
1 

Title: The molecular evolutionary basis of species formation revisited 1 

 2 

Megan E. Frayer1, Nemo V. Robles2,3, María José Rodríguez-Barrera2,4, Jenn M. Coughlan¹*, 3 

and Molly Schumer2,3,5* 4 

 5 
1 Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United 6 

States  7 
2 Department of Biology, Stanford University 8 
3 Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C. 9 
4 Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de 10 

México 11 
5 Freeman Hrabowski Fellow, Howard Hughes Medical Institute 12 

 13 

*Co-supervised this work 14 

*Correspondence: schumer@stanford.edu (M. Schumer) 15 

 16 

Keywords 17 

Hybrid; Reproductive Isolation; Genetic incompatibility; Intragenomic conflict; Introgression 18 

 19 

Abstract  20 

How do new species arise? This is among the most fundamental questions in evolutionary 21 

biology. The first genetic model for how reproductive barriers leads to the origin of new species 22 

was proposed nearly 90 years ago. However, empirical evidence for the genetic mechanisms that 23 

cause reproductive barriers took many decades to accumulate. In 2010, Presgraves presented a 24 

comprehensive review of the literature on known “speciation genes” and the possible evolutionary 25 

mechanisms through which they arose. Fifteen years later, with an explosion of studies that include 26 

both non-model and model organisms, the number of known incompatibility genes has increased 27 

~7 fold. Here, we synthesize previous and new empirical examples to investigate the genetic 28 

mechanisms through which intrinsic incompatibilities arise and highlight current gaps in our 29 

understanding. 30 

  31 
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Main Text  32 

 33 

Introduction  34 

  35 

 Evolutionary biologists have long been fascinated by the immense diversity of species and 36 

the mechanisms through which they form [1]. While many distinct mechanisms contribute to 37 

reproductive barriers between emerging species, including sexual and ecological selection on 38 

hybrids [2–5], there has been special interest in understanding genetic barriers (see Glossary) that 39 

prevent successful reproduction, perhaps because these barriers are viewed as “irreversible” when 40 

they are sufficiently strong [6]. Early work in evolutionary biology predicted that genetic barriers 41 

between species would arise via distinct genetic changes in each lineage [7–9]. The “Dobzhansky-42 

Müller” (DMI) model of hybrid incompatibility predicts that neutral or adaptive substitutions that 43 

accumulate between diverging species may interact improperly in hybrids (Fig. 1), leading to 44 

reduced viability and fertility. While the general predictions of this model have been well 45 

supported by decades of genetic crosses in myriad species, only in recent years have the genes 46 

underlying these interactions and the mechanisms through which they evolve come into focus, 47 

aided by rapid technological advances. Work in the first decade of the 21st century focused on 48 

classical lab models with exceptional genetic tools including Drosophila, Arabidopsis, and 49 

Saccharomyces (reviewed in [6]), but advances in genomic tools for non-model species have 50 

enabled the discovery of hybrid incompatibilities in diverse taxa. Here, we review how the past 15 51 

years of speciation research has led to a richer understanding of the potential mechanisms through 52 

which new species evolve, and deepened our knowledge of how incompatible alleles accumulate. 53 
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In addition, our review sheds light on how incompatibilities act in naturally hybridizing species 54 

and highlights key knowledge gaps. 55 

 56 

What we knew about “Speciation Genes” and what we know today  57 

 58 

 In his seminal 2010 paper "The molecular evolutionary basis of species formation", 59 

Presgraves described all known genes involved in hybrid incompatibilities and outlined the first 60 

clues about how these incompatibilities arise based on empirical data (for theoretical predictions 61 

see [8–10]). Here, we revisit this work with a particular emphasis on incompatibility genes that 62 

have been identified since 2010. We focus our search on hybrid incompatibilities that act 63 

“intrinsically,” meaning that these incompatibilities cause hybrid dysfunction regardless of the 64 

environment (but see [2]). Using both broad and targeted literature searches, we are able to identify 65 

99 incompatibilities where at least one of the genes involved has been precisely identified (Table 66 

1; see table legend for a description of our methodology). This large dataset allows us to begin to 67 

explore broad patterns in the data, while keeping in mind the many factors that impact DMI 68 

discovery and characterization.  69 

 One of the most striking differences when comparing our catalog of incompatibilities to 70 

the genes reported by Presgraves is a major expansion in the species in which hybrid 71 

incompatibilities have been identified (Fig. 2). Early work necessarily relied on species with 72 

exceptionally powerful genetic toolkits. While Drosophila and Arabidopsis continue to be 73 

overrepresented among organisms with precisely mapped hybrid incompatibilities, there has been 74 

substantial progress in mapping incompatibilities in less traditional models over the last decade. 75 

Table 1 includes 27 genera (13 of which include domesticated lineages; Fig. 2A), as opposed to 76 
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the 7 genera with mapped incompatibilities known in 2010 (3 of which included domesticated 77 

lineages and were excluded from Presgraves’s table). However, certain groups are notably 78 

underrepresented, including vertebrates, where only seven incompatibilities have been mapped in 79 

any species (Table 1).  80 

Similarly, Table 1 covers a wider breadth of molecular mechanisms and phenotypes. Genes 81 

involved in molecular processes from meiotic recombination to developmental patterning to adult 82 

pigmentation have been shown to cause hybrid incompatibility (Table 1). These diverse molecular 83 

functions are consistent with predictions of theoretical models that any interacting pair of genes 84 

could become involved in hybrid incompatibilities [11]. Despite this diversity, Table 1 features 85 

several instances where related genes have been implicated in incompatibility across different 86 

species. For example, researchers have found repeated involvement of RPP genes in hybrid 87 

necrosis in plants (Table 1). These observations raise the exciting possibility that the rate at which 88 

hybrid incompatibilities evolve could differ across genes or pathways. However, it is also likely 89 

that these observations are interconnected, with researchers more likely to prioritize 90 

incompatibilities that are known in other systems. Moreover, biases may stem from the systems in 91 

which incompatibility is most heavily studied– such as crop plants, which have undergone 92 

domestication. 93 

 94 

A new understanding of genic drivers of incompatibility 95 

An expanded knowledge of the genes involved in hybrid incompatibilities allows us to 96 

revisit hypotheses outlined by Presgraves [6] about the mechanisms that drive the evolution of 97 

incompatibilities. In the majority of cases where hybrid incompatibilities have been precisely 98 

mapped (Table 1), researchers have identified protein coding genes as the causal factors underlying 99 
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hybrid incompatibilities. Rapid evolution at the amino acid sequence level that disrupts protein-100 

protein interactions appears to be the molecular cause of many of the known hybrid 101 

incompatibilities (e.g. [12–15]), and there are some documented cases of amino acid substitutions 102 

altering RNA-protein interactions [16]. In other cases, both evolved changes in expression and 103 

amino acid changes underlie hybrid incompatibility phenotypes. For example, in hybrids between 104 

swordtail fish species dysfunctional interactions between Xmrk and its repressors can cause 105 

melanoma [17]. Follow up work using cell culture experiments showed that both overexpression 106 

of the xmrk repressor cd97 and amino acid changes in its sequence contribute to melanoma 107 

phenotypes in cell culture [18]. In several cases in Table 1, the causative variant is structural. This 108 

is the case for so-called “presence-absence variants”, where duplication and reciprocal loss of a 109 

gene makes it possible for hybrids to inherit no functional copies [19–21,17,22]. 110 

Even with the massive progress reflected in Table 1, there are still relatively few studies 111 

that have successfully identified which mutations or regulatory changes lead to incompatibility. 112 

Interrogating these patterns is a high priority research area. An expanded knowledge of the 113 

mutations underlying incompatible interactions is not only important for our understanding of what 114 

types of evolutionary changes are more likely to lead to reproductive isolation, but can also greatly 115 

inform modeling efforts investigating the accumulation of incompatibility alleles (i.e. via the 116 

snowball effect or other processes; [23]), inferring the importance of evolutionary history in the 117 

emergence of hybrid incompatibilities, and determining how alleles interact at a molecular level 118 

to cause hybrid dysfunction.  119 

 120 
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Non-genic components of speciation  121 

 In addition to major progress in identifying new protein-coding genes involved in hybrid 122 

incompatibilities, research over the past decade has dramatically expanded our understanding of 123 

hybrid incompatibilities which are not driven by genes (Table 1; [24]). These mechanisms include 124 

structural changes in the genome that cause meiotic dysfunction, issues with inheritance of 125 

epigenetic modifications, or global perturbations to the gene regulatory landscape that cause hybrid 126 

dysfunction.  127 

Our earliest understanding of the genetic basis of hybrid sterility came from broad scale 128 

differences in genome structure [25]. Karyotype differences contribute to reproductive isolation 129 

between many species, and are among the best understood incompatibilities in species that are not 130 

genetically tractable (e.g. muntjac deer; [26]). Karyotype differences generally lead to hybrid 131 

sterility when hybrids are unable to properly sort their chromosomes during meiosis. Similarly, 132 

extremely high levels of genetic divergence between chromosomes can impact success in crossing 133 

over during meiosis ([27,28]; Box 1).  Structural changes, such as translocations, also play a crucial 134 

role in hybrid sterility due to failed pairing and meiosis in many plant lineages [29] and have been 135 

linked to hybrid incompatibility through a number of mechanisms. See [30–32] for several 136 

excellent reviews on this topic.  137 

In addition to structural factors, other types of non-genic elements have been implicated in 138 

hybrid incompatibilities. Several families of transposable elements (TEs) have been linked to 139 

hybrid dysfunction in Drosophila [33–36]. For example, the copy number of P-elements 140 

significantly influences the frequency of hybrid dysgenesis [36,37]. Hybridization could also lead 141 

to genome-wide transposable element (TE) deregulation, called “genomic shock” [38]. 142 

Associations between general TE misregulation and hybrid dysfunction have been observed in 143 
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Drosophila [36,39] and Caenorhabditis elegans [40]. Hybrid-specific misregulation of TEs has 144 

been reported in diverse taxa [41–45]. However, others have found limited evidence of TE 145 

misregulation in hybrids [46,47] or misregulation with no clear impacts on hybrid fitness [48]. 146 

Other non-genic elements such as satellite DNA (long tandem repeats found in 147 

heterochromatin regions) and non-coding RNAs play an important role in hybrid incompatibilities. 148 

In hybrids between Drosophila melanogaster and D. simulans, the mh allele from D. simulans, 149 

which typically regulates satellite DNA, interferes with the function of satellite DNA 359bp 150 

inherited from D. melanogaster, leading to disrupted genome integrity and female infertility [49]. 151 

Satellite DNA is often highly differentiated even between closely related species, although this 152 

does not always result in an incompatibility [50]. Non-coding RNAs play diverse mechanistic 153 

roles, including regulating gene expression, chromatin remodeling, and suppressing transposable 154 

elements, among others [51], and have been implicated in several hybrid incompatibilities. For 155 

example, seeds produced by crosses of multiple Capsella species are inviable due to a lack of 156 

maternally deposited siRNAs in the endosperm, which leads to abnormal gene regulation and 157 

ultimately developmental failure [52]. Some of the genes that are targeted by siRNAs have 158 

previously been identified as incompatibility genes in other systems (such as PHE1 in Arabidopsis; 159 

[53]), and a similar process may also lead to hybrid seed failure in Solanum [54] and Oryza [55]. 160 

Since non-coding RNAs tend to evolve rapidly but retain their functional importance [56], they 161 

may fall into a class of elements that are mechanistically likely to become involved in hybrid 162 

incompatibilities.  163 

Together, this work highlights the immense diversity of mechanisms through which hybrid 164 

incompatibilities can evolve. While the importance of non-genic hybrid incompatibilities has been 165 

appreciated since the inception of the field [57,58], and was discussed by Presgraves in 2010, 166 
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newly mapped non-genic incompatibilities are emerging as important mechanisms underlying 167 

incompatibility in the decade since, expanding the simple two-locus model originally proposed by 168 

both Dobzhansky and Müller. 169 

 170 

Genetic architecture of speciation and its consequences for evolutionary outcomes  171 

 172 

While understanding genetic interactions and their breakdown in hybrids is an interesting 173 

question in its own right, the increase in mapped incompatibilities allows us to begin to evaluate 174 

questions about both their mechanistic drivers and their evolutionary consequences. Here, we 175 

connect what we have learned from newly identified hybrid incompatibilities to classic 176 

evolutionary theory.  177 

 178 

Symmetry and Complex Incompatibilities 179 

 Classic theoretical work made two major predictions about the architecture of 180 

incompatibilities. First, under a model of neutral evolution, researchers predicted that 181 

incompatibilities would be “asymmetrical,” meaning that only one of the mismatched two-locus 182 

genotype combinations is expected to experience selection [59]. Although some incompatibilities 183 

fit this asymmetrical model (e.g. Overdrive; [60]), in many empirical cases, hybrid 184 

incompatibilities act “symmetrically,” meaning that selection acts on both mismatched two-locus 185 

genotypes. Symmetrical incompatibility can arise through coevolution driving multiple 186 

substitutions in interacting genes [61,62]. While these differences in genetic architecture may seem 187 

subtle, they can have profound impacts on how genetic incompatibilities act after hybridization. 188 

With asymmetrical incompatibilities, hybridization tends to lead to a loss of genetic isolation 189 
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between species as a result of the compatible genotype combination spreading [21,63]. By contrast, 190 

symmetrical incompatibilities act as strong barriers to hybridization because all heterospecific two 191 

locus genotype combinations experience selection.  192 

Similarly, theoretical models predicted that hybrid incompatibilities are likely to be 193 

“complex”, meaning that they are expected to involve more than two interacting genes [11]. The 194 

intuition behind these theoretical models is that complex incompatibilities can evolve through 195 

more mutational paths that avoid low-fitness genotypic combinations. However, complex genetic 196 

interactions are notoriously difficult to detect and incompatibilities involving three or more genes 197 

are extremely rare in the empirical literature. Despite this, progress has been made in identifying 198 

[64] and mapping [14,65] complex incompatibilities, primarily in model organisms where large 199 

screens are possible. In some cases, complexity has been added to previously known 200 

incompatibilities. Bladen and colleagues [65] recently uncovered additional complexity in the 201 

Hmr-Lhr-gfzf incompatibility in Drosophila [66,67], mapping a novel locus in D. sechellia known 202 

as Sechellia aversion to hybrid rescue (Satyr). Similarly, work by Moran et al. [14] identified a 203 

novel example of a complex hybrid incompatibility in Xiphophorus (Fig. 4). F2 hybrids carrying 204 

X. birchmanni nuclear ancestry at ndufa13 and nufs5 and X. malinche mitochondrial ancestry are 205 

inviable. While this interaction initially appears to be the product of two simple incompatibilities 206 

with the mitochondrial genomes, Moran and colleagues found that harboring even one mismatched 207 

ndufs5 allele sensitizes F2 fish to the ndufa13 incompatibility. This is a subtle three-way interaction 208 

that was only detectable because it was possible to generate nearly 1,000 hybrids in the laboratory. 209 

This highlights the difficulty of addressing this question in the current literature: while the fact that 210 

few complex incompatibilities have been identified in any species could hint that they are less 211 

common than theoretical models predict, it is equally likely that the technical issues impacting 212 
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their detection obscure their importance. Since it is challenging for even large experiments to have 213 

power to detect complex hybrid incompatibilities, progress in this area will likely require the 214 

development of new computational or experimental tools ([68]; See Box 2).  215 

 216 

Snowball Theory  217 

The rate at which two diverging lineages become fully reproductively isolated depends on 218 

how quickly they accumulate hybrid incompatibilities. While classic theoretical work predicts the 219 

presence of a “snowball” effect, where the number of genetic incompatibilities grows non-linearly 220 

with genome-wide genetic divergence between lineages [11], only a handful of studies have 221 

evaluated this empirically [81–83]. More recent work has suggested a snowball effect might not 222 

be expected under certain models of speciation [84,85] or certain models of gene interaction [23]. 223 

For example, a gene at the center of a highly connected gene network may be more prone to 224 

incompatible interactions, whereas modularity may reduce the opportunity for incompatibilities 225 

[23]. Moreover, to our knowledge, no similar theoretical work has been performed for the strength 226 

of selection on genetic interactions, which is arguably an equally important factor for 227 

understanding the emergence of new species. As a result, we are still very much in the dark about 228 

how the genetic architecture of incompatibilities scales with genetic divergence, with crucial 229 

implications for how quickly new species are expected to become isolated. 230 

 231 

The evolutionary forces that drive speciation  232 

 233 

Almost since the inception of the field, evolutionary biologists have searched for common 234 

mechanisms that drive the emergence of barriers to hybridization. Even in the decades when 235 
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empirical work on the genetic mechanisms of reproductive isolation was limited, theoretical and 236 

narrative predictions about the potential drivers of this process flourished and were heatedly 237 

debated [86–89]. With dozens more empirical cases in hand (Table 1), we can begin to evaluate 238 

some of these predictions.  239 

 240 

“Classic” models for the evolution of incompatibility 241 

Much of the classic speciation theory supposes that incompatibility loci fix as a result of 242 

genetic drift [90]. However, only a handful of incompatibility alleles to date clearly support this 243 

“neutral” model. Several incompatibilities caused by gene duplication are consistent with a model 244 

of neutral evolution [19,20,91,92]. In contrast, some of the best studied genes involved in hybrid 245 

incompatibilities exhibit elevated rates of molecular evolution, such as Prdm9, which is one of the 246 

most rapidly-evolving genes in many vertebrate genomes [93,94]. The importance of rapid 247 

evolution as a driver of hybrid incompatibilities has been apparent for decades [6,95], with verbal 248 

models for their evolution highlighting the importance of evolutionary arms races such as 249 

intragenomic conflicts and host-pathogen co-evolution. Evidence for the importance of these 250 

evolutionary forces has only strengthened with 15 additional years of research, with “selfish 251 

genetic elements” and “host-pathogen coevolution” being the two most common mechanisms 252 

proposed by authors as drivers of the evolution of the incompatibilities listed in Table 1 (Fig. 2B). 253 

Given its clear importance, there have been many excellent and in-depth reviews on the role of 254 

genetic conflict in driving hybrid incompatibility and other genomic processes [96–99]. However, 255 

despite empirical evidence of the importance of these processes, to our knowledge, they have yet 256 

to be integrated into theoretical models of hybrid incompatibilities, presenting an important (and 257 

addressable) knowledge gap for the field.   258 
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Another classic model for the evolution of hybrid incompatibilities is the evolution of 259 

incompatibility as a byproduct of substitutions driven by divergent ecological selection [90]. This 260 

model has a long and contentious history in speciation biology [100,101]. The most direct evidence 261 

that ecological divergence can lead to the accumulation of hybrid incompatibilities comes from 262 

experimental evolution in yeast and Drosophila [102–105]. However, empirical evidence of this 263 

process in nature is scarce and the degree to which adaptation drives the accumulation of intrinsic 264 

incompatibilities in nature is still poorly understood. Examples include strong hybrid 265 

incompatibilities between closely related populations adapted to different environments [106,107], 266 

and hybrid breakdown associated with dysfunctional metabolism [108,109]. Nonetheless, since 267 

we lack knowledge of the precise genes or mechanisms involved in these cases, it remains 268 

challenging to distinguish whether ecological divergence is directly responsible for the 269 

accumulation of incompatibility alleles versus scenarios of hitchhiking or linkage disequilibrium 270 

[29,110,111].  271 

 272 

Gene networks, complexity, and developmental mechanisms 273 

 While earlier studies reviewing genes involved in hybrid incompatibilities recognized the 274 

importance of compensatory evolution, insights from systems biology have led to new models for 275 

how incompatibilities might arise since Presgraves 2010. Developmental systems drift describes 276 

observations inspired by gene regulatory networks, where evolving biological systems can remain 277 

functionally ‘equivalent’ but have diverged in their underlying structure [68,112,113]. Theoretical 278 

work on this topic supports the inference that even biological systems under strong stabilizing 279 

selection can lead to the rapid evolution of incompatibility [114], and that this outcome is 280 

particularly likely in models of complex gene regulatory networks with functional redundancy. 281 
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Importantly, the developmental systems drift model does not require any form of adaptive 282 

divergence or genetic conflict within parental lineages for hybrids to experience strong selection. 283 

Studies over the past decade have highlighted the prevalence of gene expression misregulation in 284 

hybrids [113,115,116] and divergence in the genetic architecture of seemingly identical 285 

phenotypes among related species [117], both of which are predicted under a systems drift model 286 

(we note that gene misregulation does not necessarily derive directly from incompatibilities; 287 

[115]). More direct evidence has come from new empirical studies that have documented hybrid 288 

incompatibilities arising in conserved developmental pathways. In a pair of papers, Chang et al. 289 

[117,118] show that two highly conserved transcription factors that play the same developmental 290 

role across Drosophila species cause severe developmental incompatibilities in hybrids (Fig. 5) 291 

These results provide exciting empirical evidence for developmental systems drift in action, and 292 

its link to developmental dysfunction in hybrids.  293 

 294 

Underappreciated evolutionary mechanisms: balancing selection and past introgression 295 

 Recent work has revealed evolutionary mechanisms that can lead to the emergence of 296 

hybrid incompatibilities that were not predicted by previous conceptual or theoretical models: 297 

balancing selection and introgression. Ancient balancing selection in yeasts has maintained a 298 

polymorphism in the ability to grow rapidly in galactose-rich environments (as opposed to glucose-299 

rich environments), driven by three loci involved in galactose metabolism. When alleles from 300 

galactose- and glucose-adapted strains are introduced to each other in hybrids, certain 301 

combinations result in severe growth defects. In natural populations, the identity of the three loci 302 

matches the environmental condition (e.g. galactose alleles found in isolates from dairy-rich 303 

environments), and the two versions of the alleles themselves appear to be millions of years old 304 
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[119]. This suggests that ancient balancing selection has maintained functionally distinct sets of 305 

co-adapted alleles that result in incompatibility when combined in the same genetic background. 306 

Similar mechanisms may underlie some hybrid necrosis phenotypes in plants: NB-LRR proteins 307 

that are activated in immune responses to pathogens often harbor high levels of polymorphism, 308 

presumably driven by balancing selection that maintains alleles contributing to immunity [97,120]; 309 

Table 1). Beyond these specific examples, a large body of work has highlighted the importance of 310 

polymorphic hybrid incompatibilities [121]. These observations could be consistent with an 311 

underappreciated role of balancing selection in the maintenance of hybrid incompatibilities, or 312 

simply indicate that these variants are on their way to fixation or loss via natural selection or 313 

genetic drift. 314 

Historically, researchers have predicted that hybridization between species should erode 315 

genetic incompatibilities. Although much theory and some empirical work support this hypothesis 316 

[122–124], a growing body of work suggests that hybridization can lead to complex patterns of 317 

reproductive isolation and potentially move alleles involved in incompatibilities between species. 318 

For example, recent work in Xiphophorus found that alleles involved in an incompatibility between 319 

X. malinche and X. birchmanni have introgressed from X. malinche into a third species, X. cortezi. 320 

Crosses between X. birchmanni and X. cortezi suggest that these introgressed alleles could be 321 

causing a phenotypically similar incompatibility in this species pair [125]. Similarly in Mimulus, 322 

patterns of organelle capture from the outcrossing M. cardinalis into selfing M. parishii may have 323 

facilitated cytoplasmic male sterility between M. parishii and a third species– M. lewisii [126]. 324 

Lastly, horizontal gene transfer of a toxin-antidote system among distantly related 325 

Caenorhabditis species has seemingly facilitated ongoing incompatibility within C. briggsae [40]. 326 

Together, this highlights the potential for past hybridization and gene transfer events to impact the 327 
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present-day distribution of hybrid incompatibilities between species and adds substantial 328 

complexity to our understanding of the evolution of hybrid incompatibilities. We speculate that in 329 

the case of both balancing selection and introgression, the increased genetic divergence between 330 

interacting genes (either driven by ancient balancing selection or movement of genes from a 331 

divergent lineage) may be contributing to incompatibility. We predict that these mechanisms may 332 

be common beyond the highlighted case studies, with major implications for our understanding of 333 

the evolution of reproductive isolation. Understanding when introgression leads to the 334 

maintenance, erasure, or transfer of incompatibility alleles will require significant strides in both 335 

theory and empirical works. This will also be aided by a greater understanding of how 336 

incompatibility genes behave in nature (see Box 3).  337 

  338 

Evolutionary idiosyncrasies: patterns, processes and reading the phylogenetic tea leaves 339 

With a rapid increase in the number of mapped hybrid incompatibilities, we have an 340 

opportunity to ask whether the mechanisms that drive the evolution of incompatibilities are shared 341 

across the branches of the tree of life. At first glance, it appears that the evolutionary mechanisms 342 

that underlie incompatibilities may vary across kingdoms, with coevolution with satellite DNA 343 

being especially common in Drosophila and host-pathogen coevolution remarkably common in 344 

plants, to name a few patterns that immediately emerge from our analysis (Fig. 2B). Furthermore, 345 

several cases where the same genes repeatedly become involved in hybrid incompatibilities may 346 

be driven by these common evolutionary pressures. For example, almost all incidences of hybrid 347 

necrosis across diverse plant species involve nucleotide-binding domain and leucine-rich repeat 348 

(NLR) genes [97].  349 
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It is important to note, however, that these discoveries do not occur in isolation. Each new 350 

mapped incompatibility spurs research into the consequences of particular genetic mechanisms, 351 

especially in closely related species. This makes unraveling phylogenetic patterns particularly 352 

challenging. However, we can look to examples where a particular mechanism has been 353 

investigated across diverse taxa. As one example, motivated by compelling evidence of the links 354 

between TE misregulation and hybrid dysgenesis in Drosophila, studies in several systems have 355 

found evidence for changes in TE regulation in hybrids, but few have found evidence that this is 356 

linked to lower viability or fertility in hybrids [36], suggesting that this mechanism may be 357 

somewhat lineage specific. By contrast, cytonuclear incompatibilities appear to be quite common 358 

across taxa and may represent a common evolutionary mechanism for the emergence of 359 

incompatibilities. Moreover, the convergent evolution of genomic imprinting in mammals and 360 

angiosperms could explain the seemingly parallel patterns of parent-of-origin growth defects 361 

underlying early onset hybrid inviability in these taxa [134]. Overall, the variance in mechanisms 362 

across systems highlights how little is known in general about the degree to which the evolutionary 363 

drivers of hybrid incompatibilities are shared versus lineage specific. 364 

 365 

Concluding Remarks  366 

 367 

 Despite substantial progress in the past 15 years in identifying the genes underlying hybrid 368 

incompatibilities and the mechanisms through which they evolve, many outstanding questions 369 

remain (Box 4). With dozens of newly mapped hybrid incompatibilities, we find that several 370 

mechanisms previously synthesized by Presgraves [6] and others [135,136], such as intragenomic 371 

conflicts, remain an important force in the evolution of hybrid incompatibilities. However, we also 372 
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highlight new evolutionary scenarios that may play fundamental roles in the evolution of 373 

incompatibilities, including developmental systems drift, balancing selection, and introgression. 374 

Although we are now amassing some empirical examples of these processes, the relative 375 

importance of these evolutionary drivers remains unknown. In Box 2, we highlight new and 376 

promising approaches to begin to pursue these fundamental questions. Moreover, there is an urgent 377 

need to revisit classic theoretical models of how hybrid incompatibilities evolve in light of current 378 

empirical results and newer models for the evolution of hybrid incompatibility.  379 

 380 

Box 1. Recombination, Sequence Divergence, and Isolation  381 

Successful meiosis requires that a precursor cell accurately sorts one copy of each of its 382 

chromosomes into the future gametes. Pairing of homologous chromosomes is a crucial step in 383 

this process. If the paired chromosomes are too dissimilar, “anti-recombination” mechanisms can 384 

prevent crossing over and halt segregation, generally initiated by mismatch repair proteins 385 

ensuring homology [137]. While this mechanism typically prevents rare errors where non-386 

homologous chromosomes pair during meiosis, a similar process may also come into play in 387 

hybrids. Specifically, if the two chromosomes that need to pair come from deeply diverged species, 388 

this may trigger anti-recombination pathways in nearly every meiosis, ultimately resulting in 389 

hybrid sterility. 390 

This mechanism of reproductive isolation has been observed in yeast (Fig. 3). Early studies 391 

in yeast showed that the mismatch-repair system plays a key role in several instances of hybrid 392 

sterility between species [137] and between divergent lineages [138]. Hybrids of Saccharomyces 393 

cerevisiae and S. paradoxus, which exhibit ~12% sequence divergence, experience dysfunctional 394 

chromosomal segregation and high rates of aneuploidy [139]. Among S. paradoxus strains, even 395 
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relatively low levels of sequence divergence (1.4%) result in increased rates of spore inviability 396 

due to activation of anti-recombination mechanisms [139]. The suppression of mismatch-repair 397 

during meiosis rescues hybrid fertility, confirming the role of anti-recombination mechanisms in 398 

reproductive isolation between these species. While several mismatch repair genes have been 399 

implicated in this process (e.g. MHS2 and SGS1), the underlying genetic divergence between the 400 

sequences plays a key role in meiotic failure and hybrid sterility [28]. 401 

 Meiotic problems impacting chromosome pairing tend to be observed in species with 402 

extraordinary levels of genetic divergence at the nucleotide level, and the degree to which similar 403 

mechanisms may impact fertility in species with less extreme genetic divergence is unclear. That 404 

said, sequence divergence at the binding sites of Prdm9, which specifies the locations of meiotic 405 

double strand breaks in mammals and some other vertebrates, also drives hybrid sterility in mice 406 

through distinct mechanisms [140,141]. This suggests that there may be multiple ways in which 407 

recombination interacts with sequence divergence to impact successful meiosis, and future work 408 

may uncover further links between recombination and hybrid sterility.  409 

 410 

Box 2: Promising new computational and experimental approaches  411 

A major barrier to progress in research on hybrid incompatibilities is the high cost and 412 

labor of identifying causative genes. As one example, the interacting partner of Xmrk in hybrids 413 

between X. maculatus and X. hellerii took ~30 years to be identified [69]. Some recent 414 

experimental work has taken advantage of a combination of natural hybrids and admixture 415 

mapping approaches with lab-generated hybrids to combine the precision of mapping in the lab 416 

with the shorter ancestry tracts found in late generation hybrids [14,17]. However, few systems in 417 

which we can genetically map incompatibility in the lab also have active hybrid zones, precluding 418 
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this possibility for many research groups. We propose that an exciting possibility could come from 419 

adapting methods from other fields. For example, researchers focused on mapping the interactome 420 

have developed high-throughput and sensitive approaches to detect epistasis in cell lines [70]. 421 

Since it is increasingly possible to generate cell lines from non-model species [71,72], this 422 

approach could be accessible to many researchers, and could even be combined with a reciprocal 423 

hemizygosity test in F1 cell lines [73]. We note, however, that it would only allow researchers to 424 

assay a limited number of phenotypes. In cases where phenotypes associated with incompatibilities 425 

are known, other approaches such as targeted or single cell RNAseq, have allowed researchers to 426 

identify genes that are expressed or coexpressed in cell types of interest [74,75].  427 

In addition to these experimental challenges, scans for hybrid incompatibilities notoriously 428 

suffer from low power because of the immense number of statistical tests required [76], but 429 

methodological advances have been slow. Most methods, including those developed by our 430 

groups, are underpowered and have high false positive rates (e.g. [77]). Researchers have used 431 

several effective approaches to improve power, such as first identifying segregation distortion in 432 

controlled crosses, and then performing scans for loci that interact with the distorter [14]. However, 433 

in a recent study we found that even with ~1800 hybrids, we only had power to detect segregation 434 

distorters that reduced survival by at least 30% [78], highlighting the likely presence of many 435 

biologically relevant incompatibilities that fall below the detection thresholds of most studies. 436 

Applications of new approaches from human genetics such as network-informed mapping [79] or 437 

machine learning approaches to identify signals in genetic data that have not been the focus of 438 

population genetic models could further improve power [80]. Progress in either experimental or 439 

computational tools could fuel major shifts in the field. 440 

 441 
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Box 3. Reproductive isolation in the wild  442 

One major shortcoming of the current literature is a limited understanding of how hybrid 443 

incompatibilities are exposed in nature and the ways in which they act to impact reproductive 444 

isolation in the wild. Because the vast majority of hybrid incompatibilities have been identified in 445 

species that do not naturally hybridize (Table 1), it is impossible to evaluate their action in natural 446 

populations. The few exceptions - including mice, Mimulus, and swordtails - have yielded mixed 447 

results. Recently, Frayer and Payseur reported that most loci involved in reproductive 448 

incompatibility in mice do not prevent gene flow in natural hybrids [127]. By contrast, work in 449 

swordtails has indicated strong selection against mitonuclear incompatibilities and hybrid 450 

melanoma in wild populations, often resulting in changes in ancestry around these loci [128,129]. 451 

In hybrids between Mimulus guttatus and M. nasutus, some alleles show reductions in 452 

introgression in nature, while others do not [21,130,131]. 453 

An additional complexity is the growing realization that reproductive isolation is highly 454 

polymorphic in nature. While patterns of local ancestry in replicated hybrid zones are very 455 

consistent in some species [129], in other species pairs local ancestry patterns are highly variable 456 

[132]. While some of these patterns are likely driven by extrinsic factors, they could also reflect 457 

the outcomes of polymorphism in the underlying loci involved in hybrid incompatibilities. Indeed, 458 

many of the genes in Table 1 are polymorphic within their respective species. Just as asymmetric 459 

incompatibilities may be more likely to be removed by strong selection against hybrids (see section 460 

“Symmetry and Complexity”), an incompatible allele that is polymorphic within a population may 461 

also be easily removed by selection. 462 

More broadly, we highlight that the way that incompatibility alleles act in naturally 463 

hybridizing species may be more complex than has long been anticipated [122,123,133]. 464 
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Expanding our understanding of genetic incompatibilities in naturally hybridizing species and 465 

determining how frequently and under what conditions they play a role in preventing genetic 466 

exchange between species in nature should be a major priority for future work. 467 

 468 

Glossary 469 

❖ Arms race: The continuous co-evolution of genetic elements that experience antagonistic 470 

evolution, typically through intragenomic conflict or host-pathogen conflict. 471 

❖ Asymmetrical incompatibilities: Genetic incompatibilities in which only one hybrid 472 

genotype exhibits reduced fitness (i.e. AAbb or aaBB).  473 

❖ Balancing selection: When natural selection acts to maintain multiple alleles in a 474 

population. 475 

❖ Complex incompatibilities: Hybrid incompatibilities involving more than two interacting 476 

genes or genomic regions. 477 

❖ Developmental systems drift: A process by which the underlying genic structure of a 478 

phenotype evolves, while the phenotype itself remains relatively unchanged. Typically, 479 

this is conceptualized by a trait under stabilizing selection, with mutations shifting fitness 480 

away from the optima, with subsequent selection for compensatory mutations that move 481 

the population back towards the optima.  482 

❖ Dobzhansky-Müller model of hybrid incompatibilities (DMI): A model to explain the 483 

evolution of intrinsic postzygotic reproductive isolation, by which populations diverge at 484 

two or more loci. While each new allele is neutral or increases fitness in the background in 485 

which it has evolved, combining these alleles in hybrids can result in dysfunction.  486 

❖ Fitness: The ability of an organism to survive to maturity and reproduce. 487 
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❖ Genetic barriers: Genetic factors that prevent successful mating within or between 488 

populations.  489 

❖ Genomic Imprinting: Gene expression that exhibits a parent-of-origin specific bias; 490 

typically caused by epigenetic modifications which preferentially silence expression of one 491 

parental copy of an allele. 492 

❖ Hitchhiking: The process by which a neutral allele increases in frequency due to selection 493 

on a nearby allele.  494 

❖ Hybrid dysgenesis: A phenotypic syndrome described in hybrids that includes reduced 495 

fertility and mal-formed reproductive organs. In described cases, this is typically caused 496 

by overactivity of transposable elements in hybrids.  497 

❖ Hybrid Necrosis: A suite of stress-related phenotypes that are the outcome of immune 498 

system overactivation. This includes cell death (necrosis) and stunted growth (dwarfism). 499 

❖ Intragenomic conflict: Co-evolution among genes within a genome caused by 500 

antagonistic natural selection, typically arising at different levels of selection. Examples 501 

include chromosomes that exhibit meiotic drive, or transposable elements and their 502 

respective repressors. 503 

❖ Introgression: The incorporation of genetic material from one lineage into another through 504 

hybridization. 505 

❖ Linkage disequilibrium: The statistical non-independence of alleles at different loci. This 506 

can be caused by physical proximity (i.e. linkage), non-random mating, or natural selection 507 

maintaining associations between two or more loci.   508 

❖ Presence-Absence variants: A structural variant in which individuals vary in the presence 509 

or absence of a genomic region.  510 
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❖ Speciation genes: Genes associated with a hybrid incompatibility that play a role in 511 

reproductive barriers between species.  512 

❖ Symmetrical incompatibilities: Genetic incompatibilities in which reciprocal hybrid 513 

genotypes both exhibit reduced fitness (i.e. both AAbb and aaBB genotypes). 514 

❖ Toxin-antidote systems: A specific form of intragenomic conflict wherein “killer” 515 

gametes evolve an antidote and poison, the latter of which serves to incapacitate gametes 516 

that do not produce the antidote. 517 

 518 

 519 
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Figure 1. Illustration of different evolutionary mechanisms that can contribute to the evolution of 839 

hybrid incompatibilities (Table 1). (A) Gene Duplication in the ancestral lineage followed by 840 

differential loss of duplicate copies in the daughter lineages can result in subset of hybrids 841 

inheriting no copies of a gene, which commonly results in inviability. (B) Coevolution between 842 

interacting proteins within lineages can result in dysfunctional interactions when mismatched 843 

proteins are introduced to each other in hybrids. Example shown here corresponds to a mitonuclear 844 

incompatibility from Moran et al. [14]. (C) Developmental systems drift describes the observation 845 

that genetic pathways underlying important biological processes can diverge over evolutionary 846 

timescales, but remain functionally conserved. The example shown here is drawn from Chang et 847 

al. [118,118], where the authors found that combining different versions of conserved 848 

developmental pathways in Drosophila hybrids can result in developmental defects. This example 849 

is further discussed in Fig. 5. (D) Adaptation and sexual selection can drive the fixation of variants 850 

that differ between species, and as a byproduct of this process, these variants can become involved 851 

in hybrid incompatibilities. Evidence for this particular process is sparse. Here we show an 852 

example from Powell et al. [17] where sexual selection may be important in the evolution of a 853 

melanoma incompatibility. Spotting patterns are sexually selected in some Xiphophorus species 854 

[145] but the gene underlying these spots often causes melanoma in hybrids. (E) Evolutionary 855 

arms races between pathogens and hosts can drive genetic changes between host lineages in genes 856 

involved in pathogen response. Misregulation of these genes in hybrids has been identified as a 857 

frequent cause of hybrid necrosis in plants. Example shown here corresponds to the case described 858 

by Kruger et. al. [146].  859 
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Figure 2. Summary of results from our literature search and curation of hybrid incompatibility 862 

genes that have been precisely mapped. A) Despite recent progress, hybrid incompatibilities have 863 

been mapped in only a small subset of eukaryotic species. Shown here are results from Table 1 864 

split by taxonomic group, with the inset summarizing plant genera where incompatibilities have 865 

been mapped. These results highlight several lineages that are absent from the existing literature, 866 

including amphibians and reptiles, among many others. B) Proportion of hybrid incompatibilities 867 

that have been identified categorized by the likely mechanism that drove their evolution (see 868 

Table 1). The “Adaptation” category includes cases involving both sexual selection and 869 

ecological adaptation. We note that although we plot only one mechanism per incompatibility – 870 

the one the authors of the original work viewed as most likely – many mechanisms are not 871 

mutually exclusive and a given hybrid incompatibility may span more than one category. C) 872 

Proportion of hybrid incompatibilities classified as a function of hybrid phenotype reported. 873 

Early Life and Late Life Lethality include cases of melanoma, abnormal development, biased sex 874 

ratio, and inviability. Female and Male Sterility refers to either sterility of an individual of a 875 

given sex or sterility of the male vs female gametes in hermaphroditic plants. If sterility is 876 

present in both sexes or not specified, it is listed under “Sterility”. 877 
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Figure 3. During a typical S. cerevisiae meiosis (A), chromosomes pair with their homologs, 880 

undergo recombination, and are then sorted into haploid gametes. In about 0.15% of meioses 881 

[139], the mismatch repair system detects a lack of similarity between pairs and halts 882 

segregation, producing tetrads with aneuploid cells. In hybrids between S. cerevisiae and S. 883 

paradoxus (B), the mismatch repair system is often activated by the sequence divergence 884 

between homologous chromosomes derived from each species. This results in tetrads with 885 

aneuploid cells, and because it occurs at such a high rate, the hybrid yeast are rendered sterile.  886 
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Figure 4. A) F2 hybrid with X. malinche mitochondrial ancestry and X. birchmanni 889 

heterozygous nuclear ancestry at ndufs5 (left); F2 hybrid with X. malinche mitochondrial 890 

ancestry and X. birchmanni homozygous ancestry at ndufs5 (right; [14]). B) F2 hybrid with X. 891 

cortezi mitochondrial ancestry and X. birchmanni heterozygous nuclear ancestry at ndufs5 (left); 892 

F2 hybrid with X. cortezi mitochondrial ancestry and X. birchmanni homozygous ancestry at 893 

ndufs5 (right;[125]). Ancestry mismatch at these loci has remarkably similar consequences for 894 

phenotypes and hybrid survival in X. cortezi x X. birchmanni hybrids as in X. malinche x X. 895 

birchmanni hybrids. Individuals with mismatched ancestry at ndufs5 undergo arrested 896 

development in utero in both crosses and experience essentially 100% mortality. C) Ancient 897 

hybridization between X. malinche and X. cortezi has resulted in introgression of the 898 

mitochondria from X. malinche into X. cortezi.  899 
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Figure 5. Hybrid inviability between species from the D. melanogaster subgroup and D. santomea 902 

is caused by developmental systems drift in pathways involving essential GAP genes. A) At least 903 

3 loci control hybrid inviability between the D. melanogaster subgroup and D. santomea. The 904 

phylogeny shows a model of allelic evolution for two GAP genes that are essential for normal 905 

larval development, but cause hybrid inviability in crosses between the D. melanogaster subgroup 906 

and D. santomea (Giant and Tailless). On the left are fitness optima, illustrating that the ancestral 907 

combination of alleles existed at a fitness optimum. The developmental systems drift model 908 

predicts that changes from the fitness optima in a phenotype under stabilizing selection are restored 909 

by a compensatory mutation at another locus (we note at this time it is unknown which derived 910 

allele at Giant or Tailless were involved in compensatory mutations). Incompatibility is conferred 911 

by a three-way interaction involving a currently unidentified gene in D. santomea. B) These novel 912 

tri-locus genotypes interact negatively to cause hybrid death via abdominal ablation [117,118]. C) 913 

Image of abnormal development in D. melanogaster x D. santomea hybrids reveal a lethal 914 

abdominal ablation (photo credit to D.R. Matute). 915 
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Table 1. Compilation of known hybrid incompatibility genes, the predicted evolutionary mechanisms through which they evolved, 920 

organisms in which they occur, and associated phenotypes, if available.  Note that data in this table includes genes curated from the 921 

primary literature as well as genes listed in previous review papers [6,98,142–144]. To identify empirical examples from the literature, 922 

we searched both Google Scholar and Web of Science, using forward and reverse searches to identify potential incompatibilities. We 923 

required that each incompatibility have at least one gene that is precisely mapped and a clear connection to a postzygotic barrier 924 

phenotype to be included in our table. 925 
 926 

Gene Interaction Proposed 

Evolutionary 

Pressure 

Species Hybrid 

Phenotype 

Hybrid Genotype Molecular mechanism Refs 

Rf A. l. petraea 

mitochondrial 

genome 

selfish genetic 

elements 

Arabidopsis l. 

petraea x A. l. 

lyrata 

Male sterility F2 hybrids carrying A. l. 

petraea mitochondria and 

lacking A. l. petraea Rf.  

  [1]  

ACD6   host-pathogen 

conflict 

Arabidopsis 

thaliana 

(intraspecific) 

Hybrid 

necrosis, 

Inviability, 

Late life 

lethality 

F1 hybrids with ACD6 from 

different populations. 

ACD6 encodes a 

transmembrane ankyrin 

repeat protein, which 

modifies pattern recognition 

receptors (PRRs) and 

triggers autoimmunity. 

[2] 

DM1 (SSI4) DM2 (RPP1) host-pathogen 

conflict 

Arabidopsis 

thaliana 

(intraspecific) 

Hybrid 

necrosis, 

Inviability, 

Late life 

lethality 

Hybrids with DM2 from A. 

thaliana accession 

Landsberg erecta (Ler) 

interacts and DM1. 

  [3]  

EDS1 DM2 (RPP1) host-pathogen 

conflict 

Arabidopsis 

thaliana 

(intraspecific) 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids with DM2 from A. 

thaliana accession 

Landsberg erecta (Ler) and 

EDS1. 

  [4] 

HPA1/HPA2   neutral (gene 

duplication) 

Arabidopsis 

thaliana 

(intraspecific) 

Early life 

lethality, 

Inviability 

F2 hybrids homozygous for 

the non-functional allele at 

both loci. 

Presence-absence variant [5] 

KPOK3A, 

KPOK3C 

APOK3 selfish genetic 

elements 

Arabidopsis 

thaliana 

(intraspecific) 

Male sterility Hybrids heterozygous for the 

antidote 

Toxin (KPOK3A, KPOK3C) 

-antidote (APOK3) system 

[6,7]  

OAK   host-pathogen 

conflict 

Arabidopsis 

thaliana 

(intraspecific) 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

F1 hybrids with OAK alleles 

from different populations. 

Novel promoter region [8] 
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RFL24   selfish genetic 

elements 

Arabidopsis 

thaliana 

(intraspecific) 

Male sterility Males lacking restorer genes 

(unknown). 

  [9,10] 

RPP4/5   host-pathogen 

conflict 

Arabidopsis 

thaliana 

(intraspecific) 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

F1 hybrids with RPP4/5 

alleles from different 

populations. 

  [11]  

RPP7 RPW8/HR4 host-pathogen 

conflict 

Arabidopsis 

thaliana 

(intraspecific) 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Multiple allelic 

combinations 

Variation in the number of 

repeats in RPW8 modulates 

its ability to interact with 

RPP7. 

[12] 

SRF3 DM2 (RPP1) host-pathogen 

conflict 

Arabidopsis 

thaliana 

(intraspecific) 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids with DM2 from A. 

thaliana accession 

Landsberg erecta (Ler) and 

SF3. 

  [13]  

AGL62, 

AGL90 

  parental conflict Arabidopsis 

thaliana x A. 

arenosa 

Inviability, 

Early life 

lethality 

F1 hybrids Reduced expression of 

AGL62 and AGL90 leads to 

embryo arrest. 

[14] 

PHE1   parental conflict Arabidopsis 

thaliana x A. 

arenosa 

Inviability, 

Early life 

lethality 

F1 hybrids Maternal imprinting of 

PHE1 is disrupted. 

[15,16] 

ORF263, 

ORF193 

(atp9) 

  selfish genetic 

elements 

Brassica juncea x 

B. tournefortii 

Male sterility Hybrid males lacking 

restorer genes (unknown).  

  [17] 

ORF224, 

ORF222 

  selfish genetic 

elements 

Brassica napus 

(intraspecific) 

Male sterility Males lacking restorer genes 

(unknown). 

  [18] 

ORF14767 

(msft-1) 

  selfish genetic 

elements 

Caenorhabditis 

briggsae 

(intraspecific) 

Inviability, 

Early life 

lethality 

F2 hybrids Toxin-antidote system [19] 

sup-35 pha-1 selfish genetic 

elements 

Caenorhabditis 

elegans (Hawaii 

strain x Bristol 

strain) 

Inviability, 

Early life 

lethality 

F2 hybrids lacking pha-1. Toxin (sup-35)-antidote 

(pha-1) system 

[20] 

zeel-1 peel-1 selfish genetic 

elements 

Caenorhabditis 

elegans (Hawaii 

strain x Bristol 

strain) 

Inviability, 

Early life 

lethality 

F2 hybrids lacking zeel-1. Toxin (peel-1)-antidote 

(zeel-1) system 

[21,22] 

Cni-neib-1 (F-

box gene) 

Cbr-shls-1 

(phosphoglu-

comutase) 

host-pathogen 

conflict 

Caenorhabditis 

nigoni x C. 

briggsae 

Inviability, 

Early life 

lethality 

F1 hybrids The F-box protein degrades 

maternal and zygotic PGM 

[23]  

https://www.pnas.org/doi/full/10.1073/pnas.2418037121#bibliography
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from C. briggsae but not 

from C. nigoni. 

slow-1 grow-1 selfish genetic 

elements 

Caenorhabditis 

tropicalis 

(intraspecific) 

Inviability, 

Late life 

lethality 

Hybrids lacking grow-1 Toxin (slow-1)-antidote 

(grow-1) system 

[24] 

NPR-1 RPP5 host-pathogen 

conflict 

Capsella 

grandiflora x C. 

rubella; C. 

rubella x C. 

orientalis 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids with RPP5 from C. 

rubella and NPR1 from C. 

grandiflora or C. orientalis. 

  [25] 

ORF456 CaPPR6 selfish genetic 

elements 

Capsicum 

annuum 

(intraspecific) 

Male sterility Males lacking restorer genes   [26,27] 

ORF374, 

ORF384 

Fh3g18750, 

Fh4g20550, 

Fh7g08550 

selfish genetic 

elements 

Citrus reticulata x 

C. maxima 

Male sterility Males lacking restorer genes   [28] 

hhl   selfish genetic 

elements 

Drosophila Inviability, 

Late life 

lethality 

Hemizygous females with D. 

melanogaster X 

chromosome. 

  [29] 

hlx su(hlx)   Drosophila 

mauritiana 

females x D. 

sechellia males; 

D. mauritiana 

females x D. 

simulans males 

Inviability, 

Early life 

lethality 

Hybrids with hlx from D. 

mauritiana and recessive D. 

sechellia or D. simulans 

autosomal factors. 

  [30] 

OdsH Y 

chromosome 

heterochro-

matin 

selfish genetic 

elements 

Drosophila 

mauritiana x D. 

simulans 

Male sterility Male hybrids The D. mauritiana OdsH 

abnormally associates with 

the heterochromatic Y 

chromosome of D. simulans.  

[31] 

tmy   selfish genetic 

elements 

Drosophila 

mauritiana x D. 

simulans 

Biased sex-

ratio, Sterility, 

Early life 

lethality 

Hybrid males with tmy from 

D. simulans and lacking its 

respective suppressor 

(unknown). 

The D. simulans tmy on the 

X chromosome destroys D. 

mauritiana Y chromosome 

sperm during 

spermatogenesis. 

[32] 

tmy broadie selfish genetic 

elements 

Drosophila 

mauritiana x D. 

simulans 

Biased sex-

ratio, Early life 

lethality, Male 

sterility 

Hybrid males with tmy and 

broadie from D. simulans 

that lack the D. simulans tmy 

suppressor (unknown). 

  [32] 
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HMR LHR, gfzf, 

Satyr 

selfish genetic 

elements 

Drosophila 

melanogaster 

females x D. 

simulans males 

Inviability, 

Early life 

lethality 

F1 hybrids Overexpression of 

HMR/LHR causes extensive 

mislocalization of HMR to 

gfzf sites in interspecies 

hybrids if gfzf from D. 

simulans is present. 

[33,34] 

giant    developmental 

systems drift or 

compensatory 

evolution 

Drosophila 

melanogaster x D. 

santomea 

Inviability, 

Abnormal 

development, 

Early life 

lethality 

Hybrids with D. 

melanogaster giant. 

  [35,36] 

giant  tailless developmental 

systems drift or 

compensatory 

evolution 

Drosophila 

melanogaster x D. 

santomea 

Inviability, 

Abnormal 

development, 

Early life 

lethality 

Hybrids with D. 

melanogaster giant and 

tailless. 

  [35,36] 

mh zhr selfish genetic 

elements 

Drosophila 

melanogaster x D. 

simulans 

Inviability, 

Early life 

lethality 

Hybrids with mh from D. 

simulans and zhr from D. 

melanogaster. 

mh from D. simulans 

interferes with the function 

of satellite DNA in D. 

melanogaster. 

[37,38] 

tyr mt-TyrRS developmental 

systems drift or 

compensatory 

evolution 

Drosophila 

melanogaster x D. 

simulans 

Sterility, 

Abnormal 

development, 

Early life 

lethality 

Hybrids with tyr from D. 

simulans and mt-TyRS from 

D. melanogaster. 

  [39] 

ovd   selfish genetic 

elements 

Drosophila 

pseudoobscura 

bogotana x D. p. 

pseudoobscura 

Biased sex-

ratio, Early life 

lethality, Male 

sterility 

F1 hybrid males lacking D. 

p. bogotana Y-linked and 

autosomal suppressors. 

The Drosophila p. bogotana 

ovd and unknown co-

distorters on the X 

chromosome destroy 

Drosophila p. 

pseudoobscura Y 

chromosome sperm during 

spermatogenesis.  

[40]  

JYALPHA   neutral (gene 

duplication) 

Drosophila 

simulans x  D. 

melanogaster 

Male sterility F2 hybrids homozygous for 

the non-functional allele at 

both loci. 

Presence-absence variant [41] 

nup96  nup160 host-pathogen 

conflict 

Drosophila 

simulans x D. 

melanogaster 

Inviability, 

Early life 

lethality, 

Hemizygotes and 

homozygotes with Nup96 

and Nup160 from D. 

  [42] 
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Female 

sterility 

simulans lacking a D. 

simulans X chromosome.  

shfr     Drosophila 

simulans x D. 

melanogaster 

Biased sex-

ratio, 

Inviability, 

Early life 

lethality 

Hybrid females lacking the 

shfr gene. 

The lethality of the Shfr 

locus is temperature-

dependent.  

[43] 

dox nmy selfish genetic 

elements 

Drosophila 

simulans x D. 

sechellia; D. 

simulans x D. 

mauritiana 

Biased sex-

ratio, Early life 

lethality, Male 

sterility 

Hybrids with the dox 

distorter lacking an intact 

nmy gene. 

nmy has undergone a 

recessive loss-of-function 

mutation due to a pair of 

inverted repeats which may 

allow nmy to create siRNAs 

from a repeat-induced stem 

loop structure. 

[44] 

Gh_D11G294

9 

  host-pathogen 

conflict  

Gossypium 

hirsutum x G. 

barbadense 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids with Gh_D11G2949 

from G. barbadense and an 

unknown Le3 locus in G. 

hirsutum. 

  [45] 

GoFLA19   neutral (gene 

duplication) 

Gossypium 

hirsutum x G. 

barbadense 

Male sterility F2 hybrids  Presence-absence variant [46] 

ORF522   selfish genetic 

elements 

Helianthus 

annuus x H. 

petiolaris 

Male sterility Hybrids lacking restorer 

genes (unknown). 

  [47] 

RIN4   host-pathogen 

conflict  

Lactuca sativa x 

L. saligna 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

F2 hybrids homozygous for 

RIN4 from L. saligna 

(partner locus unknown) 

  [48] 

pTAC14   neutral (gene 

duplication) 

Mimulus guttattus 

x M. nasutus 

Inviability, 

Abnormal 

development, 

Late life 

lethality 

F2 hybrids homoozygous for 

the non-functional allele of 

pTAC14. 

Presence-absence variant [49]  

nad6 RF1, RF2 selfish genetic 

elements 

Mimulus guttatus 

x M. nasutus 

Male sterility F2 males that lack RF1 and 

RF2. 

  [50,51] 
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ORF108 M. arvensis 

mitochondrial 

genome 

selfish genetic 

elements 

Moricandia 

arvensis x 

Brassica juncea 

Male sterility Male hybrids carrying M. 

arvensis mitochondria. 

  [52]  

Kcnq1 cluster, 

Phlda2, Ascl2 

  parental conflict Mus m. 

domesticus x M. 

spretus 

Inviability, 

Abnormal 

development, 

Late life 

lethality 

F1 hybrids  Incorrect imprinting of 

paternal genes leads to the 

misexpression of growth 

regulators during 

development.  

[53] 

PRDM9 X-linked 

Hstx2 

developmental 

systems drift or 

compensatory 

evolution 

Mus m. musculus 

x M. m. 

domesticus 

Male sterility F1 hybrid males  Prdm9, Hstx2, and a 

minimum amount of 

heterogenic DNA lead to 

recombination failure and 

ultimately meiotic arrest. 

[54] 

Spk-2 rsk selfish genetic 

elements 

Neurospora 

intermedia x N. 

metzenbergii 

Sterility Hybrids with the Spk-2 

driver from N. intermedia.  

Meiotic drive [55] 

Spk-3 rsk selfish genetic 

elements 

Neurospora 

intermedia x N. 

metzenbergii 

Sterility Hybrids with the Spk-3 

driver from N. intermedia.  

Meiotic drive [55] 

Spk-1   selfish genetic 

elements 

Neurospora 

sitophila 

(intraspecific) 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [56] 

Nt6549g30   host-pathogen 

conflict  

Nicotiana 

tabacum x N. 

africana 

Inviability, 

Hybrid 

necrosis, Early 

life lethality 

Hybrids with Nt6459g30 

from N. tabacum and an 

unknown partner from N. 

africana. 

  [57] 

HSW1/HSW2/

EAF6 

  neutral (gene 

duplication) 

Oryza glaberrima 

x O. s. japonica 

Sterility Hybrids lacking a functional 

copy of the EAF6 protein. 

Presence-absence variant [58,59] 

S1   selfish genetic 

elements 

Oryza glaberrima 

x O. sativa 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [60,61] 

S27/S28   neutral (gene 

duplication) 

Oryza 

glumaepatula x O. 

sativa 

Male sterility Hybrids lacking a functional 

copy of S27/S28. 

Presence-absence variant [62] 
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Hwc3 Hwc1   Oryza japonica 

(interspecific) 

Hybrid 

necrosis, 

Inviability 

F1 hybrids Hwc3 is an LRR protein, it 

appears to be upregulated in 

hybrids by Hwc1. 

[63] 

qHMS7   selfish genetic 

elements 

Oryza 

meridionalis x O. 

sativa 

Male sterility Hybrids lacking the 

corresponding antidote. 

Linked toxin (ORF2)-

antidote (ORF3) system 

[64]  

ORF182, 

WA352, 

WA314 

RF3, RF4 

(unknown) 

selfish genetic 

elements 

Oryza rufipogon 

(intraspecific) 

Male sterility Males lacking restorer genes 

(unknown). 

  [65,66] 

ESA1     Oryza rufipogon x 

O. sativa 

Female 

sterility 

Backcross hybrids carrying 

ESA1 from O. rufipogon. 

  [67] 

Hwi1 

(25L1/25L2) 

Hwi2 host-pathogen 

conflict  

Oryza rufipogon x 

O. sativa 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids with Hwi1 from O. 

rufipogon and Hwi2 from O. 

sativa. 

  [68] 

DTE9 

(OsMADS8) 

    Oryza rufipogon x 

O. sativa japonica 

Inviability, 

Hybrid 

necrosis 

Backcross hybrids to O. 

sativa. 

  [69]  

Ckl1   host-pathogen 

conflict  

Oryza sativa 

japonica x O. s. 

indica 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids homozygous for 

Ckl1 from O. sativa japonica 

and homozygous for NBS-

LLR from O. sativa indica. 

  [70] 

DPL1/DPL2   neutral (gene 

duplication) 

Oryza sativa 

japonica x O. s. 

indica 

Male sterility F2 hybrids without a 

functional copy of DPL. 

Presence-absence variant [71] 

HSA1a HSA1b selfish genetic 

elements 

Oryza sativa 

japonica x O. s. 

indica 

Female 

sterility 

Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [72] 

pf12A (ORF3, 

ORF4) 

  selfish genetic 

elements 

Oryza sativa 

japonica x O. s. 

indica 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [73,74]  
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RHS13 

(DUYAO/ 

JIEYAO) 

  selfish genetic 

elements 

Oryza sativa 

japonica x O. s. 

indica 

Male sterility Hybrids lacking the 

corresponding antidote. 

DUYAO targets mitchondrial 

protein OxCOX11 and 

triggers cell death. JIEYAO 

reroutes DUYAO to 

autophagosomes. 

[75] 

S7 ORF3   selfish genetic 

elements 

Oryza sativa 

japonica x O. s. 

indica 

Female 

sterility 

Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [76] 

SaM SaF selfish genetic 

elements 

Oryza sativa 

japonica x O. s. 

indica 

Male sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [77]  

S5   selfish genetic 

elements 

Oryza sativa 

japonica x O. s. 

indica  

(S5-i and S5-j) 

Female 

sterility 

F1 hybrid females with S5-i 

and S5-j alleles (ORF5+ and 

ORF4+ genes). 

The ORF5+ protein possibly 

destroys the integrity of the 

cell wall. Signals are 

transmitted by the ORF4+ 

protein, resulting in severe 

endoplasmic reticulum stress 

and female gamete abortion. 

[78] 

Sc   selfish genetic 

elements 

Oryza sativa 

japonica x Oryza 

s. indica 

Male sterility Hybrids lacking the 

corresponding antidote. 

Overexpression of Sc-i allele 

in the sporophyte selectively 

aborts pollen carrying Sc-j 

alleles. 

[79]  

ORF79, 

ORFH79 

RF1A, RF1B selfish genetic 

elements 

Oryza sativa 

(intraspecific) 

Male sterility Males lacking restorer genes 

(unknown). 

  [80,81] 

S22A S22B   Oryza sativa x O. 

glumaepatula 

Male sterility Backcross hybrids to O. 

sativa. 

  [82] 

RPC4 

(DGS1/DGS2) 

  neutral (gene 

duplication) 

Oryza sativa x O. 

nivara 

Male sterility Hybrids lacking a functional 

copy of RPC4. 

Presence-absence variant [83]  

qHMS1   selfish genetic 

elements 

Oryza satvia x O. 

meridionalis 

Male sterility Hybrids with the toxin 

qHMS1 from O. sativa and 

lacking the corresponding 

antidote (unknown). 

Toxin-antidote system [84] 

Peg3   parental conflict Peromyscus 

maniculatus 

males x P. 

polionotus 

females 

Inviability, 

Abnormal 

development, 

Early life 

lethality 

F1 hybrids Incorrect imprinting leads to 

misexpression of growth 

factors. 

[85,86] 
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ChiA1   host-pathogen 

conflict  

Petunia axillaris x 

P. exserta 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids with ChiA1 from P. 

axillaris and a chr7 region in 

P. exserta. 

  [87] 

ORF402 Rf-PPR592 selfish genetic 

elements 

Petunia hybrida 

(intraspecific) 

Male sterility Males lacking restorer genes 

(unknown). 

  [88,89] 

ORF239   selfish genetic 

elements 

Phaseolus 

vulgaris 

(intraspecific) 

Male sterility Males lacking restorer genes 

(unknown). 

  [90,91] 

Het-S   selfish genetic 

elements 

Podospora 

anserina 

(intraspecific) 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [92] 

Spok1, Spok2   selfish genetic 

elements 

Podospora 

anserina 

(intraspecific) 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [93] 

ORF138, 

ORS125/Rfo 

RFK1 selfish genetic 

elements 

Raphanus sativus 

(intraspecific) 

Male sterility Male hybrids lacking RFK1.   [94–97] 

AEP2 OLI ecological 

adaptation 

Saccharomyces 

cerevisae x S. 

bayanus 

Sterility, 

Abnormal 

development, 

Early life 

lethality 

Hybrids homozygous for 

AEP2 from S. bayanus and a 

primarily S. cerevisae 

background. 

AEP2 diverged as S. 

bayanus adapted to non-

fermentable carbon sources. 

This has resulted in Sb-AEP2 

failing to translate Sc-OLI1 

mRNA. 

[98] 

Ccm1 15s rRNA developmental 

systems drift or 

compensatory 

evolution 

Saccharomyces 

cerevisae x S. 

bayanus 

Inviability, 

Abnormal 

development, 

Late life 

lethality 

Hybrids homozygous for a 

symmetrical mutation in 

Ccm1. 

Ccm1 has a lowered binding 

affinity to 15s rRNA 

resulting in reduced protein 

production. 

[99] 

PGM1 GAL2, 

GAL1/10/7 

ecological 

adaptation 

Saccharomyces 

cerevisiae 

(intraspecific) 

Inviability, 

Late life 

lethality 

Hybrids with the reference 

PGM1 and alternative 

versions of GAL2, 

GAL1/10/7. 

Alternative alleles allow 

yeast to utilize galactose 

while incompatible allele 

combinations result in yeast 

unable to grow on galactose. 

[100] 

MRS1, AIM22 COX1 developmental 

systems drift or 

compensatory 

evolution 

Saccharomyces 

cerevisiae x S. 

bayanus 

Inviability, 

Sterility, Early 

life lethality 

Hybrids with MRS1, AIM22 

from S. cerevisiae, and the 

mitochondria from S. 

bayanus. 

  [101]  



45 

MRS1 COX1 developmental 

systems drift or 

compensatory 

evolution 

Saccharomyces 

cerevisiae x S. 

paradoxus 

Inviability, 

Sterility, Early 

life lethality 

Hybrids with MRS1 from S. 

cerevisiae and the 

mitochondria from S. 

paradoxus. 

MRS1 fails to remove intron 

from COX1. 

[101] 

wtf4   selfish genetic 

elements 

Schizosacchar-

omyces kambucha 

x S. pombe 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [102]  

cw27   selfish genetic 

elements 

Schizosacchar-

omyces pombe 

(intraspecific) 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [103]  

cw9   selfish genetic 

elements 

Schizosacchar-

omyces pombe 

(intraspecific) 

Sterility Hybrids lacking the 

corresponding antidote. 

Toxin-antidote system [103] 

wtf13 wtf18-2 selfish genetic 

elements 

Schizosacchar-

omyces pombe 

(intraspecific) 

Sterility Hybrids spores lacking 

wtf18-2. 

  [104] 

Rcr3 Cf-2 host-pathogen 

conflict 

Solanum 

lycopersicum x S. 

pimpinellifolium 

Inviability, 

Hybrid 

necrosis, Late 

life lethality 

Hybrids with Rcr3 from S. 

pimpinellifolium and Cf-2 

from S. lycopersicum. 

Rcr3 suppresses Cf-2 which 

triggers autoimmunity. 

[105]  

ORF107 RF1 selfish genetic 

elements 

Sorghum bicolor 

(intraspecific) 

Male sterility Male hybrids lacking RF1.    [106]  

ORF256   selfish genetic 

elements 

Triticum aestivum 

x T. timopheevi 

Male sterility Male hybrids lacking 

restorer genes (unknown). 

  [107] 

Xmrk  rab3d sexual selection Xiphophorus 

maculatus x X. 

hellerii 

Melanoma, 

Late life 

lethality 

F2 hybrids lacking rab3d 

from X. maculatus.  

Xiphophorus have 

independently evolved 

repressor(s) to control the 

activity of the proto-

oncogene xmrk in some 

lineages. xmrk is not present 

in all Xiphophorus genomes. 

[108,10

9]  
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atp5mg mitochondrial 

genome 

developmental 

systems drift or 

compensatory 

evolution 

Xiphophorus 

malinche x X. 

birchmanni 

Abnormal 

development, 

Early life 

lethality, Late 

life lethality 

F2 hybrids with X. malinche 

mitochondria and atp5mg 

from X. birchmanni. 

  [110] 

ndufs5 mitochondrial 

genome 

(nd6/nd2) 

developmental 

systems drift or 

compensatory 

evolution 

Xiphophorus 

malinche x X. 

birchmanni 

Inviability, 

Early life 

lethality 

F2 hybrids with X. malinche 

mitochondria and ndufs5 

from X. birchmanni. 

  [111] 

Xmrk cd97 sexual selection Xiphophorus 

malinche x X. 

birchmanni 

Melanoma, 

Late life 

lethality 

F2 hybrids lacking cd97 

from X. birchmanni. 

Xiphophorus have 

independently evolved 

repressor(s) to control the 

activity of the proto-

oncogene xmrk in some 

lineages. xmrk is not present 

in all Xiphophorus genomes. 

[112] 

ndufa13 mitochondrial 

genome 

(nd6/nd2) 

developmental 

systems drift or 

compensatory 

evolution 

Xiphophorus 

malinche x X. 

birchmanni; X. 

cortezi x X. 

birchmanni 

Inviability, 

Early life 

lethality, Late 

life lethality 

F2 hybrids with X. malinche 

or X. cortezi mitochondria 

and ndufa13 from X. 

birchmanni. 

  [111] 

ORF355, 

ORF77, 

URF13 

RF2 selfish genetic 

elements 

Zea mays mays 

(intraspecific) 

Male sterility Male hybrids lacking RF2.   [113–

115]  

Dcl2 Tdr1, Tpd2, 

non-coding 

RNA hairpin 

selfish genetic 

elements 

Zea mays mays x 

Z. m. mexicana 

Male sterility Hybrids with Tdr1 and Tpd2 

from Zea m. mexicana that 

lack the Dcl2 variant from 

Zea m. mays.  

Tpd1 contains a non-coding 

RNA hairpin targeting Tdr1 

and Dcl2. Tpd1 individuals 

possess a variant of Dcl2, 

which suppresses 22nt 

siRNA production and acts 

as an antidote. Tpd2 is 

unlinked and required for 

full pollen fertility. 

[116]  
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