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Abstract

Global change is altering the phenology and geographic ranges of flowering species, with
potentially profound consequences for the timing and composition of floral resources and the
seasonal structure of ecological communities. However, shifts in flowering phenology and
species distributions have historically been studied in isolation due to disciplinary silos and
limited data, leaving critical gaps in our understanding of their combined effects. To address this,
we used millions of herbarium and occurrence records to model phenological and range shifts for
2,837 plant species in the United States across historical, recent, and projected climate and land
cover conditions, enabling us to scale responses from species to communities, and from local to
continental geographies. Our analysis reveals that communities are shifting toward earlier, longer
flowering seasons in most biomes, with co-flowering species richness increasing at the edges of
the season and declining at historical peaks—trends projected to intensify under ongoing
environmental trends. Although range and phenology shifts operate concurrently, they
predominantly affect different aspects of the flowering season: phenological changes primarily
alter seasonality—its start, end, and duration—and co-flowering diversity at the edges of the
season, while range shifts more strongly influence co-flowering species richness during historical
seasonal peaks and the identity and degree of flowering synchrony among co-occurring species
pairs. Together, these results demonstrate that shifts in phenology and species ranges act
synergistically to restructure the flowering seasons across the conterminous United States,

revealing wide variation in the pace and magnitude of change among biomes.
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Introduction

The start, end, duration, and species composition of a community’s flowering season—the period
during which most co-occurring angiosperms complete their annual flowering cycles within
temperate communities—impacts the fitness of both plants and of organisms reliant on floral
resources. These attributes mediate the seasonal distribution and diversity of flowering species
within a community, which in turn influences pollinator population growth rates (Roulston &
Goodell, 2011) and various density-dependent ecological outcomes in plants—such as
competition, pollination, or florivory—that can impact their population persistence and the

evolution of life-history strategies (Elzinga et al., 2007).

Recent climate and land use changes have led to widespread shifts in flowering
phenology and in plant distributions (Cleland et al., 2007; Kelly & Goulden, 2008; Ramirez-
Parada et al., 2024), often disrupting ecological interactions through altered spatial and seasonal
synchrony between species (Renner & Zohner, 2018; Theobald et al., 2017). However, how
species-level shifts in phenology and distributions scale to the community level to jointly affect
the structure of the flowering season (e.g., its start, end, duration, and the seasonal distribution of
co-flowering species richness) is poorly understood. This is largely because these processes have
historically been studied separately (Parmesan & Hanley, 2015), but also because long-term
datasets including enough species to characterize a community’s flowering season are rare and
often temporally and spatially limited (CaraDonna et al., 2014). Elucidating how shifts in
phenology and species ranges affect the structure of the flowering season at the community
level—and understanding how these effects are distributed across regions and biomes—is

essential for forecasting the impacts of global change on terrestrial ecosystems.

Shifting phenology and species ranges should have distinct impacts on the start, end,
duration, and species composition of the flowering season (henceforth ‘the structure of the
flowering season’) because these processes differ in their degree of temporal structure (Fig. 1).
For example, in the temperate zone, phenological responses to climate—which are primarily
caused by phenotypic plasticity—tend to differ markedly among species flowering early and late
in the season, with spring-flowering species advancing flowering in response to warming and
late summer- and fall-flowering species typically showing limited responsiveness or flowering

delays (D. S. Park et al., 2019; Ramirez-Parada et al., 2024). In contrast, changes in species
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diversity typically impact the phenology of remaining species indirectly (e.g., through changes in
soil nitrogen or moisture) (Wolf et al., 2017), and species lost or gained within most
communities do not tend to flower predominantly early or late within the season (but see
counterexamples among invasive species) (Godoy et al., 2009; Zettlemoyer et al., 2019).
Therefore, because phenological responses generate consistent shifts among species active at
both ends of the flowering season, community-level changes in structural attributes of the
flowering season related to timing—such as its start, end, and duration—should be more strongly
mediated by phenological responses than by range shifts (Fig. 1B-D) (Ramirez-Parada et al.,
2025). Conversely, the richness of species flowering concurrently during a community’s
flowering peak—during which relatively few taxa are initiating or terminating flowering (Fig.
1B-D)—or attributes of the season tied to community composition (e.g., the network of
flowering synchronies between co-occurring species) (Fig. 1E, F) should be more strongly
influenced by species gains and losses due to range shifts than by plastic responses of flowering
phenology. This is because phenological shifts redistribute existing flowering diversity and
change the degree of flowering synchrony between species (i.e., nodes in the flowering network),
whereas range shifts add or remove species from the community. Therefore, phenological shifts
change the strength of the connections between nodes in the flowering network (Fig. 1E),
whereas range shifts add nodes or subtract them altogether, thereby creating or removing many

connections at once (Fig. 1F).
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91 Figure 1—Hypothetical effects of shifts in phenology and species ranges on the structure of the flowering season at

92 the community level. A shows historical phenological patterns in a community, with grey lines showing the

93 flowering periods of individual species, and the solid black line depicting the historical species richness of co-

94 flowering species throughout the year. B shows changes in community-level flowering caused by shifts in

95 phenology among species alone, and depicts a scenario in which early-flowering species tend to advance and late-

96 flowering species to delay their flowering, and in which species primarily extend their flowering relative to

97 historical. These changes are predicted to primarily impact the start, end, and duration of the season, as well as the

98 richness of co-flowering species early and late in the season (Hi). C and D show shifts in community-level

99 flowering patterns caused by shifts in species ranges alone, respectively showing scenarios in which range shifts
100  generate species losses or species gains in the focal community, and assuming gained or lost species do not tend to
101 flower during a specific season. Such changes should primarily impact the richness of co-flowering species during
102 the peak of the season, during which most species gained or lost are likely to have already started flowering (H;). E
103 shows the effects of phenological shifts on patterns of pairwise flowering synchronies for a simple network of 5
104  species, and F depicts the effects of species losses or gains due to range shifts on the same network, with line widths
105 indicating the degree of flowering synchrony between two species. Line colors in E depict flowering synchronies
106 before and after shifts in flowering phenology due to environmental change. Shifts in phenology should alter the

107 degree of overlap between species, with the weakest links most at risk of being lost under environmental change. In
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turn, species losses or gains should have more profound effects by creating or removing flowering synchronies

among many species at once (H»).

To test these hypotheses, we assembled a dataset of over 2.7 million herbarium and
community-science records from 2,837 species, and examined how climate change affects the
structure of the flowering season in the conterminous United States (CONUS). We modeled each
species' geographic distribution under historical, current, and future climate conditions, also
accounting for land cover and land use changes. Additionally, we assessed how temperature and
precipitation—the main drivers of interannual variation in flowering time across the temperate
zone— independently and interactively influence the onset and termination of the flowering
period (and therefore its duration) for each species. By concurrently estimating species
occurrences and their flowering periods across sites, these analyses allowed us to evaluate the
effects of environmental change on flowering patterns at scales ranging from individual species
to communities, and from local to continental extents. Specifically, throughout CONUS, we
measured how recent and future environmental change affects community-level attributes of the
season, including 7) the start of the flowering season (SOS), if) the end of the flowering season
(EOS), iii) the duration of the flowering season (DOS), iv) the richness of co-flowering species
each day of the year, and v) the network of pairwise flowering synchronies between co-occurring
species, which determines the potential for flowering-mediated interactions between species.
These metrics allowed us to evaluate the relative influence of shifts in phenology and species
ranges on the timing of the season and the seasonal distribution of co-flowering richness within it
(Hi1 in Figs. 1B-D; attributes i-iv above) and in the network of flowering synchronies among co-

occurring species (Hz in Figs. 1E,F; attribute v above).

The impacts of shifts in phenology and species ranges are likely to differ across regional
floras, as baseline climate, land use patterns, species assemblages, and rates of environmental
change vary widely with geography. To characterize this regional variation, we evaluated how
changes in each structural attribute of the flowering season (i-v above) varied throughout
CONUS. Specifically, we evaluated patterns of change across ecoregions, which represent areas
with relatively homogenous soils, geography, climates, and species assemblages (Omernik,

1987). In particular, we chose to summarize patterns within Level II ecoregions because they
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provide a tractable number of subdivisions for analysis while maintaining resolution of regional
subtypes within broad biomes (e.g., cold versus warm deserts, temperate versus semi-arid
prairies, etc.). By doing so, these analyses offer the most comprehensive assessment of how
recent and projected global change impacts flowering patterns across CONUS’ floras, revealing

wide heterogeneity in the severity of flowering reassembly among biomes.

Materials and Methods
Phenology and occurrence data

To model flowering phenology, we compiled specimen records from 220 herbaria, accessed
digitally through 16 consortia from Mexico, the U.S., and Canada (in July and August 2022) (1.
Park et al., 2023). Only specimens explicitly recorded as bearing flowers were retained, which
we identified through the detection of unique entries in the DarwinCore ‘reproductiveCondition’
column that clearly indicated the presence of flowers. Specimens missing geographic
coordinates, collection dates, or species-level identification were excluded. To avoid
pseudoreplication, conspecific specimens collected within 1 km of each other on the same day
were removed. Since over 92% of the remaining specimens were collected within the United
States, and to match the spatial extent of land use/land cover (LULC) data used in species
distribution models (SDMs), we excluded specimens collected outside CONUS. Specimens
collected before 1958 were also removed to align with the temporal range of TerraClimate
climate data used in the analysis. After harmonizing species names using the Global Biodiversity
Information Facility (GBIF) taxonomic backbone, the data were filtered further to include only
species represented by at least 100 specimens, a threshold past which the performance of
specimen-based phenoclimatic models has been found to be independent of sample size (I. W.
Park & Mazer, 2018). The day of year (DOY) of collection was used as a proxy for flowering
date, with an azimuthal correction applied to address the discontinuity between 31 December and
1 January, converting prior year DOY's into negative values. Previous work on this dataset
demonstrated limited spatial biases towards areas of high population density and major roads,
and minor temporal biases that did not affect phenoclimatic model performance (Ramirez-Parada

et al., 2024) (see Supplemental notes 7 and 8 therein).
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To model species ranges, we obtained an additional 13.2 million research-grade
occurrence records from GBIF for species well-represented in the flowering phenology dataset
(accessed July 11, 2024; https://www.gbif.org/occurrence/download/0021084-
240626123714530). These records, primarily from iNaturalist and herbarium sources, were
combined with those from Park et al. (I. Park et al., 2023). We removed duplicates using the
‘occurrencelD’ column in DarwinCore. To match the temporal and spatial extent of LULC data
included in SDMs, we retained only occurrences derived from iNaturalist and herbarium records
collected between 1999 and 2023, and limited the dataset to occurrences within CONUS.
Preliminary analyses of GBIF occurrences revealed significant spatial biases towards urban areas
and major roads. To address this, we identified occurrences within urban areas as defined by the
US Census Bureau (2012) using the ‘tigris’ package v2.1 (Walker, 2016). We thinned the data
using the ‘spThin’ package v0.2.0 (Aiello-Lammens et al., 2015), keeping only occurrences of
the same species recorded at least 20 km apart within urban areas. Additionally, we removed
occurrences within 2 km of ‘primary roads’ mapped by the US Census Bureau in 2012. To
further reduce spatial bias, another thinning step was applied, keeping only conspecifics recorded
at least 5 km apart regardless of urban or road proximity. After cleaning using BONAP records
(see next subsection), we retained only species with at least 50 occurrences to ensure adequate
sample sizes for species distribution modeling (see ‘ Training SDMs’ section for information on
how pseudo-absences were generated). GBIF records were used in SDMs but not in phenology

models because the vast majority of iNaturalist records do not indicate the presence of flowers.

Final cleaning of specimens and occurrences using BONAP

Species misidentifications or geolocation errors in herbarium and occurrence databases
can distort the climate space or flowering dates represented among observations. To mitigate
this, we removed implausible records using expertly curated data from the Biota of North
America Program's (BONAP) North American Plant Atlas (NAPA) (Kartesz, 2024), which
documents 19,039 taxa from 227 families across 3,067 counties across CONUS. BONAP
compiles species presence/absence data from herbarium records, museums, and bibliographic
reviews, most of which are verified by taxonomic and floristic experts. We then excluded

observations from counties where BONAP did not report occurrences for the species. After
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cleaning, the final specimen-based phenology dataset included 1,042,939 specimens (collected
from 1958 to 2022) representing 2,837 species in 1,042 genera and 139 families. The median
species in the phenology dataset was represented by 242 specimens sampled in 54 unique years
(median range = 62 years) by 122 unique collectors. The final occurrence dataset contained
1,673,454 records (collected from 1999 to 2023), comprising the same species. The median
species in the occurrence dataset was represented by 347 observations sampled in 25 unique
years (median range = 25 years) by 219 unique collectors. Among species in the data, 12%
consisted of graminoids, 74% of herbs and forbs, 13% of woody species (shrubs or trees), and

1% of vines (Table S1).

Climate data

We obtained monthly climatic rasters from TerraClimate (Abatzoglou et al., 2018) available
from January 1958 to December of 2023 at a 4 x 4 km resolution. These data consisted of
monthly time series for minimum temperature (TMIN), mean temperature (TMEAN), maximum
temperature (TMAX), and cumulative precipitation (PPT), as well as modeled water balance
metrics including actual evapotranspiration (AET), climate water deficit (DEF, potential

evapotranspiration - AET), soil moisture (SOIL), and snow water equivalent (SWE).

Climate variables for species distribution modelling

We used monthly climate data to calculate annual bioclimatic variables known to influence plant
distributions. For each year and location across CONUS, we computed annual means (or sums
for precipitation), minimum and maximum monthly values (e.g., mean minimum temperature of
the coldest month, mean maximum of the warmest month), annual ranges (difference between
maximum and minimum mean monthly values), and seasonality (standard deviation of monthly
values within year). For temperature, we also calculated the approximate mean diurnal
temperature range (mean difference between TMAX and TMIN across months) and approximate
isothermality (mean approximate diurnal range divided by the annual range). For precipitation,
seasonality was calculated relative to cumulative annual precipitation within each site. Minimum

monthly SWE was removed from the analyses, as it was 0 across CONUS. This resulted in 31
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climate variables: 7 for temperature, 5 related to PPT, AET, DEF, SOIL, and 4 for SWE,
calculated annually across all CONUS locations. For the location of each occurrence record, we
computed long-term averages of these variables over the 20 years preceding its collection date.
We used 20-year instead of a standard 30-year period to reduce the proximity between historical
and recent conditions in our analyses of species ranges (see next sections). Additionally, we
obtained elevation data from USGS at a 100m x 100m resolution, and calculated mean elevation
and elevational heterogeneity within 800m x 800m grid cells. The coarser resolution for
elevation was used to account for uncertainties in georeferencing of herbarium specimens, which
may be problematic in steep mountainous regions where topography changes over short

distances (Gamble & Mazer, 2022).

Since many of the climate variables were highly collinear (Fig. S1) and are causally
related, we performed a principal component analysis (PCA) to reduce the dimensionality of the
climate space. The PCA used 20-year averages of all variables for the most recent period
available (2004-2023) across all 4km x 4km grid cells in CONUS. We retained the five principal
components (PCs) with eigenvalues > 1, which collectively explained 88.2% of the variance in
the climate data (Table S2). PC1 represented a gradient of increasing aridity, PC2 a gradient of
decreasing temperature and increasing temperature seasonality, and PC3 a gradient of increasing
elevational heterogeneity and mean elevation with decreasing temperature seasonality. PC4
primarily captured increasing soil moisture, while PCS5 reflected increasing actual
evapotranspiration and elevation (Fig. S2). We then projected the 20-year average climate
conditions associated with each occurrence record onto these PCA axes, reducing the number of

climatic predictors from 31 variables to 5.

To predict species distributions across different periods, for each occurrence record we
calculated 20-year averages for each of the 31 climate variables for a historical period (1961-
1980; representing the earliest 20-year period available in TerraClimate) and a recent period
(2001-2020; to ensure separation with the historical period). We also obtained projected climate
conditions from TerraClimate for a scenario where global temperatures rise by 2°C above pre-
industrial levels. This scenario is not tied to a specific time frame or emissions pathway; instead,

TerraClimate interpolates climate normals from 1985-2015, adjusting for the changes in means

10
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and seasonality expected under 2°C of warming. We then projected historical, recent, and future

climatic conditions onto the 5 principal components derived from the 2001-2020 data.

Climate variables for phenoclimatic modelling

Variation in TMEAN and PPT among sites and years of specimen collection was partitioned into
spatial and temporal components by calculating long-term means (reflecting geographic
differences in chronic climatic conditions) and year-specific deviations from these long-term
means (reflecting interannual differences). For each species at each site and year, we obtained
data for the climatic conditions during the 3-month periods leading up to its average flowering
onset, peak, and termination. To estimate conditions approximately before flowering onset, we
used the 10th percentile collection date across all specimens from each species and calculated the
mean TMEAN and cumulative PPT for the 3 months leading up to that month. The same
approach was applied for the 50th percentile (flowering median) and 90th percentile (flowering
termination) collection dates. These percentiles were chosen to prevent sample-size dependent
biases likely to occur for more extreme quantiles, and because they have been found to perform
well in specimen-based quantile regressions of phenology (I. W. Park et al., 2024). For each
specimen, we characterized its site’s long-term TMEAN and PPT (normals) by averaging the
observed conditions across all years between 1961 and 1990 for each 3-month period
approximating that species’ flowering onset, median, and termination. We then calculated
climatic deviations (anomalies) from the 1961-1990 normals in the year of each specimen's

collection for these 3-month periods.

As phenological changes are driven by interannual variation in TMEAN and PPT (and
through plastic responses) (Ramirez-Parada et al. 2024), we calculated deviations from 1961-
1990 normals for all 3-month windows. This was done for the historical period (1961-1980), the
recent period (2001-2020), and the future 2°C warming scenario. These TMEAN and PPT
deviations were then used to predict changes in flowering onset and termination between

reference periods at each species' occurrence site.

Land use and land cover data

11
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We obtained land use and land cover (LULC) data from the National Land Cover
Database (NLCD) (Jon Dewitz, 2024), available for 2001, 2004, 2006, 2008, 2011, 2013, 2016,
2019, and 2021. The NLCD uses Landsat spectral data to classify 30m resolution grid cells into
land cover and land use classes, providing a consistent, high-resolution dataset across CONUS.
We separated each year's multiclass raster into layers representing the presence or absence of
each LULC type. We retained all cover classes except those not found in CONUS (e.g., lichen,
moss, sedge classes from Alaska) or those that were rare (e.g., barren land). For land cover, we
kept forest classes (deciduous, evergreen, mixed), scrubland (shrub/scrub), herbaceous
grasslands, and wetlands (herbaceous and woody). For land use, we included four urban
categories (open, low, mid, high) and two agricultural classes (cultivated crops, pasture/hay). To
match the format of the LULC data available for forecasting and backcasting (see next
paragraph), we aggregated all urban classes into a single category. To account for uncertainty in
occurrence coordinates and because plant occurrence can be influenced by landscape context at
broader scales than 30m (Mazerolle and Villard, 1999), we measured the proportion of each class
cover within 750m % 750m grid cells (625 30m x 30m cells) around each occurrence. LULC
class proportions were sourced from the NLCD layer closest to the year of collection for each

record. These class proportions were then used as predictors in SDMs.

Because NLCD data were available only from 2001 to 2021, we obtained historical
(1961-1980) and future (2061-2080) LULC projections from the Earth Resources Observation
and Science Center (EROS) at a 250m resolution (T. Sohl et al., 2016; T. L. Sohl et al., 2014).
EROS' projections use the same modeling framework as NLCD, integrating land use trends with
spatially explicit allocation based on regional suitability for each LULC class. Though EROS
projections were based on the Special Reports Emissions Scenarios (SRES) from the IPCC
(2000)—replaced later by Representative Concentration Pathways (RCP; IPCC 2013) and
Shared Socioeconomic Pathways (SSP; IPCC 2021)—they align closely with RCP and SSP
scenarios (Riahi et al., 2017; Rogelj et al., 2012). We chose the B1 scenario for forecasting, as it
is the closest match to RCP4.5 and SSP2-3, representing 'middle-of-the-road' emissions and
development scenarios. As with NLCD data, we calculated the proportion of each land cover
class in 750m resolution blocks (containing 9 grid cells) to generate historical and future

predictions used in SDMs.

12
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Analyses
Training SDMs

Species distributions were modeled using presence-background random forest classifier
models implemented in the ‘randomForest” package v4.7-1.1 (Liaw & Wiener, 2002) in R.
Random forests are a supervised machine learning technique that uses an ensemble of decision
trees to identify relationships between a response (here, presence/background data) and
predictors (here, climatic and LULC variables). By combining multiple decision trees, the
ensemble performs better than any single model, leveraging the "wisdom of the crowds." This
approach does not require predefining model structures (e.g., linear relationships) and its non-
parametric nature allows for discovering complex relationships and interactions (Cutler et al.,
2007). This flexibility was crucial for analyzing thousands of species presumably representing
diverse distributional relationships with climate and LULC. Additionally, random forests are
computationally efficient and have been demonstrated to be among the most accurate SDM

methods available (Valavi et al., 2022).

SDMs for each species were trained using occurrence data from 1999-2023. This period
ensured availability of high-quality LULC data from NLCD within two years of each collection
date. We generated pseudo-absences for each species by sampling 10,000 random locations per
species using three alternative types of geographic stratification, fitting a separate SDM for each
one and selecting the approach yielding the highest performance on a validation set for the rest of
the analysis pipeline. The first approach followed methods by Barbet-Massin et al. (Barbet-
Massin et al., 2012) in which, for each species, we defined a large region around the occurrences
of each species that excluded areas within a 1° radius around each observation. Specifically, we
defined the sampling area for each species using a 2° buffer (~222 km) around the convex hull
encompassing all occurrences. To tailor this approach to species with discontinuous
distributions, our second approach defined the pseudo-absence sampling area using a 2° buffer
around the minimum density kernel estimated to encompass all occurrences of the species. This
way, the sampling regions could be discontinuous, avoiding sampling pseudo-absence
disproportionately from areas far from any occurrences. To account for differences in range size,

this approach tailored the radius of the exclusion buffer around each occurrence to a 20" of the
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minimum between the latitudinal versus longitudinal among the species’ occurrences. Finally,
because its typically unclear whether regions without occurrences are due to sampling bias or
true distributional patterns, our third approach used curated BONAP records to identify counties
where each species has not been documented to date. This approach increases the likelihood that
pseudo-absences indeed represent true absences at the risk of losing resolution of the
environmental space in regions where the species does occur. For each approach, pseudo-

absence sampling also excluded locations within 2km of major roads.

All models included the 5 bioclimatic PCs and the proportion of each LULC class around
collection sites as predictors. In the case of pseudo-absences, we obtained 20-year climatic
averages from a randomly selected year between 2001 and 2021 projected onto the 5 climatic
PCs and LULC variables. To address class imbalance, we downsampled pseudo-absences to
match the number of occurrences in each initial tree. Each species-specific model used 500 trees
with a maximum of 5 predictors at each split. Decision trees are built using bootstrap samples of
the data. Typically, these samples contain about 2/3 of the original data, with the remaining third
(out-of-bag or ‘OOB’ data) used to calculate each tree's error rate (Cutler et al. 2007). We
evaluated model performance by averaging the error rates across all trees, which typically
provides an unbiased estimate of the model’s generalization error. Specifically, we calculated the
area under the receiver operating characteristic curve (AUC) using OOB samples, which
quantifies the tradeoff between false positive and false negative rates for different threshold
values used for classifying presences versus absences. Fully random models would yield an
expected AUC of 0.5, with values below that indicating worse-than-random performance, and
higher values better-than-random performance. We identified the pseudo-absence approach
yielding the best performing model by comparing the AUCs for each species’ SDM. The first
approach was best performing only among 8% of species, whereas the second and third
approaches were best performing among 29% and 63% of species, respectively. After model

selection, the median AUC among species was 0.996 (min = 0.90).

The SDMs output a probability of occurrence under specific environmental conditions,
derived from the proportion of trees predicting the positive class. Given that SDMs were fit with
observed presences but generated pseudo-absences data, these probabilities are interpreted as

habitat suitability rather than actual probabilities of occurrence. To set a suitability threshold (0-
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1) for considering a species to be present at a site, we calculated the receiving operating curve
(ROC) for each model and determined which of two criteria yielded the best predictive power: 1)
maximizing the sum of specificity and sensitivity, or 2) maximizing the true positive rate
(minimizing false negatives) while keeping the false positive rate below 0.05. While the first
criterion maximized the true skill of the model, the second criterion maximized true positive
detection at the expense of higher false negative rates, a tradeoff that is justified in our case since
implausible occurrence predictions could be identified and removed using BONAP county

records (see ‘Species-level predictions of distributions and phenology’ subsection).

Training phenoclimatic models

For each species, we modeled how flowering onset, termination, and duration varied with
long-term climatic conditions and interannual climatic variation. We used quantile regression
(via the ‘quantreg’ package v5.97) (Koenker et al., 2017) to assess how collection date
distributions among conspecifics responded to geographic and interannual variations in TMEAN
and PPT (i.e., normal and anomalies, respectively). We used the 10th percentile of the
distribution to represent population-level flowering onset, the 90th percentile to represent
flowering termination, and the interquartile distance between them to represent flowering
duration. We chose the 10th and 90th percentiles and focused on well-sampled species because
estimation of extreme quantiles is more strongly biased by small samples. Moreover, recent
simulations show that quantile regression accurately estimates 10™ and 90" percentiles of
opportunistically sampled data for sample sizes similar to those in this study (I. W. Park et al.,
2024), and this approach has been effective in studying phenological distributions in both plants
and insects (Austin et al., 2024; Belitz et al., 2023).

In each species-specific model, predictors included TMEAN normal, PPT normal, and
their interaction for the 3-month period before the approximate date of flowering onset (10™
percentile DOY among specimens) or termination (90" percentile DOY), as well as TMEAN
anomaly, PPT anomaly, and their interaction during the same period (6 predictors total). The
coefficients for the main terms in these quantile regressions indicate how the 10th and 90th
percentiles of flowering are affected by geographic or interannual variation in TMEAN and PPT,

assuming average values for interacting variables. Interaction coefficients between normals
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represent the degree to which long-term precipitation affects the magnitude of phenological
changes due to variation in long-term TMEAN across sites (or vice versa), whereas the
interaction coefficients between anomalies indicate how the effects of interannual variation in
TMEAN varies among drier- or wetter-than-average years (and vice versa). This approach
models phenological variation as a response to: 1) geographic variation in chronic TMEAN and
PPT conditions across sites, using temporally invariant normals from 1961-1990, and i1)
TMEAN and PPT anomalies reflecting temporal variation within sites, which primarily capture
plastic phenological responses (Ramirez-Parada et al., 2024). Thus, we assumed that any
temporal changes in a species' flowering season within sites are driven by deviations from their

1961-1990 TMEAN and PPT normals.

Species-level predictions of distributions and phenology

Each species' SDM was used to generate habitat suitability maps for historical (1961-1980),
recent (2001-2020), and future (2 °C warming, B1 LULC scenario for 2080) conditions. Climatic
and LULC variables were resampled to a 12km resolution for computational ease. Suitability
estimates were then converted to binary occurrence maps by applying a threshold that
maximized the true positive rate (see ‘Analyses—Training SDMs’ subsection). Presence-only
SDMs can predict unsuitable areas outside a species' range or beyond its dispersal capacity. To
address this, predictions were constrained to within 40km of counties where BONAP confirmed
each species' presence, which allowed for moderate range expansion to areas adjacent to
currently occupied regions between periods. These SDMs predicted substantial variation in
species richness across CONUS, from 56 to 1,445 species (from a total 2,837) for the historical
period (Fig. S3). Species richness was generally lowest in arid regions of the Great Plains and
higher in the West compared to the East, consistent with more comprehensive assessments of
plant diversity in North America (Daru, 2024). The proportion of species of different growth
forms represented within communities varied moderately across CONUS (Fig. S3), and growth

forms did not differ substantially in their average degree of range change between periods (Fig.

S4).

Each species’ phenoclimatic model was used to predict flowering onset, termination, and

duration for each 12kmx12km grid cell where the species was projected to occur during
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historical, recent, and future periods. This was done by applying deviations of average TMEAN
and PPT conditions from the 1961-1990 normals for each period. Climate rasters were resampled
to a 12km resolution before estimating phenological onset, termination, and duration for each
site and period. Species in different growth forms did not exhibit substantially different degrees

of onset and termination sensitivity to temperature and precipitation (Fig. S5).

Changes in community composition and flowering structure

The SDM and phenoclimatic modeling provided predictions for species presence, flowering
onset, and termination under historical, recent, and future conditions. We used these predictions
to measure changes in species composition. Next, we examined changes in the start, end, and
duration of the flowering season across these periods. The start of the flowering season was
defined as the DOY when 5% of species had started flowering, and the end as the DOY when
95% of species had ceased flowering, with duration as the span between these dates. For each
location, we calculated the difference in days for the season's start, end, and duration between
historical and recent conditions, and between recent and future conditions. We also measured
changes in the richness of flowering species each month by calculating the proportional
difference in species numbers under historical versus recent and recent versus future conditions,

relative to local species richness in the preceding period.

Finally, we assessed how patterns of flowering synchrony among species change in
response to environmental trends. For each location, we first calculated the overlap in flowering
periods between each pair of species in each period, calculating changes in overlap between
historical and recent conditions, or recent and future conditions. Specifically, synchrony was

calculated as:

Overlap between A and B

Flowering period of A + Flowering period of B — Overlap between A and B

Therefore, pairwise synchrony ranged from 0 (no overlap) to 1 (identical and fully overlapping
flowering dates). For species present in one period but not the other, all flowering synchronies
were set to 0 for the period in which it was absent. Using these pairwise overlaps, we measured

changes in flowering synchrony within each community using the Bray-Curtis Dissimilarity
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Index (BCI) (Bray & Curtis, 1957). While BCI is typically used to assess species composition
dissimilarity between communities using abundance data, it is also applicable to other
categorical data. In this context, BCI measured compositional differences in flowering overlaps
between periods, with species pairs analogous to species and their degree of flowering synchrony
analogous to abundance. Therefore, the BCI provides an integrated measure of changes in both
the identity and degree of overlap among species pairs, with values ranging from 0 (complete

similarity) to 1 (complete dissimilarity) between periods for each community.

Phenology versus range shifts as drivers of community-level phenological change

To assess the relative contributions of shifts in phenology and species ranges to the resulting
shifts in structure of the flowering season in each location, we generated predictions of
community level change assuming that either i) phenology changed but species distributions
remained constant between periods (i.e., a ‘phenology-only’ scenario), or ii) phenology remained
constant but distributions changed between periods (i.e., a ‘distributions-only’ scenario). For
example, for scenarios in which only phenology shifted between historical and recent periods
(i.e., 1961-1980 to 2001-2020), we generated species ranges predicted using historical climate
and LULC conditions, and compared flowering dates predicted under historical versus recent
conditions within these historical ranges. For each attribute of the season—and for all
comparisons between historical, recent, and projected environmental conditions—we then
calculated the difference between estimates of change generated by shifts in both species ranges
and phenology (shown in the main text) and those obtained by allowing only phenology or
distributions to shift. Changes in community-level attributes of the season at a location were
classified as predominantly driven by phenological shifts if closest to the change observed in the
phenology-only scenario, or classified as predominantly driven by range shifts if closest to the
distributions-only scenario. Finally, to assess the predominance of phenological versus range
shifts as drivers of change across biomes, we calculated the proportion of grid cells in each Level
IT ecoregion within CONUS for which each process was the predominant driver of observed
changes. When doing this for changes in the richness of flowering species each month, we

excluded locations showing shifts of less than 0.01 (corresponding to 1% of local species
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richness) each month, as those overwhelmingly corresponded to areas where the flowering

season had not yet started or had already ended.

Results
Changes to the start, duration, and end of the flowering season

Estimated shifts in species ranges and flowering phenology generated consistent changes to the
flowering season’s start (SOS), end (EOS), and duration (DOS) across most ecoregions. SOS
predominantly advanced between the historical and recent periods (Fig. 2A). EOS was delayed
in Eastern ecoregions, while responses in the West were more variable (Fig. 2A). Nonetheless,
SOS and EOS generally moved in opposite directions, with SOS showing larger shifts towards
earlier dates where SOS and EOS moved in the same direction; consequently, the flowering
season duration (DOS) increased across most of CONUS (Fig. 2A). Future environmental
conditions were projected to generate more drastic changes, with greater SOS advances and more
consistent EOS delays than in recent decades (Fig. 2B). As a result, DOS was predicted to
increase further across most of CONUS (Fig. 2B). Across ecoregions, shifts in the timing of the
season between the historical and recent periods were primarily caused by shifts in flowering
phenology (Fig. 2C). However, in most ecoregion, seasonal changes within a substantial
proportion of sites were caused primarily by estimated shifts in species ranges, which
predominated overall as drivers of EOS shifts in some ecoregions (e.g., Upper Gila Mountains)
(Fig. 2C). Phenological shifts were also projected to be the primary drivers of changes in SOS,

EOS, and DOS between recent and future climatic conditions in most ecoregions (Fig. 2C).
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Figure 2—Estimated changes in the start, end, and duration of the flowering season under recent and
projected climatic and land cover change, and the relative contributions of shifts in phenology vs. species
ranges to these changes. A depicts changes in the start, end, and duration of the season predicted between
the historical (1961-1980) and recent (2001-2020) periods. B shows predicted changes between recent
conditions and future conditions expected under 2°C of warming and land cover patterns for the year
2080 under the Special Report on Emissions Scenario (SRES) B1. C shows the proportion of area within
each level Il ecoregion throughout CONUS (map subdivisions labeled 1-20, also shown in A) for which
shifts in phenology or in species ranges were the primary contributors to observed change. For graphing,
the color scale in A and B was capped to the central 99% of the data to avoid distortion of the range from
extreme values. Grid cells in A and B have a resolution of 12x12 km.

Changes in the seasonal distribution of co-flowering species richness

Co-flowering species richness was estimated to remain mostly unchanged during the winter
months preceding the flowering season, but to increase by February in low-latitude ecoregions

where spring starts early (e.g., Warm Deserts) (Fig. 3A). Significant changes were widespread in
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March, April, and May, which predominantly showed increases due to the earlier onset of spring
across CONUS. Decreases first occurred in April and May in regions experiencing early onset of
summer drought (e.g., Warm Deserts, South-Central Semi-Arid Prairies). More ecoregions
experienced declines in co-flowering richness during summer, with the onset of declines
occurring earlier in the year in arid ecoregions (e.g., May to June for Cold Deserts vs. June to
July for the Western Cordillera). Fall changes were modest across CONUS. In all ecoregions,
changes in co-flowering species richness early in the season were primarily generated by
phenological shifts, with range shifts exerting a greater influence later in the season and
predominating during late spring and summer (May-Sep; Fig. 3B). The predominant drivers of
changes in co-flowering species richness near the end of the season varied among ecoregions,
with shifts in phenology predominating in some (e.g., Warm Deserts) and range shifts in others

(e.g., Temperate prairies).
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Figure 3—Estimated changes between the historical period (1961-1980) and the recent period (2001-
2020) in the richness of co-occurring species flowering each month across the conterminous United
States. A shows the change co-flowering richness each month for each location relative to the total
species diversity of that site during the historical period (1961-1990). B shows the proportion of sites
within each ecoregion (map subdivisions labeled 1-20) for which range shifts or phenological shifts were
the primary cause of observed changes in the diversity of flowering species that month. For graphing, the
color scale in A was capped to the central 99% of values to avoid distortion from extreme values. Grid
cells in A have a resolution of 12x12 km.

Under projected climate conditions, estimated decreases in co-flowering species richness
were greater and more widespread across ecoregions than in recent decades (Fig. 4). Increases
during spring were weaker, and declines occurred earlier and were more severe in many
ecoregions (e.g., Warm Deserts, Mediterranean California) (Fig. 4A). Summer and fall decreases
were most severe across ecoregions in the Great Plains, but were also widespread across the
West. In contrast, co-flowering species richness was projected to moderately increase during
summer and fall in many Eastern ecoregions (e.g., Southeast USA Plains, Southeast USA
Coastal Plain). For most ecoregions, phenological shifts are projected to be the primary causes of
changes in co-flowering species richness early and late in the season (Fig. 4B). Phenological
shifts predominated throughout most of the year in some ecoregions (e.g., Mixed Wood Shield,
Mixed Wood Plains). However, the relative influence of range shifts increased throughout the
year, becoming the predominant cause of year-round changes in co-flowering richness in more
ecoregions than observed between the historical and recent periods (e.g., Texas-Louisiana
Coastal Plain). Indeed, range shifts were the overwhelming cause of changes in co-flowering
richness during summer and fall in regions showing the most severe decreases (e.g., South

Central Semi-Arid Prairies, Temperate Prairies).
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Figure 4—Estimated changes between recent and future environmental conditions in the richness of
species flowering each month across the conterminous United States. The color scale in each panel shows
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the projected change in co-flowering species richness each month in each location relative to the total
species richness of that site estimated under recent environmental conditions (2001-2020). Projected
conditions correspond to those expected under 2 °C of warming and land cover patterns for the year 2080
under the Special Report on Emissions Scenario (SRES) B1. A shows the change co-flowering richness
each month for each location relative to the total species diversity of that site during the recent period
(2001-2020). B shows the proportion of sites within each ecoregion (map subdivisions labeled 1-20) for
which range shifts or phenological shifts were the primary cause of observed changes in the diversity of
flowering species that month. For graphing, the color scale was capped to the central 99% of the data to
avoid distortion of the range from extreme values. Subdivisions in each panel—labeled 1-20—represent
level II ecoregions. Grid cells in A have a resolution of 12x12 km.

Changes in patterns of pairwise flowering synchronies

Across periods, estimated changes in the composition of pairwise flowering synchronies among
species in a community (i.e., flowering dissimilarity) largely corresponded with those in co-
flowering species richness during the peak of the season, with the greatest changes concentrated
in ecoregions within central CONUS and in the West (Fig. 5A). Flowering dissimilarity between
periods was more severe under projected environmental conditions than observed in recent
decades, with the greatest dissimilarity observed across central CONUS and the West, and
relatively modest flowering dissimilarity throughout the East (Fig. 5B). Flowering dissimilarity
across periods was predominantly driven by range shifts among ecoregions (Fig. 5C). Indeed, in
ecoregions showing the most severe flowering dissimilarity between periods, change across

nearly all locations was primarily caused by range shifts (e.g., South-Central Semi-Arid Prairies).
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Figure 5—Dissimilarity in the composition of pairwise flowering synchronies among sympatric species.
A shows flowering dissimilarity between the historical (1961-1980) and recent (2001-2020) periods. B
shows flowering dissimilarity between recent and projected conditions, which correspond to those
expected under 2 °C of warming and land cover patterns for the year 2080 under the Special Report on
Emissions Scenario (SRES) B1. Flowering dissimilarity was measured using the Bray-Curtis
Dissimilarity index, with values of 0 indicating no changes in species composition and degree of
flowering overlap, and values of 1 indicating all pairs of overlapping species were gained or lost relative
to the preceding period. For graphing, the color scale was capped to the central 99% of the data to avoid
distortion of the range from extreme values. Subdivisions in each panel—labeled 1-20—represent level 11
ecoregions. C shows the proportion of area within each ecoregion in which either shifts in phenology or
species ranges was the primary cause of flowering dissimilarity between periods.

Discussion

By analyzing thousands of plant species, we demonstrate that joint shifts in phenology and
species ranges in recent decades have significantly advanced and extended the flowering season

across biomes in the United States. We found substantial seasonal redistribution of flowering
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diversity within communities, with co-flowering species richness typically increasing early and
late in the season and decreasing during historical peaks—trends predicted to intensify under
projected environmental conditions. Despite acting concurrently, shifts in phenology versus
species-ranges primarily impacted different attributes of the season. Species-level phenological
shifts were the primary drivers of changes in community-level attributes related to the timing of
the flowering season, such as its start, end, and duration. In contrast, changes in species’ ranges
were the main drivers of community-level shifts in co-flowering richness during late spring and
summer and of attributes tied to community composition, such as patterns of flowering
synchrony among co-occurring species. These findings outline heterogeneous macroecological
impacts and mechanisms of change across biomes, revealing a wider suite of impacts than

predicted from analysis of each process in isolation.

Shifts in phenology and species distribution jointly but distinctly impact the flowering season

As hypothesized (Fig. 1), shifts in phenology and range shifts had their greatest effects on
different attributes of the flowering season at the community level. This suggests that future
changes to the structure of the season across communities will depend on the relative severity of
concordant shifts in phenology versus species ranges. Specifically, predominance of
phenological shifts would primarily alter the timing of the flowering season and the seasonal
distribution and diversity of co-flowering species, particularly at the start and end of the season.
In turn, profound species turnover due to range shifts would primarily alter seasonal peaks in
flowering diversity and the network of flowering synchronies among species, thereby altering the

potential for flowering-mediated species interactions.

The predominance of either process will likely depend on the severity of environmental
trends. Limits to phenological plasticity can prevent plants from shifting development further in
response to climatic trends (Rutishauser et al., 2008). For example, studies on woody species in
the temperate zone have found that phenology shifts linearly with temperature up to a warming
threshold of approximately 4 °C, after which responses stall (Ettinger, 2020; Fu et al., 2015; Guo
et al., 2023). Therefore, while average global temperature changes of 2 °C—as those considered
here—might not cause widespread exhaustion of plant phenological plasticity, these constraints

might be important under more extreme warming scenarios, limiting further contributions of
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shifts in phenology to changes in the flowering season. In contrast, shifts in demography and
species ranges are likely to accelerate under more extreme environmental change (Feeley &
Silman, 2010; Huntley, 1991). Therefore—to the extent that the limits of phenological plasticity
are similar across biomes, functional groups, and taxa—more severe climate change could cause
comparatively harsher shifts in species ranges than phenology, thus primarily impacting the

diversity and synchrony of co-flowering species.

Flowering reassembly and its impacts differ across biomes

Our study corroborates previous research showing widespread advancement and lengthening of
the flowering season across floras (Chen et al., 2023; Li et al., 2021; Zhou et al., 2022).
However, we also found wide regional variation in the direction and severity of changes in the
structure of the flowering season, which may cause profound ecological impacts. For example, in
recent decades, the richness of co-flowering species sharply increased early and decreased later
in the season in many ecoregions (e.g., Western Cordillera, Cold Deserts, Mediterranean
California; Fig. 3), which could result in opposing effects on density-dependent processes such
as pollinator attraction or insect foraging success during spring and summer (Schenk et al., 2018;
Sponsler et al., 2023). In turn, some communities experienced consistent declines in flowering
diversity throughout the year (e.g., areas of the South-Central Semi-Arid Prairies), which could
decrease the diversity of organisms reliant on flowers across the season (Friind et al., 2010; Potts
et al., 2003). Other regions experienced consistent increases in flowering diversity throughout
the year (e.g., Southeastern ecoregions), which may not affect different seasons
disproportionately but could alter ecological processes through novel species interactions
(Renner & Zohner, 2018). Regardless of specific patterns, these shifts have likely altered (and
may continue to alter) the selective environments encountered by plants and interacting

organisms across CONUS (Elzinga et al., 2007).

Communities across the Great Plains appear particularly vulnerable to climate-driven
restructuring of the flowering season (Fig. 5). In recent decades, this region has experienced
increasing aridity to the West and increasing humidity to the East of the 100th meridian West—a
bioclimatic boundary dividing the humid East and arid West (Seager et al., 2018). Aridification

has been linked to biomass loss, rapid species declines, and species turnover in grasslands (Chase
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et al., 2000; Cleland et al., 2013; MacDougall et al., 2024). Climate change is predicted to
exacerbate aridification trends, and conversion of grasslands to agriculture is projected to
accelerate under the land use scenario considered in this study (Figs. S2,6), threatening pollinator
diversity and associated ecosystem services (Woodcock et al., 2019). In contrast, many regions
exhibit lower flowering reassembly despite facing aridification or substantial land cover changes
(e.g., most Southeastern ecoregions) (Figs. S2,6). While we cannot identify the ultimate causes
of these trends, the severe impacts expected across the Great Plains might be caused by potential
limits to species ranges imposed by the arid-humid bioclimatic boundary, with aridification
trends leading to local extirpation of humidity-adapted species at the boundaries of their ranges
(Anderegg & HilleRisLambers, 2016; Barnes & Harrison, 1982; Berdugo et al., 2020; Epstein et
al., 1996).

Limitations and future directions

This study provides a unique macroecological assessment of changes to the flowering season due
to the combined effects of shifts in flowering time and species ranges across the continental
United States. However, methodological limitations and ecological complexities make the
precise ecological consequences of these effects difficult to predict.. First, we modeled shifts in
the timing and diversity of flowering across scales, but not in the overall abundance of floral
resources due to potential changes in species’ abundances or flower production, which could
amplify or reduce the ecological impacts of altered flowering times. Relatedly, presence-
background SDMs model shifts in habitat suitability without accounting for temporal lags in
colonization or local extinction, or the persistence of populations in suboptimal habitat—
potentially overestimating species turnover at short time scales—and do not consider changes in
population sizes. Longitudinal field surveys are ultimately needed to determine whether
estimated trends from SDMs match true patterns across landscapes. Finally, many plant
communities are dominated by a few species whose flowering responses may deviate from the
wider community, and ecological outcomes often depend on a handful of species interactions
(e.g., specialized plant-pollinators systems) whose responses might not match those of the wider

community.
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Given these and other complexities, assessing the effects of climate change on floral
resource production—both through individual-level crop sizes and population-level
demography—is crucial to determine whether the spatiotemporal redistribution of co-flowering
diversity will lead to concordant changes in floral resource availability. In turn, forecasting more
precise ecological outcomes will require focusing analyses on key species based on local
abundance, floral output, functional traits, or other attributes relevant to the specific ecological

phenomena under study.

Despite these challenges, this study provides a promising approach for examining
changes to the seasonal structure of terrestrial communities at broad spatial scales. Field datasets
tracking the seasonal abundance of flowers are rare, and remote sensing methods cannot detect
weak spectral signals from these structures nor identify individual species. By combining species
distribution and phenological modeling and using diverse publicly available datasets, we outline
a framework for estimating changes to the seasonal structure of plant communities at broad
spatial scales that maintains resolution at the level of species, features that may provide valuable

resources for natural resource management and conservation planning.
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and elevation heterogeneity across 4km resolution grid cells throughout the conterminous United

States. Climate variables include annual sums or means, maximum monthly values, minimum

monthly values, annual monthly range, and seasonality for precipitation (PPT), temperature (T°),
actual evapotransporation (AET), climate water deficit (DEF), soil moisture (SOIL), and snow-

water equivalent (SWE). Variables for T° also include approximate mean daily range, and

isothermality. Seasonality for precipitation was calculated proportionally to the mean cumulative
annual precipitation in each site.
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Table S2—Loadings from a principal component analysis (PCA) of 2004-2023 normals for 31
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climatic variables, mean elevation, and elevation heterogeneity across 4km resolution grid cells
throughout the conterminous United States. Loadings are reported for the 5 principal components

(PCs) explaining more variance than any input variable in the data. Highlighted values in each

column correspond to the 5 input variables with the highest loadings on each PC. Values next to

each PC’s name in the column headings indicate its eigenvalue and variance explained.
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Figure S2—Climate change between the historical period (1960-1980) and the present period
(2001-2020), and between the present period and projected conditions under a scenario of 2°C
warming above pre-industrial levels. Climate change is shown as the difference in the 5 principal
components summarizing 31 climatic variables, as well as mean elevation and elevational
heterogeneity within 4km grid cells throughout the conterminous United States (see ‘ Methods’
section of the main text) between periods. The variables listed in each legend correspond to those
with the greatest loadings for each PC. Positive and negative signs next to each variable indicate
whether positive or negative values in the color scale are associated to increases or decreases
between periods. Subdivisions labeled 1-18 represent level II ecoregions. /) Mediterranean
California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) Cold Deserts, 5) Warm
Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) South-Central Semi-
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arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 11) Mixed Wood
Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-Appalachian
Forests, 15) Southeastern USA Plains, 16) Mississippi Alluvial and Southeast USA Coastal
Plain, 17) Atlantic Highlands, 18) Texas-Louisiana Coastal Plain, 19) Tamaulipas-Texas Semi-
arid Plains, 20) Everglades.

Figure S3—Predicted species richness (from a total of 2,837 species) within 12km resolution
grid cells across the conterminous United States estimated for the 2001-2020 period, and the
percent that have herbaceous, graminoid, or woody growth habit. Subdivisions labeled 1-18
represent level II ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine
West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7)
Upper Gila Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies,
10) Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA
Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA Plains, 16) Mississippi
Alluvial and Southeast USA Coastal Plain, 17) Atlantic Highlands, 18) Texas-Louisiana Coastal
Plain, 19) Tamaulipas-Texas Semi-arid Plains, 20) Everglades.
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Figure S4—Variation among growth forms in range expansion and contraction between
historical (1961-1980) and recent (2001-2020) environmental conditions, or between recent and
projected (2°C, B1 SRES scenario) environmental conditions. Proportion of range contraction
was calculated as the number of cells predicted to be occupied by a given species in one period
but not the next, divided by the number of cells occupied by the species in the previous period.
Range expansions were calculated using the number of new cells predicted to be occupied by the
species in the following period instead. Filled bars in the boxplot represent the 25th-75th
percentile range of each metric, with solid bars corresponding to medians. The whiskers in each
bar correspond to 1.5 times the interquantile distance between the 25th and 75th percentiles, an
interval that encompasses approximately 95% of observations. Growth forms were obtained from
the United States Department of Agriculture’s (USDA) Plant List (https://plants.usda.gov/). The
number of species for each growth form were 2,102 for herbs, 336 for graminoids, 378 for
woody species, and 15 for vines (with 6 species missing from the Plant List).
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Figure S5—Differences among growth forms in the sensitivity of flowering onset and
termination to interannual variation in temperature and precipitation (see ‘Methods’ section of
the main text). Filled bars in the boxplot represent the 25™-75" percentile range of each metric,
with the solid horizontal bars corresponding to medians. The whisker in each bar correspond to
1.5 times the interquantile distance between the 25™ and 75™ percentiles, an interval that
encompasses approximately 95% of observations. Growth forms were obtained from the United
States Department of Agriculture’s (USDA) Plant List (https://plants.usda.gov/). The number of
species for each growth form were 2,102 for herbs, 336 for graminoids, 378 for woody species,
and 15 for vines (with 6 species missing from the Plant List).

48



1015

1016

49



1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

1029

Historical (1980) vs. Present (2020) Present (2020) vs. Projected (2080 B1 Land Cover)

Deciduous forest Deciduous forest
3 b & ~

Proportional )‘\4
change
o o o
s I N

[ _
s

Figure S6—Change in land cover between 1980 and 2020, and between 2020 and 2080 under
SRES B1 scenario of land use and land cover change. Each panel shows changes in the
proportion of 250m cells of the focal class found within each 750m resolution grid cell across the
conterminous United States (CONUS). Subdivisions labeled 1-18 represent level 11 ecoregions.
1) Mediterranean California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) Cold
Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8)
South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies,
11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-
Appalachian Forests, 15) Southeastern USA Plains, 16) Mississippi Alluvial and Southeast USA
Coastal Plain, 17) Atlantic Highlands, 18) Texas-Louisiana Coastal Plain, 19) Tamaulipas-
Texas Semi-arid Plains, 20) Everglades.
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