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Abstract11

1. In ecology and evolution, meta-analysis is an important tool to synthesise findings across separate12

studies and identify sources of heterogeneity. However, ecological and evolutionary data often exhibit13

complex dependence structures, such as shared sources of variation within studies, phylogenetic re-14

lationships, and hierarchical sampling designs. Recent statistical advancements offer approaches for15

handling such complexities in dependence, yet these methods remain underutilised or unfamiliar to16

ecologists and evolutionary biologists.17

2. We conducted extensive simulations to evaluate modelling approaches for handling dependence in effect18

sizes and sampling errors in ecological and evolutionary meta-analyses. We assessed the performance of19

multilevel models, incorporating an assumed sampling error variance-covariance matrix (which account20

for within-study correlation), cluster robust variance estimation (CRVE) methods and their combina-21

tion across different true within-study correlations. Finally, we showcased the applications of these22

models in two case studies of published meta-analyses.23

3. Multilevel models produced unbiased regression coefficient estimates and when a sampling variance-24

covariance matrix was used it provided accurate random effect variance components estimates within25

and among studies. However, the latter had no impact on regression coefficient estimates if the model26

was misspecified. In simulations involving phylogenetic multilevel meta-analysis, models using CRVE27

methods generated narrower confidence intervals and lower coverage rates than the nominal expecta-28

tions. The case study results showed the importance of considering a sampling error variance-covariance29

matrix to improve the model fit.30

4. Our results provide clear modelling recommendations for ecologists and evolutionary biologists con-31

ducting meta-analyses. To improve the precision of variance component estimates we recommend32

constructing a variance–covariance matrix that accounts for dependencies in sampling errors within33

studies. Although CRVE methods provide robust inference under certain conditions, we caution against34

their use with crossed random effects, such as phylogenetic multilevel meta-analyses, as CRVE methods35

currently do not account for multi-way clustering and may inflate Type I error rates. Finally, we rec-36

ommend using multilevel meta-analytic models to account for heterogeneity at all relevant hierarchical37

levels and to follow guidance on inference methods to ensure accurate coverage of the overall mean.38

Key-words: Cross-classified data, Phylogenetic comparative methods, Meta-regression, Mixed-effects mod-39

els, Multi-species, Non-independence, Sandwich estimators40
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1 Introduction41

In ecology and evolution, meta-analysis has been used to make broader generalisation from results across42

global scales, long time spans, and across multiple species, while identifying sources of variability (Arnqvist43

& Wooster, 1995; Nakagawa & Poulin, 2012; Stewart, 2009). By systematically combining the quantitative44

results of independent studies, meta-analysis estimates an overall effect size and identifies factors influencing45

variation among effect sizes. However, data in ecology and evolution often exhibit complex dependence46

structures which require advanced approaches to ensure appropriate meta-analytical inference (Gurevitch &47

Hedges, 1999; Koricheva & Gurevitch, 2014; Nakagawa & Santos, 2012).48

Meta-analytical data can have multiple sources of dependence in their structure which can be broadly divided49

into two types. The first and most common is dependence among effect sizes. This occurs when effect sizes50

come from the same primary study, experiment, treatment, location, or another grouping feature, and are51

therefore correlated with each other. Further, meta-analyses in ecology and evolution often involve multiple52

species. In this case effect sizes from the same species are also correlated due to shared evolutionary history53

(Chamberlain et al., 2012; Gurevitch & Hedges, 1999). The second, often overlooked, type of dependence54

is among sampling errors. This type of dependence may arise, for example, when multiple measurements55

are taken from the same subject or group of animals, or when treated subjects are compared with the same56

controls in the context of comparative treatment-control studies. This dependence leads to the sampling57

errors to be correlated within studies or subgroups. A survey of meta-analysis in environmental sciences58

found that only 9% of surveyed meta-analysis used methods to account for dependence in sampling errors59

(Nakagawa et al., 2023). In the past two decades, new and innovative methods for handling these two60

forms of dependence have emerged, but are currently underutilised by ecologists and evolutionary biologists61

conducting meta-analyses today.62

Historically, there are three approaches to deal with dependence structures in meta-analysis, as described63

in Becker (2000): (1) ignore dependence, (2) aggregate (making ad hoc changes to the data to avoid depen-64

dence), and (3) model dependence (using integrative strategies, i.e. methods that do not modify the original65

dataset). The first approach, which ignores dependence, is not recommended as it underestimates standard66

errors and increases the risk of false positives (Type I errors). The second approach, aggregating data, yields67

unbiased estimates but leads to loss of information, as it restricts opportunities for meta-regression and the68

estimation of the variance components of random effects (Nakagawa et al., 2022; Pustejovsky & Chen, 2024).69

The most flexible approach to dealing with dependence is the third approach of modelling (Tipton et al.,70
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2019). Multilevel models can account for hierarchical structures in effect sizes by including random effects71

(Pastor & Lazowski, 2018; Van den Noortgate & Onghena, 2003; Van den Noortgate et al., 2013). However,72

the information about the amount of dependence among sampling errors is often not reported in primary73

studies (Lajeunesse, 2009, 2011; Noble et al., 2017). To model unknown dependencies among sampling74

errors from the same study one can incorporate an assumed within-study correlation within the sampling75

variance-covariance (VCV) matrix. To avoid making any assumptions about correlations among effect sizes76

and potential model misspecification, Hedges et al. (2010) proposed to use cluster robust variance estimation77

(CRVE) methods, also known as sandwich estimator methods. CRVE methods offer an effective approach78

to account for dependencies in sampling errors, though it is important to understand their limitations, as79

certain CRVE methods can perform poorly with small sample sizes. In a recent study, Pustejovsky and80

Tipton (2022) proposed a new working model that combines multilevel meta-analytical models, an assumed81

sampling error variance covariance matrix, and cluster robust variance estimation with simulations demon-82

strating that this approach enhances the precision of regression estimates. Currently, no simulation study83

has assessed the above modelling approaches and their combination in the context of ecological and evo-84

lutionary meta-analyses, specifically, when meta-analyses have an unbalanced design and include multiple85

species. As meta-analytic findings can inform evidence-based policy decisions (Haddaway & Pullin, 2014;86

Maynard, 2024), neglecting to account for such dependence structures may lead to erroneous inferences that87

could misinform such policies and conservation management decisions.88

In this paper, we conduct a simulation study to evaluate the performance of different meta-analysis modelling89

approaches to account for dependence in effect sizes and sampling errors. We compare two approaches under90

different working models: one that specifies a within-study error variance-covariance (VCV) matrix assuming91

constant correlation, and another that incorporates a cluster robust variance estimator (CRVE) in the context92

of ecological and evolutionary data. For practical applicability, we focus on different strategies for including93

a within-study VCV, CRVE methods, and their combination, while also assessing how the incorporation of94

phylogenetic random effects influences model efficiency. This study aims to highlight current strategies for95

dealing with unknown dependence of effect sizes and sampling errors. Despite the emergence of new tools96

and modelling approaches, the guidance for applying them to complex ecological and evolutionary dependent97

dataset structures remains limited. Below we provide clear recommendations based on our simulation results.98
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2 Methods99

We registered our study’s protocol in May 2024 (Williams et al., 2024b), detailing the methodological plan100

following the ADEMP-PreReg template provided in Siepe et al. (2024). We reported our simulation items101

in accordance with the guidance provided by Morris et al. (2019) and Williams et al. (2024a).102

2.1 Meta-analytic models and assumptions103

Meta-analysis synthesises effect size estimates obtained from multiple primary studies, allowing researchers to104

evaluate the magnitude and direction of a particular effect or association. In ecology and evolution, commonly105

used effect size measures include standardised mean differences, response ratios, correlation coefficients, and106

risk or odds ratios. The sampling variances associated with these effect sizes, reflecting the uncertainty107

in their estimation, are assumed to be known as they are either provided by the original study or can be108

calculated from estimated parameters in the original study data. Hence, when sample sizes are sufficiently109

large, these calculated sampling variances can be treated as approximately known.110

2.1.1 Fixed-effect (FE) and random-effects (RE) models111

Here, we define yi to be the effect size estimate of the ith study (if all studies report a single effect size, the112

terms study and effect size are interchangeable, Nstudies = Ntotal) and with corresponding sampling variances113

vi.114

The simplest meta-analytical model is the FE model, defined as115

yi = µ+ ei (1)

i = 1, . . . , Nstudies

e ∼ N(0,V)

where µ is the overall mean and e is the sampling error term which we assume to be normally distributed with116

mean 0 and with a variance-covariance matrix V where sampling variances vi are along the diagonal. This117

fixed-effect model (sometimes called common-effects or equal-effects model in the meta-analytical literature)118
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assumes that the underlying effect sizes have the same true effect, which is often not the case in ecological119

and evolutionary meta-analyses due to data with multiple species (Senior et al., 2016).120

To account for this variability in true effects, the RE model can incorporate a random effect at the estimate121

level, and is defined as122

yi = µ+ ui + ei (2)

u ∼ N(0, σ2
uIu)

where ui is a random effect corresponding to the ith effect size estimate (i.e. equivalent to study as there is123

one effect size per study), assumed to be normally distributed with mean 0 and variance σ2
u, and Iu is an124

identity matrix of size Nstudies ×Nstudies. This random effects model, assumes all effect sizes across studies125

are independent and that their sampling variances have no dependence structure. However, as we described126

earlier, most studies in ecology and evolution involve more than one effect size per study (Senior et al., 2016)127

and sampling errors are likely related due to study design.128

2.1.2 Multilevel models (ML)129

To address this first type of dependence, dependence among effect sizes, we can include an additional130

random effect at the study level, creating a multilevel model of three levels. We define yij the jth effect size131

estimate in the ith study as the multilevel model with two ‘levels’ as132

yij = µ+ uij + si + eij (3)

i = 1, . . . , Nstudies

j = 1, . . . , Ntotal

s ∼ N(0, σ2
sIs)

where uij denotes the random effect of the jth effect estimate in the ith study, si is the study level random133

effect, assumed to be normally distributed with mean 0 and variance σ2
s (Is denotes the identity matrix).134

6



This multilevel model assumes independence among sampling errors within studies (i.e. for any two effect135

sizes from the ith study the covariance of sampling errors would be zero: Cov(vij , vij′) = 0; where j and j′136

are distinct effect sizes). Note that this model can be expanded with more ‘levels’ (i.e. random effects) to137

capture other hierarchical dependencies present in the data, for example site, exposure, treatment etc.138

Previous simulation studies (Van den Noortgate et al., 2013, 2015) have shown that three-level meta-analysis139

yields unbiased mean estimates and valid confidence interval coverage, even when the assumption of indepen-140

dent sampling errors within studies is violated. This is because the study-level random effect can partially141

absorb the unmodelled sampling covariation. However, this dependence is misattributed as between-study142

heterogeneity, which can bias variance component estimates, especially when the magnitude of sampling143

covariance is large or varies across studies.144

Although the multilevel model accounts for dependence through hierarchical random effects, this does not145

explicitly model dependence among sampling errors. The second type of dependence, dependence among146

sampling errors, as described earlier, can occur when estimates are correlated due to effect sizes being147

calculated from the same cohort, sample, or due to shared controls. When variance components are of148

primary interest, incorporating a sampling VCV matrix can improve their estimation by accounting for149

sampling error correlation directly. In principle, we can calculate the true covariances of effect size pairs150

using information from each study’s primary data. However, this information is often not available, or only151

available for a few studies, and usually all we have available from study i is the vector of error variances152

vi for each effect size. To address this, an approach is to assume an arbitrary constant correlation, which153

we define as ρ, between effect size estimates coming from the same study. Then we assume the vector of154

within-study errors across all studies, e = vec(eij), is distributed as:155

e ∼ N(0,V∗) (4)

where the variance-covariance (VCV) matrix V∗ is block diagonal, where the ith block has diagonals equal156

to the sampling variances vi of the respective effect sizes for study i, and its off-diagonals are the covariances157

between each effect size, assuming a common constant correlation ρ. We distinguish this from the true (but158

typically unknown) within-study sampling correlation, which we denote as ϕ.159

For example, the assumed covariance of any two effect sizes j and j′ from study i is Cov(vij , vij′) = ρ
√
vijvij′ ,160

where ρ is the assumed constant within-study correlation between effect sizes and where j and j′ are dis-161
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tinct effect sizes. In ecology and evolution, a constant within-study ρ = 0.5 has been recommended as an162

approximation (Noble et al., 2017) to assume a conservative correlation among effect sizes. Certain software163

implementations assume an arbitrary higher constant correlation ρ = 0.8 as default (Fisher et al., 2023)164

which may be more applicable for human studies (e.g. psychology, education) where effect sizes can be more165

correlated. We further assume there is no correlation between sampling errors from different studies, that166

is, we assume Cov(vij , vi′j′) = 0 for i ̸= i′, hence V∗ has a block-diagonal structure.167

Below we specify an example of constructing the V* block diagonal sampling VCV matrix for a dataset with168

seven effect sizes from two studies, assuming a constant within-study correlation. To improve readability we169

have added a comma between the subscripts of studies (i) and effect sizes (j). The first study includes four170

effect sizes (with associated variances v1,1, v1,2, v1,3, v1,4) and the second study includes three effect sizes171

(with associated variances v2,5, v2,6, v2,7). Variances and covariances are coloured in teal for the first study172

and in olive for the second to differenciate them.173

V∗ =



v1,1 ρ
√
v1,1v1,2 ρ

√
v1,1v1,3 ρ

√
v1,1v1,4 0 0 0

ρ
√
v1,2v1,1 v1,2 ρ

√
v1,2v1,3 ρ

√
v1,2v1,4 0 0 0

ρ
√
v1,3v1,1 ρ

√
v1,3v1,2 v1,3 ρ

√
v1,3v1,4 0 0 0

ρ
√
v1,4v1,1 ρ

√
v1,4v1,2 ρ

√
v1,4v1,3 v1,4 0 0 0

0 0 0 0 v2,5 ρ
√
v2,5v2,6 ρ

√
v2,5v2,7

0 0 0 0 ρ
√
v2,6v2,5 v2,6 ρ

√
v2,6v2,7

0 0 0 0 ρ
√
v2,7v2,5 ρ

√
v2,7v2,6 v2,7



2.1.3 Phylogenetic multilevel meta-analysis models (PML)174

To account for multiple effect sizes across different species we can add random effects at the species level.175

From recent simulations from Cinar et al. (2022), including both a phylogenetic and non-phylogenetic random176

effect in meta-analytical models provides improved inference. This then extends the multilevel model in177

Equation 3 to178

yijk = µ+ uij + si + nk + pk + eij (5)

k = 1, . . . , Nspecies

n ∼ N(0, σ2
nIn)
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p ∼ N(0, σ2
pA)

where yijk is the effect size of the jth estimate, of the ith study and of the kth species. The component179

nk is a species level random effect, assumed to be normally distributed with mean 0 and variance σ2
n and180

identity matrix In, assuming species are independent to each other. To account for the shared evolutionary181

history between species, a second random effect at the species level pk is incorporated, which has a variance182

of σ2
p and A is the phylogenetic correlation matrix of size Nspecies ×Nspecies. We note that the species level183

effects (phylogenetic and non-phylogenetic) are crossed among studies, which means any given species can184

have effect sizes coming from multiple studies.185

The phylogenetic meta-analysis model described in Equation 5 can also incorporate a variance-covariance186

matrix (V∗) for the sampling errors (see Equation 4) to account for correlated errors within-studies.187

2.2 Cluster-robust variance estimators (CRVE)188

In the previous section, we described multilevel models with a fixed sampling VCV, in which we needed to189

assume a known, constant correlation across studies, in order to account for correlated sampling errors (often190

in the absence of direct measurements of it). To relax this assumption, cluster robust variance-covariance191

estimators (CRVE) have been introduced in meta-analysis to model dependent effect sizes from the same192

study when the true dependence structure is unknown (Hedges et al., 2010). CRVE stem from robust193

variance estimators, also known as sandwich estimators or Huber White estimators, which are designed to194

handle heteroscedasticity (Sidik & Jonkman, 2005; White, 1980). CRVE adjusts the estimated variance of195

the fixed effects to account for residual dependence among effect sizes (e.g. due to model misspecification)196

based on a defined cluster. When the working model is misspecified, meta-regression coefficient estimates197

with CRVE have asymptotically consistent standard errors. Hence, hypothesis tests and confidence intervals198

are valid when appropriate small-sample adjustments are used and the number of clusters is sufficiently large.199

We present three of the main CRVE methods implemented in the clubSandwich R package (Pustejovsky,200

2023), also available in the metafor package via the robust() function (Viechtbauer, 2023). We note that201

other methods, such as cluster wild bootstrapping (Joshi et al., 2022), are available but we do not cover them202

here. The original robust sandwich estimator (as popularised in Liang & Zeger, 1986), which we will refer203

to as CR0 as per Cameron and Miller (2015), estimates the standard errors of coefficients empirically and204

without imposing structural correlation assumptions. However, when cluster numbers are small (less than205
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50 studies), which is likely in meta-analysis in ecology and evolution, the CR0 method is downwardly biased206

for variance components as well as having high Type I error rates of associated hypothesis tests (Tipton &207

Pustejovsky, 2015; Viechtbauer et al., 2015). To address this issue, a number of CRVE methods have been208

proposed to enhance inference accuracy when the number of clusters is small. Briefly, the CR1 method209

provides an approximate correction for when the number of clusters is small. The CR2 method provides a210

“bias-reduced linearisation” adjustment for small (study) sample sizes which was initially proposed by Bell211

and McCaffry (2002) and further developed in Pustejovsky and Tipton (2018). Using the CR2 method with212

the Satterthwaite approximation of effective degrees of freedom controls for Type-I error rates (Tipton &213

Pustejovsky, 2015). However, currently there is no statistical theory to support multi-way clustered standard214

errors for models with crossed random effects, hence CR2 can’t be used with phylogenetic meta-analytical215

models (Equation 5), i.e. as species are distributed across multiple studies.216

2.3 Simulation study217

2.3.1 Modelling approaches218

We previously introduced three broad strategies for addressing dependence among effect sizes:219

• Explicit modelling of known dependence structures via random effects (e.g., study-level or effect size220

level effects).221

• Incorporation of assumed correlation structures of sampling errors via V∗ to account for within-study222

dependence when its sources are known or approximated given primary data information, in order to223

improve variance component estimates.224

• Use of cluster-robust variance estimation (CRVE) to adjust standard errors of fixed effects when the225

dependence structures are unknown or misspecified.226

We conducted two inter-related simulation studies to evaluate the modelling approaches outlined above on227

their own and in combination. Study 1 compared four model specifications (FE, RE, ML, and ML with228

V∗; Equations 1–4) combined with four CRVE methods for inference on fixed effects (none, CR0, CR1,229

CR2), using study ID as the clustering variable. This resulted in 16 distinct modelling approaches. Study 2230

focused on phylogenetic multilevel meta-analysis (PML; Equation 5), comparing models without and with231

an assumed sampling variance–covariance matrix (V∗). Each was paired with one of three CRVE methods232
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(none, CR0, CR1), also clustered by study ID, leading to 6 modelling approaches in total. For models233

that incorporated an assumed V∗ matrix, we assumed a compound symmetric block diagonal structure234

with a constant within-study sampling error correlation ρ which is fixed across studies. We considered235

ρ ∈ 0.2, 0.5, 0.8 to represent low, moderate, and high within-study correlation.236

2.3.2 Data generating mechanisms237

We followed a similar simulation design as Cinar et al. (2022), to assess performance of the modelling238

approaches described above under different dependence structures. We considered three values of true239

constant within-study correlation among effect sizes, ϕ ∈ {0, 0.2, 0.5, 0.8} fixed across studies, to reflect240

different levels of dependence and to match models with assumed sampling error V ∗ matrix structures.241

Note that when we fitted models that assumed within-study error correlation, we considered all three values242

(ρ ∈ {0.2, 0.5, 0.8}) irrespective of the actual correlation (ϕ) at which data were simulated, in order to243

understand robustness of the method to misspecification.244

For both studies, we used a data-generating process inspired by real meta-analysis data from ecology and245

evolution (Senior et al., 2016), which also informed the simulation design in Cinar et al. (2022) (see Supporting246

Information Figure S1). The number of effect sizes per study were simulated as an unbalanced design with247

random values generated from a beta distribution with parameters α = 1.5 and β = 3 (making a right-248

skewed distribution), scaled by a factor of 39, rounded to the nearest integer, and incremented by one. The249

resulting effect sizes represent general ’generic’ effect size measures while treating sampling errors as known.250

We simulated sampling errors assuming dependence of effect sizes within-studies, following a multivariate251

normal distribution with mean vector 0 and a sampling error variance-covariance matrix. We generated252

the sampling error variance-covariance matrix assuming a true constant within-study effect size correlation,253

defined as ϕ, and assumed the sampling error variances, vij , followed a right-skewed beta distribution with254

parameters α = 2 and β = 20, resulting in a mean sampling variance of 0.091.255

For all simulations, we considered an overall mean effect size µ = 0.2. The test statistics and confidence256

intervals of the overall mean estimate µ̂ were computed assuming a t-distribution and adjusted degrees of257

freedom (more detail below). For Study 1, we consideredNstudies ∈ (20, 50) studies, and variance components258

values of (σ2
u, σ

2
s) ∈ (0.05, 0.3). For Study 2, we considered scattershot combinations of the number of studies259

and the number of species, with two combinations: (Nstudies, Nspecies) = (20, 40) and (Nstudies, Nspecies) =260

(50, 100). For the variance components in Study 2 we considered (σ2
u, σ

2
s , σ

2
p, σ

2
n) ∈ (0.05, 0.3). We simulated261
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species indices assuming a beta distribution with parameters α = 2 and β = 2, which were scaled by the262

number of species minus one, rounded, and increased by one. We randomly generated phylogenetic trees263

and computed branch lengths assuming a power parameter α of 1 based on results in Cinar et al. (2022),264

using the rtree function from the ape package (Paradis et al., 2023). The phylogenetic correlation matrix265

(matrix A in Equation 5) was computed assuming a Brownian motion model of evolution. We summarised266

the simulation settings per model in Table 1.267

2.3.3 Performance measures268

For all models and simulation conditions, we assessed the bias and mean squared error (MSE) of the overall269

mean estimates, and variance components. Further, we evaluated the precision and consistency of the overall270

mean estimates by assessing the 95% coverage rates and widths of confidence interval. We performed 5,000271

simulation repetitions per condition. The Monte Carlo Standard Error (MCSE) for 5,000 repetitions will be272

lower than 1% for bias, MSE and coverage measures for each one of the models in the simulation studies273

(Morris et al., 2019). All our simulations were conducted using open-source software R version 4.3.1 (R-Core-274

Team, 2022). The metafor package version 4.6-0 was employed to fit meta-analysis models (Viechtbauer,275

2023) assuming a restricted maximum likelihood (REML) estimation, the default setting of the rma.mv276

function. The adjusted degrees of freedom were specified in the model using dfs="contain" argument277

which calculates the degrees of freedom for the overall mean coefficient by checking whether its predictor278

varies at a specific random effect level, then using the number of unique values of that effect minus one as279

the degrees of freedom. All simulations were run on the high performance computing (HPC) cluster Katana280

supported by Research Technology Services at UNSW Sydney (UNSW, 2024).281

2.4 Additions and deviations282

Meta-analyses often assess whether effect sizes vary based on certain study characteristics. To account283

for these characteristics (commonly referred as moderators or predictor variables) researchers can employ284

meta-regression models, which help to explore heterogeneity and control for potential confounders. We285

extended our protocol to evaluate meta-regression models by simulating phylogenetic multilevel models with286

moderators i.e. predictor variables. This analysis followed the same design as simulation Study 2 but included287

three moderators: a study-level categorical moderator (e.g., treatment type), a species-level continuous288

moderator (e.g., species weight), and an effect size level categorical moderator (e.g., sex). Expanding on the289
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Table 1: Simulation parameters and number of conditions. For Study 1 we considered a fully factorial design
for different model specifications, CRVE methods, conditions of Nstudies, assumed within study effect size
correlations ρ, true within study effect size correlations ϕ, and respective variance components. For Study
2, we also considered a fully factorial design besides the combinations of (Nstudies, Nspecies) where we only
considered (Nstudies = 20, Nspecies = 40) and (Nstudies = 50, Nspecies = 100). The number of conditions shown
in the table was obtained by multiplying the number of CRVE methods by the number of ϕ values, by the
number of Nstudies with Nspecies values, and by each number of considered variance component values.
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phylogenetic meta-analysis from Equation 5, the phylogenetically controlled meta-regression model with the290

three described moderators is defined as291

yijk = β0 + β1x1i + β2x2k + β3x3ij + uij + si + nk + pk + eij (6)

where β0 is the fixed intercept coefficient, β1, β2, β3 are the fixed effect coefficients for the moderator variables292

x1i, x2k, x3ij . For the simulation study, we generated a binary study-level covariate (x1i) with equal proba-293

bility for each group, and a continuous species-level covariate (x2k) drawn from a normal distribution, each294

generated independently of the effect sizes. The effect size level moderator (x3ij) was drawn from a Bernoulli295

distribution with p = 0.5. Although the expected proportion is balanced, random variation may result in296

unequal group sizes across simulations. For the model coefficients, we assumed true values of β0 = 0.2, and297

values of (β1, β2, β3) ∈ (0, 0.2, 0.6) to evaluate Type I error rates and power for each coefficient test. Note298

that we did not implement a fully factorial design, we evaluated scenarios where all moderator coefficients299

were set to the same value within each condition (i.e., β1 = β2 = β3 = 0, 0.2, or 0.6). The tests of individual300

fixed coefficients in the meta-regression model and the corresponding confidence intervals were based on a301

t-distribution, and the omnibus test based on a F -distribution. In the meta-regression, each coefficient’s302

adjusted degrees of freedom were computed by subtracting the total number of model coefficients (including303

the intercept) from the number of unique levels of the random effect over which the corresponding predictor304

varied using the using dfs="contain" argument in metafor (Viechtbauer, 2023).305

3 Results306

3.1 Study 1: Meta-analysis models307

Figure 1 displays the performance of the six different working models (FE, RE, ML, ML-VCV-0.2, ML-VCV-308

0.5, and ML-VCV-0.8) for estimating the overall mean µ̂ across varying true within study correlation ϕ. All309

models had unbiased overall mean estimates µ̂ (Figure 1A and Table S1). We found that FE (Fixed-Effects)310

model exhibited higher variability and higher mean squared error (MSE) compared to other models (Figure311

1.A, 1.B, and Table S1). Multilevel (ML) models, including ML models with assumed sampling VCV (i.e.312

V∗), had identical lower and more consistent MSE across all conditions (Figure 1.B). Figure 1.C displays313
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the coverage rates of the 95% confidence intervals, revealing that FE and RE (Random-Effects) generally314

fail to achieve the nominal 95% coverage, while the four ML models achieves coverage closer to the target315

across conditions (Table S2). Further, we found the FE model had the narrowest confidence intervals widths316

(Figure 1.D), whereas they were larger for the multilevel models. We note that ML-VCV-0.8 showed slightly317

narrower confidence interval widths with higher corresponding MSE. Figure S2 displays the 95% coverage318

rates of the four ML models across three different inference methods showing the assumed t-distribution with319

adjusted degrees of freedom is at the nominal coverage rate compared to inferences assuming a z-distribution320

or t-distribution without any degrees of freedom adjustment.321

The coverage rate and width of the 95% confidence interval of the overall mean estimates µ̂ are presented322

in Figure 2 across six working models and four approaches: no CRVE method, CR0, CR1, and CR2. We323

found that the multilevel (ML) models with and without assuming a sampling VCV consistently achieved324

coverage close to the nominal 95% no matter the CRVE method, while FE and RE showed lower coverage325

but approximately close to 95% for CR2 method (Figure 2.A). The confidence interval widths of FE and RE326

models without any CRVE method were narrower while having low coverage of the overall mean estimate327

(Figure 2.B). The confidence interval widths of ML models were identical and did not change no matter the328

CRVE method.329

Figure 3 displays the distribution of the conditional variance components estimates within study (σ̂2
u) and330

among studies (σ̂2
s). The FE models are not shown as they did not estimate these variance components.331

Figure 3.A shows that multilevel (ML) models using a correctly specified sampling V∗ matrix yield unbiased332

estimates of within-study variance under true values of σ2
u = 0.3. In contrast, assuming no within-study333

correlation in the working model (ML) leads to underestimation of within-study variance, while assuming334

a higher correlation than the true value inflates the within-study variance estimates across all three values335

of ϕ. For the among-study conditional variance estimates (σ̂2
s), Figure 3.B shows the ML without assuming336

a sampling V∗ matrix overestimated variances for higher correlations within studies (ϕ > 0.2). Similar337

patterns were found for other true variance component conditions (see Figure S3, S4, S5, and Table S3). As338

for the total variance estimates (σ̂2
total = σ̂2

u + σ̂2
s) displayed in Figure 3.C, we found smaller mean squared339

errors (MSE) in models assuming a sampling V∗ matrix for higher true within-study correlations ϕ > 0.2.340

The total variance estimates from the RE models (which includes only a single variance component) is also341

displayed in Figure 3.C and yielded MSE values comparable to those from the multilevel models across all342

levels of ϕ. Similar patterns were found for other true variance component conditions displayed in Supporting343

Figure S6. The MCSE of overall mean estimate (µ̂) bias and coverage rates across all modelling approaches344
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Figure 1: Overall mean estimate µ̂ performance across all working models and conditions assumimg a true
within study correlation between effect sizes of ϕ ∈ (0.2, 0.5, 0.8), evaluated over 5,000 simulation iterations.
A. The bias of the overall mean estimate µ̂, reflecting the deviation from the true mean. Monte Carlo
standard errors of the overall mean bias are provided in Table S1. B. The mean squared error (MSE) of
µ̂, combining both bias and variance to measure accuracy. C. The coverage rates of the 95% confidence
intervals, indicating the proportion of intervals that include the true mean µ and assessing the reliability
and consistency of the interval estimates. Monte Carlo standard errors of the overall mean coverage rate
are provided in Table S2. D. The widths of the 95% confidence intervals, representing the precision of the
estimates across different conditions.
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Figure 2: Boxplots of the overall mean estimate µ̂ coverage rate and confidence intervals for each CRVE
method under working models across all conditions. A. The coverage rates of the 95% confidence intervals,
indicating the proportion of intervals that include the true mean µ and assessing the reliability and consis-
tency of the interval estimates B. The widths of the confidence intervals. The results were evaluated across
5,000 simulation iterations, eight conditions of variance components (σ2

u, σ2
s) and the number of studies

(kstudies).
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are provided in Table S1 and Table S2 respectively. All models in Study 1 converged and showed no errors345

in the estimation process, and computed in less than 3 seconds (Supporting Table S4).346
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Figure 3: A. Boxplots of within-study conditional variance estimates (σ̂2
u) under true values of σ

2
u = 0.3 and

across within study correlation levels ϕ ∈ 0.2, 0.5, 0.8. B. Boxplots of among study under conditional variance
estimates (σ̂2

s) under true values of σ2
s = 0.3 and across within study correlation levels ϕ ∈ 0.2, 0.5, 0.8. For

both panels A and B, the true variance is shown in the grey bolded line and the boxplot represent the
variability of estimates across 5,000 simulations. C. Distribution of mean squared error (MSE) of the total
conditional variance estimates of models (σ̂2

total = σ̂2
u + σ̂2

s) under true values of σ2
u = 0.3 and σ2

s = 0.3, and
within study correlation levels of ϕ ∈ (0.2, 0.5, 0.8). Models that did not estimate among study variation
had σ̂2

s = 0.
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3.2 Study 2: Phylogenetic meta-analysis and meta-regression models347

3.2.1 Phylogenetic multilevel meta-analysis348

We found no clear difference in the bias, MSE, coverage rate and width of confidence intervals of the four349

phylogenetic multilevel working models (PML, PML-VCV-0.2, PML-VCV-0.5, PML-VCV-0.8) across the350

three true values for within study correlation (see Figure S7). Figure 4 displays boxplots of coverage rate351

and confidence interval widths of the overall mean estimates of the four phylogenetic multilevel working352

models (PML, PML-VCV-0.2, PML-VCV-0.5, PML-VCV-0.8) across three dependence structures for each353

CRVE method. Coverage rates are closer to 95% nominal when no CRVE method is used, which reached354

on average 66-68% across all working models (Figure 4A). Confidence intervals were narrower with CRVE,355

whereas without CRVE, widths were approximately twice as large (Figure 4.B). Figure 5 displays distribution356

in boxplots of the conditional variances of the four random effects in each working model. As the true357

correlation within study increases, ϕ ∈ (0.2, 0.5, 0.8), the PML working model, which assumes no correlation358

among effect sizes from the same study (ρ = 0), provided an estimate of the variance component within359

study (σ̂2
u) that was downwardly biased and the estimated variance component among studies (σ̂2

s) that360

was upwardly biased. The MCSE of overall mean estimate (µ̂) bias and coverage rates and all variance361

component estimates are provided in Table S5-S7 across all modelling approaches. The majority of models362

converged with at least 99.99% of models showed no errors in the estimation process and were computed363

within 6 seconds (Supporting Table S8).364
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Figure 4: Boxplots of the overall mean estimate µ̂ coverage rate and confidence intervals for each CRVE
method under four phylogenetic meta-analysis (PML) working models across all conditions, assessed over
5,000 simulation iterations. A. The coverage rates of the 95% confidence intervals, indicating the proportion
of intervals that include the true mean µ and assessing the reliability and consistency of the interval estimates
B. The widths of the confidence intervals. The results were evaluated across 5,000 simulation iterations,
eight conditions of variance components (σ2

u, σ
2
s) and the number of studies (kstudies).
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Figure 5: A. Boxplots of within-study conditional variance estimates (σ̂2
u). B. Boxplots of among study

conditional variance estimates (σ̂2
s). C. Boxplots of non-phylogenetic effect conditional variance estimates

(σ̂2
n). D. Boxplots of phylogenetic effect conditional variance estimates (σ̂2

p). For all panels, the true
variance is shown in the grey bolded line and the boxplot represent the variability of estimates across
5,000 simulations across true within study correlation levels of ϕ ∈ 0.2, 0.5, 0.8 and under true values of
σ2
u = σ2

s = σ2
n = σ2

p = 0.3.
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3.2.2 Phylogenetic multilevel meta-regression365

For the phylogenetic meta-regression model, the estimates of the four coefficients (β̂0, study level β̂1, species366

level β̂2, and effect size level β̂3) were unbiased and did not vary across models with different within-study367

correlations (see Supporting Figures S12–S15 and Table S9). The 95% confidence interval widths for all368

coefficients estimates were similarly unaffected even under model misspecification. However, we note slightly369

narrower widths for the effect size level coefficient β̂3 when the model is specified under the true data-370

generating mechanism of the within-study correlation (Supporting Figure S15). We found coverage rates371

of the four coefficients were close to the nominal 95% under models without CRVE (Figures S16-S19).372

Coverage declined substantially for β0 and β2 when applying CR0 or CR1 corrections, whereas β1 and β3373

showed over-coverage under CRVE methods. For β1 study level coefficient, power decreased and type I error374

rates were reduced under CRVE methods compared to models without correction (Figures S20 and S23). For375

β2 species level coefficient, both power and type I error rates increased under CRVE methods, particularly376

for CR0 (Figures S21 and S24). For β3 effect size level coefficient, power remained high across all methods377

but was slightly lower under CRVE, while type I error rates decreased under CRVE methods compared to378

no correction (Figures S22 and S25). The MCSE of the bias of the regression coefficient estimates across379

all modelling approaches are provided in Table S9. The majority of models converged (at least 99.99% of380

models) and were computed within 6 seconds (Supporting Table S10).381
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3.3 Case studies382

We reanalyse two published meta-analyses to illustrate the application of these working models. The models383

have been simplified from the original studies, so the results are for illustration purpose only and should not384

be used to draw substantive conclusions. The first case study covers multilevel meta-analysis models which385

we dealt with in simulation Study 1, while the second focuses on the phylogenetic multilevel meta-analysis386

models that we conducted for simulation Study 2. Code to run the case studies is provided here.387

3.3.1 Case study 1: Multilevel meta-analysis388

Crawford et al., 2019 used a large meta-analysis dataset of pairwise plant-soil feedback measures to investigate389

whether these feedbacks contribute to plant species coexistence. We reanalysed their dataset, focusing on the390

mycorrhizal having different status consisting of 59 effect sizes across 13 studies. We applied the multilevel391

meta-analytical models (Equations 3, 4) to account for dependence among effect sizes. For dependence among392

sampling errors, we assumed a V∗ matrix with a constant within-study correlation, ρ, considering values393

from 0.1 to 0.9 as well as the case of no correlation (i.e. ρ = 0). We also calculated the cluster robust CR2394

standard error and P -values for each model. Assuming a higher within-study correlation (ρ = 0.9) resulted395

in a slightly higher log likelihood. The overall mean estimate was near zero and varied little, compared to its396

standard error, as ρ was changed (although it did change sign at ρ < 0.5). The standard errors and P -values397

did not show any substantial differences as ρ changed or as we moved across to the robust CR2 method.398

However, we found that the heterogeneity estimates (σ̂2
u and σ̂2

s) varied with different assumed correlations.399

Table 2: Results of the multilevel meta-analysis working models on the case study 1 dataset. The first column
shows the assumed constant correlation among effect sizes from the same study (ρ). The subsequent columns
report the estimated overall mean (µ̂), its standard error (SE[µ̂]), the robust CR2 standard error (SECR2),
the P-value (P ) (under a t-distribution) and the robust CR2 P-value (PCR2) for testing whether the overall
mean is zero, followed by the variance component estimates (σ̂2

s and σ̂2
u) and the model’s log-likelihood.

ρ µ̂ SE[µ̂] SE[µ̂]CR2 P PCR2 σ̂2
u σ̂2

s LogLik
0.0 -0.04 0.155 0.154 0.7857 0.7852 0.190 0.229 -56.290
0.1 -0.03 0.152 0.152 0.8413 0.8409 0.193 0.211 -55.794
0.2 -0.02 0.151 0.150 0.8895 0.8891 0.198 0.198 -55.384
0.3 -0.01 0.150 0.149 0.9299 0.9296 0.204 0.187 -55.043
0.4 -0.01 0.150 0.149 0.9628 0.9626 0.211 0.178 -54.757
0.5 0.00 0.150 0.149 0.9887 0.9886 0.219 0.170 -54.517
0.6 0.00 0.150 0.148 0.9918 0.9917 0.229 0.163 -54.316
0.7 0.00 0.150 0.148 0.9783 0.9781 0.239 0.156 -54.151
0.8 0.01 0.150 0.149 0.9705 0.9703 0.251 0.150 -54.020
0.9 0.01 0.150 0.149 0.9682 0.9679 0.264 0.143 -53.923
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3.3.2 Case study 2: Phylogenetic multilevel meta-analysis400

Horváth et al., 2023 investigated whether behavioural type (mean behaviour) and behavioural predictabil-401

ity (within-individual variation) evolve independently or under system-specific constraints across multiple402

species. We reanalysed the dataset using phylogenetic multilevel meta-analysis (Equation 5), applying dif-403

ferent within-study correlations for effect sizes from the same studies and obtaining CR1 robust standard404

errors and significance tests. The working model had slightly higher log-likelihoods when no within-study405

correlation was assumed (ρ = 0), but only by a decimal point. The overall mean, standard error, P -value,406

and variance components (σ̂2
u, σ̂

2
s , σ̂

2
p, and σ̂2

n) remained largely unchanged within two to three decimal407

places. We note that the CR1 robust standard errors and P -values were substantially smaller than without408

applying CR1 (the CR2 method was not applied for the PML as it can’t handle cross random effects).409

Table 3: Results of the phylogenetic multilevel meta-analysis on the case study 2 dataset. The first column
shows the assumed correlation among effect sizes from the same study (ρ). The subsequent columns report
the estimated overall mean (µ̂), its standard error (SE[µ̂]), the robust CR1 standard error (SECR1), the
P-value (P ) (under a t-distribution) and the robust CR1 P-value (PCR1) for testing whether the overall mean
is zero, followed by the variance component estimates (σ̂2

s , σ̂
2
u, σ̂

2
p and , σ̂2

n) and the model’s log-likelihood.

ρ µ̂ SE[µ̂] SE[µ̂]CR1 P PCR1 σ̂2
u σ̂2

s σ̂2
p σ̂2

n LogLik

0.0 -0.05 0.207 0.083 0.7953 0.5199 0.133 0.381 0.115 <0.001 -102.696
0.1 -0.05 0.207 0.083 0.7946 0.5183 0.132 0.382 0.115 <0.001 -102.703
0.2 -0.05 0.207 0.083 0.7940 0.5168 0.130 0.384 0.115 <0.001 -102.710
0.3 -0.05 0.207 0.083 0.7933 0.5153 0.129 0.385 0.116 <0.001 -102.718
0.4 -0.05 0.207 0.083 0.7927 0.5138 0.128 0.386 0.116 <0.001 -102.725
0.5 -0.06 0.208 0.084 0.7920 0.5122 0.127 0.388 0.116 <0.001 -102.733
0.6 -0.06 0.208 0.084 0.7914 0.5107 0.126 0.389 0.117 <0.001 -102.741
0.7 -0.06 0.208 0.084 0.7908 0.5093 0.125 0.390 0.117 <0.001 -102.749
0.8 -0.06 0.208 0.084 0.7901 0.5078 0.124 0.391 0.117 <0.001 -102.757
0.9 -0.06 0.208 0.084 0.7895 0.5063 0.123 0.393 0.117 <0.001 -102.765
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4 Discussion410

Here, using two extensive simulation studies, we evaluated modelling approaches, including combined meth-411

ods proposed by Pustejovsky and Tipton (2022), to account for dependence in ecological and evolutionary412

meta-analytic data. Our simulations are the first to evaluate these combined approaches in an unbalanced de-413

sign (varying number of effect size per study) and in the context of phylogenetic multispecies meta-analytical414

data. Our results suggest that multilevel models performed best, given our simulation settings. Addition-415

ally, constructing a sampling error variance-covariance matrix (V∗) to account for correlated sampling errors416

within-studies improved the accuracy of heterogeneity (variance component) estimates. However, neither417

combining multilevel models with cluster robust variance estimation (CRVE) nor incorporating within-study418

correlation in sampling error (V∗) improved regression coefficient estimates. We discuss these findings in419

detail below.420

4.1 Regression coefficient estimates421

Our simulation results showed that multilevel models provided unbiased and efficient estimates of the overall422

mean regardless of the specified sampling error dependence structure (Figure 1 and Figure S7). Similar423

results were also found in the simulations by Moeyaert et al. (2016). This may be explained by the fact424

that in multilevel models, fixed effects are estimated via marginal likelihood and are relatively robust to425

misspecification of the sampling error structure. Importantly, the inference method and the choice of degrees426

of freedom in the test statistics and confidence intervals noticeably influenced the coverage rate of the overall427

mean estimate (to control for Type I error rates), as shown in Figure S2, which was also found in simulations428

of ecological meta-analyses Nakagawa et al. (2022). Regarding multilevel phylogenetic meta-analyses (Study429

2), our simulation results found the overall mean estimates were unbiased across all models with and without430

a specified sampling (V∗) matrix, also shown in Van den Noortgate et al., 2013, 2015. However, the overall431

mean had a low coverage rate around 90% for all models, which was also found in the simulations by Cinar432

et al., 2022. For the phylogenetic multilevel meta-regression models, we found that the estimates of three433

moderator coefficients were unbiased and precise. Specifically, the effect size level coefficient estimate was434

slightly more precise under the true model specifications of the sampling error similar to simulation results435

by Pustejovsky and Tipton (2022), although the improvement was too small to affect the inference. Further,436

our results showed the coverage rates of the three moderator coefficients were close to the nominal 95%.437

However, the estimate of the intercept coefficient showed lower coverage, around 93%. The lower coverage438
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rates for the overall mean and meta-regression intercept estimates could potentially be recovered by using439

adjusted degrees of freedom (e.g. Satterthwaite method) although such adjustments are not implemented440

currently in metafor under version 4.6-0 (via clubsandwich) for models with crossed random effects.441

4.2 Variance component estimates442

When we assumed a sampling error matrixV∗ that matched the true underlying data-generating mechanisms443

the multilevel meta-analysis models in both simulation studies provided unbiased estimates of the within444

and among study variance components. Our findings align with other simulation studies (Fernández-Castilla445

et al., 2019; Pustejovsky & Tipton, 2022). Further, we found that assuming a higher ρ than the true within-446

study correlation inflates the within-study variance component, while assuming a lower ρ underestimates447

it. Although model misspecification does not affect the total variance estimate of the model (as shown in448

Figure 3.C), it redistributes the variance components, leading to bias variance components. Similar variance449

redistribution under misspecification has been reported in mixed-effects models (Schielzeth et al., 2020).450

Modelling accurate variance components is an important part of meta-analysis as it helps distinguish within451

and among studies variances (Senior et al., 2016). For example, it allows researchers to assess whether an452

overall mean effect applies across diverse study contexts and to quantify either there is higher variability453

within or among studies (Yang et al., 2023, 2025). We note that the CRVE methods did not impact the454

estimation of variance components. The results from Case Study 1 showed that assuming a sampling error455

V∗ matrix with a higher within-study constant correlation provided better model fit (Table 2). However, in456

practice, the analyst may not know the true correlations among effect sizes, as described earlier in Section 2.457

To select the most appropriate correlation structure, researchers can use model fit criteria (e.g., log-likelihood458

or information criteria) as recommended in Barnett et al., 2010 and as demonstrated in our two case studies.459

A further issue remains when it is unknown whether correlations among effect sizes are constant or non-460

constant within and across studies. In such cases, researchers either have to make arbitrary assumptions461

about these correlations or, if information about another hierarchical level (e.g., different cohorts or samples462

within studies) is available from primary studies, incorporate this as an additional random effect to avoid463

assuming a specific V∗ matrix. Yet, such an additional random effect is often unlikely to be distinguishable464

from the between study effect (or it could lead to non-singularity, for example, if there is only 32 cohorts465

from 30 studies).466
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4.3 CRVE methods467

We found the CRVE methods in Study 1 improved slightly in coverage of overall mean estimates when468

combined with multilevel modelling even when the model was misspecified (see Figure 2 and S2). CRVE469

methods inflate standard errors when samples are small or assumptions are violated, leading to greater470

uncertainty compared to large samples without violations (as seen in larger confidence interval widths in471

Figure 2). The performance of CRVE rely on the clustering variable specified and assumes the cluster472

groups are independent from each other. However, as discussed above, if the model specifies multi-way473

clusters (i.e. cross-random effects), the CRVE methods do not work (at least currently) and demonstrated474

in our Study 2 results. Notably, when CRVE methods were applied in the meta-regression simulation (Study475

2), it led to inconsistent impacts across moderator levels. Our results suggest that CRVE may misattribute476

sources of variance in crossed designs, particularly at intermediate levels like species where dependencies477

span across studies (the clustering variable) which showed reduced standard errors and inflated type I error.478

Our Case study 2 further supported this, with CR1 correction yielding smaller standard errors and P-479

values for the overall mean, increasing the risk of false positives. However, the effect size level moderator480

estimate showed decrease type I error rates under CRVE methods. These findings align with Fernández-481

Castilla et al., 2021 and Pustejovsky and Tipton, 2022, who found CRVE methods improved inference482

of regression coefficient in standard multilevel models. We suggest the current implementation of CRVE483

methods should not be used for models with crossed random effects (when study variable is crossed with484

another variable) when variance components are of interest, which are common in ecology and evolution485

(e.g., species, geographical location, experimental method). This is because the current CRVE methods486

cannot account for cross-classified dependence. When using study-level clustering, CRVE methods assume487

that estimates from different studies are independent. However, in a model that includes for example488

species-level random effects (e.g. phylogenetic and non-phylogenetic), there is dependence across studies and489

ignoring it can lead to underestimated standard errors. Current statistical implementations are limited to490

support robust variance estimation for multi-way clustered data. There have been methods developed by491

Cameron et al., 2011 to deal with multi-way clustered standard errors, but these only apply to ordinary492

least squares models. Currently, the clubSandwich does not compute robust estimates when cross-random493

effects or known correlation matrix for the random effects (i.e. the matrix for phylogenetic relationships)494

are present, which will result in an error. Whereas, metafor will compute an estimate for CR0 and CR1495

methods when there are crossed-random effects under the current version 4.6-0, which leaves the analyst to496

interpret whether the results are valid.497
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4.4 Recommendations498

Based on our findings, we recommend using multilevel models with adjusted degrees of freedom. When499

sufficient information is available from primary studies to directly specify or approximate within-study500

correlations, incorporating a constructed sampling error variance-covariance matrix (V∗) can improve the501

accuracy of variance decomposition (e.g. distinguishing within-study from between-study variation). We502

encourage to seek domain expert knowledge to make an informed assumption of the within-study correlation.503

This approach ensures accurate coverage rates and accounts for sampling error dependencies, leading to504

reliable variance component estimates. We note two important considerations that should guide any meta-505

analytical model specification. First, carefully select the variables that adequately capture heterogeneity506

at each hierarchical level, define the hierarchical structure, and decide whether certain factors should be507

treated as random or fixed effects (Gelman, 2005). Importantly, always include a random effect at the level508

of individual effect sizes (i.e. modelling the within-study effect), as it accounts for within-study variability509

and avoids assuming a common true effect. We recommend following a systematic model selection process as510

described in the decision tree in Pustejovsky and Tipton, 2022. Further consider preregistering this process511

of model selection, which does not need to include model detail but rather the model selection process, to512

enhance transparency and reproducibility (Head et al., 2015). Second, use all the information from primary513

studies. Ideally, the sampling error V∗ matrix should be constructed using this information. However, if514

there are insufficient data to calculate covariances or to model an additional hierarchical level, using model515

selection criteria, as in our case studies, can help guide its specification.516

Further, users interested in estimating an overall mean effect could fit a simpler model excluding species and517

phylogeny (or other crossed random effects with study) and apply the CR2 adjustment, which performed518

best in our simulation Study 1 and is supported by other studies (Lee & Pustejovsky, 2024). However, this519

comes at the cost of not estimating variance components for species or phylogeny.520

4.5 Limitations of study521

It is important to note that our findings are limited by the assumptions of the data-generating model and522

the choice of parameter values in our simulation studies. Although we considered a range of values reflecting523

ecological and evolutionary meta-analytical data, we did not capture other possible conditions encountered in524

meta-analysis. This is because these other conditions are less relevant to our main aims, which were to expand525

and build upon the simulation study of Cinar et al. (2022). For example, we did not account for varying526
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within-study correlations among effect sizes (i.e. non-constant correlations). The consequences of varying527

within-study correlations and the combination of using known values and arbitrary assumptions has not been528

investigated in our simulations. We also did not assess specific distributional assumptions tied to particular529

effect size measures. For instance, the standardised mean difference (SMD) and log response ratio (lnRR) are530

two commonly used measures in ecology and evolution (among others) and are expected to differ slightly in531

their performance under the modelling approaches assessed, which warrants further investigation. Finally, we532

did not evaluate the impact of publication bias (selective reporting of positive findings), a well-documented533

issue in meta-analysis (Marks-Anglin et al., 2020). Publication bias can distort meta-analytical datasets,534

leading to biased parameter estimates and inference. Multilevel models, in particular, may overestimate the535

overall mean effect, as they weigh studies more equally. In contrast, simpler models, such as fixed-effect536

models (FE), are less sensitive to publication bias but tend to underestimate standard errors, increasing537

Type I error rates. Approaches to address this suggest combining simpler models that have a sampling error538

matrix (V∗) with cluster-robust variance estimation (CRVE), which, as our simulation results demonstrate,539

yields precise and unbiased estimates of the overall mean (Yang et al., 2024). However, further simulation540

research is needed to confirm their effectiveness as well as applications to real datasets.541

5 Conclusions542

Dependence among effect sizes and sampling errors in meta-analytical datasets can lead to inaccurate in-543

ferences, significantly impacting the conclusions of meta-analyses. Although modern statistical methods544

that account for this dependence have emerged recently, they remain underutilised in ecology and evolution.545

Here we recommended specific modelling strategies for ecological and evolutionary meta-analyses to ensure546

accurate estimation of variance components and reliable coverage of overall mean estimates. Specifically, we547

advocate the use of multilevel models to explicitly account for heterogeneity at every relevant hierarchical548

level, use advised inference methods, and incorporate a sampling error variance-covariance matrix using any549

known values of correlations amongst effect sizes from primary studies to obtain accurate variance component550

estimates.551
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Van den Noortgate, W., López-López, J. A., Maŕın-Mart́ınez, F., & Sánchez-Meca, J. (2013). Three-level698

meta-analysis of dependent effect sizes. Behavior Research Methods, 45 (2), 576–594. https://doi.699

org/10.3758/s13428-012-0261-6700
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