation Vision Models 184 

We evaluated three foundation vision models for their effectiveness in identifying species from 185 

the labeled images. Specifically, we use the clip-vit-large-patch14 zero-shot-image-classification 186 

mode through the ‘transformers’ Python library (Wolf et al., 2020), and BioCLIP 187 

TreeOfLifeClassifier through the pybioclip Python library (Bradley et al., 2024). We used the 188 

following methodologies to test the foundation vision model's ability to identify species: 189 

1. CLIP with Binary Prompts: The first model we used was CLIP (Contrastive Language–190 

Image Pretraining), a versatile vision-language model. For each image, we applied 191 

binary prompts, such as "lion is present" and "lion is not present," to determine the 192 

likelihood of the target species being present in the image. This method leveraged 193 

CLIP's ability to match textual descriptions with visual content. 194 

2. Categorical Model: The second model applied a set of predefined categories, including, 195 

"animal," "plant," "landscape," "human," "vehicle," "building," "object," "food," "drink," 196 

"art," and then the specific species, e.g. "lion."  These labels were informed from the 197 

manual labeling process in which the authors noted objects that often appeared in 198 

misstaged photographs. This model was designed to identify whether an image could be 199 
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categorized as containing a specific object, such as buildings, a generic plant or animal 200 

that was not the target species, or the specific species we were after. This approach 201 

allowed us to test the model's ability to differentiate between broader categories and our 202 

specific species. 203 

3. BioCLIP: The third model, BioCLIP, is a fine-tuned version of CLIP, specifically adapted 204 

for species identification. As BioCLIP can only identify taxa, and not additional 205 

categories, such as buildings, we employed its open-ended model to return the most 206 

likely species present in the image. 207 

Evaluation Metric 208 

To compare the performance of the three models, we calculated true positives, false positives, 209 

true negatives, and false negatives. True positives represented instances where the model 210 

correctly identified the presence of the species, while false positives indicated cases where the 211 

model incorrectly identified the species as present. Conversely, true negatives and false 212 

negatives reflected the model's accuracy in identifying images where the species was absent. 213 

These metrics provided a comprehensive overview of each model's strengths and weaknesses 214 

in handling unstructured data from social media. When evaluating the model accuracy, we only 215 

expected the AI to match the same taxonomic rank as the human label. For example, with CLIP, 216 

we prompted it to label “flamingo” without specifying a subspecies such as the lesser flamingo, 217 

while with BioCLIP, the identification of any of the six recognized flamingo species was 218 

accepted as a match. To visualize model agreement and disagreement between the best two 219 

models, we aggregated prediction results for nine species using two models: CLIP Categorical 220 
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and BioCLIP. Binary predictions were compared to human-labeled presence/absence to 221 

calculate agreement and disagreement across all species. 222 

 223 

Precision-Recall Analysis Using Presence Data Only 224 

To focus on the models' ability to detect the presence of species in noisy, real-world social 225 

media images, we calculated the precision-recall using the subset of data labeled as 'present' 226 

(i.e., cases where a species was actually present in the image). This was done to better assess 227 

the models' performance in detecting species presence, aligning with real-world conservation 228 

tasks where the detection of presence is critical for monitoring endangered or invasive species. 229 

By limiting the analysis to presence data, we minimized the influence of absent cases that could 230 

otherwise inflate precision and skew the interpretation of model performance. 231 

 232 

For each model, we extracted the confidence scores associated with the species presence 233 

predictions. Precision-recall curves were generated by plotting precision (the proportion of true 234 

positive predictions among all positive predictions) against recall (the proportion of true positives 235 

among all actual positives) at different confidence thresholds. The Average Precision (AP) score 236 

was calculated as a summary metric, representing the area under the precision-recall curve.  237 

 238 

Results 239 

In total, we collected and labeled a dataset comprising 13,230 images from Flickr. Among these, 240 

the lion was the most common species, with 6,150 images, followed by flamingos with 1,589 241 

images, and penguins with 1,113 images. The CLIP Binary model showed an average accuracy 242 

of 52.96% with a standard deviation of 14.90%, indicating higher variability in performance 243 
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across species (Table. 1). The Clip Categorical model, on the other hand, achieved the highest 244 

average accuracy of 91.13% with a lower standard deviation of 4.18%, reflecting consistently 245 

high performance with minimal variability. BioCLIP demonstrated a moderate average accuracy 246 

of 74.70% and a standard deviation of 10.32%, suggesting a balanced but variable performance 247 

across different species. 248 

 249 

Table 1. Overall Model Accuracies Per Species 250 

Species CLIP Binary Clip Categorical BioCLIP 

Cheetah 52.8% 96.4% 79.73% 

Flamingo 35.05% 92.01% 85.08% 

Gorilla 55.23% 93.60% 56.20% 

Koala 53.30% 87.74% 81.13% 

Lion 42.70% 93.54% 89.22% 

Orangutan 64.00% 96.55% 61.38% 

Ostrich 67.45% 87.26% 75.94% 

Penguin 28.21% 89.67% 67.65% 

Polar bear 77.92% 83.44% 75.97% 

The CLIP Categorical model is the best performer in terms of overall accuracy, particularly 251 

excelling in species like cheetahs and lions. However, this comes at the cost of a higher number 252 

of false positives (Figure 2), which can introduce noise into datasets when used for large-scale 253 

biodiversity monitoring. On the other hand, BioCLIP, while not achieving the highest overall 254 
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accuracy, excels in minimizing false positives, making it particularly valuable when precision in 255 

species identification is critical. The binary model consistently underperformed relative to the 256 
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other two models, highlighting its limitations in dealing with the complexities of social media 257 

images. 258 

 259 

Figure 2. True positives, false positives, true negatives, and false negatives of the three model 260 

types (CLIP with binary prompts, CLIP with categorical prompts, and BioCLIP) across each 261 

species. 262 

 263 

The CLIP Binary model, which utilized simple presence/absence prompts, exhibited significant 264 

variability in performance across different species. The model's highest accuracy was observed 265 
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in the ostrich category at 67.5%, where it correctly identified 129 true positives and maintained 266 

relatively low false positive counts (16 FP). However, the model struggled considerably with 267 

species like penguins, where it achieved an accuracy of only 28.2%, marked by a large number 268 

of false negatives (753 FN) and false positives (46 FP). Overall, the binary model showed 269 

limited effectiveness, particularly in handling the noisy and diverse nature of social media data, 270 

resulting in generally lower accuracy across most species. 271 

 272 

The categorical model, which categorized images into broader groups like "animal" and specific 273 

species names, emerged as the most accurate overall. This model achieved the highest 274 

accuracy for species like cheetah, with an impressive 96.4% accuracy, supported by 548 true 275 

positives and a relatively low count of false negatives (12 FN). Similarly, lion identification also 276 

performed well, with an accuracy of 93.5%, indicating strong reliability in identifying this species 277 

across a large dataset. However, despite its higher overall accuracy, the model still exhibited a 278 

higher number of false positives, particularly in more ambiguous categories. For example, 279 

penguin identification, while achieving 89.7% accuracy, still suffered from 104 false negatives, 280 

indicating that the model's broader categorizations sometimes led to overgeneralization. 281 

 282 

BioCLIP, the fine-tuned model specifically designed for species identification, showed a 283 

balanced but slightly lower overall accuracy compared to the Clip Categorical model, with its 284 

best performance in minimizing false positives. For example, flamingo identification yielded an 285 

accuracy of 85.1%, with only 8 false positives—significantly fewer than those observed in the 286 

categorical model. However, BioCLIP's overall accuracy for species like lions was 89.2%, 287 

slightly lower than the categorical model, but it had a much lower false positive count (17 FP), 288 

highlighting its strength in reducing incorrect identifications. Gorilla identification showed one of 289 
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the lower performances for BioCLIP, with an accuracy of 56.2%, yet it still outperformed the 290 

binary model by maintaining a low number of false positives. 291 

 292 

Model Agreement 293 

The aggregated results between BioCLIP and the CLIP Categorical model revealed strong 294 

agreement (Fig. 3), with 5289 true positives (both models predicting "Present") and 4337 true 295 

negatives (both predicting "Absent"). However, disagreements were observed primarily in false 296 

negatives, where BioCLIP predicted: "Absent" while CLIP Categorical predicted "Present" (2670 297 

cases). False positives were less frequent, with 797 instances of "Present" being predicted by 298 

CLIP Categorical while labeled "Absent" by human annotations. The models showed minimal 299 

disagreement in negative predictions, with zero cases where BioCLIP predicted "Present" while 300 
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CLIP Categorical predicted "Absent." These results highlight the overall consistency between 301 

the models while emphasizing the need to improve sensitivity for detecting true positives. 302 

 303 

 304 

Figure 3. Aggregated heatmap showing model agreement and disagreement between CLIP 305 

Categorical and BioCLIP predictions across all species. Rows represent human-labeled 306 

presence or absence, while columns show agreement/disagreement categories for the models. 307 

Counts in each cell indicate the number of predictions for each combination, highlighting strong 308 

agreement in true positives and true negatives and discrepancies in false negatives and false 309 

positives. 310 

 311 

Precision-Recall Analysis Using Presence Data Only 312 

The evaluation of the three models—CLIP Binary, CLIP Categorical, and BioCLIP—across nine 313 

species revealed notable performance differences in handling presence detection using social 314 
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media data (Fig. 4). Overall, the CLIP Categorical model consistently achieved the highest 315 

average precision (AP) scores, excelling with species like lion (AP = 0.82), penguin (AP = 0.92), 316 

and Cheetah (AP = 0.99). Its broader categorical classification approach proved highly effective 317 

for general species detection tasks. The BioCLIP model, while specifically designed for species-318 

level identification, showed strong performance in species like ostrich (AP = 0.93) and flamingo 319 

(AP = 0.91), yet demonstrated variability in precision across species due to inconsistent 320 

confidence calibration at higher recall levels. In contrast, the CLIP Binary model struggled 321 
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overall, particularly with more challenging species like gorilla (AP = 0.67) and Lion (AP = 0.35), 322 

highlighting its limitations in binary presence detection. 323 

 324 

Figure 4. Precision-Recall Analysis Using Presence Data Only 325 

 326 

Interestingly, while the precision-recall curves indicated strong performance for species like 327 

orangutan, where both CLIP Categorical and BioCLIP models achieved near-perfect curves (AP 328 

= 0.99), this did not always translate into high overall accuracy scores. For example, despite the 329 
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near-perfect precision-recall curves for identifying orangutans, the CLIP Binary model had an 330 

overall accuracy of only 64%. This discrepancy arises from the difference between the metrics: 331 

precision-recall curves focus on evaluating a model’s ability to correctly identify positive cases 332 

(i.e., species presence), which is especially useful in datasets where absent cases dominate. In 333 

contrast, accuracy reflects the proportion of all correct predictions (both presence and absence), 334 

making it more sensitive to errors in detecting absent cases. 335 

 336 

Discussion 337 

Foundation vision models such as CLIP and BioCLIP provide scalable solutions for significantly 338 

enhancing species identification from large social media image datasets. The relatively high 339 

accuracy, coupled with fast run times, offers a substantial advantage over traditional methods 340 

that are often labor-intensive and geographically constrained (Ghermandi et al., 2023; Schirpke 341 

et al., 2023). Data from social media may therefore be particularly valuable in expanding the 342 

coverage of species monitoring efforts to under-represented regions, potentially filling critical 343 

gaps in data availability (Soriano-Redondo et al., 2024; Toivonen et al., 2019). These validated 344 

sightings from social media can then be used for more nuanced biodiversity assessments 345 

including shifting ranges due to climate change, monitoring migratory patterns, assessing the 346 

spread of invasive species, tracking illegal wildlife trade, and understanding public sentiment 347 

towards wildlife (Allain, 2019; Cardoso et al., 2024; Mancini et al., 2019; Sbragaglia et al., 348 

2022). 349 

 350 

Our comparative analysis of the three models (CLIP with binary prompts, CLIP with categorical 351 

prompts, and BioCLIP) reveals important insights into their relative strengths and weaknesses. 352 

Though it may be expected that foundation models, such as CLIP, may be better suited to 353 

simple binary classifications (Shen et al., 2021), our binary presence/absence model was the 354 

least accurate in species identification. That said, the model was accurate for some species, 355 
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demonstrating that a simple binary classification may be useful in some species or 356 

environmental contexts. By designing categorical prompts based on other expected objects, our 357 

categorical model showed improved performance compared to the binary model. With the 358 

known context of likely objects in the photograph set, effective prompt designs can help to 359 

improve the model accuracy (Wang et al., 2023). Our findings suggest that the categorical 360 

model is generally the best choice for maximizing true positives and overall accuracy. 361 

 362 

BioCLIP, which is specifically fine-tuned for species identification, demonstrated the highest 363 

reliability in minimizing false positives. This is of particular importance given that false-positive 364 

observations in biodiversity monitoring can be more consequential than false negatives (Groom 365 

& Whild, 2017). Although BioCLIP did not achieve the highest overall accuracy, its accuracy in 366 

reducing incorrect identifications suggests that it may be the most suitable option for 367 

automatically generating "validated" datasets. It is important to note that BioCLIP’s focus on 368 

species identification means it may still generate false positives in images that do not contain 369 

biological subjects, such as buildings or vehicles. This limitation underscores the need for robust 370 

filtering and validation of social media data for ecological studies (Fox et al., 2021).  BioCLIP’s 371 

strength in minimizing false positives makes it a valuable tool in contexts where accuracy is 372 

prioritized over broad coverage. The choice of model should therefore be guided by the specific 373 

requirements of the study, whether the emphasis is on maximizing correct identifications or 374 

minimizing false positives. 375 

 376 

The models' high precision-recall scores for species indicate that they are quite effective at 377 

identifying the species when present. However, the overall accuracy is affected by 378 

misclassifications in "absent" cases. For instance, a model might perform well in identifying 379 

"present" cases but struggle with predicting the correct "absent" labels, leading to lower 380 

accuracy despite high AP scores. This discrepancy is especially apparent in datasets where a 381 
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substantial imbalance exists, with many more "absent" labels than "present" ones. Thus, while 382 

precision-recall curves provide a nuanced view of species detection capabilities, especially for 383 

conservation-focused tasks where presence detection is prioritized, accuracy scores reveal 384 

potential pitfalls in overall classification robustness. 385 

 386 

Using both the CLIP Categorical and BioCLIP models in tandem enables the generation of 387 

highly accurate presence and absence datasets where their predictions align, reducing the need 388 

for extensive manual validation. Disagreement between the models highlights areas that require 389 

human intervention, ensuring that critical errors are addressed efficiently. This dual-model 390 

approach strikes a balance between automation and precision, minimizing the manual effort 391 

required while maximizing the reliability of the final dataset. By leveraging model agreement for 392 

validation and targeted human input for resolving discrepancies, this method offers a scalable 393 

solution for large biodiversity datasets. 394 

 395 

Despite the promise of these models, it is also important to acknowledge the limitations and 396 

biases within the data and models, particularly regarding the quality and reliability of social 397 

media data. Though here we attempted to capture a range of taxa, due to the biases in social 398 

media uploads representing a small number of taxa (Edwards et al., 2021), our photographs 399 

from zoos mainly captured charismatic mammals and bird species. Furthermore, these models 400 

may not accurately identify the diversity of species in the range of image contexts encountered 401 

in real-world applications. For instance, though BioCLIP can identify over 450,000 species 402 

(Stevens et al., 2024), this does not fully capture the vast number of species on Earth (Wiens, 403 

2023). Future efforts should, therefore, enhance our understanding of the accuracy of using 404 
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foundation vision models to label harder-to-identify species, such as rare or similar-looking 405 

species. 406 

 407 

Given these limitations, foundation vision models must be viewed as complementary tools 408 

rather than replacements for traditional manual identification and expert-verified datasets 409 

(Toivonen et al., 2019). The integration of these models with traditional data sources can help 410 

mitigate biases and enhance the overall quality and utility of biodiversity data. While the 411 

scalability and global reach of these models are clear, their true value lies in their ability to 412 

complement, rather than replace, existing biodiversity monitoring systems (Soriano-Redondo et 413 

al., 2024). Traditional datasets, including those derived from citizen science platforms like 414 

iNaturalist, provide structured, high-quality data that is critical for accurate species identification. 415 

By integrating social media and foundation vision models with these traditional datasets, 416 

researchers can enhance the breadth and depth of biodiversity data, leading to more 417 

comprehensive and informed conservation strategies. 418 

 419 

One of the most promising opportunities is the ability to capture a broader range of species 420 

observations at a much finer temporal and spatial resolution than traditional methods alone can 421 

achieve (Fox et al., 2024). Social media platforms, with their vast user base, generate an 422 

ongoing stream of biodiversity observations that are often geotagged and timestamped. This 423 

continuous stream of data can fill crucial gaps in traditional datasets, especially in regions where 424 

formal surveys are scarce or where resources for fieldwork are limited. By leveraging foundation 425 

vision models to process this influx of unstructured social media data, researchers can rapidly 426 
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identify new species occurrences and compare them with historical ecological datasets to detect 427 

shifts in species distributions and patterns (Fox & Van Berkel, 2024). 428 

 429 

Moreover, the integration of these diverse data sources enables a more holistic understanding 430 

of ecosystems, extending beyond species presence to include behavioral insights that might not 431 

be captured in conventional surveys. For example, social media posts can reveal nuanced 432 

patterns of species interactions, such as predator-prey dynamics or seasonal changes (August 433 

et al., 2020; Tuia et al., 2022). By aligning these insights with the structured, high-quality data 434 

from traditional surveys, researchers can develop a more nuanced, multi-layered approach to 435 

conservation planning. Ultimately, this synergy not only accelerates biodiversity assessments 436 

but also strengthens the scientific foundation for adaptive management strategies that are 437 

essential in the face of rapid environmental changes (Fox et al., 2024; Toivonen et al., 2019). 438 

 439 

Conclusions 440 

Foundation vision models such as CLIP and BioCLIP offer a promising avenue for advancing 441 

biodiversity monitoring, particularly when integrated with traditional datasets. To create a more 442 

holistic approach, the automated processing of social media images should be used in 443 

conjunction with other biodiversity monitoring methods and datasets. While BioCLIP appears to 444 

offer the best solution to reducing false negative sightings in noisy image datasets from social 445 

media, researchers must consider the specific context and requirements of their studies when 446 

selecting whether a foundation vision model is suitable for their research, and where possible, 447 

complement the use of these models with manual validation or additional dataset filtering to 448 

enhance accuracy. 449 

 450 
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