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Abstract15

Invasive Aedes mosquitoes are major vectors of arboviral diseases such as dengue, Zika, and chikungunya,16

posing an increasing threat to global public health. Their recent geographic expansion calls for predictive models17

to simulate population dynamics and transmission risk. Temperature is a key driver in these models, influencing18

traits that affect vector competence. While data on temperature–dependent traits are abundant for Aedes aegypti19

and Ae. albopictus, they remain scattered, inconsistent, and difficult to synthesise. For emerging species like Ae.20

japonicu and Ae. koreicus, data are even more limited.21

To address these gaps, we developed AedesTraits, an open-access, machine-readable database aligned22

with VecTraits standards. It compiles and harmonises experimental data on temperature-dependent traits across23

these four Aedes species, covering life-history, morphological, physiological, and behavioural traits. Our syn-24

thesis highlights existing knowledge gaps and identifies under-studied species and traits. By promoting data25

harmonisation and accessibility, AedesTraits supports improved vector modelling and fosters international26

collaboration in the development of forecasting tools for arbovirus outbreaks.27
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1 Background and Summary44

Invasive mosquito species are of global public health concern because of their capacity to vector pathogens that45

cause substantial human mortality and morbidity (WHO, 2024). Among these species, those belonging to the46

Aedes genus have rapidly expanded their geographical range over the last few decades. Two of these, Ae. aegypti47

and Ae. albopictus, have been implicated as the main vectors in recent arboviral epidemic outbreaks around the48

world (Fauci and Morens, 2016; Estallo et al., 2024; Cattaneo et al., 2025).49

The significant public health burden caused by these species has prompted the development of predictive math-50

ematical models aimed at enhancing our understanding of mosquito population dynamics and vectorial capacity51

therefore enhancing our ability to anticipate associated arbovirus transmission risk (e.g., Otero et al., 2006; Er-52

guler et al., 2017; Aguirre et al., 2021; Da Re et al., 2022; Brass et al., 2024). Most of these models are driven by53

environmental temperature because many processes involved in determining vector–borne pathogen transmission54

are sensitive to temperature variation (San Miguel et al., 2024). This biological understanding has led to growing55

recognition of the need for mosquito–borne disease models to be mechanism–based if the goal is to extrapolate56

their predictions reliably across space and time (Johnson et al., 2015; Mordecai et al., 2017; Molnár et al., 2017;57

Johnson et al., 2018; Cator et al., 2020).58

As poikilothermic ectotherms, the biological rate processes that govern mosquito traits, such as survival, re-59

production, and viral transmission rates, are strongly influenced by variation in environmental temperature (Ama-60

rasekare and Savage, 2012; Eisen et al., 2014; Gloria-Soria et al., 2017; Reinhold et al., 2018; Lahondère and61

Bonizzoni, 2022). However, although laboratory studies have provided valuable information on how temperature62

influences mosquito traits (e.g., larval development time, extrinsic incubation period), the current knowledge base63

remains fragmented. Thermal traits of Aedes aegypti and Ae. albopictus are comparatively well studied in some64

regions of the world (Eisen et al., 2014; Reinhold et al., 2018), while research on thermal traits of other Aedes65

species, such as Ae. japonicus and Ae. koreicus, is still in its infancy and are understudied (Scott, 2003; Ciocchetta66

et al., 2017; Marini et al., 2019; Reuss et al., 2018; Wieser et al., 2019).67

Synthesis of thermal traits that underlie modelling efforts requires that data be readily available in consistent68

formats. However, published data is often presented in the tables and figures of scientific publications, mostly in69

summarised formats. Even when data are made available (as they increasingly are by default as a requirement70

for publication) upon publication the format and data standards are non–standardised (Moretti et al., 2017; Ryan71

et al., 2025). Together these factors require researchers who wish to synthesise information across studies to invest72

substantial time and effort in the manual extraction and management of the data into machine–readable formats.73

In this study, we address this gap by compiling and standardising data extracted from the published litera-74

ture on the temperature dependence of different types of traits in four Aedes species: Ae. aegypti, Ae. albopictus,75

Ae. japonicus, and Ae. koreicus. The traits of well–studied species such as Ae. aegypti and Ae. albopictus are76

represented as distinct sample populations from specific locations, along with detailed records of the experimental77

conditions under which these traits were measured. By creating a machine–readable database that encompasses78

multiple species, populations, and experimental settings, this work supports in–depth investigations into the bi-79

ology of Aedes mosquitoes and provides the broad basis necessary to improve the accuracy and generalisability80

of predictive mechanistic models. Furthermore, it allows the identification of critical gaps in current knowledge,81

such as the need for more experimental data on understudied species, specific traits, and environmental condi-82

tions, guiding future research efforts to fill these voids. AedesTraits aims to assist the research community by83

providing a comprehensive basis for advancing our understanding of vector–borne disease risk and supporting the84

development of outbreak forecasting approaches.85

2 Methods86

2.1 Literature search87

To identify studies for inclusion, we followed the PRISMA (Preferred Reporting Items for Systematic Reviews88

and Meta–Analyses; Moher et al., 2009) procedure, a structured approach to conduct and report systematic re-89

views and meta-analyses, ensuring transparency and consistency between studies. We conducted an extensive90

global literature search across multiple electronic databases, including Scopus, PubMed, and Web of Science. The91

last search was performed on January 28th, 2025. The search encompassed published journal articles without92

restrictions on date or language. We queried each database using Boolean operators with the following terms for93

each species to limit duplicates:94

• (“Aedes aegypti” OR “Yellow fever mosquito”) AND temperature AND survival AND development95
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• (“Aedes albopictus” OR “Tiger mosquito” OR “Stegomyia albopicta”) AND temperature AND survival96

AND development97

• “Aedes koreicus” AND temperature AND survival AND development98

• “Aedes japonicus” AND temperature AND survival AND development99

In addition, we manually searched for references to articles and relevant reviews for potential supplementary100

studies. The screening process comprised three sequential steps. First, duplicate records were eliminated. Sub-101

sequently, articles were screened by three authors based on title, abstract, and keywords, followed by a full-text102

evaluation to extract pertinent information. The inclusion criteria focused on studies examining the relationship103

between mosquito traits (e.g., life history, physiological, transmission) and temperature. This encompassed both104

laboratory and field experiments conducted in diverse experimental settings, and using specimens from various105

populations or geographic origins. To qualify for inclusion, studies had to meet four criteria: (1) they must be106

laboratory or field experiments, rather than surveillance-based entomological studies; (2) they must report mea-107

surable Aedes life-history traits, such as survival, developmental time, or size, as outcomes; (3) temperature must108

be the main environmental driver investigated; and (4) the data must provide sufficient detail to be standardized109

and integrated into a machine–readable format.110

2.2 Data extraction111

We requested raw data directly from the corresponding authors where possible. In cases where no response was112

received, we manually digitised the data and compiled it into tables. For data presented in figures, where raw113

data were not available, we used WebPlotDigitizer v4.8 (Rohatgi, 2020) to extract the data and convert it into114

table format. Throughout the process of building the database, we followed the standard format established by115

the VectorByte initiative (https://www.vectorbyte.org/), which is a global platform for open–access trait116

(VecTraits; Johnson et al., 2023) and abundance (VecDyn; Rund et al., 2023) data on disease vectors, alongside117

tools (e.g., Bayesian thermal performance curve fitting; Sorek et al., 2025) and training for researchers.118

The information extracted from the literature includes species, life-history stage, location, GPS coordinates,119

experimental settings, and rearing conditions. This information was digitised according to the following rules:120

specimens reared in colonies for more than five generations in the laboratory were considered adapted to labo-121

ratory conditions and hence different from the field populations (Hoffmann and Ross, 2018). If coordinates for122

a specimen’s collection site were unavailable, the centroid of the administrative area provided in the study was123

selected.124

3 Data Records125

The initial search across the academic databases yielded a total of 510 studies: Scopus (78), PubMed (205),126

and Web of Science (227) (Fig. S1; Tab. S1). After removing duplicates, we screened the titles and abstracts127

of 324 studies, ultimately selecting 59 for digitisation. In addition, we identified and digitised 76 other studies128

sourced from Google Scholar and the reference lists of relevant articles. This search process resulted in a total129

of 135 digitised studies, distributed across species as follows: Aedes aegypti (86), Aedes albopictus (59), Aedes130

japonicus japonicus (1), and Aedes koreicus (1). During our search, we also encountered studies examining the131

temperature dependence of other Aedes species (Tab. S2). While these species are not included in the present132

description, the corresponding data are nonetheless included in the database.133

AedesTraits currently hosts 31,840 rows of temperature–dependent Aedes trait observations, described134

through fields such as “originaltraitname”, “originaltraitdef”, which describe traits using their names (e.g., de-135

velopment time) and original definitions (e.g., mean duration of life stage). The values, units, and errors for these136

traits are stored in “originaltraitvalue”, “originaltraitunit”, and “originalerrorunit”, respectively.137

Environmental and experimental contexts are described using fields such as “habitat”, “labfield”, “ambient-138

temp”, and “ambientlight”, among others, which capture the surrounding conditions and experimental setup under139

which the observations were collected. Geographical data is recorded in fields such as “locationtext”, “location-140

type”, “latitude”, “longitude”. The specific temperatures that individuals were exposed to during experiments are141

stored in the “interactor1temp” and ‘interactor1tempunit” fields, respectively. Fields including “interactor1stage”142

and “interactor1sex” are used to indicate the life stage (e.g., larval, pupal, adult) and sex (female, male, inde-143

terminate) of the species observed during experimentation. When publications studied the effect of tempera-144

ture and additional variables, the latter is recorded in the “secondstressor” fields. Publication and data lineage145
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are detailed in fields such as “figuretable”, “citation”, and “doi”. The “notes” field provides options for ex-146

tra metadata, ensuring each dataset’s completeness and usability. All database fields are described in detail at147

https://vectorbyte.crc.nd.edu/vectraits-columndefs.148

Following the guidelines provided in Moretti et al. (2017) and for clarity purposes, we summarise here the149

classification of traits in our database according to five overarching categories (Tab. S3): Behaviour, Infection &150

Transmission, Life History, Morphology, and Physiology. The original trait names, as reported in the studies, were151

nonetheless kept in the database to preserve transparency and facilitate traceability. In Fig. 1, we report the num-152

ber of distinct trait types documented for each mosquito species across the five functional categories described153

above. It is important to note that this count reflects the diversity of traits, not the number of studies. Conse-154

quently, a single study may contribute data for multiple trait types, while for certain species, multiple traits may155

be documented within the same study. For instance, although all traits recorded for Ae. koreicus originate from a156

single study, they encompass multiple distinct traits within the Life History category (Marini et al., 2019). Overall,157

most traits are classified under Life History, with Ae. aegypti exhibiting 14 distinct traits and Ae. albopictus, 10.158

Infection & Transmission traits are also well-represented, with 6 traits for Ae. aegypti and 8 for Ae. albopictus.159

Morphological, Stress Tolerance & Physiological Performance traits, along with Behaviour traits, are compara-160

tively under-represented. For Ae. japonicus japonicus and Ae. koreicus, a limited number of traits are currently161

documented, highlighting gaps in available trait information for these invasive species.162

Figure 1: Number of distinct trait types reported for each mosquito species across five functional categories. Bars
represent the diversity of traits reported rather than the number of studies. Note that multiple traits may originate
from a single study.

Following data extraction, we categorised the origin of mosquito populations as either derived from labora-163

tory colonies or field collections, based on information reported in the original studies. For Ae. aegypti, most164

populations originated from field collections (72 instances), while colony populations were used in 43 cases, and165

one study did not report the origin. Similarly, studies on Ae. albopictus showed a predominance of field–derived166

populations (80 instances), with colony populations used in 39 instances and two studies with unspecified origin.167

In contrast, data for Ae. japonicus japonicus and Ae. koreicus are more limited, with only field collections reported168

(4 and 1 instances, respectively).169

Figure 2 illustrates the geographical distribution of experimental sites retrieved for Ae. aegypti and Ae. al-170

bopictus, encompassing both laboratory and field studies, overlaid on the DENV transmission suitability map171

using Index P (Nakase et al., 2023). This index represents a mechanistic measure of dengue transmission suit-172

ability for Ae. aegypti mosquitoes based on temperature and relative humidity. Experimental sites for Ae. aegypti173

are predominantly concentrated in tropical and subtropical regions where Index P values are higher. In contrast,174

Ae. albopictus experimental sites are primarily located in areas with low Index P values, specifically in Europe or175

the global North, as shown in Fig. S2, reflecting the more temperate range of Ae. albopictus compared to Ae. ae-176
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gypti. Due to limited data, Ae. koreicus and Ae. japonicus study locations are not displayed, with only two sites177

available: northern Italy and western Germany, respectively. It is striking that, despite their medical importance178

and widespread distribution, relatively few Aedes populations have been sampled in local areas denoted highly179

suitable for DENV transmission 2, likely underestimating the degree to which mosquito trait responses to tem-180

perature may vary across geographically distinct populations and species (Dennington et al., 2023; Couper et al.,181

2025).182

Figure 2: DENV transmission suitability Index P (from Nakase et al., 2023) and location of sampled population/-
experiments of Ae. aegypti and Ae. albopictus (orange and light blue dots respectively) included in AedesTraits.

We retrieved studies spanning nearly a century, with publication years ranging from 1930 to 2024. For Ae. ae-183

gypti, studies date back as early as 1930, while for Ae. albopictus, the earliest studies were published from 1969184

onwards. However, most studies for both species are concentrated from 2000 onwards, reflecting the increased185

research attention over recent decades. In contrast, studies on Ae. japonicus japonicus and Ae. koreicus are much186

more recent, first appearing in 2018 and 2019 respectively, consistent with their more recent recognition as inva-187

sive vector species. A detailed overview of the temporal distribution of studies on Ae. aegypti and Ae. albopictus188

is provided in Fig. S3.189

Figure 3: Ae. aegypti and Ae. albopictus (orange and light blue dots respectively) larval development time(A),
adult longevity (B), and adult body mass (C) variability according to temperature.
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AedesTraits includes observations on several traits – such as longevity, biting rate, flight capacity, and ex-190

trinsic incubation period – but for brevity, we focus here solely on larval development time, adult longevity, and191

adult body mass data for Ae. aegypti and Ae. albopictus (Fig. 3). The observations shown in Fig. 3 exhibit con-192

siderable variation in longevity across both species, likely reflecting differences in experimental protocols such as193

temperature, humidity, and resource availability (Huxley et al., 2021, 2022), as well as inherent ecological plas-194

ticity and potential local adaptation in Aedes populations (sensu Kramer et al., 2021). This pronounced variation195

emphasises the challenge of isolating intrinsic biological traits from external experimental factors and underscores196

the importance of adopting standardised methodologies to improve cross–study comparability (Ryan et al., 2025).197

4 Data availability198

AedesTraits adheres to the FAIR principles (Findable, Accessible, Interoperable, and Reusable; Wilkinson199

et al., 2016) and is permanently archived in a Zenodo repository (DOI: 10.5281/zenodo.15149903). All analyses200

conducted for this study are fully reproducible, with the corresponding code also available in Zenodo. Finally,201

AedesTraits is also deposited in and available for download from the VecTraits database (Johnson et al., 2023).202

Depositing AedesTraits in VecTraits allows other contributors to add data from new studies to further expand203

the knowledge base on this group of mosquito vectors. VecTraits submission requirements are minimal and fully204

described at https://www.vectorbyte.org.205

5 Technical validation206

Manual input of large volumes of data is likely to introduce errors. To minimise such errors during data entry,207

each life-history trait variable was checked using frequency histograms, box plots, and/or scatter plots in R (R208

Core Team, 2024). Any outliers identified in these plots were cross–checked against the source publications, and209

discrepancies were corrected accordingly.210

6 Usage notes211

Mechanism–informed models have a pivotal role in implementing robust surveillance systems and forecasting212

approaches capable of estimating vector abundance and seasonality (Caputo and Manica, 2020; Da Re et al.,213

2025). The absence of standardised and comprehensive datasets of mosquito species traits likely hinders the214

reliability and broader applicability of these model predictions, particularly across diverse spatial and temporal215

contexts.216

To address this limitation, we have gathered the widest range of studies on the thermal biology of four Aedes217

species – Ae. aegypti, Ae. albopictus, Ae. japonicus, and Ae. koreicus – compiling and standardising the data into218

an open–access and machine–readable database that adheres to VecTraits standards (Johnson et al., 2023). Further,219

AedesTraits provides researchers, policymakers, and public health professionals with access to comprehensive220

data on mosquito biology. It can serve as a critical resource for the development and validation of predictive221

models on mosquito population dynamics and arbovirus transmission. Further, AedesTraits promotes data222

harmonization and sharing across regions, fostering collaboration, and enhancing the quality of global scientific223

investigations on vector–borne diseases.224

In this study, we primarily focused on experimental studies in which temperature was the main, but not nec-225

essarily the only, variable influencing traits of four Aedes species. For example, the database includes studies that226

explore the interaction of temperature and resource availability. We recognise that other factors, such as precipita-227

tion and humidity, can act independently and interactively with other environmental factors to influence mosquito228

traits involved in disease transmission. However, if temperature was not concurrently manipulated then traits that229

vary with other factors would not have met our inclusion criteria. Although not included here, some trait data230

from such studies is currently held in VecTraits (Johnson et al., 2023), and it can uploaded from future studies231

when it becomes available to complement the current study. In conclusion, the summary analysis of this database232

highlights gaps in the current knowledge on temperature–dependent mosquito traits, identifying which species and233

specific traits require further experimental investigation. Furthermore, our work fosters data harmonization and234

international collaboration to support global efforts in developing outbreak forecasting systems235
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A Supplementary materials349

Figure S1: PRISMA flow diagram illustrating the selection process of studies included in AedesTraits fol-
lowing an initial search across three databases (Scopus, PubMed, and Web of Science). Note that some studies
investigated more than one species.
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Figure S2: Latitudinal distribution of Ae. aegypti and Ae. albopictus experiments included in AedesTraits. The
bars represent the number of digitised studies conducted at different latitudes, illustrating the geographic trends in
experimental coverage for both species.

Figure S3: emporal distribution of textitAe. aegypti and Ae. albopictus experiments included in AedesTraits.
The bars show the number of studies published per year, highlighting temporal trends in research activity across
both species.
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Table S1: Number of studies per Aedes species retrieved from each citation database source (Scopus, Web of
Science, and PubMed).

Species Scopus WoS PubMed
Aedes aegypti 10 140 118
Aedes albopictus 63 83 81
Aedes japonicus 4 3 5
Aedes koreicus 1 1 1

Table S2: List of species present in AedesTraits.

Species Number of studies
Aedes aegypti 86

Aedes alboannulatus 1
Aedes albopictus 59
Aedes atropalpus 1

Aedes camptorhynchus 1
Aedes japonicus japonicus 1

Aedes koreicus 1
Aedes krombeini 1

Aedes nigromaculis 1
Aedes notoscriptus 2

Aedes sagax 1
Aedes togoi 1

Aedes triseriatus 3
Aedes vigilax 1
Aedes vixans 1
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Table S3: Summary of trait diversity grouped into five macrocategories, following the classification framework of
Moretti et al., 2017. This organisation highlights the variability of traits described in the AedesTraits.

Trait Category Trait Examples
Morphology - Body size (mean dry weight, wing length, wing size, wet mass, cephalothorax

length, head width, live body weight, body length, wing area)
- Egg size (non-diapause/diapause egg length and width under different condi-
tions)

Life History - Development time (mean, median, min, max duration, hatch to pupation, un-
der stressors like temperature, food quantity, competition)
- Fecundity (mean lifetime eggs, eggs per cycle, individual-level lifetime eggs,
ovariole count, eggs post blood meal)
- Gonotrophic cycle length (duration, number of cycles)
- Longevity (mean, max, min lifespan, days when X% population alive)
- Survival (percent surviving life stage, egg hatching, pupation rate, survival to
adulthood, survival under stressors, mean survival probability)
- Blood feeding frequency (mean number of blood meals, percent taking
one/two meals)
- Pre-bloodmeal period, pre-oviposition period, incubation period, juvenile life
span
- Sex ratio (as function of temperature, larval food type)

Physiology - Temperature tolerance (percent survival after extreme temperatures, knock-
down time, chill coma onset/recovery, chill injury)
- Energy reserves (glucose, glycogen, trehalose content)
- Hemolymph composition (Na+, K+ concentrations after cold stress)
- Weight loss during exhaustive flight
- Critical photoperiod period (minimum light exposure for egg hatching)

Behaviour - Biting rate (time to first bite, number of bites, time between bites)
- Feeding preference (preference for protein-rich vs. sucrose meals)
- Mating capacity (mean % females inseminated by one male)

Infection & Trans-
mission

- Infection rate (percent infected after exposure to DENV, ZIKV, CHIKV, Wol-
bachia, body/head/salivary gland/midgut presence)
- Dissemination rate (percent dissemination to body parts like legs, heads, sali-
vary glands)
- Transmission rate & efficiency (vertical/horizontal transmission, progeny in-
fection, transmission to hosts)
- Viral titers & viral load (log10 plaque forming units, virus concentration in
body, legs, salivary glands)
- Extrinsic incubation period & rate (time until transmission potential)
- Viral replication rate (as a function of temperature/post-infection days)
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