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Abstract 18 

Global change is altering the phenology and geographic ranges of flowering species, with 19 

potentially profound consequences for the timing and composition of floral resources and the 20 

seasonal structure of ecological communities. However, shifts in flowering phenology and 21 

species distributions have historically been studied in isolation due to disciplinary silos and 22 

limited data, leaving critical gaps in our understanding of their combined effects. To address this, 23 

we used millions of herbarium and occurrence records to model phenological and range shifts for 24 

2,837 plant species in the United States across historical, recent, and projected climate and land 25 

cover conditions, enabling us to scale responses from species to communities, and from local to 26 

continental geographies. Our analysis reveals that communities are shifting toward earlier, longer 27 

flowering seasons in most biomes, with co-flowering species richness increasing at the edges of 28 

the season and declining at historical peaks—trends projected to intensify under ongoing 29 

environmental trends. Although these shifts operate concurrently, they affect different aspects of 30 

the flowering season: phenological changes primarily alter seasonality—its start, end, and 31 

duration—and co-flowering diversity at the edges of the season, while range shifts more strongly 32 

influence co-flowering species richness during historical seasonal peaks, and attributes tied to 33 

community composition, such as patterns of flowering synchrony among co-occurring species. 34 

Together, these results demonstrate that shifts in phenology and species ranges act 35 

synergistically to restructure the flowering seasons across North America, revealing wide 36 

variation in the pace and magnitude of change among biomes. 37 

 38 

 39 

Introduction 40 

The timing, duration, and species composition of a community’s flowering season influences 41 

both plant fitness and the survival and reproduction of organisms that depend on floral resources. 42 

These attributes can mediate pollinator population growth rates (1) and various density-43 

dependent ecological outcomes in plants—such as pollination or florivory—that can impact 44 

population persistence and the evolution of life-history strategies (2). Recent climate and land 45 

use changes have led to widespread shifts in flowering phenology and plant distributions (3, 4), 46 
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often disrupting ecological interactions through altered spatial and seasonal synchrony between 47 

species (5, 6). However, how species-level shifts in phenology and distributions scale to jointly 48 

affect community-level flowering patterns is poorly understood, largely because these processes 49 

have historically been studied separately (7), but also because long-term datasets including 50 

enough species to characterize a community’s flowering season are rare and often temporally 51 

and spatially limited (8). Elucidating how shifts in phenology and species ranges affect the 52 

structure of the flowering season from species to communities—and understanding how these 53 

effects are distributed across regions and biomes—is essential for forecasting the impacts of 54 

global change on terrestrial ecosystems.  55 

To address this knowledge gap, we assembled a dataset of over 2.7 million herbarium and 56 

community-science records from 2,837 species to examine how climate change affects the 57 

structure of the flowering season in the conterminous United States (CONUS). We modeled each 58 

species' geographic distribution under historical, current, and future climate conditions, also 59 

accounting for land cover and land use changes. Additionally, we assessed how interannual 60 

variation in temperature and precipitation—independently and interactively—influence the 61 

onset, termination, and duration of the flowering period for each species. By concurrently 62 

predicting species occurrences and their flowering periods across sites, these analyses allowed us 63 

to evaluate the effects of environmental change on flowering patterns at scales ranging from 64 

individual species to communities and from local to continental extents. Specifically, throughout 65 

CONUS, we measured how recent and future environmental change affects i) the start of the 66 

flowering season (SOS), ii) the end of the flowering season (EOS), iii) the duration of the 67 

flowering season (DOS), iv) the richness of co-flowering species each day of the year, and v) the 68 

network of pairwise flowering synchronies between co-occurring species, which determines the 69 

potential for flowering-mediated interactions between species.  70 

Our analyses enabled us to test several hypotheses about the relative impacts of shifts in 71 

phenology and species ranges on the structure of the flowering season (Fig. 1). Phenological 72 

responses to climate tend to differ markedly among species flowering early and late in the 73 

season. For example, spring-flowering species tend to advance flowering in response to warming 74 

versus late summer- and fall-flowering species, which typically show limited responsiveness or 75 

flowering delays (9, 10). In contrast, changes in species diversity typically impact species-level 76 
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phenology indirectly (e.g., through changes in soil nitrogen or moisture) (11), and species lost or 77 

gained within most communities do not tend to flower predominantly early or late within the 78 

season (but see counterexamples among invasive species) (12, 13). Because phenological 79 

responses generate consistent shifts among species at both ends of the flowering season, changes 80 

in attributes of the season related to timing—such as its start, end, and duration—should be more 81 

strongly mediated by phenological responses than by range shifts (Fig. 1B-D) (14). Conversely, 82 

the richness of flowering concurrently during a community’s flowering peak—during which 83 

relatively few taxa are initiating or terminating flowering (Fig. 1B-D)—or attributes of the 84 

season tied to community composition (e.g., the network of flowering synchronies between co-85 

occurring species) (Fig. 1E, F) should be more strongly influenced by species gains and losses 86 

due to range shifts than by plastic responses of flowering phenology. This is because 87 

phenological shifts redistribute existing flowering diversity and change the degree of flowering 88 

synchrony between species (i.e., nodes in the flowering network), whereas range shifts add or 89 

remove species from the community. Therefore, phenological shifts change the strength of the 90 

connections between nodes in the flowering network (Fig. 1E), whereas range shifts add nodes or 91 

subtract them altogether, thereby creating or removing many connections at once (Fig. 1F). 92 

 93 
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 94 

Figure 1—Hypothetical effects of shifts in phenology and species ranges on the structure of the flowering season. A 95 

shows historical phenological patterns in a community, with grey lines showing the flowering periods of individual 96 

species, and the solid black line depicting the historical species richness of co-flowering species throughout the year. 97 

B shows changes in community-level flowering caused by shifts in phenology among species alone, and depicts a 98 

scenario in which early-flowering species tend to advance and late-flowering species to delay their flowering, and in 99 

which species primarily extend their flowering relative to historical These changes are predicted to conditions. 100 

primarily impact the start, end, and duration of the season, as well as the richness of flowering species early and late 101 

in the season. C and D show shifts in community-level flowering patterns caused by shifts in species ranges alone, 102 

respectively showing scenarios in which range shifts generate species losses or species gains in the focal 103 

community, and assuming gained or lost species do not tend to flower during a specific season. Such changes should 104 

primarily impact the richness of the flowering season during the peak of the season, during which most species 105 

gained or lost are likely to have already started flowering. E shows the effects of phenological shifts on patterns of 106 

pairwise flowering synchronies for a simple network of 5 species, and F depicts the effects of species losses or gains 107 

due to range shifts on the same network, with line widths indicating the degree of flowering synchrony between two 108 

species. Line colors in E depict flowering synchronies before and after shifts in flowering phenology due to 109 

environmental change. Shifts in phenology should alter the degree of overlap between species, with the weakest 110 

links most at risk of being lost under environmental change. In turn, species losses or gains should have more 111 

profound effects by creating or removing flowering synchronies among many species at once. 112 
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Phenology and species distributions are primarily mediated by different environmental 113 

factors, so different environmental variables should also have distinct impacts on the structure of 114 

the season. For example, temperature—through winter chilling, spring forcing, or autumn 115 

cooling—is typically the predominant driver of phenology among species in the temperate zone 116 

(15), with precipitation having a more pronounced role in arid and semi-arid regions than in 117 

mesic ones (16, 17). In turn, shifts in plant species composition have been primarily linked to 118 

variation in precipitation (18–20). Therefore, through their respective effects on phenological 119 

responses and species turnover, we would predict that changes in temperature will more strongly 120 

mediate shifts in the start, end, and duration of the season, with precipitation more strongly 121 

mediating shifts in co-flowering species richness during the peak of the season and patterns of 122 

pairwise flowering synchrony among co-occurring species instead. In turn, land use change—123 

such as urbanization or agricultural intensification—should more strongly impact species 124 

composition than phenology through direct removal or replacement of vegetation cover, resulting 125 

in associations between changes in land and in co-flowering species richness during the 126 

historical seasonal period of peak flowering. We similarly expect land use changes to influence 127 

the network of flowering synchronies among species. 128 

Together, these analyses offer the most comprehensive assessment of how recent and 129 

projected global change impacts flowering patterns in North American floras, revealing wide 130 

heterogeneity in the severity of flowering reassembly across biomes. 131 

 132 

Results 133 

Changes to the start, duration, and end of the flowering season 134 

Shifts in species ranges and flowering phenology altered the flowering season’s start (SOS), end 135 

(EOS), and duration (DOS) across all ecoregions. SOS predominantly advanced between the 136 

historical and recent periods (Fig. 2A). EOS was delayed in Eastern ecoregions, while responses 137 

in the West were more variable (e.g., some areas of the Western Cordillera exhibited delays, 138 

others did not) (Fig. 2A). SOS and EOS generally moved in opposite directions, with SOS 139 

showing larger shifts towards earlier dates where SOS and EOS moved in the same direction; 140 

consequently, the flowering season duration (DOS) increased across most of CONUS (Fig. 2A). 141 

Future environmental conditions were projected to generate more drastic changes, with greater 142 
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SOS advances and fewer areas showing SOS delays (e.g., Warm Deserts) (Fig. 2B). EOS delays 143 

were projected to be greater and more consistent across regions than in recent decades (Fig. 2B). 144 

As a result, DOS was predicted to increase further across most of CONUS (Fig. 2B). 145 

 Across ecoregions, shifts in the timing of the season between the historical and recent 146 

periods were primarily caused by shifts in flowering phenology (Fig. 2C). However, in each 147 

ecoregion, seasonal changes within a substantial proportion of sites were caused primarily by 148 

shifts in species ranges, which predominated overall as drivers of EOS shifts in some ecoregions 149 

(e.g., Upper Gila Mountains, and prairies within the great plains) (Fig. 2C). Phenological shifts 150 

were also projected to be the primary drivers of changes in SOS, EOS, and DOS between recent 151 

and future climatic conditions in most ecoregions (Fig. 2C). However, range shifts were 152 

projected to predominate over phenological responses in some ecoregions (e.g., Western Sierra 153 

Madre Piedmont, Atlantic Highlands), while the predominance of phenology over range shifts 154 

was projected to accentuate in others (e.g., Temperate Prairies, Mixed Wood Shield) (Fig. 2C). 155 

 156 
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 157 

Figure 2—Changes in the start, end, and duration of the flowering season under recent and projected 158 
climatic and land cover change, and the relative contributions of shifts in phenology vs. species ranges to 159 
these changes. A depicts changes in the start, end, and duration of the season predicted between the 160 
historical (1961-1980) and recent (2001-2020) periods. B shows predicted changes between recent 161 
conditions and future conditions expected under 2°C of warming and land cover patterns for the year 162 
2080 under the Special Report on Emissions Scenario (SRES) B1. C shows the proportion of area within 163 
each level II ecoregion throughout CONUS (map subdivisions labeled 1-20, also shown in A) for which 164 
shifts in phenology or in species ranges were the primary contributors to observed change. For graphing, 165 
the color scale in A and B was capped to the central 99% of the data to avoid distortion of the range from 166 
extreme values. Grid cells in A and B have a resolution of 12×12 km. 167 

 168 

Changes in the seasonal distribution of co-flowering species richness 169 

Co-flowering species richness remained mostly unchanged during the winter months preceding 170 

the flowering season in most regions, but increased by February in low-latitude ecoregions where 171 

spring starts early (e.g., Warm Deserts) (Fig. 3A). Significant changes were widespread in 172 
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March, April, and May, which predominantly showed increases due to the earlier onset of spring 173 

across CONUS. Decreases first occurred in April and May in regions experiencing early onset of 174 

summer drought (e.g., Warm Deserts, South-Central Semi-Arid Prairies). More ecoregions 175 

experienced declines in co-flowering richness during summer, with the onset of declines 176 

occurring earlier in the year in arid ecoregions (e.g., May to June for Cold Deserts vs. June to 177 

July for the Western Cordillera). Fall changes were smaller across CONUS, except in some 178 

regions within the Great Plains (e.g., South-Central Semi-arid Prairies). 179 

 In most ecoregions, changes in co-flowering species richness early in the season were 180 

primarily generated by phenological shifts, with range shifts exerting a greater influence later in 181 

the season and predominating during late spring and summer (May-Sep; Fig. 3B). The 182 

predominant drivers of changes in co-flowering species richness near the end of the season 183 

varied among ecoregions, with shifts in phenology predominating in some (e.g., Warm Deserts) 184 

and range shifts in others (e.g., Temperate prairies).  In turn, change in some ecoregions were 185 

predominantly caused by either shifts in phenology or species ranges year-round (e.g., South-186 

Central Semi-arid Prairies and Western Cordilleras). 187 
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Figure 3—Changes between historical period (1961-1980) and the recent period (2001-2020) in the 188 
richness of co-occurring species flowering each month across the conterminous United States. A shows 189 
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the change co-flowering richness each month for each location relative to the total species diversity of 190 
that site during the historical period (1961-1990). B shows the proportion of sites within each ecoregion 191 
(map subdivisions labeled 1-20) for which range shifts or phenological shifts were the primary cause of 192 
observed changes in the diversity of flowering species that month. For graphing, the color scale in A was 193 
capped to the central 99% of values to avoid distortion from extreme values. Grid cells in A have a 194 
resolution of 12×12 km. 195 

 196 

Under projected climate conditions, decreases in co-flowering species richness were 197 

larger and more widespread across ecoregions than the decreases observed in recent decades 198 

(Fig. 4). Compared to recent decades, increases co-flowering richness during spring were 199 

weaker, and declines occurred earlier and were more severe in many ecoregions (e.g., Warm 200 

Deserts, Mediterranean California) (Fig. 4A). Summer and fall decreases in co-flowering 201 

richness were most severe across ecoregions in the Great Plains, but were also widespread across 202 

the West. In contrast, co-flowering species richness was projected to moderately increase during 203 

summer and fall in many Eastern ecoregions (e.g., Southeast USA Plains, Southeast USA 204 

Coastal Plain). 205 

Under projected environmental changes, and for most ecoregions, phenological shifts 206 

were the primary causes of changes in co-flowering species richness early and late in the season 207 

(Fig. 4B). Phenological shifts predominated throughout the year in some ecoregions (e.g., Mixed 208 

Wood Shield, Atlantic Highlands). However, the relative influence of range shifts increased 209 

throughout the year, becoming the predominant cause of year-round changes in co-flowering 210 

richness in more ecoregions than observed between the historical and recent periods (e.g., 211 

Temperate Prairies, Texas-Louisiana Coastal Plain). Indeed, range shifts were the overwhelming 212 

cause of changes in co-flowering richness during summer and fall in regions showing the most 213 

severe decreases (e.g., South Central Semi-Arid Prairies, Temperate Prairies). 214 

 215 
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 216 

Figure 4— A Changes between recent and future environmental conditions in the richness of species 217 
flowering each month across the conterminous United States. The color scale in each panel shows the 218 
projected change in co-flowering species richness each month in each location relative to the total species 219 
richness of that site estimated under recent environmental conditions (2001-2020). Projected conditions 220 
correspond to those expected under 2 °C of warming and land cover patterns for the year 2080 under the 221 
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Special Report on Emissions Scenario (SRES) B1. B shows the proportion of sites within each ecoregion 222 
(map subdivisions labeled 1-20) for which range shifts or phenological shifts were the primary cause of 223 
observed changes in the diversity of flowering species that month. For graphing, the color scale was 224 
capped to the central 99% of the data to avoid distortion of the range from extreme values. Subdivisions 225 
in each panel—labeled 1-20—represent level II ecoregions. Grid cells in A have a resolution of 12×12 226 
km. 227 

 228 

Changes in patterns of pairwise flowering synchronies 229 

Across periods, changes in the composition of pairwise flowering synchrony among species (i.e., 230 

the Bray-Curtis dissimilarity of flowering synchronies between periods) largely corresponded 231 

with those in co-flowering species richness during the peak of the season, with the greatest 232 

changes concentrated in ecoregions within central CONUS (Fig. 5A). Flowering dissimilarity 233 

between periods was more severe under projected environmental conditions than observed in 234 

recent decades, with the greatest dissimilarity observed across central CONUS, widespread but 235 

comparatively lesser shifts across Western ecoregions (especially Cold Deserts and Western 236 

Cordilleras), and relatively modest flowering dissimilarity throughout the East (Fig. 5B). 237 

 Flowering dissimilarity across periods was predominantly driven by range shifts among 238 

ecoregions (Fig. 5C). Indeed, in ecoregions showing the most severe flowering dissimilarity 239 

between periods, change across nearly all locations was primarily caused by range shifts (e.g., 240 

South-Central Semi-Arid Prairies). 241 

  242 

 243 
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 244 

Figure 5—Dissimilarity in the composition of pairwise flowering synchronies among sympatric species. 245 
A shows flowering dissimilarity between the historical (1961-1980) and recent (2001-2020) periods. B 246 
shows flowering dissimilarity between recent and projected conditions, which correspond to those 247 
expected under 2 °C of warming and land cover patterns for the year 2080 under the Special Report on 248 
Emissions Scenario (SRES) B1. Flowering dissimilarity was measured using the Bray-Curtis 249 
Dissimilarity index, with values of 0 indicating no changes in species composition and degree of 250 
flowering overlap, and values of 1 indicating all pairs of overlapping species were gained or lost relative 251 
to the preceding period. For graphing, the color scale was capped to the central 99% of the data to avoid 252 
distortion of the range from extreme values. Subdivisions in each panel—labeled 1-20—represent level II 253 
ecoregions. C shows the proportion of area within each ecoregion in which either shifts in phenology or 254 
species ranges was the primary cause of flowering dissimilarity between periods. 255 

 256 

Environmental correlates of changes to the flowering season 257 

Historical changes in the start, end, and duration of the season were primarily associated with 258 

changes in mean annual temperature (Fig. 6A-D), with warming leading to an earlier SOS and 259 

later EOS, and therefore a longer DOS (Fig. 6A,B). These effects were more pronounced along a 260 

temperature seasonality gradient, with warming associated with greater advances in SOS in 261 
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locations with higher temperature seasonality, concurrently leading to greater increases in DOS 262 

(Fig. 6D). Changes in cumulative annual precipitation were primarily associated with shifts in 263 

SOS (Fig. 6A), with variable effects along the temperature seasonality gradient (higher 264 

precipitation associated to SOS delays in seasonal locations, and with advances in aseasonal 265 

locations; Fig. 6D) and no discernible variation along the aridity gradient (Fig. 6C). However, for 266 

changes between recent and projected environmental conditions, the patterns differed: 267 

temperature was more weakly associated with shifts in SOS and DOS (Fig. 6A), and associations 268 

between phenology and warming varied along the aridity gradient, with lesser effects in arid 269 

locations (Fig. 6C). 270 

 In turn, pairwise flowering dissimilarity between periods was most strongly associated 271 

with changes in precipitation (Fig. 6E-H). For historical changes, increases in precipitation were 272 

associated with greater flowering dissimilarity, with no apparent interactions with long-term 273 

aridity or temperature seasonality across locations. Such patterns differed for changes between 274 

recent and projected conditions. Future warming and increases in crop cover were also associated 275 

with higher flowering dissimilarity (Fig. 6E,F), with temperature showing slightly stronger 276 

associations in arid locations (Fig. 6G) and in areas with low temperature seasonality (Fig. 6H). 277 

Moreover, in contrast to historical changes, decreases in precipitation were associated with 278 

greater flowering dissimilarity between periods (Fig. 6F), a pattern that was more pronounced in 279 

arid locations (Fig. 6G). 280 
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 281 

Figure 6—Flowering season versus environmental changes across sites. A-D show the degree to which 282 
different forms of environmental change are associated with shifts in the start, end, and duration of the 283 
season between periods, the coefficients of each type of environmental variable, and their interactions 284 
with long-term climatic conditions across sites characterized by a geographic aridity gradient (PC1) and a 285 
temperature seasonality gradient (PC2). E-H show the same for changes in patterns of pairwise flowering 286 
synchrony among co-occurring species. Each panel shows the distribution of each metric obtained by 287 
fitting 2,000 models using random samples of 100 locations accounting for spatial dependence among 288 
observations (points correspond to means and bars to standard deviations of each metric across iterations). 289 
Goodness of fit changes for each environmental variable were calculated from changes in the correlation 290 
of fitted versus observed values (in a test dataset) after including it in the model relative to base models 291 
accounting only for differences in long-term climatic conditions among sites (i.e., no environmental 292 
change). All environmental change variables were standardized to a standard distribution of 1 prior to 293 
fitting the models. Projected conditions correspond to those expected under 2 °C of warming and land 294 
cover patterns for the year 2080 under the Special Report on Emissions Scenario (SRES) B1. 295 

 296 

Discussion 297 

By analyzing millions of observations across thousands of plant species, we demonstrate that—298 

across biomes—joint shifts in phenology and species ranges in recent decades have significantly 299 

advanced and extended the flowering season across North America. Our analyses reveal 300 

substantial seasonal redistribution of flowering diversity within communities, with co-flowering 301 
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species richness typically increasing early and late in the season and decreasing during historical 302 

peaks—trends predicted to intensify under projected environmental conditions. Despite acting 303 

concurrently, shifts in phenology versus species-ranges primarily impacted different attributes of 304 

the season. Species-level phenological shifts—and temperature—were the primary drivers of 305 

changes in community-level attributes related to the timing of the flowering season, such as its 306 

start, end, and duration. In contrast, changes in species’ ranges—and precipitation—were the 307 

main drivers of community-level shifts in co-flowering richness during late spring and summer 308 

and of attributes tied to community composition, such as patterns of flowering synchrony among 309 

co-occurring species. These findings outline heterogeneous macroecological impacts and 310 

mechanisms of change across North American biomes, revealing a wider suite of impacts than 311 

predicted from analysis of each process in isolation. 312 

 313 

Shifts in phenology and species distribution jointly but distinctly impact the flowering season 314 

As hypothesized (Fig. 1), shifts in phenology—primarily mediated by temperature—and range 315 

shifts—primarily driven by precipitation and to a lesser extent land use changes—had their 316 

greatest effects on different attributes of the flowering season at the community level. Therefore, 317 

future changes to the structure of the season across communities will depend on the relative 318 

severity of concordant shifts in phenology versus species ranges. Specifically, predominance of 319 

phenological shifts would primarily alter the timing of the flowering season and the seasonal 320 

distribution and diversity of co-flowering species, particularly at the start and end of the season. 321 

In turn, predominant effects of range shifts would alter seasonal peaks in flowering diversity and 322 

the network of flowering overlaps among species, thereby altering the potential for flowering-323 

mediated species interactions. 324 

  The predominance of either process will likely depend on the severity of environmental 325 

trends. Limits to phenological plasticity can prevent plants from shifting development further in 326 

response to climatic trends (21). For example, studies on woody species in the temperate zone 327 

have found that phenology shifts linearly with temperature up to a warming threshold of 328 

approximately 4 °C, after which responses stall (15, 22, 23). Therefore, while average global 329 

temperature changes of 2 °C—as those considered here—might not cause widespread exhaustion 330 

of plant phenological plasticity, these constraints might be important under more extreme 331 
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warming scenarios, limiting further contributions of shifts in phenology to changes in the 332 

flowering season. In contrast, shifts in demography and species ranges are likely to accelerate 333 

under more extreme environmental change (24, 25). Therefore—to the extent that the limits of 334 

phenological plasticity are similar across biomes, functional groups, and taxa—more severe 335 

climate change could cause range shifts to predominate over shifts in phenology as drivers of 336 

community-level changes, thus primarily impacting patterns of flowering synchrony and the 337 

diversity of co-flowering species during late spring and summer across communities. 338 

 Our results also reveal discrepancies between historical and projected patterns of change, 339 

including the direction and severity of changes across regions (e.g., end of season shifts in the 340 

western continental U.S.; Fig. 2), and the associations between changes in environmental 341 

conditions and community-level phenology (e.g., the relationship between precipitation change 342 

and flowering dissimilarity; Fig. 6F). For many regions, the direction of historical and projected 343 

climate change differed (Fig. S2), but such mismatches cannot explain all observed 344 

discrepancies. For example, historical and projected changes to EOS were in opposite directions 345 

among many Western ecoregions despite consistent changes in climate across periods (Fig. 2; 346 

Fig. S2), whereas EOS changes were consistent across the East despite opposing climatic trends 347 

(e.g., Fig. 5; Fig. S2). Historical and projected environmental changes occurred over different 348 

climatic and land use baselines, so such mismatches may be due to non-linear or interactive 349 

effects of environmental changes on phenology and species ranges. While we cannot identify 350 

their ultimate causes, these discrepancies show that past patterns of change may be weak 351 

predictors of future trends.  352 

 353 

Flowering reassembly and its impacts differ across biomes 354 

Our study corroborates previous research showing widespread advancement and lengthening of 355 

the flowering season across floras (26–28). However, we also found wide regional variation in 356 

the direction and severity of changes in the structure of the flowering season, which may cause 357 

profound ecological impacts. For example, in recent decades, the richness of co-flowering 358 

species sharply increased early and decreased later in the season in many ecoregions (e.g., 359 

Western Cordillera, Cold Deserts, Mediterranean California; Fig. 3), which could result in 360 

opposing effects on density-dependent processes such as pollinator attraction or insect foraging 361 
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success during spring and summer (29, 30). In turn, some communities experienced consistent 362 

declines in flowering diversity throughout the year (e.g., areas of the South-Central Semi-Arid 363 

Prairies), which could decrease the diversity of organisms reliant on flowers across the season 364 

(31, 32). Other regions experienced consistent increases in flowering diversity throughout the 365 

year (e.g., Southeastern ecoregions), which may not affect different seasons disproportionately 366 

but could alter ecological processes through novel species interactions (6). Regardless of specific 367 

patterns, these shifts have likely altered (and may continue to alter) the selective environments 368 

encountered by plants and interacting organisms across CONUS (2). 369 

Communities across the Great Plains appear particularly vulnerable to climate-driven 370 

restructuring of the flowering season. This region has experienced increasing aridity to the West 371 

and increasing humidity to the East of the 100th meridian West—a bioclimatic boundary 372 

dividing the humid East and arid West (33). Aridification has been linked to biomass loss, rapid 373 

species declines, and species turnover in grasslands (19, 34, 35). Climate change is predicted to 374 

exacerbate aridification trends, and conversion of grasslands to agriculture is projected to 375 

accelerate under the land use scenario considered in this study (Figs. S2,4), threatening pollinator 376 

diversity and their ecosystem services (36). In contrast, many regions–such as the Sierra Nevada, 377 

Cascades, and most Southeastern ecoregions–exhibit lower flowering reassembly despite facing 378 

aridification or substantial land cover changes (Figs. S2,4). While we cannot identify the ultimate 379 

causes of these trends, the severe impacts expected across the Great Plains might be caused by 380 

potential limits to species ranges imposed by the arid-humid bioclimatic boundary, with 381 

aridification trends leading to local extirpation of humidity-adapted species at the boundaries of 382 

their ranges (37–40). 383 

 384 

Limitations and future directions 385 

This study provides a unique macroecological assessment of changes to the flowering season due 386 

to the combined effects of shifts in flowering time and species ranges across North America. 387 

However, the precise ecological consequences of these effects are difficult to predict. First, we 388 

modeled shifts in the timing and diversity of flowering across scales, but not in the overall 389 

abundance of floral resources due to potential changes in species’ abundances or flower 390 

production, which could amplify or reduce the ecological impacts of altered flowering times. 391 
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Relatedly, presence-background SDMs model shifts in habitat suitability without accounting for 392 

temporal lags in colonization or local extinction, or the persistence of populations in suboptimal 393 

habitat—potentially overestimating species turnover at short time scales—and do not consider 394 

changes in population sizes. Moreover, many plant communities are dominated by a few species 395 

whose flowering responses may deviate from the wider community, and ecological outcomes 396 

often depend on a handful of species interactions (e.g., specialized plant-pollinators systems) 397 

whose responses might not match those of the wider community.  398 

Given these and other complexities, assessing the effects of climate change on floral 399 

resource production—both through individual-level crop sizes and population-level 400 

demography—is crucial to determine whether the spatiotemporal redistribution of co-flowering 401 

diversity will lead to concordant changes in floral resource availability. In turn, forecasting more 402 

precise ecological outcomes will require focusing analyses on key species based on local 403 

abundance, floral output, functional traits, or other attributes relevant to the specific ecological 404 

phenomena under study. 405 

Despite these challenges, this study provides a promising approach for examining 406 

changes to the seasonal structure of terrestrial communities at broad spatial scales.  Field datasets 407 

tracking the seasonal abundance of flowers are rare, and remote sensing methods cannot detect 408 

weak spectral signals from these structures nor identify individual species. By combining species 409 

distribution and phenological modeling and using diverse publicly available datasets, we outline 410 

a framework for estimating changes to the seasonal structure of plant communities at broad 411 

spatial scales that maintains resolution at the level of species, features that may provide valuable 412 

resources for natural resource management and conservation planning. 413 

 414 

Materials and Methods 415 

Phenology and occurrence data 416 

To model flowering phenology, we compiled specimen records from 220 herbaria, accessed 417 

digitally through 16 consortia from Mexico, the U.S., and Canada (in July and August 2022) 418 

(41). Only specimens explicitly recorded as bearing flowers were retained, which we identified 419 

through the detection of unique entries in the DarwinCore ‘reproductiveCondition’ column that 420 
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clearly indicated the presence of flowers. Specimens missing geographic coordinates, collection 421 

dates, or species-level identification were excluded. To avoid pseudoreplication, conspecific 422 

specimens collected within 1 km of each other on the same day were removed. Since over 92% 423 

of the remaining specimens were collected within the United States, and to match the spatial 424 

extent of land use/land cover (LULC) data used in species distribution models (SDMs), we 425 

excluded specimens collected outside CONUS. Specimens collected before 1958 were also 426 

removed to align with the temporal range of TerraClimate climate data used in the analysis. After 427 

harmonizing species names using the Global Biodiversity Information Facility (GBIF) 428 

taxonomic backbone, the data were filtered further to include only species represented by at least 429 

100 specimens. The day of year (DOY) of collection was used as a proxy for flowering date, 430 

with an azimuthal correction applied to address the discontinuity between 31 December and 1 431 

January, converting prior year DOYs into negative values. 432 

 To model species ranges, we obtained an additional 13.2 million research-grade 433 

occurrence records from the Global Biodiversity Information Facility (GBIF) for species well-434 

represented in the flowering phenology dataset (accessed July 11, 2024; 435 

https://www.gbif.org/occurrence/download/0021084-240626123714530). These records, 436 

primarily from iNaturalist and herbarium sources, were combined with those from Park et al. 437 

(41). We removed duplicates using the ‘occurrenceID’ column in DarwinCore. To match the 438 

temporal and spatial extent of LULC data included in SDMs, we retained only occurrences 439 

derived from iNaturalist and herbarium records collected between 1999 and 2023, and limited 440 

the dataset to occurrences within CONUS. Preliminary analyses of GBIF occurrences revealed 441 

significant spatial biases towards urban areas and major roads. To address this, we identified 442 

occurrences within urban areas as defined by the US Census Bureau (2012) using the ‘tigris’ 443 

package v2.1 (42) . We thinned the data using the ‘spThin’ package v0.2.0 (43), keeping only 444 

occurrences of the same species recorded at least 20 km apart within urban areas. Additionally, 445 

we removed occurrences within 2 km of ‘primary roads’ mapped by the US Census Bureau in 446 

2012. To further reduce spatial bias, another thinning step was applied, keeping only 447 

conspecifics recorded at least 5 km apart regardless of urban or road proximity. After cleaning 448 

using BONAP records (see next subsection), we retained only species with at least 50 449 

occurrences to ensure adequate sample sizes for species distribution modeling (see ‘Training 450 

SDMs’ section for information on how pseudo-absences were generated). 451 
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 452 

Final cleaning of specimens and occurrences using BONAP 453 

 Species misidentifications or geolocation errors in herbarium and occurrence databases 454 

can bias SDMs or phenoclimatic models by distorting the climate space or flowering dates 455 

represented among observations. To mitigate this, we removed implausible records using 456 

expertly curated data from the Biota of North America Program's (BONAP) North American 457 

Plant Atlas (NAPA) (44), which documents 19,039 taxa from 227 families across 3,067 counties 458 

across CONUS. BONAP compiles species presence/absence data from herbarium records, 459 

museums, and bibliographic reviews, most of which are verified by taxonomic and floristic 460 

experts. Species names were harmonized across the specimen, occurrence, and BONAP datasets 461 

using BONAP’s taxonomic backbone. We then excluded observations from counties where 462 

BONAP did not report occurrences for the species. 463 

After cleaning, the final specimen-based phenology dataset included 1,042,939 464 

specimens (collected from 1958 to 2022) representing 2,837 species in 1,042 genera and 139 465 

families. The final occurrence dataset contained 1,673,454 records (collected from 1999 to 466 

2023), comprising the same species, genera, and families. Of these, 1,369,657 were community 467 

science observations from iNaturalist, and 303,797 were herbarium specimens not included in 468 

ref. (41).  469 

 470 

Climate data 471 

We obtained historical monthly climatic rasters from TerraClimate (45) available from January 472 

1958 to December of 2023 at a 4 × 4 km resolution. These data consisted of monthly time series 473 

for minimum temperature (TMIN), mean temperature (TMEAN), maximum temperature 474 

(TMAX), and cumulative precipitation (PPT), as well as modeled water balance metrics 475 

including actual evapotranspiration (AET), climate water deficit (DEF, potential 476 

evapotranspiration - AET), soil moisture (SOIL), and snow water equivalent (SWE). 477 

 478 

Climate variables for species distribution modelling 479 



23 

We used monthly climate data to calculate annual bioclimatic variables known to influence plant 480 

distributions. For each year and location across CONUS, we computed annual means (or sums 481 

for precipitation), minimum and maximum monthly values (e.g., mean minimum temperature of 482 

the coldest month, mean maximum of the warmest month), annual ranges (difference between 483 

maximum and minimum mean monthly values), and seasonality (standard deviation of monthly 484 

values within year). For temperature, we also calculated the approximate mean diurnal 485 

temperature range (mean difference between TMAX and TMIN across months) and approximate 486 

isothermality (mean approximate diurnal range divided by the annual range). For precipitation, 487 

seasonality was calculated relative to cumulative annual precipitation within each site. Minimum 488 

monthly SWE was removed from the analyses, as it was 0 across CONUS. This resulted in 31 489 

climate variables: 7 for temperature, 5 related to PPT, AET, DEF, SOIL, and 4 for SWE, 490 

calculated annually across all CONUS locations. For the location of each occurrence record, we 491 

computed long-term averages of these variables over the 20 years preceding its collection date. 492 

We used 20-year instead of a standard 30-year period to reduce the proximity between historical 493 

and recent conditions in our analyses of species ranges (see next sections). Additionally, we 494 

obtained elevation data from USGS at a 100m × 100m resolution, and calculated mean elevation 495 

and elevational heterogeneity within 800m × 800m grid cells. The coarser resolution for 496 

elevation was used to account for uncertainties in georeferencing of herbarium specimens, which 497 

may be problematic in steep mountainous regions where topography changes over short 498 

distances (46).  499 

Since many of the climate variables were highly collinear (Fig. S1) and are causally 500 

related, we performed a principal component analysis (PCA) to reduce the dimensionality of the 501 

climate space. The PCA used 20-year averages of all variables for the most recent period 502 

available (2004-2023) across all 4km × 4km grid cells in CONUS. We retained the five principal 503 

components (PCs) with eigenvalues ≥ 1, which collectively explained 88.2% of the variance in 504 

the climate data (Table S1). PC1 represented a gradient of increasing aridity, PC2 a gradient of 505 

decreasing temperature and increasing temperature seasonality, and PC3 a gradient of increasing 506 

elevational heterogeneity and mean elevation with decreasing temperature seasonality. PC4 507 

primarily captured increasing soil moisture, while PC5 reflected increasing actual 508 

evapotranspiration and elevation (Fig. S2). We then projected the 20-year average climate 509 
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conditions associated with each occurrence record onto these PCA axes, reducing the number of 510 

climatic predictors from 31 variables to 5. 511 

 To predict species distributions across different periods, for each occurrence record we 512 

calculated 20-year averages for each of the 31 climate variables for a historical period (1961-513 

1980) and a recent period (2001-2020). We also obtained projected climate conditions from 514 

TerraClimate for a scenario where global temperatures rise by 2°C above pre-industrial levels. 515 

This scenario is not tied to a specific time frame or emissions pathway; instead, TerraClimate 516 

interpolates climate normals from 1985-2015, adjusting for the changes in means and seasonality 517 

expected under 2°C of warming. We then projected historical, recent, and future climatic 518 

conditions onto the 5 principal components derived from the 2001-2020 data. 519 

 520 

Climate variables for phenoclimatic modelling 521 

Variation in TMEAN and PPT among sites and years of specimen collection was partitioned into 522 

spatial and temporal components by calculating long-term means (reflecting geographic 523 

differences in chronic climatic conditions) and year-specific deviations from these long-term 524 

means (reflecting interannual differences). For each species at each site and year, we obtained 525 

data for the climatic conditions during the 3-month periods leading up to its average flowering 526 

onset, peak, and termination. To estimate conditions approximately before flowering onset, we 527 

used the 10th percentile collection date across all specimens from each species and calculated the 528 

mean TMEAN and cumulative PPT for the 3 months leading up to that month. The same 529 

approach was applied for the 50th percentile (flowering median) and 90th percentile (flowering 530 

termination) collection dates. For each specimen, we characterized its site’s long-term TMEAN 531 

and PPT (normals) by averaging the observed conditions across all years between 1961 and 1990 532 

for each 3-month period approximating that species’ flowering onset, median, and termination. 533 

We then calculated climatic deviations (anomalies) from the 1961-1990 normals in the year of 534 

each specimen's collection for these 3-month periods. 535 

Assuming phenological changes are driven by interannual variation in TMEAN and PPT 536 

rather than by spatial phenology-climate relationships, we calculated deviations from 1961-1990 537 

normals for all 3-month windows. This was done for the historical period (1961-1980), the recent 538 
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period (2001-2020), and the future 2°C warming scenario. These TMEAN and PPT deviations 539 

were then used to predict changes in flowering onset and termination between reference periods 540 

at each species' occurrence site. 541 

 542 

Land use and land cover data 543 

We obtained land use and land cover (LULC) data from the National Land Cover 544 

Database (NLCD) (47), available for 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021. 545 

The NLCD uses Landsat spectral data to classify 30m resolution grid cells into land cover and 546 

land use classes, providing a consistent, high-resolution dataset across CONUS. We separated 547 

each year's multiclass raster into layers representing the presence or absence of each LULC type. 548 

We retained all cover classes except those not recent in CONUS (e.g., lichen, moss, sedge 549 

classes from Alaska) or those that were rare (e.g., barren land). For land cover, we kept forest 550 

classes (deciduous, evergreen, mixed), scrubland (shrub/scrub), herbaceous grasslands, and 551 

wetlands (herbaceous and woody). For land use, we included four urban categories (open, low, 552 

mid, high) and two agricultural classes (cultivated crops, pasture/hay). To match the format of 553 

the LULC data available for forecasting and backcasting (see next paragraph), we aggregated all 554 

urban classes into a single category. To account for uncertainty in occurrence coordinates and 555 

because plant occurrence can be influenced by landscape context at broader scales than 30m 556 

(Mazerolle and Villard, 1999), we measured the proportion of each class cover within 750m × 557 

750m grid cells (625 30m × 30m  cells) around each occurrence. LULC class proportions were 558 

sourced from the NLCD layer closest to the year of collection for each record. These class 559 

proportions were then used as predictors in SDMs. 560 

Because NLCD data were available only from 2001 to 2021, we obtained historical 561 

(1961-1980) and future (2061-2080) LULC projections from the Earth Resources Observation 562 

and Science Center (EROS) at a 250m resolution (48, 49). EROS' projections use the same 563 

modeling framework as NLCD, integrating land use trends with spatially explicit allocation 564 

based on regional suitability for each LULC class. Though EROS projections were based on the 565 

Special Reports Emissions Scenarios (SRES) from the IPCC (2000)—replaced later by 566 

Representative Concentration Pathways (RCP; IPCC 2013) and Shared Socioeconomic Pathways 567 

(SSP; IPCC 2021)—they align closely with RCP and SSP scenarios (50, 51). We chose the B1 568 
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scenario for forecasting, as it is the closest match to RCP4.5 and SSP2-3, representing 'middle-569 

of-the-road' emissions and development scenarios. As with NLCD data, we calculated the 570 

proportion of each land cover class in 750m resolution blocks (containing 9 grid cells) to 571 

generate historical and future predictions used in SDMs. 572 

 573 

Analyses 574 

Training SDMs 575 

Species distributions were modeled using presence-background random forest classifier 576 

models implemented in the ‘randomForest’ package v4.7-1.1 (52). Random forests are a 577 

supervised machine learning technique that uses an ensemble of decision trees to identify 578 

relationships between a response (here, presence/background data) and predictors (here, climatic 579 

and LULC variables). By combining multiple decision trees, the ensemble performs better than 580 

any single model, leveraging the "wisdom of the crowds." This approach does not require 581 

predefined model structures (e.g., linear relationships) and its non-parametric nature allows for 582 

discovering complex relationships and interactions (53). This flexibility was crucial for these 583 

analyses of thousands of species with diverse distributional responses to climate and LULC. 584 

Additionally, random forests are computationally efficient and have been demonstrated to be 585 

among the most accurate SDM methods available (54). 586 

SDMs for each species were trained using occurrence data from 1999-2021. This period 587 

ensured availability of high-quality LULC data from NLCD within two years of each collection 588 

date. All models included the 5 bioclimatic PCs and the proportion of each LULC class around 589 

collection sites as predictors. To address the challenge of selecting pseudo-absences—where it is 590 

often unclear if unoccupied regions are due to sampling bias or true distributional patterns—we 591 

used curated BONAP records to identify counties where each species was not documented. We 592 

drew 10,000 random locations per species from these counties (excluding areas within 2km of 593 

major roads). For these locations, we obtained 20-year climatic averages (2001-2020) projected 594 

onto the 5 climatic PCs and LULC variables from a randomly selected year between 2001 and 595 

2021. To address class imbalance, we downsampled pseudo-absences to match the number of 596 
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occurrences in each initial tree. Each species-specific model used 500 trees with a maximum of 5 597 

predictors at each split.  598 

Decision trees are built using bootstrap samples of the data. Typically, these samples 599 

contain about 2/3 of the original data, with the remaining third (out-of-bag or ‘OOB’ data) used 600 

to calculate each tree's error rate (Cutler et al. 2007). We evaluated model performance by 601 

averaging the error rates across all trees, which typically provides an unbiased estimate of the 602 

model’s generalization error. Specifically, we calculated the true skill statistic (TSS), which is 603 

the sum of the true positive rate (TPR) and true negative rate (TNR) minus one. The median TSS 604 

among species was 0.91 (range: 0.51 to 0.99). 605 

The SDMs output a probability of occurrence under specific environmental conditions, 606 

derived from the proportion of trees predicting the positive class. Given that SDMs were fit with 607 

observed presences but generated pseudo-absences data, these probabilities are interpreted as 608 

habitat suitability rather than actual probabilities of occurrence. To set a suitability threshold for 609 

considering a species to be recent at a site, we calculated the receiving operating curve (ROC) 610 

for each model and determined the threshold (0-1) that maximized the true positive rate 611 

(minimizing false negatives) while keeping the false positive rate below 0.05. While this 612 

criterion maximized true positive detection at the expense of higher false negative rates, this 613 

tradeoff is justified since implausible occurrence predictions could be identified and removed 614 

using BONAP county records (see ‘Species-level predictions of distributions and phenology’ 615 

subsection). 616 

 617 

Training phenoclimatic models 618 

For each species, we modeled how flowering onset, termination, and duration varied with 619 

long-term climatic conditions and interannual climatic variation. We used quantile regression 620 

(via the ‘quantreg’ package v5.97) (55) to assess how collection date distributions among 621 

conspecifics responded to geographic and interannual variations in TMEAN and PPT (i.e., 622 

normal and anomalies, respectively). We used the 10th percentile of the distribution to represent 623 

population-level flowering onset, the 90th percentile to represent flowering termination, and the 624 

interquartile distance between them to represent flowering duration. We chose the 10th and 90th 625 
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percentiles and focused on well-sampled species because estimation of extreme quantiles is more 626 

strongly biased by small samples. Moreover, recent simulations show that quantile regression 627 

accurately estimates 10th and 90th percentiles of opportunistically sampled data for sample sizes 628 

similar to those in this study (56), and this approach has been effective in studying phenological 629 

distributions in both plants and insects (57, 58). 630 

In each species-specific model, predictors included TMEAN normal, PPT normal, and 631 

their interaction for the 3-month period before the approximate date of flowering onset (10th 632 

percentile DOY among specimens) or termination (90th percentile DOY), as well as TMEAN 633 

anomaly, PPT anomaly, and their interaction during the same period (6 predictors total). The 634 

coefficients for the main terms in these quantile regressions indicate how the 10th and 90th 635 

percentiles of flowering are affected by geographic or interannual variation in TMEAN and PPT, 636 

assuming average values for interacting variables. Interaction coefficients between normals 637 

represent the degree to which long-term precipitation affects the magnitude of phenological 638 

changes due to variation in long-term TMEAN across sites (or vice versa), whereas the 639 

interaction coefficients between anomalies indicate how the effects of interannual variation in 640 

TMEAN varies among drier- or wetter-than-average years (and vice versa). This approach 641 

models phenological variation as a response to: i) geographic variation in chronic TMEAN and 642 

PPT conditions across sites, using temporally invariant normals from 1961-1990, and ii) 643 

TMEAN and PPT anomalies reflecting temporal variation within sites, which primarily capture 644 

plastic phenological responses (10). Thus, we assumed that any temporal changes in a species' 645 

flowering season within sites are driven by deviations from their 1961-1990 TMEAN and PPT 646 

normals. 647 

 648 

Species-level predictions of distributions and phenology 649 

Each species' SDM was used to generate habitat suitability maps for historical (1961-1980), 650 

recent (2001-2020), and future (2 °C warming, B1 LULC scenario for 2080) conditions. Climatic 651 

and LULC variables were resampled to a 12km resolution for computational ease. Suitability 652 

estimates were then converted to binary occurrence maps by applying a threshold that 653 

maximized the true positive rate (see ‘Analyses—Training SDMs’ subsection). Presence-only 654 

SDMs can predict unsuitable areas outside a species' range or beyond its dispersal capacity. To 655 
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address this, predictions were constrained to within 40km of counties where BONAP confirmed 656 

each species' presence, which allowed for moderate range expansion to areas adjacent to 657 

currently occupied regions between periods. These SDMs predicted substantial variation in 658 

species richness across CONUS, from 56 to 1,445 species (from a total 2,837) for the historical 659 

period (Fig. S3). Species richness was generally lowest in arid regions of the Great Plains and 660 

higher in the West compared to the East, consistent with more comprehensive assessments of 661 

plant diversity in North America (59). 662 

Each species’ phenoclimatic model was used to predict flowering onset, termination, and 663 

duration for each location where the species was projected to occur during historical, recent, and 664 

future periods. This was done by applying deviations of average TMEAN and PPT conditions 665 

from the 1961-1990 normals for each period. Climate rasters were resampled to a 12km 666 

resolution before estimating phenological onset, termination, and duration for each site and 667 

period. 668 

 669 

Changes in community composition and flowering structure 670 

The SDM and phenoclimatic modeling provided predictions for species presence, flowering 671 

onset, and termination under historical, recent, and future conditions. We used these predictions 672 

to measure changes in species composition. Next, we examined changes in the start, end, and 673 

duration of the flowering season across these periods. The onset of the flowering season was 674 

defined as the DOY when 5% of species had started flowering (5th percentile), and the end as the 675 

DOY when 95% of species had ceased flowering, with duration as the span between these dates. 676 

For each location, we calculated the difference in days for the season's start, end, and duration 677 

between historical and recent conditions, and between recent and future conditions. We also 678 

measured changes in the richness of flowering species each month by calculating the 679 

proportional difference in species numbers under historical versus recent and recent versus future 680 

conditions, relative to local species richness in the preceding period. 681 

Finally, we assessed how patterns of flowering synchrony among species change in 682 

response to environmental trends. For each location, we first calculated the overlap in flowering 683 

periods between each pair of species in each period, calculating changes in overlap between 684 



30 

historical and recent conditions, or recent and future conditions. Flowering overlap ranged from 685 

0 (no overlap) to 1 (identical and fully overlapping flowering dates). For species recent in one 686 

period but not the other, all flowering synchronies were set to 0 for the period in which it was 687 

absent. Using these pairwise overlaps, we measured changes in flowering synchrony within each 688 

community using the Bray-Curtis Dissimilarity Index (BCI) (60). While BCI is typically used to 689 

assess species composition dissimilarity between communities using abundance data, it is also 690 

applicable to other categorical data. In this context, BCI measured compositional differences in 691 

flowering overlaps between periods, with species pairs analogous to species and their degree of 692 

flowering synchrony analogous to abundance. Therefore, the BCI provides an integrated measure 693 

of changes in both the identity and degree of overlap among species pairs, with values ranging 694 

from 0 (complete similarity) to 1 (complete dissimilarity) between periods for each community. 695 

 696 

Phenology versus range shifts as drivers of community-level phenological change 697 

To assess the relative contributions of shifts in phenology and species ranges to the resulting 698 

shifts in structure of the flowering season in each location, we generated predictions of 699 

community level change assuming that either i) phenology changed but species distributions 700 

remained constant between periods, or ii) phenology remained constant but distributions changed 701 

between periods. For example, for scenarios in which only phenology shifted between historical 702 

and recent periods (i.e., 1961-1980 to 2001-2020), we generated species ranges predicted using 703 

historical climate and LULC conditions, and compared flowering dates predicted under historical 704 

versus recent conditions within these historical ranges. For each attribute of the season—and for 705 

all comparisons between historical, recent, and projected environmental conditions—we then 706 

calculated the difference between estimates of change generated by shifts in both species ranges 707 

and phenology (shown in the main text) and those obtained by allowing only phenology or 708 

distributions to shift. Changes in community-level attributes of the season ta location was 709 

classified as predominantly driven by phenological shifts if closest to the magnitude of change 710 

generated by allowing only phenology to change, or classified as predominantly driven by range 711 

shifts if closest to the magnitude of change generated by allowing only distributions to change. 712 

Finally, to assess the predominance of phenological versus range shifts as drivers of change 713 

across biomes, we calculated the proportion of grid cells in each Level II ecoregion within 714 
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CONUS for which each process was the predominant driver of observed changes. When doing 715 

this for changes in the richness of flowering species each month, we excluded locations showing 716 

shifts of less than 0.01 (corresponding to 1% of local species richness) as those overwhelmingly 717 

corresponded to areas where the flowering season had not yet started or had already ended. 718 

 719 

Environmental change versus community-level phenological change 720 

We evaluated the degree to which changes to the flowering season across CONUS are associated 721 

with changes in temperature and precipitation or in land cover types severely altered by human 722 

activities (i.e., urban, crop, and pasture cover). Specifically, we used generalized least squares to 723 

fit spatial regressions, each including as a response changes in either the start, end, or duration of 724 

the season, or the composition of pairwise of flowering synchronies among co-occurring species 725 

(both between historical and recent conditions, and between recent and projected conditions). 726 

Spatial dependence among observations was modeled using a gaussian correlation structure. 727 

However, because spatial regression requires computing a pairwise distance matrix among 728 

observations, computing time grows exponentially with sample size and became prohibitive at 729 

the continental scales of these analyses (encompassing over 50,000 locations at a 12km ×12km 730 

resolution). Therefore, we used an iterative approach in which models were fit using 100 731 

locations sampled randomly across CONUS and their performance evaluated using another, 732 

equally-sized sample, repeating the process a total of 2,000 times (a number sufficiently large for 733 

the distribution of each metric to remain unaltered by further iterations, indicating adequate 734 

sampling of the predictor space). 735 

In each iteration, we first fit base models that only included geographic variation in 736 

historical climatic conditions as predictors, including the position of each sampled location along 737 

PC1 (an aridity gradient) and PC2 (a temperature seasonality and decreasing temperature 738 

gradient) for the 1961-1980 period. These models therefore quantified how observed changes in 739 

community-level phenology varied among locations with different underlying climates without 740 

accounting for environmental change. Then, for each form of phenological change considered, 741 

we fit additional spatial regressions that included either changes in mean annual temperature, 742 

cumulative annual precipitation, crop cover, urban cover, or pasture cover in each location as 743 

predictors. These models also included two-way interactions between the environmental change 744 
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variable included and PC1 or PC2 (i.e., with long-term climatic conditions), and a three-way 745 

interaction with both PC1 and PC2. These terms measured how associations between the focal 746 

types of community-level phenological change and of environmental change differed along long-747 

term climatic gradients. For each of these regressions (and in each iteration), we assessed how 748 

the explanatory power of the model changed by including the focal form of environmental 749 

change as a predictor. Specifically, we assessed how the correlation between predicted and 750 

observed change in the test dataset improved after including the focal change variable relative to 751 

the base models that accounted only for long-term climatic conditions. We also retained the 752 

coefficients for the main effects and interactions terms from each model and their p-values. The 753 

overall effect of each form of environmental change was evaluated from the distribution of 754 

values for each metric across iterations (with means and standard deviations reported in the main 755 

text).  756 
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Supplemental Information for: Shifts in phenology and species ranges restructure the 918 

flowering season across North America 919 

 920 

Figure S1—Correlations among 2004-2023 normals for 31 climatic variables, mean elevation, 921 

and elevation heterogeneity across 4km resolution grid cells throughout the conterminous United 922 

States. Climate variables include annual sums or means, maximum monthly values, minimum 923 

monthly values, annual monthly range, and seasonality for precipitation (PPT), temperature (T°), 924 

actual evapotransporation (AET), climate water deficit (DEF), soil moisture (SOIL), and snow-925 

water equivalent (SWE). Variables for T° also include approximate mean daily range, and 926 

isothermality. Seasonality for precipitation was calculated proportionally to the mean cumulative 927 

annual precipitation in each site. 928 

  929 
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 PC1 (1.9, 43%) PC2 (1.7, 43%) PC3 (1.3, 9%) PC4 (1.2, 6%) PC5 (1.1, 5%) 

PPT - Annual range -0.15 -0.21 0.14 -0.05 0.22 

PPT - Seasonality 0.20 -0.10 0.10 -0.11 0.18 

PPT - Monthly 
maximum 

-0.19 -0.18 0.10 -0.09 0.16 

PPT - Monthly 
minimum 

-0.22 0.02 -0.11 -0.17 -0.20 

PPT - Annual sum -0.23 -0.12 0.01 -0.10 -0.03 

T° - Annual range 0.01 0.27 -0.20 0.29 0.08 

T° - Seasonality -0.07 0.26 -0.25 0.23 0.00 

T° - Monthly minimum 0.08 -0.30 0.04 -0.22 -0.07 

T° - Monthly 
maximum 

0.16 -0.20 -0.20 -0.02 -0.03 

T° - Annual mean 0.09 -0.29 -0.12 -0.22 -0.05 

T° - Diurnal range 0.21 -0.01 0.04 0.10 0.19 

T° - Isothermality 0.16 -0.21 0.18 -0.16 0.12 

AET - Annual range -0.17 -0.02 -0.19 -0.11 0.49 

AET - Seasonality -0.20 0.04 -0.15 -0.12 0.42 

AET - Monthly 
maximum 

-0.19 -0.13 -0.19 -0.07 0.35 

AET- Monthly 
minimum 

-0.09 -0.26 -0.06 0.06 -0.15 

AET - Annual mean -0.20 -0.19 -0.16 0.02 0.07 

DEF - Annual range 0.24 -0.04 0.08 0.15 0.11 

DEF - Seasonality 0.24 -0.03 0.10 0.19 0.09 

DEF - Monthly 
maximum 

0.25 -0.05 0.07 0.06 0.07 

DEF- Monthly 
minimum 

0.16 -0.06 -0.02 -0.38 -0.16 

DEF - Annual mean 0.25 -0.06 0.03 -0.11 -0.02 
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 930 

Table S1—Loadings from a principal component analysis (PCA) of 2004-2023 normals for 31 931 

climatic variables, mean elevation, and elevation heterogeneity across 4km resolution grid cells 932 

throughout the conterminous United States. Loadings are reported for the 5 principal components 933 

(PCs) explaining more variance than any input variable in the data. Highlighted values in each 934 

column correspond to the 5 input variables with the highest loadings on each PC. Values next to 935 

each PC’s name in the column headings indicate its eigenvalue and variance explained. 936 

 937 

 938 

  939 

SOIL - Annual range -0.16 -0.18 0.21 0.27 0.01 

SOIL - Seasonality -0.16 -0.18 0.21 0.26 -0.01 

SOIL - Monthly 
maximum 

-0.19 -0.17 0.18 0.23 -0.06 

SOIL - Monthly 
minimum 

-0.21 -0.13 0.08 0.11 -0.19 

SOIL - Annual mean -0.21 -0.16 0.14 0.16 -0.15 

SWE - Annual range -0.14 0.24 0.21 -0.19 -0.02 

SWE - Seasonality -0.14 0.24 0.21 -0.20 -0.02 

SWE - Monthly 
maximum 

-0.14 0.24 0.21 -0.19 -0.02 

SWE – Annual mean -0.13 0.24 0.22 -0.21 -0.02 

Mean Elevation 
(800m) 

0.14 0.10 0.28 0.13 0.25 

Elevational 
heterogeneity (800m) 

0.01 0.01 0.46 -0.02 0.19 
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 940 

Figure S2—Climate change between the historical period (1960-1980) and the present period 941 

(2001-2020), and between the present period and projected conditions under a scenario of 2°C 942 

warming above pre-industrial levels. Climate change is shown as the difference in the 5 principal 943 

components summarizing 31 climatic variables, as well as mean elevation and elevational 944 

heterogeneity within 4km grid cells throughout the conterminous United States (see ‘Methods’ 945 

section of the main text) between periods. The variables listed in each legend correspond to those 946 

with the greatest loadings for each PC. Positive and negative signs next to each variable indicate 947 

whether positive or negative values in the color scale are associated to increases or decreases 948 

between periods. Subdivisions labeled 1-18 represent level II ecoregions. 1) Mediterranean 949 

California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) Cold Deserts, 5) Warm 950 

Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) South-Central Semi-951 
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arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 11) Mixed Wood 952 

Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-Appalachian 953 

Forests, 15) Southeastern USA Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) Mississippi 954 

Alluvial and Southeast USA Coastal Plain, 18) Atlantic Highlands. 955 

 956 

 957 

 958 

Figure S3—Predicted species richness (from a total of 2,837 species) within 12km resolution 959 

grid cells across the conterminous United States estimated for the 2001-2020 period, and the 960 

percent that have herbaceous, graminoid, or woody growth habit. Subdivisions labeled 1-18 961 

represent level II ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine 962 

West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) 963 

Upper Gila Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 964 

10) Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA 965 

Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA Plains, 16) 966 

Tamaulipas-Texas Semi-arid Plains, 17) Mississippi Alluvial and Southeast USA Coastal Plain, 967 

18) Atlantic Highlands.  968 
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 969 

 970 

Figure S4—Change in land cover between 1980 and 2020, and between 2020 and 2080 under 971 

SRES B1 scenario of land use and land cover change. Each panel shows changes in the 972 

proportion of 250m cells of the focal class found within each 750m resolution grid cell across the 973 

conterminous United States (CONUS). Subdivisions labeled 1-18 represent level II ecoregions. 974 

1) Mediterranean California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) Cold 975 

Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) 976 

South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 977 

11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-978 

Appalachian Forests, 15) Southeastern USA Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) 979 

Mississippi Alluvial and Southeast USA Coastal Plain, 18) Atlantic Highlands. 980 
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