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Abstract 19 

Global change is altering the phenology and geographic ranges of flowering species, with 20 

potentially profound consequences for the timing and composition of floral resources and the 21 

seasonal structure of ecological communities. However, shifts in flowering phenology and 22 

species distributions have historically been studied in isolation due to disciplinary silos and 23 

limited data, leaving critical gaps in our understanding of their combined effects. To address this, 24 

we used millions of herbarium and occurrence records to model phenological and range shifts for 25 

2,837 plant species in the United States across historical, recent, and projected climate and land 26 

cover conditions, enabling us to scale responses from species to communities, and from local to 27 

continental geographies. Our analysis reveals that communities are shifting toward earlier, longer 28 

flowering seasons in most biomes, with co-flowering species richness increasing at the edges of 29 

the season and declining at historical peaks—trends projected to intensify under ongoing 30 

environmental trends. Although range and phenology shifts operate concurrently, they 31 

predominantly affect different aspects of the flowering season: phenological changes primarily 32 

alter seasonality—its start, end, and duration—and co-flowering diversity at the edges of the 33 

season, while range shifts more strongly influence co-flowering species richness during historical 34 

seasonal peaks and the identity and degree of flowering synchrony among co-occurring species 35 

pairs. Together, these results demonstrate that shifts in phenology and species ranges act 36 

synergistically to restructure the flowering seasons across the conterminous United States, 37 

revealing wide variation in the pace and magnitude of change among biomes. 38 

 39 

  40 
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Introduction 41 

The start, end, duration, and species composition of a community’s flowering season—the period 42 

during which most co-occurring angiosperms complete their annual flowering cycles within 43 

temperate communities—impacts the fitness of both plants and of organisms reliant on floral 44 

resources. These attributes mediate the seasonal distribution and diversity of flowering species 45 

within a community, which in turn influences pollinator population growth rates (Roulston & 46 

Goodell, 2011) and various density-dependent ecological outcomes in plants—such as 47 

competition, pollination, or florivory—that can impact their population persistence and the 48 

evolution of life-history strategies (Elzinga et al., 2007).  49 

Recent climate and land use changes have led to widespread shifts in flowering 50 

phenology and in plant distributions (Cleland et al., 2007; Kelly & Goulden, 2008; Ramirez-51 

Parada et al., 2024), often disrupting ecological interactions through altered spatial and seasonal 52 

synchrony between species (Renner & Zohner, 2018; Theobald et al., 2017). However, how 53 

species-level shifts in phenology and distributions scale to the community level to jointly affect 54 

the structure of the flowering season (e.g., its start, end, duration, and the seasonal distribution of 55 

co-flowering species richness) is poorly understood. This is largely because these processes have 56 

historically been studied separately (Parmesan & Hanley, 2015), but also because long-term 57 

datasets including enough species to characterize a community’s flowering season are rare and 58 

often temporally and spatially limited (CaraDonna et al., 2014). Elucidating how shifts in 59 

phenology and species ranges affect the structure of the flowering season at the community 60 

level—and understanding how these effects are distributed across regions and biomes—is 61 

essential for forecasting the impacts of global change on terrestrial ecosystems.  62 

Shifting phenology and species ranges should have distinct impacts on the start, end, 63 

duration, and species composition of the flowering season (henceforth ‘the structure of the 64 

flowering season’) because these processes differ in their degree of temporal structure (Fig. 1). 65 

For example, in the temperate zone, phenological responses to climate—which are primarily 66 

caused by phenotypic plasticity—tend to differ markedly among species flowering early and late 67 

in the season, with spring-flowering species advancing flowering in response to warming and 68 

late summer- and fall-flowering species typically showing limited responsiveness or flowering 69 

delays (D. S. Park et al., 2019; Ramirez-Parada et al., 2024). In contrast, changes in species 70 
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diversity typically impact the phenology of remaining species indirectly (e.g., through changes in 71 

soil nitrogen or moisture) (Wolf et al., 2017), and species lost or gained within most 72 

communities do not tend to flower predominantly early or late within the season (but see 73 

counterexamples among invasive species) (Godoy et al., 2009; Zettlemoyer et al., 2019). 74 

Therefore, because phenological responses generate consistent shifts among species active at 75 

both ends of the flowering season, community-level changes in structural attributes of the 76 

flowering season related to timing—such as its start, end, and duration—should be more strongly 77 

mediated by phenological responses than by range shifts (Fig. 1B-D) (Ramirez-Parada et al., 78 

2025). Conversely, the richness of species flowering concurrently during a community’s 79 

flowering peak—during which relatively few taxa are initiating or terminating flowering (Fig. 80 

1B-D)—or attributes of the season tied to community composition (e.g., the network of 81 

flowering synchronies between co-occurring species) (Fig. 1E, F) should be more strongly 82 

influenced by species gains and losses due to range shifts than by plastic responses of flowering 83 

phenology. This is because phenological shifts redistribute existing flowering diversity and 84 

change the degree of flowering synchrony between species (i.e., nodes in the flowering network), 85 

whereas range shifts add or remove species from the community. Therefore, phenological shifts 86 

change the strength of the connections between nodes in the flowering network (Fig. 1E), 87 

whereas range shifts add nodes or subtract them altogether, thereby creating or removing many 88 

connections at once (Fig. 1F). 89 
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 90 

Figure 1—Hypothetical effects of shifts in phenology and species ranges on the structure of the flowering season at 91 
the community level. A shows historical phenological patterns in a community, with grey lines showing the 92 
flowering periods of individual species, and the solid black line depicting the historical species richness of co-93 
flowering species throughout the year. B shows changes in community-level flowering caused by shifts in 94 
phenology among species alone, and depicts a scenario in which early-flowering species tend to advance and late-95 
flowering species to delay their flowering, and in which species primarily extend their flowering relative to 96 
historical. These changes are predicted to primarily impact the start, end, and duration of the season, as well as the 97 
richness of co-flowering species early and late in the season (H1). C and D show shifts in community-level 98 
flowering patterns caused by shifts in species ranges alone, respectively showing scenarios in which range shifts 99 
generate species losses or species gains in the focal community, and assuming gained or lost species do not tend to 100 
flower during a specific season. Such changes should primarily impact the richness of co-flowering species during 101 
the peak of the season, during which most species gained or lost are likely to have already started flowering (H1). E 102 
shows the effects of phenological shifts on patterns of pairwise flowering synchronies for a simple network of 5 103 
species, and F depicts the effects of species losses or gains due to range shifts on the same network, with line widths 104 
indicating the degree of flowering synchrony between two species. Line colors in E depict flowering synchronies 105 
before and after shifts in flowering phenology due to environmental change. Shifts in phenology should alter the 106 
degree of overlap between species, with the weakest links most at risk of being lost under environmental change. In 107 
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turn, species losses or gains should have more profound effects by creating or removing flowering synchronies 108 
among many species at once (H2). 109 

 110 

To test these hypotheses, we assembled a dataset of over 2.7 million herbarium and 111 

community-science records from 2,837 species, and examined how climate change affects the 112 

structure of the flowering season in the conterminous United States (CONUS). We modeled each 113 

species' geographic distribution under historical, current, and future climate conditions, also 114 

accounting for land cover and land use changes. Additionally, we assessed how temperature and 115 

precipitation—the main drivers of interannual variation in flowering time across the temperate 116 

zone— independently and interactively influence the onset and termination of the flowering 117 

period (and therefore its duration) for each species. By concurrently estimating species 118 

occurrences and their flowering periods across sites, these analyses allowed us to evaluate the 119 

effects of environmental change on flowering patterns at scales ranging from individual species 120 

to communities, and from local to continental extents. Specifically, throughout CONUS, we 121 

measured how recent and future environmental change affects community-level attributes of the 122 

season, including i) the start of the flowering season (SOS), ii) the end of the flowering season 123 

(EOS), iii) the duration of the flowering season (DOS), iv) the richness of co-flowering species 124 

each day of the year, and v) the network of pairwise flowering synchronies between co-occurring 125 

species, which determines the potential for flowering-mediated interactions between species. 126 

These metrics allowed us to evaluate the relative influence of shifts in phenology and species 127 

ranges on the timing of the season and the seasonal distribution of co-flowering richness within it 128 

(H1 in Figs. 1B-D; attributes i-iv above) and in the network of flowering synchronies among co-129 

occurring species (H2 in Figs. 1E,F; attribute v above). 130 

The impacts of shifts in phenology and species ranges are likely to differ across regional 131 

floras, as baseline climate, land use patterns, species assemblages, and rates of environmental 132 

change vary widely with geography. To characterize this regional variation, we evaluated how 133 

changes in each structural attribute of the flowering season (i-v above) varied throughout 134 

CONUS. Specifically, we evaluated patterns of change across ecoregions, which represent areas 135 

with relatively homogenous soils, geography, climates, and species assemblages (Omernik, 136 

1987). In particular, we chose to summarize patterns within Level II ecoregions because they 137 
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provide a tractable number of subdivisions for analysis while maintaining resolution of regional 138 

subtypes within broad biomes (e.g., cold versus warm deserts, temperate versus semi-arid 139 

prairies, etc.). By doing so, these analyses offer the most comprehensive assessment of how 140 

recent and projected global change impacts flowering patterns across CONUS’ floras, revealing 141 

wide heterogeneity in the severity of flowering reassembly among biomes. 142 

 143 

Materials and Methods 144 

Phenology and occurrence data 145 

To model flowering phenology, we compiled specimen records from 220 herbaria, accessed 146 

digitally through 16 consortia from Mexico, the U.S., and Canada (in July and August 2022) (I. 147 

Park et al., 2023). Only specimens explicitly recorded as bearing flowers were retained, which 148 

we identified through the detection of unique entries in the DarwinCore ‘reproductiveCondition’ 149 

column that clearly indicated the presence of flowers. Specimens missing geographic 150 

coordinates, collection dates, or species-level identification were excluded. To avoid 151 

pseudoreplication, conspecific specimens collected within 1 km of each other on the same day 152 

were removed. Since over 92% of the remaining specimens were collected within the United 153 

States, and to match the spatial extent of land use/land cover (LULC) data used in species 154 

distribution models (SDMs), we excluded specimens collected outside CONUS. Specimens 155 

collected before 1958 were also removed to align with the temporal range of TerraClimate 156 

climate data used in the analysis. After harmonizing species names using the Global Biodiversity 157 

Information Facility (GBIF) taxonomic backbone, the data were filtered further to include only 158 

species represented by at least 100 specimens, a threshold past which the performance of 159 

specimen-based phenoclimatic models has been found to be independent of sample size (I. W. 160 

Park & Mazer, 2018). The day of year (DOY) of collection was used as a proxy for flowering 161 

date, with an azimuthal correction applied to address the discontinuity between 31 December and 162 

1 January, converting prior year DOYs into negative values. Previous work on this dataset 163 

demonstrated limited spatial biases towards areas of high population density and major roads, 164 

and minor temporal biases that did not affect phenoclimatic model performance (Ramirez-Parada 165 

et al., 2024) (see Supplemental notes 7 and 8 therein). 166 
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 To model species ranges, we obtained an additional 13.2 million research-grade 167 

occurrence records from GBIF for species well-represented in the flowering phenology dataset 168 

(accessed July 11, 2024; https://www.gbif.org/occurrence/download/0021084-169 

240626123714530). These records, primarily from iNaturalist and herbarium sources, were 170 

combined with those from Park et al. (I. Park et al., 2023). We removed duplicates using the 171 

‘occurrenceID’ column in DarwinCore. To match the temporal and spatial extent of LULC data 172 

included in SDMs, we retained only occurrences derived from iNaturalist and herbarium records 173 

collected between 1999 and 2023, and limited the dataset to occurrences within CONUS. 174 

Preliminary analyses of GBIF occurrences revealed significant spatial biases towards urban areas 175 

and major roads. To address this, we identified occurrences within urban areas as defined by the 176 

US Census Bureau (2012) using the ‘tigris’ package v2.1 (Walker, 2016). We thinned the data 177 

using the ‘spThin’ package v0.2.0 (Aiello-Lammens et al., 2015), keeping only occurrences of 178 

the same species recorded at least 20 km apart within urban areas. Additionally, we removed 179 

occurrences within 2 km of ‘primary roads’ mapped by the US Census Bureau in 2012. To 180 

further reduce spatial bias, another thinning step was applied, keeping only conspecifics recorded 181 

at least 5 km apart regardless of urban or road proximity. After cleaning using BONAP records 182 

(see next subsection), we retained only species with at least 50 occurrences to ensure adequate 183 

sample sizes for species distribution modeling (see ‘Training SDMs’ section for information on 184 

how pseudo-absences were generated). GBIF records were used in SDMs but not in phenology 185 

models because the vast majority of iNaturalist records do not indicate the presence of flowers. 186 

 187 

Final cleaning of specimens and occurrences using BONAP 188 

 Species misidentifications or geolocation errors in herbarium and occurrence databases 189 

can distort the climate space or flowering dates represented among observations. To mitigate 190 

this, we removed implausible records using expertly curated data from the Biota of North 191 

America Program's (BONAP) North American Plant Atlas (NAPA) (Kartesz, 2024), which 192 

documents 19,039 taxa from 227 families across 3,067 counties across CONUS. BONAP 193 

compiles species presence/absence data from herbarium records, museums, and bibliographic 194 

reviews, most of which are verified by taxonomic and floristic experts. We then excluded 195 

observations from counties where BONAP did not report occurrences for the species. After 196 
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cleaning, the final specimen-based phenology dataset included 1,042,939 specimens (collected 197 

from 1958 to 2022) representing 2,837 species in 1,042 genera and 139 families. The median 198 

species in the phenology dataset was represented by 242 specimens sampled in 54 unique years 199 

(median range = 62 years) by 122 unique collectors. The final occurrence dataset contained 200 

1,673,454 records (collected from 1999 to 2023), comprising the same species.  The median 201 

species in the occurrence dataset was represented by 347 observations sampled in 25 unique 202 

years (median range = 25 years) by 219 unique collectors. Among species in the data, 12% 203 

consisted of graminoids, 74% of herbs and forbs, 13% of woody species (shrubs or trees), and 204 

1% of vines (Table S1). 205 

 206 

Climate data 207 

We obtained monthly climatic rasters from TerraClimate (Abatzoglou et al., 2018) available 208 

from January 1958 to December of 2023 at a 4 × 4 km resolution. These data consisted of 209 

monthly time series for minimum temperature (TMIN), mean temperature (TMEAN), maximum 210 

temperature (TMAX), and cumulative precipitation (PPT), as well as modeled water balance 211 

metrics including actual evapotranspiration (AET), climate water deficit (DEF, potential 212 

evapotranspiration - AET), soil moisture (SOIL), and snow water equivalent (SWE). 213 

 214 

Climate variables for species distribution modelling 215 

We used monthly climate data to calculate annual bioclimatic variables known to influence plant 216 

distributions. For each year and location across CONUS, we computed annual means (or sums 217 

for precipitation), minimum and maximum monthly values (e.g., mean minimum temperature of 218 

the coldest month, mean maximum of the warmest month), annual ranges (difference between 219 

maximum and minimum mean monthly values), and seasonality (standard deviation of monthly 220 

values within year). For temperature, we also calculated the approximate mean diurnal 221 

temperature range (mean difference between TMAX and TMIN across months) and approximate 222 

isothermality (mean approximate diurnal range divided by the annual range). For precipitation, 223 

seasonality was calculated relative to cumulative annual precipitation within each site. Minimum 224 

monthly SWE was removed from the analyses, as it was 0 across CONUS. This resulted in 31 225 
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climate variables: 7 for temperature, 5 related to PPT, AET, DEF, SOIL, and 4 for SWE, 226 

calculated annually across all CONUS locations. For the location of each occurrence record, we 227 

computed long-term averages of these variables over the 20 years preceding its collection date. 228 

We used 20-year instead of a standard 30-year period to reduce the proximity between historical 229 

and recent conditions in our analyses of species ranges (see next sections). Additionally, we 230 

obtained elevation data from USGS at a 100m × 100m resolution, and calculated mean elevation 231 

and elevational heterogeneity within 800m × 800m grid cells. The coarser resolution for 232 

elevation was used to account for uncertainties in georeferencing of herbarium specimens, which 233 

may be problematic in steep mountainous regions where topography changes over short 234 

distances (Gamble & Mazer, 2022).  235 

Since many of the climate variables were highly collinear (Fig. S1) and are causally 236 

related, we performed a principal component analysis (PCA) to reduce the dimensionality of the 237 

climate space. The PCA used 20-year averages of all variables for the most recent period 238 

available (2004-2023) across all 4km × 4km grid cells in CONUS. We retained the five principal 239 

components (PCs) with eigenvalues ≥ 1, which collectively explained 88.2% of the variance in 240 

the climate data (Table S2). PC1 represented a gradient of increasing aridity, PC2 a gradient of 241 

decreasing temperature and increasing temperature seasonality, and PC3 a gradient of increasing 242 

elevational heterogeneity and mean elevation with decreasing temperature seasonality. PC4 243 

primarily captured increasing soil moisture, while PC5 reflected increasing actual 244 

evapotranspiration and elevation (Fig. S2). We then projected the 20-year average climate 245 

conditions associated with each occurrence record onto these PCA axes, reducing the number of 246 

climatic predictors from 31 variables to 5. 247 

 To predict species distributions across different periods, for each occurrence record we 248 

calculated 20-year averages for each of the 31 climate variables for a historical period (1961-249 

1980; representing the earliest 20-year period available in TerraClimate) and a recent period 250 

(2001-2020; to ensure separation with the historical period). We also obtained projected climate 251 

conditions from TerraClimate for a scenario where global temperatures rise by 2°C above pre-252 

industrial levels. This scenario is not tied to a specific time frame or emissions pathway; instead, 253 

TerraClimate interpolates climate normals from 1985-2015, adjusting for the changes in means 254 
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and seasonality expected under 2°C of warming. We then projected historical, recent, and future 255 

climatic conditions onto the 5 principal components derived from the 2001-2020 data. 256 

 257 

Climate variables for phenoclimatic modelling 258 

Variation in TMEAN and PPT among sites and years of specimen collection was partitioned into 259 

spatial and temporal components by calculating long-term means (reflecting geographic 260 

differences in chronic climatic conditions) and year-specific deviations from these long-term 261 

means (reflecting interannual differences). For each species at each site and year, we obtained 262 

data for the climatic conditions during the 3-month periods leading up to its average flowering 263 

onset, peak, and termination. To estimate conditions approximately before flowering onset, we 264 

used the 10th percentile collection date across all specimens from each species and calculated the 265 

mean TMEAN and cumulative PPT for the 3 months leading up to that month. The same 266 

approach was applied for the 50th percentile (flowering median) and 90th percentile (flowering 267 

termination) collection dates. These percentiles were chosen to prevent sample-size dependent 268 

biases likely to occur for more extreme quantiles, and because they have been found to perform 269 

well in specimen-based quantile regressions of phenology (I. W. Park et al., 2024). For each 270 

specimen, we characterized its site’s long-term TMEAN and PPT (normals) by averaging the 271 

observed conditions across all years between 1961 and 1990 for each 3-month period 272 

approximating that species’ flowering onset, median, and termination. We then calculated 273 

climatic deviations (anomalies) from the 1961-1990 normals in the year of each specimen's 274 

collection for these 3-month periods. 275 

As phenological changes are driven by interannual variation in TMEAN and PPT (and 276 

through plastic responses) (Ramirez-Parada et al. 2024), we calculated deviations from 1961-277 

1990 normals for all 3-month windows. This was done for the historical period (1961-1980), the 278 

recent period (2001-2020), and the future 2°C warming scenario. These TMEAN and PPT 279 

deviations were then used to predict changes in flowering onset and termination between 280 

reference periods at each species' occurrence site. 281 

 282 

Land use and land cover data 283 
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We obtained land use and land cover (LULC) data from the National Land Cover 284 

Database (NLCD) (Jon Dewitz, 2024), available for 2001, 2004, 2006, 2008, 2011, 2013, 2016, 285 

2019, and 2021. The NLCD uses Landsat spectral data to classify 30m resolution grid cells into 286 

land cover and land use classes, providing a consistent, high-resolution dataset across CONUS. 287 

We separated each year's multiclass raster into layers representing the presence or absence of 288 

each LULC type. We retained all cover classes except those not found in CONUS (e.g., lichen, 289 

moss, sedge classes from Alaska) or those that were rare (e.g., barren land). For land cover, we 290 

kept forest classes (deciduous, evergreen, mixed), scrubland (shrub/scrub), herbaceous 291 

grasslands, and wetlands (herbaceous and woody). For land use, we included four urban 292 

categories (open, low, mid, high) and two agricultural classes (cultivated crops, pasture/hay). To 293 

match the format of the LULC data available for forecasting and backcasting (see next 294 

paragraph), we aggregated all urban classes into a single category. To account for uncertainty in 295 

occurrence coordinates and because plant occurrence can be influenced by landscape context at 296 

broader scales than 30m (Mazerolle and Villard, 1999), we measured the proportion of each class 297 

cover within 750m × 750m grid cells (625 30m × 30m cells) around each occurrence. LULC 298 

class proportions were sourced from the NLCD layer closest to the year of collection for each 299 

record. These class proportions were then used as predictors in SDMs. 300 

Because NLCD data were available only from 2001 to 2021, we obtained historical 301 

(1961-1980) and future (2061-2080) LULC projections from the Earth Resources Observation 302 

and Science Center (EROS) at a 250m resolution (T. Sohl et al., 2016; T. L. Sohl et al., 2014). 303 

EROS' projections use the same modeling framework as NLCD, integrating land use trends with 304 

spatially explicit allocation based on regional suitability for each LULC class. Though EROS 305 

projections were based on the Special Reports Emissions Scenarios (SRES) from the IPCC 306 

(2000)—replaced later by Representative Concentration Pathways (RCP; IPCC 2013) and 307 

Shared Socioeconomic Pathways (SSP; IPCC 2021)—they align closely with RCP and SSP 308 

scenarios (Riahi et al., 2017; Rogelj et al., 2012). We chose the B1 scenario for forecasting, as it 309 

is the closest match to RCP4.5 and SSP2-3, representing 'middle-of-the-road' emissions and 310 

development scenarios. As with NLCD data, we calculated the proportion of each land cover 311 

class in 750m resolution blocks (containing 9 grid cells) to generate historical and future 312 

predictions used in SDMs. 313 



13 

 314 

Analyses 315 

Training SDMs 316 

Species distributions were modeled using presence-background random forest classifier 317 

models implemented in the ‘randomForest’ package v4.7-1.1 (Liaw & Wiener, 2002) in R. 318 

Random forests are a supervised machine learning technique that uses an ensemble of decision 319 

trees to identify relationships between a response (here, presence/background data) and 320 

predictors (here, climatic and LULC variables). By combining multiple decision trees, the 321 

ensemble performs better than any single model, leveraging the "wisdom of the crowds." This 322 

approach does not require predefining model structures (e.g., linear relationships) and its non-323 

parametric nature allows for discovering complex relationships and interactions (Cutler et al., 324 

2007). This flexibility was crucial for analyzing thousands of species presumably representing 325 

diverse distributional relationships with climate and LULC. Additionally, random forests are 326 

computationally efficient and have been demonstrated to be among the most accurate SDM 327 

methods available (Valavi et al., 2022). 328 

SDMs for each species were trained using occurrence data from 1999-2023. This period 329 

ensured availability of high-quality LULC data from NLCD within two years of each collection 330 

date. We generated pseudo-absences for each species by sampling 10,000 random locations per 331 

species using three alternative types of geographic stratification, fitting a separate SDM for each 332 

one and selecting the approach yielding the highest performance on a validation set for the rest of 333 

the analysis pipeline. The first approach followed methods by Barbet-Massin et al. (Barbet-334 

Massin et al., 2012) in which, for each species, we defined a large region around the occurrences 335 

of each species that excluded areas within a 1° radius around each observation. Specifically, we 336 

defined the sampling area for each species using a 2° buffer (~222 km) around the convex hull 337 

encompassing all occurrences. To tailor this approach to species with discontinuous 338 

distributions, our second approach defined the pseudo-absence sampling area using a 2° buffer 339 

around the minimum density kernel estimated to encompass all occurrences of the species. This 340 

way, the sampling regions could be discontinuous, avoiding sampling pseudo-absence 341 

disproportionately from areas far from any occurrences. To account for differences in range size, 342 

this approach tailored the radius of the exclusion buffer around each occurrence to a 20th of the 343 
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minimum between the latitudinal versus longitudinal among the species’ occurrences. Finally, 344 

because its typically unclear whether regions without occurrences are due to sampling bias or 345 

true distributional patterns, our third approach used curated BONAP records to identify counties 346 

where each species has not been documented to date. This approach increases the likelihood that 347 

pseudo-absences indeed represent true absences at the risk of losing resolution of the 348 

environmental space in regions where the species does occur. For each approach, pseudo-349 

absence sampling also excluded locations within 2km of major roads.  350 

All models included the 5 bioclimatic PCs and the proportion of each LULC class around 351 

collection sites as predictors. In the case of pseudo-absences, we obtained 20-year climatic 352 

averages from a randomly selected year between 2001 and 2021 projected onto the 5 climatic 353 

PCs and LULC variables. To address class imbalance, we downsampled pseudo-absences to 354 

match the number of occurrences in each initial tree. Each species-specific model used 500 trees 355 

with a maximum of 5 predictors at each split. Decision trees are built using bootstrap samples of 356 

the data. Typically, these samples contain about 2/3 of the original data, with the remaining third 357 

(out-of-bag or ‘OOB’ data) used to calculate each tree's error rate (Cutler et al. 2007). We 358 

evaluated model performance by averaging the error rates across all trees, which typically 359 

provides an unbiased estimate of the model’s generalization error. Specifically, we calculated the 360 

area under the receiver operating characteristic curve (AUC) using OOB samples, which 361 

quantifies the tradeoff between false positive and false negative rates for different threshold 362 

values used for classifying presences versus absences. Fully random models would yield an 363 

expected AUC of 0.5, with values below that indicating worse-than-random performance, and 364 

higher values better-than-random performance. We identified the pseudo-absence approach 365 

yielding the best performing model by comparing the AUCs for each species’ SDM. The first 366 

approach was best performing only among 8% of species, whereas the second and third 367 

approaches were best performing among 29% and 63% of species, respectively. After model 368 

selection, the median AUC among species was 0.996 (min = 0.90). 369 

The SDMs output a probability of occurrence under specific environmental conditions, 370 

derived from the proportion of trees predicting the positive class. Given that SDMs were fit with 371 

observed presences but generated pseudo-absences data, these probabilities are interpreted as 372 

habitat suitability rather than actual probabilities of occurrence. To set a suitability threshold (0-373 
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1) for considering a species to be present at a site, we calculated the receiving operating curve 374 

(ROC) for each model and determined which of two criteria yielded the best predictive power: 1) 375 

maximizing the sum of specificity and sensitivity, or 2) maximizing the true positive rate 376 

(minimizing false negatives) while keeping the false positive rate below 0.05. While the first 377 

criterion maximized the true skill of the model, the second criterion maximized true positive 378 

detection at the expense of higher false negative rates, a tradeoff that is justified in our case since 379 

implausible occurrence predictions could be identified and removed using BONAP county 380 

records (see ‘Species-level predictions of distributions and phenology’ subsection). 381 

 382 

Training phenoclimatic models 383 

For each species, we modeled how flowering onset, termination, and duration varied with 384 

long-term climatic conditions and interannual climatic variation. We used quantile regression 385 

(via the ‘quantreg’ package v5.97) (Koenker et al., 2017) to assess how collection date 386 

distributions among conspecifics responded to geographic and interannual variations in TMEAN 387 

and PPT (i.e., normal and anomalies, respectively). We used the 10th percentile of the 388 

distribution to represent population-level flowering onset, the 90th percentile to represent 389 

flowering termination, and the interquartile distance between them to represent flowering 390 

duration.  We chose the 10th and 90th percentiles and focused on well-sampled species because 391 

estimation of extreme quantiles is more strongly biased by small samples. Moreover, recent 392 

simulations show that quantile regression accurately estimates 10th and 90th percentiles of 393 

opportunistically sampled data for sample sizes similar to those in this study (I. W. Park et al., 394 

2024), and this approach has been effective in studying phenological distributions in both plants 395 

and insects (Austin et al., 2024; Belitz et al., 2023). 396 

In each species-specific model, predictors included TMEAN normal, PPT normal, and 397 

their interaction for the 3-month period before the approximate date of flowering onset (10th 398 

percentile DOY among specimens) or termination (90th percentile DOY), as well as TMEAN 399 

anomaly, PPT anomaly, and their interaction during the same period (6 predictors total). The 400 

coefficients for the main terms in these quantile regressions indicate how the 10th and 90th 401 

percentiles of flowering are affected by geographic or interannual variation in TMEAN and PPT, 402 

assuming average values for interacting variables. Interaction coefficients between normals 403 
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represent the degree to which long-term precipitation affects the magnitude of phenological 404 

changes due to variation in long-term TMEAN across sites (or vice versa), whereas the 405 

interaction coefficients between anomalies indicate how the effects of interannual variation in 406 

TMEAN varies among drier- or wetter-than-average years (and vice versa). This approach 407 

models phenological variation as a response to: i) geographic variation in chronic TMEAN and 408 

PPT conditions across sites, using temporally invariant normals from 1961-1990, and ii) 409 

TMEAN and PPT anomalies reflecting temporal variation within sites, which primarily capture 410 

plastic phenological responses (Ramirez-Parada et al., 2024). Thus, we assumed that any 411 

temporal changes in a species' flowering season within sites are driven by deviations from their 412 

1961-1990 TMEAN and PPT normals. 413 

 414 

Species-level predictions of distributions and phenology 415 

Each species' SDM was used to generate habitat suitability maps for historical (1961-1980), 416 

recent (2001-2020), and future (2 °C warming, B1 LULC scenario for 2080) conditions. Climatic 417 

and LULC variables were resampled to a 12km resolution for computational ease. Suitability 418 

estimates were then converted to binary occurrence maps by applying a threshold that 419 

maximized the true positive rate (see ‘Analyses—Training SDMs’ subsection). Presence-only 420 

SDMs can predict unsuitable areas outside a species' range or beyond its dispersal capacity. To 421 

address this, predictions were constrained to within 40km of counties where BONAP confirmed 422 

each species' presence, which allowed for moderate range expansion to areas adjacent to 423 

currently occupied regions between periods. These SDMs predicted substantial variation in 424 

species richness across CONUS, from 56 to 1,445 species (from a total 2,837) for the historical 425 

period (Fig. S3). Species richness was generally lowest in arid regions of the Great Plains and 426 

higher in the West compared to the East, consistent with more comprehensive assessments of 427 

plant diversity in North America (Daru, 2024). The proportion of species of different growth 428 

forms represented within communities varied moderately across CONUS (Fig. S3), and growth 429 

forms did not differ substantially in their average degree of range change between periods (Fig. 430 

S4). 431 

Each species’ phenoclimatic model was used to predict flowering onset, termination, and 432 

duration for each 12km×12km grid cell where the species was projected to occur during 433 
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historical, recent, and future periods. This was done by applying deviations of average TMEAN 434 

and PPT conditions from the 1961-1990 normals for each period. Climate rasters were resampled 435 

to a 12km resolution before estimating phenological onset, termination, and duration for each 436 

site and period. Species in different growth forms did not exhibit substantially different degrees 437 

of onset and termination sensitivity to temperature and precipitation (Fig. S5). 438 

 439 

Changes in community composition and flowering structure 440 

The SDM and phenoclimatic modeling provided predictions for species presence, flowering 441 

onset, and termination under historical, recent, and future conditions. We used these predictions 442 

to measure changes in species composition. Next, we examined changes in the start, end, and 443 

duration of the flowering season across these periods. The start of the flowering season was 444 

defined as the DOY when 5% of species had started flowering, and the end as the DOY when 445 

95% of species had ceased flowering, with duration as the span between these dates. For each 446 

location, we calculated the difference in days for the season's start, end, and duration between 447 

historical and recent conditions, and between recent and future conditions. We also measured 448 

changes in the richness of flowering species each month by calculating the proportional 449 

difference in species numbers under historical versus recent and recent versus future conditions, 450 

relative to local species richness in the preceding period. 451 

Finally, we assessed how patterns of flowering synchrony among species change in 452 

response to environmental trends. For each location, we first calculated the overlap in flowering 453 

periods between each pair of species in each period, calculating changes in overlap between 454 

historical and recent conditions, or recent and future conditions. Specifically, synchrony was 455 

calculated as: 456 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵

𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝐴 + 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝐵 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵 
 457 

Therefore, pairwise synchrony ranged from 0 (no overlap) to 1 (identical and fully overlapping 458 

flowering dates). For species present in one period but not the other, all flowering synchronies 459 

were set to 0 for the period in which it was absent. Using these pairwise overlaps, we measured 460 

changes in flowering synchrony within each community using the Bray-Curtis Dissimilarity 461 
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Index (BCI) (Bray & Curtis, 1957). While BCI is typically used to assess species composition 462 

dissimilarity between communities using abundance data, it is also applicable to other 463 

categorical data. In this context, BCI measured compositional differences in flowering overlaps 464 

between periods, with species pairs analogous to species and their degree of flowering synchrony 465 

analogous to abundance. Therefore, the BCI provides an integrated measure of changes in both 466 

the identity and degree of overlap among species pairs, with values ranging from 0 (complete 467 

similarity) to 1 (complete dissimilarity) between periods for each community. 468 

 469 

Phenology versus range shifts as drivers of community-level phenological change 470 

To assess the relative contributions of shifts in phenology and species ranges to the resulting 471 

shifts in structure of the flowering season in each location, we generated predictions of 472 

community level change assuming that either i) phenology changed but species distributions 473 

remained constant between periods (i.e., a ‘phenology-only’ scenario), or ii) phenology remained 474 

constant but distributions changed between periods (i.e., a ‘distributions-only’ scenario). For 475 

example, for scenarios in which only phenology shifted between historical and recent periods 476 

(i.e., 1961-1980 to 2001-2020), we generated species ranges predicted using historical climate 477 

and LULC conditions, and compared flowering dates predicted under historical versus recent 478 

conditions within these historical ranges. For each attribute of the season—and for all 479 

comparisons between historical, recent, and projected environmental conditions—we then 480 

calculated the difference between estimates of change generated by shifts in both species ranges 481 

and phenology (shown in the main text) and those obtained by allowing only phenology or 482 

distributions to shift. Changes in community-level attributes of the season at a location were 483 

classified as predominantly driven by phenological shifts if closest to the change observed in the 484 

phenology-only scenario, or classified as predominantly driven by range shifts if closest to the 485 

distributions-only scenario. Finally, to assess the predominance of phenological versus range 486 

shifts as drivers of change across biomes, we calculated the proportion of grid cells in each Level 487 

II ecoregion within CONUS for which each process was the predominant driver of observed 488 

changes. When doing this for changes in the richness of flowering species each month, we 489 

excluded locations showing shifts of less than 0.01 (corresponding to 1% of local species 490 
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richness) each month, as those overwhelmingly corresponded to areas where the flowering 491 

season had not yet started or had already ended. 492 

 493 

 494 

Results 495 

Changes to the start, duration, and end of the flowering season 496 

Estimated shifts in species ranges and flowering phenology generated consistent changes to the 497 

flowering season’s start (SOS), end (EOS), and duration (DOS) across most ecoregions. SOS 498 

predominantly advanced between the historical and recent periods (Fig. 2A). EOS was delayed 499 

in Eastern ecoregions, while responses in the West were more variable (Fig. 2A). Nonetheless, 500 

SOS and EOS generally moved in opposite directions, with SOS showing larger shifts towards 501 

earlier dates where SOS and EOS moved in the same direction; consequently, the flowering 502 

season duration (DOS) increased across most of CONUS (Fig. 2A). Future environmental 503 

conditions were projected to generate more drastic changes, with greater SOS advances and more 504 

consistent EOS delays than in recent decades (Fig. 2B). As a result, DOS was predicted to 505 

increase further across most of CONUS (Fig. 2B). Across ecoregions, shifts in the timing of the 506 

season between the historical and recent periods were primarily caused by shifts in flowering 507 

phenology (Fig. 2C). However, in most ecoregion, seasonal changes within a substantial 508 

proportion of sites were caused primarily by estimated shifts in species ranges, which 509 

predominated overall as drivers of EOS shifts in some ecoregions (e.g., Upper Gila Mountains) 510 

(Fig. 2C). Phenological shifts were also projected to be the primary drivers of changes in SOS, 511 

EOS, and DOS between recent and future climatic conditions in most ecoregions (Fig. 2C).  512 

 513 
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 514 

Figure 2—Estimated changes in the start, end, and duration of the flowering season under recent and 515 
projected climatic and land cover change, and the relative contributions of shifts in phenology vs. species 516 
ranges to these changes. A depicts changes in the start, end, and duration of the season predicted between 517 
the historical (1961-1980) and recent (2001-2020) periods. B shows predicted changes between recent 518 
conditions and future conditions expected under 2°C of warming and land cover patterns for the year 519 
2080 under the Special Report on Emissions Scenario (SRES) B1. C shows the proportion of area within 520 
each level II ecoregion throughout CONUS (map subdivisions labeled 1-20, also shown in A) for which 521 
shifts in phenology or in species ranges were the primary contributors to observed change. For graphing, 522 
the color scale in A and B was capped to the central 99% of the data to avoid distortion of the range from 523 
extreme values. Grid cells in A and B have a resolution of 12×12 km. 524 

 525 

Changes in the seasonal distribution of co-flowering species richness 526 

Co-flowering species richness was estimated to remain mostly unchanged during the winter 527 

months preceding the flowering season, but to increase by February in low-latitude ecoregions 528 

where spring starts early (e.g., Warm Deserts) (Fig. 3A). Significant changes were widespread in 529 
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March, April, and May, which predominantly showed increases due to the earlier onset of spring 530 

across CONUS. Decreases first occurred in April and May in regions experiencing early onset of 531 

summer drought (e.g., Warm Deserts, South-Central Semi-Arid Prairies). More ecoregions 532 

experienced declines in co-flowering richness during summer, with the onset of declines 533 

occurring earlier in the year in arid ecoregions (e.g., May to June for Cold Deserts vs. June to 534 

July for the Western Cordillera). Fall changes were modest across CONUS. In all ecoregions, 535 

changes in co-flowering species richness early in the season were primarily generated by 536 

phenological shifts, with range shifts exerting a greater influence later in the season and 537 

predominating during late spring and summer (May-Sep; Fig. 3B). The predominant drivers of 538 

changes in co-flowering species richness near the end of the season varied among ecoregions, 539 

with shifts in phenology predominating in some (e.g., Warm Deserts) and range shifts in others 540 

(e.g., Temperate prairies).  541 
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Figure 3—Estimated changes between the historical period (1961-1980) and the recent period (2001-543 
2020) in the richness of co-occurring species flowering each month across the conterminous United 544 
States. A shows the change co-flowering richness each month for each location relative to the total 545 
species diversity of that site during the historical period (1961-1990). B shows the proportion of sites 546 
within each ecoregion (map subdivisions labeled 1-20) for which range shifts or phenological shifts were 547 
the primary cause of observed changes in the diversity of flowering species that month. For graphing, the 548 
color scale in A was capped to the central 99% of values to avoid distortion from extreme values. Grid 549 
cells in A have a resolution of 12×12 km. 550 

 551 

Under projected climate conditions, estimated decreases in co-flowering species richness 552 

were greater and more widespread across ecoregions than in recent decades (Fig. 4). Increases 553 

during spring were weaker, and declines occurred earlier and were more severe in many 554 

ecoregions (e.g., Warm Deserts, Mediterranean California) (Fig. 4A). Summer and fall decreases 555 

were most severe across ecoregions in the Great Plains, but were also widespread across the 556 

West. In contrast, co-flowering species richness was projected to moderately increase during 557 

summer and fall in many Eastern ecoregions (e.g., Southeast USA Plains, Southeast USA 558 

Coastal Plain). For most ecoregions, phenological shifts are projected to be the primary causes of 559 

changes in co-flowering species richness early and late in the season (Fig. 4B). Phenological 560 

shifts predominated throughout most of the year in some ecoregions (e.g., Mixed Wood Shield, 561 

Mixed Wood Plains). However, the relative influence of range shifts increased throughout the 562 

year, becoming the predominant cause of year-round changes in co-flowering richness in more 563 

ecoregions than observed between the historical and recent periods (e.g., Texas-Louisiana 564 

Coastal Plain). Indeed, range shifts were the overwhelming cause of changes in co-flowering 565 

richness during summer and fall in regions showing the most severe decreases (e.g., South 566 

Central Semi-Arid Prairies, Temperate Prairies). 567 

 568 
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 569 

Figure 4—Estimated changes between recent and future environmental conditions in the richness of 570 
species flowering each month across the conterminous United States. The color scale in each panel shows 571 
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the projected change in co-flowering species richness each month in each location relative to the total 572 
species richness of that site estimated under recent environmental conditions (2001-2020). Projected 573 
conditions correspond to those expected under 2 °C of warming and land cover patterns for the year 2080 574 
under the Special Report on Emissions Scenario (SRES) B1. A shows the change co-flowering richness 575 
each month for each location relative to the total species diversity of that site during the recent period 576 
(2001-2020). B shows the proportion of sites within each ecoregion (map subdivisions labeled 1-20) for 577 
which range shifts or phenological shifts were the primary cause of observed changes in the diversity of 578 
flowering species that month. For graphing, the color scale was capped to the central 99% of the data to 579 
avoid distortion of the range from extreme values. Subdivisions in each panel—labeled 1-20—represent 580 
level II ecoregions. Grid cells in A have a resolution of 12×12 km. 581 

 582 

Changes in patterns of pairwise flowering synchronies 583 

Across periods, estimated changes in the composition of pairwise flowering synchronies among 584 

species in a community (i.e., flowering dissimilarity) largely corresponded with those in co-585 

flowering species richness during the peak of the season, with the greatest changes concentrated 586 

in ecoregions within central CONUS and in the West (Fig. 5A). Flowering dissimilarity between 587 

periods was more severe under projected environmental conditions than observed in recent 588 

decades, with the greatest dissimilarity observed across central CONUS and the West, and 589 

relatively modest flowering dissimilarity throughout the East (Fig. 5B). Flowering dissimilarity 590 

across periods was predominantly driven by range shifts among ecoregions (Fig. 5C). Indeed, in 591 

ecoregions showing the most severe flowering dissimilarity between periods, change across 592 

nearly all locations was primarily caused by range shifts (e.g., South-Central Semi-Arid Prairies). 593 

  594 

 595 
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 596 

Figure 5—Dissimilarity in the composition of pairwise flowering synchronies among sympatric species. 597 
A shows flowering dissimilarity between the historical (1961-1980) and recent (2001-2020) periods. B 598 
shows flowering dissimilarity between recent and projected conditions, which correspond to those 599 
expected under 2 °C of warming and land cover patterns for the year 2080 under the Special Report on 600 
Emissions Scenario (SRES) B1. Flowering dissimilarity was measured using the Bray-Curtis 601 
Dissimilarity index, with values of 0 indicating no changes in species composition and degree of 602 
flowering overlap, and values of 1 indicating all pairs of overlapping species were gained or lost relative 603 
to the preceding period. For graphing, the color scale was capped to the central 99% of the data to avoid 604 
distortion of the range from extreme values. Subdivisions in each panel—labeled 1-20—represent level II 605 
ecoregions. C shows the proportion of area within each ecoregion in which either shifts in phenology or 606 
species ranges was the primary cause of flowering dissimilarity between periods. 607 

 608 

 609 

Discussion 610 

By analyzing thousands of plant species, we demonstrate that joint shifts in phenology and 611 

species ranges in recent decades have significantly advanced and extended the flowering season 612 

across biomes in the United States. We found substantial seasonal redistribution of flowering 613 
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diversity within communities, with co-flowering species richness typically increasing early and 614 

late in the season and decreasing during historical peaks—trends predicted to intensify under 615 

projected environmental conditions. Despite acting concurrently, shifts in phenology versus 616 

species-ranges primarily impacted different attributes of the season. Species-level phenological 617 

shifts were the primary drivers of changes in community-level attributes related to the timing of 618 

the flowering season, such as its start, end, and duration. In contrast, changes in species’ ranges 619 

were the main drivers of community-level shifts in co-flowering richness during late spring and 620 

summer and of attributes tied to community composition, such as patterns of flowering 621 

synchrony among co-occurring species. These findings outline heterogeneous macroecological 622 

impacts and mechanisms of change across biomes, revealing a wider suite of impacts than 623 

predicted from analysis of each process in isolation. 624 

 625 

Shifts in phenology and species distribution jointly but distinctly impact the flowering season 626 

As hypothesized (Fig. 1), shifts in phenology and range shifts had their greatest effects on 627 

different attributes of the flowering season at the community level. This suggests that future 628 

changes to the structure of the season across communities will depend on the relative severity of 629 

concordant shifts in phenology versus species ranges. Specifically, predominance of 630 

phenological shifts would primarily alter the timing of the flowering season and the seasonal 631 

distribution and diversity of co-flowering species, particularly at the start and end of the season. 632 

In turn, profound species turnover due to range shifts would primarily alter seasonal peaks in 633 

flowering diversity and the network of flowering synchronies among species, thereby altering the 634 

potential for flowering-mediated species interactions. 635 

  The predominance of either process will likely depend on the severity of environmental 636 

trends. Limits to phenological plasticity can prevent plants from shifting development further in 637 

response to climatic trends (Rutishauser et al., 2008). For example, studies on woody species in 638 

the temperate zone have found that phenology shifts linearly with temperature up to a warming 639 

threshold of approximately 4 °C, after which responses stall (Ettinger, 2020; Fu et al., 2015; Guo 640 

et al., 2023). Therefore, while average global temperature changes of 2 °C—as those considered 641 

here—might not cause widespread exhaustion of plant phenological plasticity, these constraints 642 

might be important under more extreme warming scenarios, limiting further contributions of 643 
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shifts in phenology to changes in the flowering season. In contrast, shifts in demography and 644 

species ranges are likely to accelerate under more extreme environmental change (Feeley & 645 

Silman, 2010; Huntley, 1991). Therefore—to the extent that the limits of phenological plasticity 646 

are similar across biomes, functional groups, and taxa—more severe climate change could cause 647 

comparatively harsher shifts in species ranges than phenology, thus primarily impacting the 648 

diversity and synchrony of co-flowering species. 649 

 650 

Flowering reassembly and its impacts differ across biomes 651 

Our study corroborates previous research showing widespread advancement and lengthening of 652 

the flowering season across floras (Chen et al., 2023; Li et al., 2021; Zhou et al., 2022). 653 

However, we also found wide regional variation in the direction and severity of changes in the 654 

structure of the flowering season, which may cause profound ecological impacts. For example, in 655 

recent decades, the richness of co-flowering species sharply increased early and decreased later 656 

in the season in many ecoregions (e.g., Western Cordillera, Cold Deserts, Mediterranean 657 

California; Fig. 3), which could result in opposing effects on density-dependent processes such 658 

as pollinator attraction or insect foraging success during spring and summer (Schenk et al., 2018; 659 

Sponsler et al., 2023). In turn, some communities experienced consistent declines in flowering 660 

diversity throughout the year (e.g., areas of the South-Central Semi-Arid Prairies), which could 661 

decrease the diversity of organisms reliant on flowers across the season (Fründ et al., 2010; Potts 662 

et al., 2003). Other regions experienced consistent increases in flowering diversity throughout 663 

the year (e.g., Southeastern ecoregions), which may not affect different seasons 664 

disproportionately but could alter ecological processes through novel species interactions 665 

(Renner & Zohner, 2018). Regardless of specific patterns, these shifts have likely altered (and 666 

may continue to alter) the selective environments encountered by plants and interacting 667 

organisms across CONUS (Elzinga et al., 2007). 668 

Communities across the Great Plains appear particularly vulnerable to climate-driven 669 

restructuring of the flowering season (Fig. 5). In recent decades, this region has experienced 670 

increasing aridity to the West and increasing humidity to the East of the 100th meridian West—a 671 

bioclimatic boundary dividing the humid East and arid West (Seager et al., 2018). Aridification 672 

has been linked to biomass loss, rapid species declines, and species turnover in grasslands (Chase 673 
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et al., 2000; Cleland et al., 2013; MacDougall et al., 2024). Climate change is predicted to 674 

exacerbate aridification trends, and conversion of grasslands to agriculture is projected to 675 

accelerate under the land use scenario considered in this study (Figs. S2,6), threatening pollinator 676 

diversity and associated ecosystem services (Woodcock et al., 2019). In contrast, many regions 677 

exhibit lower flowering reassembly despite facing aridification or substantial land cover changes 678 

(e.g., most Southeastern ecoregions) (Figs. S2,6). While we cannot identify the ultimate causes 679 

of these trends, the severe impacts expected across the Great Plains might be caused by potential 680 

limits to species ranges imposed by the arid-humid bioclimatic boundary, with aridification 681 

trends leading to local extirpation of humidity-adapted species at the boundaries of their ranges 682 

(Anderegg & HilleRisLambers, 2016; Barnes & Harrison, 1982; Berdugo et al., 2020; Epstein et 683 

al., 1996). 684 

 685 

Limitations and future directions 686 

This study provides a unique macroecological assessment of changes to the flowering season due 687 

to the combined effects of shifts in flowering time and species ranges across the continental 688 

United States. However, methodological limitations and ecological complexities make the 689 

precise ecological consequences of these effects difficult to predict.. First, we modeled shifts in 690 

the timing and diversity of flowering across scales, but not in the overall abundance of floral 691 

resources due to potential changes in species’ abundances or flower production, which could 692 

amplify or reduce the ecological impacts of altered flowering times. Relatedly, presence-693 

background SDMs model shifts in habitat suitability without accounting for temporal lags in 694 

colonization or local extinction, or the persistence of populations in suboptimal habitat—695 

potentially overestimating species turnover at short time scales—and do not consider changes in 696 

population sizes. Longitudinal field surveys are ultimately needed to determine whether 697 

estimated trends from SDMs match true patterns across landscapes. Finally, many plant 698 

communities are dominated by a few species whose flowering responses may deviate from the 699 

wider community, and ecological outcomes often depend on a handful of species interactions 700 

(e.g., specialized plant-pollinators systems) whose responses might not match those of the wider 701 

community.  702 
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Given these and other complexities, assessing the effects of climate change on floral 703 

resource production—both through individual-level crop sizes and population-level 704 

demography—is crucial to determine whether the spatiotemporal redistribution of co-flowering 705 

diversity will lead to concordant changes in floral resource availability. In turn, forecasting more 706 

precise ecological outcomes will require focusing analyses on key species based on local 707 

abundance, floral output, functional traits, or other attributes relevant to the specific ecological 708 

phenomena under study. 709 

Despite these challenges, this study provides a promising approach for examining 710 

changes to the seasonal structure of terrestrial communities at broad spatial scales.  Field datasets 711 

tracking the seasonal abundance of flowers are rare, and remote sensing methods cannot detect 712 

weak spectral signals from these structures nor identify individual species. By combining species 713 

distribution and phenological modeling and using diverse publicly available datasets, we outline 714 

a framework for estimating changes to the seasonal structure of plant communities at broad 715 

spatial scales that maintains resolution at the level of species, features that may provide valuable 716 

resources for natural resource management and conservation planning. 717 
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Figure S1—Correlations among 2004-2023 normals for 31 climatic variables, mean elevation, 942 
and elevation heterogeneity across 4km resolution grid cells throughout the conterminous United 943 
States. Climate variables include annual sums or means, maximum monthly values, minimum 944 
monthly values, annual monthly range, and seasonality for precipitation (PPT), temperature (T°), 945 
actual evapotransporation (AET), climate water deficit (DEF), soil moisture (SOIL), and snow-946 
water equivalent (SWE). Variables for T° also include approximate mean daily range, and 947 
isothermality. Seasonality for precipitation was calculated proportionally to the mean cumulative 948 
annual precipitation in each site. 949 

  950 



43 

 PC1 (1.9, 43%) PC2 (1.7, 43%) PC3 (1.3, 9%) PC4 (1.2, 6%) PC5 (1.1, 5%) 

PPT - Annual range -0.15 -0.21 0.14 -0.05 0.22 

PPT - Seasonality 0.20 -0.10 0.10 -0.11 0.18 

PPT - Monthly 
maximum 

-0.19 -0.18 0.10 -0.09 0.16 

PPT - Monthly 
minimum 

-0.22 0.02 -0.11 -0.17 -0.20 

PPT - Annual sum -0.23 -0.12 0.01 -0.10 -0.03 

T° - Annual range 0.01 0.27 -0.20 0.29 0.08 

T° - Seasonality -0.07 0.26 -0.25 0.23 0.00 

T° - Monthly minimum 0.08 -0.30 0.04 -0.22 -0.07 

T° - Monthly maximum 0.16 -0.20 -0.20 -0.02 -0.03 

T° - Annual mean 0.09 -0.29 -0.12 -0.22 -0.05 

T° - Diurnal range 0.21 -0.01 0.04 0.10 0.19 

T° - Isothermality 0.16 -0.21 0.18 -0.16 0.12 

AET - Annual range -0.17 -0.02 -0.19 -0.11 0.49 

AET - Seasonality -0.20 0.04 -0.15 -0.12 0.42 

AET - Monthly 
maximum 

-0.19 -0.13 -0.19 -0.07 0.35 

AET- Monthly minimum -0.09 -0.26 -0.06 0.06 -0.15 

AET - Annual mean -0.20 -0.19 -0.16 0.02 0.07 

DEF - Annual range 0.24 -0.04 0.08 0.15 0.11 

DEF - Seasonality 0.24 -0.03 0.10 0.19 0.09 

DEF - Monthly 
maximum 

0.25 -0.05 0.07 0.06 0.07 

DEF- Monthly minimum 0.16 -0.06 -0.02 -0.38 -0.16 

DEF - Annual mean 0.25 -0.06 0.03 -0.11 -0.02 
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 951 

Table S2—Loadings from a principal component analysis (PCA) of 2004-2023 normals for 31 952 
climatic variables, mean elevation, and elevation heterogeneity across 4km resolution grid cells 953 
throughout the conterminous United States. Loadings are reported for the 5 principal components 954 
(PCs) explaining more variance than any input variable in the data. Highlighted values in each 955 
column correspond to the 5 input variables with the highest loadings on each PC. Values next to 956 
each PC’s name in the column headings indicate its eigenvalue and variance explained. 957 

 958 

 959 

  960 

SOIL - Annual range -0.16 -0.18 0.21 0.27 0.01 

SOIL - Seasonality -0.16 -0.18 0.21 0.26 -0.01 

SOIL - Monthly 
maximum 

-0.19 -0.17 0.18 0.23 -0.06 

SOIL - Monthly 
minimum 

-0.21 -0.13 0.08 0.11 -0.19 

SOIL - Annual mean -0.21 -0.16 0.14 0.16 -0.15 

SWE - Annual range -0.14 0.24 0.21 -0.19 -0.02 

SWE - Seasonality -0.14 0.24 0.21 -0.20 -0.02 

SWE - Monthly 
maximum 

-0.14 0.24 0.21 -0.19 -0.02 

SWE – Annual mean -0.13 0.24 0.22 -0.21 -0.02 

Mean Elevation (800m) 0.14 0.10 0.28 0.13 0.25 

Elevational 
heterogeneity (800m) 

0.01 0.01 0.46 -0.02 0.19 
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 961 

Figure S2—Climate change between the historical period (1960-1980) and the present period 962 
(2001-2020), and between the present period and projected conditions under a scenario of 2°C 963 
warming above pre-industrial levels. Climate change is shown as the difference in the 5 principal 964 
components summarizing 31 climatic variables, as well as mean elevation and elevational 965 
heterogeneity within 4km grid cells throughout the conterminous United States (see ‘Methods’ 966 
section of the main text) between periods. The variables listed in each legend correspond to those 967 
with the greatest loadings for each PC. Positive and negative signs next to each variable indicate 968 
whether positive or negative values in the color scale are associated to increases or decreases 969 
between periods. Subdivisions labeled 1-18 represent level II ecoregions. 1) Mediterranean 970 
California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) Cold Deserts, 5) Warm 971 
Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) South-Central Semi-972 
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arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 11) Mixed Wood 973 
Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-Appalachian 974 
Forests, 15) Southeastern USA Plains, 16) Mississippi Alluvial and Southeast USA Coastal 975 
Plain, 17) Atlantic Highlands, 18) Texas-Louisiana Coastal Plain, 19) Tamaulipas-Texas Semi-976 
arid Plains, 20) Everglades. 977 

 978 

 979 

 980 

Figure S3—Predicted species richness (from a total of 2,837 species) within 12km resolution 981 
grid cells across the conterminous United States estimated for the 2001-2020 period, and the 982 
percent that have herbaceous, graminoid, or woody growth habit. Subdivisions labeled 1-18 983 
represent level II ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine 984 
West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) 985 
Upper Gila Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 986 
10) Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA 987 
Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA Plains, 16) Mississippi 988 
Alluvial and Southeast USA Coastal Plain, 17) Atlantic Highlands, 18) Texas-Louisiana Coastal 989 
Plain, 19) Tamaulipas-Texas Semi-arid Plains, 20) Everglades.  990 
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 991 

Figure S4—Variation among growth forms in range expansion and contraction between 992 
historical (1961-1980) and recent (2001-2020) environmental conditions, or between recent and 993 
projected (2°C, B1 SRES scenario) environmental conditions. Proportion of range contraction 994 
was calculated as the number of cells predicted to be occupied by a given species in one period 995 
but not the next, divided by the number of cells occupied by the species in the previous period. 996 
Range expansions were calculated using the number of new cells predicted to be occupied by the 997 
species in the following period instead. Filled bars in the boxplot represent the 25th-75th 998 
percentile range of each metric, with solid bars corresponding to medians. The whiskers in each 999 
bar correspond to 1.5 times the interquantile distance between the 25th and 75th percentiles, an 1000 
interval that encompasses approximately 95% of observations. Growth forms were obtained from 1001 
the United States Department of Agriculture’s (USDA) Plant List (https://plants.usda.gov/). The 1002 
number of species for each growth form were 2,102 for herbs, 336 for graminoids, 378 for 1003 
woody species, and 15 for vines (with 6 species missing from the Plant List).  1004 
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 1005 

Figure S5—Differences among growth forms in the sensitivity of flowering onset and 1006 
termination to interannual variation in temperature and precipitation (see ‘Methods’ section of 1007 
the main text).  Filled bars in the boxplot represent the 25th-75th percentile range of each metric, 1008 
with the solid horizontal bars corresponding to medians. The whisker in each bar correspond to 1009 
1.5 times the interquantile distance between the 25th and 75th percentiles, an interval that 1010 
encompasses approximately 95% of observations. Growth forms were obtained from the United 1011 
States Department of Agriculture’s (USDA) Plant List (https://plants.usda.gov/). The number of 1012 
species for each growth form were 2,102 for herbs, 336 for graminoids, 378 for woody species, 1013 
and 15 for vines (with 6 species missing from the Plant List).  1014 
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 1017 

Figure S6—Change in land cover between 1980 and 2020, and between 2020 and 2080 under 1018 
SRES B1 scenario of land use and land cover change. Each panel shows changes in the 1019 
proportion of 250m cells of the focal class found within each 750m resolution grid cell across the 1020 
conterminous United States (CONUS). Subdivisions labeled 1-18 represent level II ecoregions. 1021 
1) Mediterranean California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) Cold 1022 
Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) 1023 
South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 1024 
11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-1025 
Appalachian Forests, 15) Southeastern USA Plains, 16) Mississippi Alluvial and Southeast USA 1026 
Coastal Plain, 17) Atlantic Highlands, 18) Texas-Louisiana Coastal Plain, 19) Tamaulipas-1027 
Texas Semi-arid Plains, 20) Everglades. 1028 
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