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Abstract11

1. In ecology and evolution, meta-analysis is an important tool to synthesise findings across separate12

studies. However, ecological and evolutionary data often exhibit complex dependence structures, such13

as shared sources of variation within studies, phylogenetic relationships, and hierarchical sampling14

designs. Recent statistical advancements offer approaches for handling such complexities in dependence,15

yet these methods remain underutilised or unfamiliar to ecologists and evolutionary biologists.16

2. We conducted extensive simulations to evaluate modelling approaches for handling dependence in effect17

sizes and sampling errors in ecological and evolutionary meta-analyses. We assessed the performance of18

multilevel models, incorporating an assumed sampling error variance-covariance matrix (which account19

for within-study correlation), cluster robust variance estimation (CRVE) methods and their combina-20

tion across different true within-study correlations. Finally, we showcased the applications of these21

models in two case studies of published meta-analyses.22

3. Multilevel models produced unbiased regression coefficient estimates and when a sampling variance-23

covariance matrix was used it provided accurate random effect variance components estimates within24

and among studies. However, the latter had no impact on regression coefficient estimates if the model25

was misspecified. The inclusion of CRVE methods, either alone or combined with multilevel models, did26

not enhance performance. In simulations involving phylogenetic multilevel meta-analysis, models using27

CRVE methods generated narrower confidence intervals and lower coverage rates than the nominal28

expectations. The case study results showed the importance of considering a sampling error variance-29

covariance matrix to improve the model fit.30

4. Our results provide clear modelling recommendations for ecologists and evolutionary biologists con-31

ducting meta-analyses. To improve the precision of variance component estimates we recommend32

constructing a variance–covariance matrix that accounts for dependencies in sampling errors within33

studies. Although CRVE methods provide robust inference under certain conditions, we caution against34

their use with crossed random effects, such as phylogenetic multilevel meta-analyses, as CRVE methods35

currently do not account for multi-way clustering and may inflate Type I error rates. Finally, we rec-36

ommend using multilevel meta-analytic models to account for heterogeneity at all relevant hierarchical37

levels and to follow guidance on inference methods to ensure accurate coverage of the overall mean.38

Key-words: Cross-classified data, Phylogenetic comparative methods, Meta-regression, Mixed-effects mod-39

els, Multi-species, Non-independence, Sandwich estimators40
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1 Introduction41

In ecology and evolution, meta-analysis has been used to make broader generalisation from results across42

global scales, long time spans, and across multiple species, while identifying sources of variability (Arnqvist43

& Wooster, 1995; Nakagawa & Poulin, 2012; Stewart, 2009). By systematically combining the quantitative44

results of independent studies, meta-analysis estimates an overall effect size and identifies factors influencing45

variation among effect sizes. However, data in ecology and evolution often exhibit complex dependence46

structures which require advanced approaches to ensure appropriate meta-analytical inference (Gurevitch &47

Hedges, 1999; Koricheva & Gurevitch, 2014; Nakagawa & Santos, 2012).48

Meta-analytical data can have multiple sources of dependence in their structure which can be broadly divided49

into two types. The first and most common is dependence among effect sizes. This occurs when effect sizes50

come from the same primary study, experiment, treatment, location, or another grouping feature, and are51

therefore correlated with each other. Further, meta-analyses in ecology and evolution often involve multiple52

species. In this case effect sizes from the same species are also correlated due to shared evolutionary history53

(Chamberlain et al., 2012; Gurevitch & Hedges, 1999). The second, often overlooked, type of dependence54

is among sampling errors. This type of dependence may arise, for example, when multiple measurements55

are taken from the same subject or group of animals, or when treated subjects are compared with the same56

controls in the context of comparative treatment-control studies. This dependence leads to the sampling57

errors to be correlated within studies or subgroups. A survey of meta-analysis in environmental sciences58

found that only 9% of surveyed meta-analysis used methods to account for dependence in sampling errors59

(Nakagawa et al., 2023). In the past two decades, new and innovative methods for handling these two60

forms of dependence have emerged, but are currently underutilised by ecologists and evolutionary biologists61

conducting meta-analyses today.62

Historically, there are three approaches to deal with dependence structures in meta-analysis, as described63

in Becker (2000): (1) ignore dependence, (2) aggregate (making ad hoc changes to the data to avoid depen-64

dence), and (3) model dependence (using integrative strategies, i.e. methods that do not modify the original65

dataset). The first approach, which ignores dependence, is not recommended as it underestimates standard66

errors and increases the risk of false positives (Type I errors). The second approach, aggregating data, yields67

unbiased estimates but leads to loss of information, as it restricts opportunities for meta-regression and68

the estimation of the variance components of random effects (Nakagawa et al., 2022; Pustejovsky & Chen,69

2024). The most flexible approach to dealing with dependence is the third approach of modelling (Tipton70
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et al., 2019). Multilevel models can account for hierarchical structures in effect sizes by including random71

effects (Pastor & Lazowski, 2018; Van Den Noortgate & Onghena, 2003; Van den Noortgate et al., 2013).72

However, the information about the amount of dependence among sampling errors is often not reported73

in primary studies (Lajeunesse, 2009, 2011; Noble et al., 2017). To model unknown dependencies among74

sampling errors from the same study one can incorporate an assumed within-study correlation within the75

sampling variance-covariance (VCV) matrix. To avoid making any assumptions about correlations among76

effect sizes and potential model misspecification, Hedges et al. (2010) proposed to use cluster robust variance77

estimation (CRVE) methods, also known as sandwich estimator methods. CRVE methods offer an effective78

approach to account for dependencies in sampling errors, though it is important to understand their limita-79

tions, as certain CRVE methods can perform poorly with small sample sizes. In a recent study, Pustejovsky80

and Tipton (2022) proposed a new working model that combines multilevel meta-analytical models, an as-81

sumed sampling error variance covariance matrix, and cluster robust variance estimation with simulations82

demonstrating that this approach enhances the precision of regression estimates. Currently, no simulation83

study has assessed the above modelling approaches and their combination in the context of ecological and84

evolutionary meta-analyses, specifically, when meta-analyses have an unbalanced design and include multiple85

species. As meta-analytic findings can inform evidence-based policy decisions (Haddaway & Pullin, 2014;86

Maynard, 2024), neglecting to account for such dependence structures may lead to erroneous inferences that87

could misinform such policies and conservation management decisions.88

In this paper, we conduct a simulation study to evaluate the performance of different meta-analysis modelling89

approaches to account for dependence in effect sizes and sampling errors. We compare two approaches under90

different working models: one that specifies a within-study error variance-covariance (VCV) matrix assuming91

constant correlation, and another that incorporates a cluster robust variance estimator (CRVE) in the context92

of ecological and evolutionary data. For practical applicability, we focus on different strategies for including93

a within-study VCV, CRVE methods, and their combination, while also assessing how the incorporation of94

phylogenetic random effects influence model efficiency. This study aims to highlight current strategies for95

dealing with unknown dependence of effect sizes and sampling errors. Despite the emergence of new tools96

and modelling approaches, the guidance for applying them to complex ecological and evolutionary dependent97

dataset structures remain limited. Below we provide clear recommendations based on our simulation results.98
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2 Methods99

We registered our study’s protocol in May 2024, detailing the methodological plan following the ADEMP-100

PreReg template provided in Siepe et al. (2023). We reported our simulation items in accordance with the101

guidance provided by Morris et al. (2019) and Williams et al. (2024).102

2.1 Meta-analytic models and assumptions103

Meta-analysis synthesises effect size estimates obtained from multiple primary studies, allowing researchers to104

evaluate the magnitude and direction of a particular effect or association. In ecology and evolution, commonly105

used effect size measures include standardised mean differences, response ratios, correlation coefficients, and106

risk or odds ratios. The sampling variances associated with these effect sizes, reflecting the uncertainty107

in their estimation, are assumed to be known as they are either provided by the original study or can be108

calculated from estimated parameters in the original study data. Hence, when sample sizes are sufficiently109

large, these calculated sampling variances can be treated as approximately known.110

2.1.1 Fixed-effect (FE) and random-effects (RE) models111

Here, we define yi to be the effect size estimate of the ith study (if all studies report a single effect size, the112

terms study and effect size are interchangeable, Nstudies = Ntotal) and with corresponding sampling variances113

vi.114

The simplest meta-analytical model is the FE model, defined as115

yi = µ+ ei (1)

i = 1, . . . , Nstudies

e ∼ N(0,V)

where µ is the overall mean and e is the sampling error term which we assume to be normally distributed with116

mean 0 and with a variance-covariance matrix V where sampling variances vi are along the diagonal. This117

fixed-effect model (sometimes called common-effects or equal-effects model in the meta-analytical literature)118
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assumes that the underlying effect sizes have the same true effect, which is often not the case in ecological119

and evolutionary meta-analyses due to data with multiple species (Senior et al., 2016).120

To account for this variability in true effects, the RE model can incorporate a random effect at the estimate121

level, and is defined as122

yi = µ+ ui + ei (2)

u ∼ N(0, σ2
uIu)

where ui is a random effect corresponding to the ith effect size estimate (i.e. equivalent to study as there is123

one effect size per study), assumed to be normally distributed with mean 0 and variance σ2
u, and Iu is an124

identity matrix of size Nstudies ×Nstudies. This random effects model, assumes all effect sizes across studies125

are independent and that their sampling variances have no dependence structure. However, as we described126

earlier, most studies in ecology and evolution involve more than one effect size per study (Senior et al., 2016)127

and sampling errors are likely related due to study design.128

2.1.2 Multilevel models (ML)129

To address this first type of dependence, dependence among effect sizes, we can include an additional130

random effect at the study level, creating a multilevel model. We define yij the jth effect size estimate in131

the ith study as the multilevel model with two ‘levels’ as132

yij = µ+ uij + si + eij (3)

i = 1, . . . , Nstudies

j = 1, . . . , Ntotal

s ∼ N(0, σ2
sIs)

where uij denotes the random effect of the jth effect estimate in the ith study, si is the study level random133

effect, assumed to be normally distributed with mean 0 and variance σ2
s (Is denotes the identity matrix).134
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This multilevel model assumes independence among sampling errors within studies (i.e. for any two effect135

sizes from the ith study the covariance of sampling errors would be zero: Cov(vij , vij′) = 0; where j and j′136

are distinct effect sizes). Note that this model can be expanded with more ‘levels’ (i.e. random effects) to137

capture other hierarchical dependencies present in the data, for example site, exposure, treatment etc.138

The second type of dependence, dependence among sampling errors, as described earlier, can occur139

when estimates are correlated due to effect sizes being calculated from the same cohort, sample, or due140

to shared controls. Using information from each study’s primary data, we can calculate the covariances of141

effect size pairs. However, this information is often not available, or only available for a few studies, and142

usually all we have available from study i is the vector of error variances vi for each effect size. To address143

this, an approach is to assume an arbitrary constant correlation, which we define as ρ, between effect size144

estimates coming from the same study. Then we assume the vector of within-study errors across all studies,145

e = vec(eij), is distributed as:146

e ∼ N(0,V∗) (4)

where the variance-covariance (VCV) matrix V∗ is block diagonal, where the ith block has diagonals equal147

to the sampling variances vi of the respective effect sizes for study i, and its off-diagonals are the covariances148

between each effect size, assuming common correlation ρ. For example, the covariance of any two effect sizes149

j and j′ from study i is Cov(vij , vij′) = ρ
√
vijvij′ . In ecology and evolution, a constant within-study ρ = 0.5150

has been recommended (Noble et al., 2017) to assume a conservative correlation among effect sizes. Certain151

software implementations assume an arbitrary higher constant correlation ρ = 0.8 as default (Fisher et al.,152

2023) which may be more applicable for human studies (e.g. psychology, education) where effect sizes can be153

more correlated. We further assume there is no correlation between sampling errors from different studies,154

that is, we assume Cov(vij , vi′j′) = 0 for i ̸= i′, hence V∗ has a block-diagonal structure.155

Below we specify an example of constructing the V* block diagonal sampling VCV matrix for a dataset with156

seven effect sizes from two studies, assuming a constant within-study correlation. To improve readability we157

have added a comma between the subscripts of studies (i) and effect sizes (j). The first study includes four158

effect sizes (with associated variances v1,1, v1,2, v1,3, v1,4) and the second study includes three effect sizes159

(with associated variances v2,5, v2,6, v2,7). Variances and covariances are coloured in teal for the first study160

and in olive for the second to differenciate them.161
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V∗ =



v1,1 ρ
√
v1,1v1,2 ρ

√
v1,1v1,3 ρ

√
v1,1v1,4 0 0 0

ρ
√
v1,2v1,1 v1,2 ρ

√
v1,2v1,3 ρ

√
v1,2v1,4 0 0 0

ρ
√
v1,3v1,1 ρ

√
v1,3v1,2 v1,3 ρ

√
v1,3v1,4 0 0 0

ρ
√
v1,4v1,1 ρ

√
v1,4v1,2 ρ

√
v1,4v1,3 v1,4 0 0 0

0 0 0 0 v2,5 ρ
√
v2,5v2,6 ρ

√
v2,5v2,7

0 0 0 0 ρ
√
v2,6v2,5 v2,6 ρ

√
v2,6v2,7

0 0 0 0 ρ
√
v2,7v2,5 ρ

√
v2,7v2,6 v2,7



2.1.3 Phylogenetic multilevel meta-analysis models (PML)162

To account for multiple effect sizes across different species we can add random effects at the species level.163

From recent simulations from Cinar et al. (2022), including both a phylogenetic and non-phylogenetic random164

effect in meta-analytical models provides improved inference. This then extends the multilevel model in165

Equation 3 to166

yijk = µ+ uij + si + nk + pk + eij (5)

k = 1, . . . , Nspecies

n ∼ N(0, σ2
nIn)

p ∼ N(0, σ2
pA)

where yijk is the effect size of the jth estimate, of the ith study and of the kth species. The component167

nk is a species level random effect, assumed to be normally distributed with mean 0 and variance σ2
n and168

identity matrix In, assuming species are independent to each other. To account for the shared evolutionary169

history between species, a second random effect at the species level pk is incorporated, which has a variance170

of σ2
p and A is the phylogenetic correlation matrix of size Nspecies ×Nspecies. We note that the species level171

effects (phylogenetic and non-phylogenetic) are crossed among studies, which means any given species can172

have effect sizes coming from multiple studies.173

The phylogenetic meta-analysis model described in Equation 5 can also incorporate a variance-covariance174

matrix (V∗) for the sampling errors (see Equation 4) to account for correlated errors within-studies.175
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2.2 Cluster-robust variance estimators (CRVE)176

In the previous section, we described multilevel models with a fixed sampling VCV, in which we needed to177

assume a known, constant correlation across studies, in order to account for correlated sampling errors (often178

in the absence of direct measurements of it). To relax this assumption, cluster robust variance-covariance179

estimators (CRVE) have been introduced in meta-analysis to model dependent effect sizes from the same180

study when the true dependence structure is unknown (Hedges et al., 2010). CRVE stem from robust variance181

estimators, also known as sandwich estimators or Huber White estimators, which are designed to handle182

heteroscedasticity (Sidik & Jonkman, 2005; White, 1980). Even when the working model is misspecified,183

meta-regression coefficient estimates with CRVE have asymptotically consistent standard errors. Hence,184

hypothesis tests and confidence intervals are valid when appropriate small-sample adjustments are used and185

the number of clusters is sufficiently large. We present three of the main CRVE methods implemented in186

the clubSandwich R package (Pustejovsky, 2023), also available in the metafor package via the robust()187

function (Viechtbauer, 2023). We note that other methods, such as cluster wild bootstrapping (Joshi et al.,188

2022), are available but we do not cover them here. The original robust sandwich estimator (as popularised in189

Liang & Zeger, 1986), which we will refer to asCR0 as per Cameron and Miller (2015), estimates the standard190

errors of coefficients empirically and without imposing structural correlation assumptions. However, when191

cluster numbers are small (less than 50 studies), which is likely in meta-analysis in ecology and evolution,192

the CR0 method is downwardly biased for variance components as well as having high Type I error rates of193

associated hypothesis tests (Tipton & Pustejovsky, 2015; Viechtbauer et al., 2015). To address this issue, a194

number of CRVE methods have been proposed to enhance inference accuracy when the number of clusters is195

small. Briefly, the CR1 method provides an approximate correction for when the number of clusters is small.196

The CR2 method provides a “bias-reduced linearisation” adjustment for small (study) sample sizes which197

was initially proposed by Bell and McCaffry (2002) and further developed in Pustejovsky and Tipton (2018).198

Using the CR2 method with the Satterthwaite approximation of effective degrees of freedom controls for199

Type-I error rates (Tipton & Pustejovsky, 2015). However, currently there is no statistical theory to support200

multi-way clustered standard errors for models with crossed random effects, hence CR2 can’t be used with201

phylogenetic meta-analytical models (Equation 5), i.e. when species are distributed across multiple studies.202
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2.3 Simulation study203

We conducted two inter-related simulation studies following a similar design as Cinar et al. (2022), to assess204

performance of the models and CRVE methods we presented earlier under different dependence structures.205

The first study, Study 1, compared meta-analysis models detailed in Equations 1-3. The second study, Study206

2, compared performance of phylogenetic multilevel meta-analysis models (PML) detailed in Equation 5. For207

ML and PML using a V ∗ matrix, we assumed a constant within-study correlation ρ for sampling errors, and208

considered each of ρ ∈ (0.2, 0.5, 0.8). We summarised the simulation settings per model in Table 1.209

For both studies, we used a data-generating process inspired by real meta-analysis data from ecology and210

evolution (Senior et al., 2016), which also informed the simulation design in Cinar et al. (2022) (see Supporting211

Information Figure S1). The number of effect sizes per study were simulated as an unbalanced design with212

random values generated from a beta distribution with parameters α = 1.5 and β = 3 (making a right-213

skewed distribution), scaled by a factor of 39, rounded to the nearest integer, and incremented by one. For214

all simulations, we considered an overall mean effect size µ = 0.2. The test statistics and confidence intervals215

of the overall mean estimate µ̂ were computed assuming a t-distribution and adjusted degrees of freedom216

(more detail below). We simulated sampling errors assuming dependence of effect sizes within-studies,217

following a multivariate normal distribution with mean vector 0 and sampling error variance-covariance218

matrix. We generated the sampling error variance-covariance matrix assuming a true constant within-study219

effect size correlation, defined as ϕ, and assumed the sampling error variances, vij , followed a right-skewed220

beta distribution with parameters α = 2 and β = 20, resulting in a mean sampling variance of 0.091. We221

considered three values of true correlation within-study, ϕ ∈ {0, 0.2, 0.5, 0.8}, to reflect different levels of222

dependence and to match models with assumed sampling error V ∗ matrix structures. Note that when we223

fitted models that assumed within-study error correlation, we considered all three values (ρ ∈ {0.2, 0.5, 0.8})224

irrespective of the actual correlation (ϕ) at which data were simulated, in order to understand robustness of225

the method to misspecification.226

For Study 1, we considered Nstudies ∈ (20, 50) studies, and variance components values of (σ2
u, σ

2
s) ∈227

(0.05, 0.3). For Study 2, we considered scattershot combinations of the number of studies and the num-228

ber of species, with two combinations: (Nstudies, Nspecies) = (20, 40) and (Nstudies, Nspecies) = (50, 100). For229

the variance components in Study 2 we considered (σ2
u, σ

2
s , σ

2
p, σ

2
n) ∈ (0.05, 0.3). We simulated species indices230

assuming a beta distribution with parameters α = 2 and β = 2, which were scaled by the number of species231

minus one, rounded, and increased by one. We randomly generated phylogenetic trees and computed branch232

10



lengths assuming a power parameter α of 1 based on results in Cinar et al. (2022), using the rtree function233

from the ape package (Paradis et al., 2023). The phylogenetic correlation matrix (matrix A in Equation 5)234

was computed assuming a Brownian motion model of evolution.235

For all models and simulation conditions, we assessed the bias and mean squared error (MSE) of the overall236

mean estimates, and variance components. Further, we evaluated the precision and consistency of the overall237

mean estimates by assessing the 95% coverage rates and widths of confidence interval. We performed 5,000238

simulation repetitions per condition. The Monte Carlo Standard Error (MCSE) for 5,000 repetitions will be239

lower than 1% for bias, MSE and coverage measures for each one of the models in the simulation studies240

(Morris et al., 2019). All our simulations were conducted using open-source software R version 4.3.1 (R-Core-241

Team, 2022). The metafor package version 4.6-0 was employed to fit meta-analysis models (Viechtbauer,242

2023) assuming a restricted maximum likelihood (REML) estimation, the default setting of the rma.mv243

function. The adjusted degrees of freedom were specified in the model using dfs="contain" argument244

which calculates the degrees of freedom for the overall mean coefficient by checking whether its predictor245

varies at a specific random effect level, then using the number of unique values of that effect minus one as246

the degrees of freedom. All simulations were run on the high performance computing (HPC) cluster Katana247

supported by Research Technology Services at UNSW Sydney (UNSW, 2024).248

2.4 Additions and deviations249

Meta-analyses often assess whether effect sizes vary based on certain study characteristics. To account250

for these characteristics (commonly referred as moderators or predictor variables) researchers can employ251

meta-regression models, which help to explore heterogeneity and control for potential confounders. We252

extended our protocol to evaluate meta-regression models by simulating phylogenetic multilevel models253

with moderators i.e. predictor variables. This analysis followed the same design as simulation Study 2254

but included three moderators: a study-level categorical moderator (e.g., treatment type), a species-level255

continuous moderator (e.g., species weight), and an observation/effect size level categorical moderator (e.g.,256

sex). Expanding on the phylogenetic meta-analysis from Equation 5, the phylogenetically controlled meta-257

regression model with the three described moderators is defined as258

yijk = β0 + β1x1i + β2x2k + β3x3ij + uij + si + nk + pk + eij (6)
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where β0 is the fixed intercept coefficient, β1, β2, β3 are the fixed effect coefficients for the predictor variables259

x1i, x2k, x3ij . For the simulation study, we assume true values of β0 = 0.2, β1 = 0.6, β2 = 0.2, and β3 = 0.5.260

The tests of individual fixed coefficients in the meta-regression model and the corresponding confidence261

intervals were based on a t-distribution, and the omnibus test based on a F -distribution. In the meta-262

regression, each coefficient’s adjusted degrees of freedom were computed by subtracting the total number263

of model coefficients (including the intercept) from the number of unique levels of the random effect over264

which the corresponding predictor varied using the using dfs="contain" argument in metafor (Viechtbauer,265

2023).266

3 Results267

3.1 Study 1: Meta-analysis models268

Figure 1 displays the performance of the six different working models (FE, RE, ML, ML-VCV-0.2, ML-VCV-269

0.5, and ML-VCV-0.8) for estimating the overall mean µ̂ across varying true within study correlation ϕ. All270

models had unbiased overall mean estimates µ̂ (Figure 1A and Table S1). We found that FE (Fixed-Effects)271

model exhibited higher variability and higher mean squared error (MSE) compared to other models (Figure272

1.A, 1.B, and Table S1). Multilevel (ML) models, including ML models with assumed sampling VCV (i.e.273

V∗), had identical lower and more consistent MSE across all conditions (Figure 1.B). Figure 1.C displays274

the coverage rates of the 95% confidence intervals, revealing that FE and RE (Random-Effects) generally275

fail to achieve the nominal 95% coverage, while the four ML models achieves coverage closer to the target276

across conditions (Table S2). Further, we found the FE model had the narrowest confidence intervals widths277

(Figure 1.D), whereas they were larger for the multilevel models. We note that ML-VCV-0.8 showed slightly278

narrower confidence interval widths with higher corresponding MSE. Figure S2 displays the 95% coverage279

rates of the four ML models across three different inference methods showing the assumed t-distribution with280

adjusted degrees of freedom is at the nominal coverage rate compared to inferences assuming a z-distribution281

or t-distribution without any degrees of freedom adjustment.282

The coverage rate and width of the 95% confidence interval of the overall mean estimates µ̂ are presented283

in Figure 2 across six working models and four approaches: no CRVE method, CR0, CR1, and CR2. We284

found that the multilevel (ML) models with and without assuming a sampling VCV consistently achieved285

coverage close to the nominal 95% no matter the CRVE method, while FE and RE showed lower coverage286
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Table 1: Simulation parameters
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Figure 1: Overall mean estimate µ̂ performance across all working models and conditions assumimg a true
within study correlation between effect sizes of ϕ ∈ (0.2, 0.5, 0.8), evaluated over 5,000 simulation iterations.
A. The bias of the overall mean estimate µ̂, reflecting the deviation from the true mean. Monte Carlo
standard errors of the overall mean bias are provided in Table S1. B. The mean squared error (MSE) of
µ̂, combining both bias and variance to measure accuracy. C. The coverage rates of the 95% confidence
intervals, indicating the proportion of intervals that include the true mean µ and assessing the reliability
and consistency of the interval estimates. Monte Carlo standard errors of the overall mean coverage rate
are provided in Table S2. D. The widths of the 95% confidence intervals, representing the precision of the
estimates across different conditions.
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but approximately close to 95% for CR2 method (Figure 2.A). The confidence interval widths of FE and RE287

models without any CRVE method were narrower while having low coverage of the overall mean estimate288

(Figure 2.B). The confidence interval widths of ML models were identical and did not change no matter the289

CRVE method.290

Figure 3 displays the distribution of the conditional variance components estimates within study (σ̂2
u) and291

among studies (σ̂2
s). The FE models and the RE models are not shown as they did not estimate these292

variance components. Figure 3.A shows the RE models overestimated the within-study variance components293

and had high variability, while multilevel (ML) models were closer to the true value when σ2
u = 0.3. For the294

among-study conditional variance estimates (σ̂2
s), Figure 3.B shows the ML without assuming a sampling295

V∗ matrix overestimated variances for higher correlations within studies (ϕ > 0.2). Similar patterns were296

found for other true variance component conditions (see Figure S3, S4, S5, and Table S3). As for the total297

variance estimates (σ̂2
total = σ̂2

u + σ̂2
s), we found smaller mean squared errors (MSE) in models assuming a298

sampling V∗ matrix for higher true within-study correlations ϕ > 0.2. Similar patterns were found for other299

true variance component conditions displayed in Supporting Figure S6. All models in Study 1 converged300

and showed no errors in the estimation process, and computed in less than 3 seconds (Supporting Table S8).301
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Figure 2: Boxplots of the overall mean estimate µ̂ coverage rate and confidence intervals for each CRVE
method under working models across all conditions. A. The coverage rates of the 95% confidence intervals,
indicating the proportion of intervals that include the true mean µ and assessing the reliability and consis-
tency of the interval estimates B. The widths of the confidence intervals. The results were evaluated across
5,000 simulation iterations, eight conditions of variance components (σ2

u, σ2
s) and the number of studies

(kstudies).
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Figure 3: A. Boxplots of within-study conditional variance estimates (σ̂2
u) under true values of σ

2
u = 0.3 and

across within study correlation levels ϕ ∈ 0.2, 0.5, 0.8. B. Boxplots of among study under conditional variance
estimates (σ̂2

s) under true values of σ2
s = 0.3 and across within study correlation levels ϕ ∈ 0.2, 0.5, 0.8. For

both panels A and B, the true variance is shown in the grey bolded line and the boxplot represent the
variability of estimates across 5,000 simulations. C. Distribution of mean squared error (MSE) of the total
conditional variance estimates of models (σ̂2

total = σ̂2
u + σ̂2

s) under true values of σ2
u = 0.3 and σ2

s = 0.3, and
within study correlation levels of ϕ ∈ (0.2, 0.5, 0.8). Models that did not estimate among study variation
had σ̂2

s = 0.
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3.2 Study 2: Phylogenetic meta-analysis and meta-regression models302

3.2.1 Phylogenetic multilevel meta-analysis303

We found no clear difference in the bias, MSE, coverage rate and width of confidence intervals of the four304

phylogenetic multilevel working models (PML, PML-VCV-0.2, PML-VCV-0.5, PML-VCV-0.8) across the305

three true values for within study correlation (see SFigure 2). Figure 4 displays boxplots of coverage rate306

and confidence interval widths of the overall mean estimates of the four phylogenetic multilevel working307

models (PML, PML-VCV-0.2, PML-VCV-0.5, PML-VCV-0.8) across three dependence structures for each308

CRVE method. Coverage rates are closer to 95% nominal when no CRVE method is used, which reached309

on average 66-68% across all working models (Figure 4A). Confidence intervals were narrower with CRVE,310

whereas without CRVE, widths were approximately twice as large (Figure 4.B). Figure 5 displays distribution311

in boxplots of the conditional variances of the four random effects in each working model. As the true312

correlation within study increases, ϕ ∈ (0.2, 0.5, 0.8), the PML working model, which assumes no correlation313

among effect sizes from the same study (ρ = 0), provided an estimate of the variance component within314

study (σ̂2
u) that was downwardly biased and the estimated variance component among studies (σ̂2

s) that was315

upwardly biased. The majority of models converged (at least 99.99% of models showed no errors in the316

estimation process) and were computed within 6 seconds (Supporting Table S10).317
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Figure 4: Boxplots of the overall mean estimate µ̂ coverage rate and confidence intervals for each CRVE
method under four phylogenetic meta-analysis (PML) working models across all conditions, assessed over
5,000 simulation iterations. A. The coverage rates of the 95% confidence intervals, indicating the proportion
of intervals that include the true mean µ and assessing the reliability and consistency of the interval estimates
B. The widths of the confidence intervals. The results were evaluated across 5,000 simulation iterations,
eight conditions of variance components (σ2

u, σ
2
s) and the number of studies (kstudies).
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Figure 5: A. Boxplots of within-study conditional variance estimates (σ̂2
u). B. Boxplots of among study

conditional variance estimates (σ̂2
s). C. Boxplots of non-phylogenetic effect conditional variance estimates

(σ̂2
n). D. Boxplots of phylogenetic effect conditional variance estimates (σ̂2

p). For all panels, the true
variance is shown in the grey bolded line and the boxplot represent the variability of estimates across
5,000 simulations across true within study correlation levels of ϕ ∈ 0.2, 0.5, 0.8 and under true values of
σ2
u = σ2

s = σ2
n = σ2

p = 0.3.
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3.2.2 Phylogenetic multilevel meta-regression318

For the phylogenetic meta-regression model, the estimates of the four coefficients (β̂0, β̂1, β̂2, and β̂3) were319

unbiased and did not vary across models with different within-study correlations (see Supporting Figures320

S12–S15 and Table S9). The 95% confidence interval widths for all coefficients estimates were similarly321

unaffected even under model misspecification. However, we note slightly narrower widths for the effect size322

level coefficient β̂3 when the model is specified under the true data-generating mechanism of the within-323

study correlation (Supporting Figure S15). We found coverage rates of the estimates of the moderator324

coefficients at study level β1, species level β2 and effect size level β3 were approximately at the nominal 95%325

(see Figures S13, S14, S15). The estimates of the intercept of the meta-regression β0 showed slightly lower326

coverage rates around 93% (Figure S12). The fixed effect coefficients in the phylogenetic meta-regression327

model had worse coverage rates when using CR0 and CR1 cluster robust variance estimation methods (see328

Figures S16–S19). The majority of models converged (at least 99.99% of models) and were computed within329

6 seconds (Supporting Table S3).330
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3.3 Case studies331

We reanalyse two published meta-analyses to illustrate the application of these working models. The models332

have been simplified from the original studies, so the results are for illustration purpose only and should not333

be used to draw substantive conclusions. The first case study covers multilevel meta-analysis models which334

we dealt with in simulation Study 1, while the second focuses on the phylogenetic multilevel meta-analysis335

models that we conducted for simulation Study 2. Code to run the case studies is provided here.336

3.3.1 Case study 1: Multilevel meta-analysis337

Crawford et al., 2019 used a large meta-analysis dataset of pairwise plant-soil feedback measures to investigate338

whether these feedbacks contribute to plant species coexistence. We reanalysed their dataset, focusing on the339

mycorrhizal having different status consisting of 59 effect sizes across 13 studies. We applied the multilevel340

meta-analytical models (Equations 3, 4) to account for dependence among effect sizes. For dependence among341

sampling errors, we assumed a V∗ matrix with a constant within-study correlation, ρ, considering values342

from 0.1 to 0.9 as well as the case of no correlation (i.e. ρ = 0). We also calculated the cluster robust CR2343

standard error and P -values for each model. Assuming a higher within-study correlation (ρ = 0.9) resulted344

in a slightly higher log likelihood. The overall mean estimate was near zero and varied little, compared to its345

standard error, as ρ was changed (although it did change sign at ρ < 0.5). The standard errors and P -values346

did not show any substantial differences as ρ changed or as we moved across to the robust CR2 method.347

However, we found that the heterogeneity estimates (σ̂2
u and σ̂2

s) varied with different assumed correlations.348

Table 2: Results of the multilevel meta-analysis working models on the case study 1 dataset. The first column
shows the assumed constant correlation among effect sizes from the same study (ρ). The subsequent columns
report the estimated overall mean (µ̂), its standard error (SE[µ̂]), the robust CR2 standard error (SECR2),
the P-value (P ) (under a t-distribution) and the robust CR2 P-value (PCR2) for testing whether the overall
mean is zero, followed by the variance component estimates (σ̂2

s and σ̂2
u) and the model’s log-likelihood.

ρ µ̂ SE[µ̂] SE[µ̂]CR2 P PCR2 σ̂2
u σ̂2

s LogLik
0.0 -0.04 0.155 0.154 0.7857 0.7852 0.190 0.229 -56.290
0.1 -0.03 0.152 0.152 0.8413 0.8409 0.193 0.211 -55.794
0.2 -0.02 0.151 0.150 0.8895 0.8891 0.198 0.198 -55.384
0.3 -0.01 0.150 0.149 0.9299 0.9296 0.204 0.187 -55.043
0.4 -0.01 0.150 0.149 0.9628 0.9626 0.211 0.178 -54.757
0.5 0.00 0.150 0.149 0.9887 0.9886 0.219 0.170 -54.517
0.6 0.00 0.150 0.148 0.9918 0.9917 0.229 0.163 -54.316
0.7 0.00 0.150 0.148 0.9783 0.9781 0.239 0.156 -54.151
0.8 0.01 0.150 0.149 0.9705 0.9703 0.251 0.150 -54.020
0.9 0.01 0.150 0.149 0.9682 0.9679 0.264 0.143 -53.923
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3.3.2 Case study 2: Phylogenetic multilevel meta-analysis349

Horváth et al., 2023 investigated whether behavioural type (mean behaviour) and behavioural predictabil-350

ity (within-individual variation) evolve independently or under system-specific constraints across multiple351

species. We reanalysed the dataset using phylogenetic multilevel meta-analysis (Equation 5), applying dif-352

ferent within-study correlations for effect sizes from the same studies and obtaining CR1 robust standard353

errors and significance tests. The working model had slightly higher log-likelihoods when no within-study354

correlation was assumed (ρ = 0), but only by a decimal point. The overall mean, standard error, P -value,355

and variance components (σ̂2
u, σ̂

2
s , σ̂

2
p, and σ̂2

n) remained largely unchanged within two to three decimal356

places. We note that the CR1 robust standard errors and P -values were substantially smaller than without357

applying CR1 (the CR2 method was not applied for the PML as it can’t handle cross random effects).358

Table 3: Results of the phylogenetic multilevel meta-analysis on the case study 2 dataset. The first column
shows the assumed correlation among effect sizes from the same study (ρ). The subsequent columns report
the estimated overall mean (µ̂), its standard error (SE[µ̂]), the robust CR1 standard error (SECR1), the
P-value (P ) (under a t-distribution) and the robust CR1 P-value (PCR1) for testing whether the overall mean
is zero, followed by the variance component estimates (σ̂2

s , σ̂
2
u, σ̂

2
p and , σ̂2

n) and the model’s log-likelihood.

ρ µ̂ SE[µ̂] SE[µ̂]CR1 P PCR1 σ̂2
u σ̂2

s σ̂2
p σ̂2

n LogLik

0.0 -0.05 0.207 0.083 0.7953 0.5199 0.133 0.381 0.115 <0.001 -102.696
0.1 -0.05 0.207 0.083 0.7946 0.5183 0.132 0.382 0.115 <0.001 -102.703
0.2 -0.05 0.207 0.083 0.7940 0.5168 0.130 0.384 0.115 <0.001 -102.710
0.3 -0.05 0.207 0.083 0.7933 0.5153 0.129 0.385 0.116 <0.001 -102.718
0.4 -0.05 0.207 0.083 0.7927 0.5138 0.128 0.386 0.116 <0.001 -102.725
0.5 -0.06 0.208 0.084 0.7920 0.5122 0.127 0.388 0.116 <0.001 -102.733
0.6 -0.06 0.208 0.084 0.7914 0.5107 0.126 0.389 0.117 <0.001 -102.741
0.7 -0.06 0.208 0.084 0.7908 0.5093 0.125 0.390 0.117 <0.001 -102.749
0.8 -0.06 0.208 0.084 0.7901 0.5078 0.124 0.391 0.117 <0.001 -102.757
0.9 -0.06 0.208 0.084 0.7895 0.5063 0.123 0.393 0.117 <0.001 -102.765
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4 Discussion359

Here, using two extensive simulation studies, we evaluated modelling approaches, including combined meth-360

ods proposed by Pustejovsky and Tipton (2022), to account for dependence in ecological and evolutionary361

meta-analytic data. Our simulations are the first to evaluate these combined approaches in an unbalanced de-362

sign (varying number of effect size per study) and in the context of phylogenetic multispecies meta-analytical363

data. Our results suggest that multilevel models performed best, given our simulation settings. Addition-364

ally, constructing a sampling error variance-covariance matrix (V∗) to account for correlated sampling errors365

within-studies improved the accuracy of heterogeneity (variance component) estimates. However, neither366

combining multilevel models with cluster robust variance estimation (CRVE) nor incorporating within-study367

correlation in sampling error (V∗) improved regression coefficient estimates. We discuss these findings in368

detail below.369

4.1 Regression coefficient estimates370

Our simulation results showed that multilevel models provided unbiased and efficient estimates of the overall371

mean regardless of the specified sampling error dependence structure (Figure 1 and Figure S7). Similar372

results were also found in the simulations by Moeyaert et al. (2017). Importantly, the inference method373

and the choice of degrees of freedom in the test statistics and confidence intervals noticeably influenced the374

coverage rate of the overall mean estimate (to control for Type I error rates), as shown in Figure S2, which375

was also found in Nakagawa et al. (2022). Further, as expected we found simplistic models (fixed-effects,376

FE, or random-effects, RE) led to lower coverage rates (increase Type I errors) when there was dependence377

among effect sizes and sampling errors. However, our results showed that combining simplistic models with378

CRVE methods improved statistical inference. We highlight below in more details in what context such379

simplistic models may be of interest even under complex dependence structures.380

Regarding multilevel phylogenetic meta-analyses (Study 2), our simulation results found the overall mean381

estimates were unbiased across all models with and without a specified sampling (V∗) matrix. However, the382

overall mean had a low coverage rate around 90% for all models, which was also found in the simulations by383

Cinar et al., 2022. For the phylogenetic multilevel meta-regression models, we found that the estimates of384

three moderator coefficients were unbiased and precise. Specifically, the effect size level coefficient estimate385

was slightly more precise under the true model specifications of the sampling error similar to simulation results386
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by Pustejovsky and Tipton (2022), although the improvement was too small to affect the inference. Further,387

our results showed the coverage rates of the three moderator coefficients were close to the nominal 95%.388

However, the estimate of the intercept coefficient showed lower coverage, around 93%. The lower coverage389

rates for the overall mean and meta-regression intercept estimates could potentially be recovered by using390

adjusted degrees of freedom (e.g. Satterthwaite method) although such adjustments are not implemented391

currently in metafor under version 4.6-0 (via clubsandwich) for models with crossed random effects.392

4.2 Variance component estimates393

When we assumed a sampling error matrixV∗ that matched the true underlying data-generating mechanisms394

the multilevel meta-analysis models in both simulation studies provided unbiased estimates of the within395

and among study variance components. Our findings align with other simulation studies (Fernández-Castilla396

et al., 2019; Pustejovsky & Tipton, 2022). Further, we found that assuming a higher ρ than the true within-397

study correlation inflates the within-study variance component, while assuming a lower ρ underestimates it.398

Although model misspecification does not affect the total variance estimate of the model, it redistributes the399

variance components, leading to bias variance components. Similar variance redistribution under misspec-400

ification has been reported in mixed-effects models (Schielzeth et al., 2020). Modelling accurate variance401

components is an important part of meta-analysis as it helps distinguish within and among studies variances402

(Senior et al., 2016). For example, it allows researchers to assess whether an overall mean effect applies403

across diverse study contexts and to quantify either there is higher variability within or among studies (Yang404

et al., 2023, 2025). We note that the CRVE methods did not impact the estimation of variance components.405

The results from Case Study 1 showed that assuming a sampling error V* matrix with a higher within-study406

constant correlation provided better model fit (Table 2). However, in practice, the analyst may not know407

the true correlations among effect sizes, as described earlier in Section 2. To select the most appropriate408

correlation structure, researchers can use model fit criteria (e.g., log-likelihood or information criteria) as409

recommended in Barnett et al., 2010 and as demonstrated in our two case studies. A further issue remains410

when it is unknown whether correlations among effect sizes are constant or non-constant within and across411

studies. In such cases, researchers either have to make arbitrary assumptions about these correlations or,412

if information about another hierarchical level (e.g., different cohorts or samples within studies) is available413

from primary studies, incorporate this as an additional random effect to avoid assuming a specific V∗ matrix.414

Yet, such an additional random effect is often unlikely to be distinguishable from the between study effect415

(or it could lead to non-singularity, for example, if there is only 32 cohorts from 30 studies).416
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4.3 CRVE methods417

We found, interestingly, no substantial benefit in using CRVE methods combined with multilevel modelling418

even when the model was misspecified. CRVE methods inflate standard errors when samples are small419

or assumptions are violated, leading to greater uncertainty compared to large samples without violations.420

However, as discussed above, if the model specifies multi-way clusters (i.e. cross-random effects), the CRVE421

methods do not work (at least currently). Notably, when CRVE methods are applied to phylogenetic422

multilevel meta-analysis models it yielded lower coverage rates (increase risk in Type I errors). Further,423

in our case study 2 we found substantially smaller standard errors and P-values when the cluster robust424

method was applied, which could lead to incorrect inference (i.e. inflated type I error). Therefore, the425

current implementation of CRVE methods should not be used for models with crossed random effects, which426

are common in ecology and evolution (e.g., species, geographical location, experimental method). This is427

because the current CRVE methods cannot account for cross-classified dependence. When using study-level428

clustering, CRVE methods assume that estimates from different studies are independent. However, in a429

model that includes for example species-level random effects (e.g. phylogenetic and non-phylogenetic), there430

is dependence across studies and ignoring it can lead to underestimated standard errors. Current statistical431

implementations are limited to support robust variance estimation for multi-way clustered data. There have432

been methods developed by Cameron et al., 2011 to deal with multi-way clustered standard errors, but433

these only apply to ordinary least squares models. Currently, the clubSandwich does not compute robust434

estimates when cross-random effects or known correlation matrix for the random effects (i.e. the matrix for435

phylogenetic relationships) are present, which will result in an error. Whereas, metafor will compute an436

estimate for CR0 and CR1 methods when there are crossed-random effects under the current version 4.6-0,437

which leaves the analyst to interpret whether the results are valid.438

4.4 Recommendations439

Based on our findings, we recommend the use of multilevel models with adjusted degrees of freedom, and440

when necessary a constructed sampling error variance-covariance V∗ matrix as the standard approach for441

ecological and evolutionary meta-analyses. This approach ensures accurate coverage rates and accounts for442

sampling error dependencies, leading to reliable variance component estimates. We note two important443

considerations that should guide any meta-analytical model specification. First, carefully select the variables444

that adequately capture heterogeneity at each hierarchical level, define the hierarchical structure, and decide445
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whether certain factors should be treated as random or fixed effects (Gelman, 2005). Importantly, always446

include a random effect at the level of individual effect sizes (i.e. modelling the within-study effect), as it447

accounts for within-study variability and avoids assuming a common true effect. We recommend following a448

systematic model selection process as described in the decision tree in Pustejovsky and Tipton, 2022. Further449

consider preregistering this process of model selection, which does not need to include model detail but rather450

the model selection process, to enhance transparency and reproducibility (Head et al., 2015). Second, use451

all the information from primary studies. Ideally, the sampling error V∗ matrix should be constructed using452

this information. However, if there are insufficient data to calculate covariances or to model an additional453

hierarchical level, using model selection criteria, as in our case studies, can help guide its specification.454

4.5 Limitations of study455

It is important to note that our findings are limited by the assumptions of the data-generating model and456

the choice of parameter values in our simulation studies. Although we considered a range of values reflecting457

ecological and evolutionary meta-analytical data, we did not capture other possible conditions encountered458

in meta-analysis. This is because these other conditions are less relevant to our main aims. For example, we459

did not account for varying within-study correlations among effect sizes (i.e. non-constant correlations). The460

consequences of varying within-study correlations and the combination of using known values and arbitrary461

assumptions has not been investigated in our simulations. Also, we did not evaluate the impact of publication462

bias (selective reporting of positive findings), a well-documented issue in meta-analysis (Marks-Anglin et al.,463

2020). Publication bias can distort meta-analytical datasets, leading to biased parameter estimates and464

inference. Multilevel models, in particular, may overestimate the overall mean effect, as they weigh studies465

more equally. In contrast, simpler models, such as fixed-effect models (FE), are less sensitive to publication466

bias but tend to underestimate standard errors, increasing Type I error rates. Approaches to address this467

suggest combining simpler models that have a sampling error matrix (V∗) with cluster-robust variance468

estimation (CRVE), which, as our simulation results demonstrate, yields precise and unbiased estimates469

of the overall mean (Yang et al., 2024). However, further simulation research is needed to confirm their470

effectiveness as well as applications to real datasets.471
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5 Conclusions472

Dependence among effect sizes and sampling errors in meta-analytical datasets can lead to inaccurate in-473

ferences, significantly impacting the conclusions of meta-analyses. Although modern statistical methods474

that account for this dependence have emerged recently, they remain underutilised in ecology and evolution.475

Here we recommended specific modelling strategies for ecological and evolutionary meta-analyses to ensure476

accurate estimation of variance components and reliable coverage of overall mean estimates. Specifically, we477

advocate the use of multilevel models to explicitly account for heterogeneity at every relevant hierarchical478

level, use advised inference methods, and incorporate a sampling error variance-covariance matrix using any479

known values of correlations amongst effect sizes from primary studies to obtain accurate variance component480

estimates.481
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Dochtermann, N. A., Garamszegi, L. Z., & Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-585

effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11 (9),586

1141–1152. https://doi.org/10.1111/2041-210X.13434587

Senior, A. M., Grueber, C. E., Kamiya, T., Lagisz, M., O’Dwyer, K., Santos, E. S. A., & Nakagawa, S.588

(2016). Heterogeneity in ecological and evolutionary meta-analyses: Its magnitude and implications.589

Ecology, 97 (12), 3293–3299. https://doi.org/10.1002/ecy.1591590

Sidik, K., & Jonkman, J. N. (2005). A Note on Variance Estimation in Random Effects Meta-Regression.591

Journal of Biopharmaceutical Statistics, 15 (5), 823–838. https://doi.org/10.1081/BIP-200067915592
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