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Abstract

This paper presents outcomes from the inaugural “EcoHack: AI & LLM Hackathon for Applications
in Evidence-based Ecological Research & Practice,” which convened participants from across Europe
and beyond, culminating in 11 team submissions. These submissions highlighted six broad application
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areas of AI for ecology: (1) AI-enhanced decision support and automation, (2) scientific search and
communication, (3) knowledge extraction and reasoning, (4) AI for ecological modeling, forecasting, and
simulation, (5) causal inference and ecological reasoning, and (6) AI for biodiversity monitoring and
conservation. Each team’s project is summarized in a consolidated table—complete with links to source
code—and described in brief papers in the appendix.

Beyond summarizing technical results, this paper offers insights into the hackathon’s hybrid structure,
featuring an in-person gathering in Bielefeld, Germany, alongside a global online hub that facilitated both
local and virtual engagement. Throughout the event, participants showcased how large language models
(LLMs) can serve as both robust tools for diverse machine learning tasks and flexible platforms for rapidly
prototyping novel research applications. These efforts underscore the importance of stronger technological
bridges among stakeholders in ecology, including practitioners, local farmers, and policymakers. Overall,
the EcoHack outcomes highlight the transformative potential of AI in driving scientific discovery and
fostering interdisciplinary collaboration in ecology.

Introduction
Science hackathons have emerged as a powerful tool for fostering collaboration, innovation, and rapid
problem-solving in the scientific community [1, 2, 3]. By leveraging social media, virtual platforms, and
hybrid event structures, such hackathons can be organized in a cost-effective manner while maximizing their
impact and reach. In this article, we introduce the project submissions to the EcoHack: AI & LLM
Hackathon for Applications in Evidence-based Ecological Research & Practice, detailing the
broad classes of ecological challenges addressed by teams and analyzing trends in their approaches. We
then present each team submission, along with a summary table listing team members and links to code
repositories where available. Finally, we include the detailed project descriptions submitted by each team,
showcasing the depth and breadth of innovation demonstrated during the hackathon.

EcoHack Hackathon Event Overview
From January 20th to 22nd, 2025, we hosted the inaugural edition of EcoHack 2025, an AI & LLM hackathon
dedicated to advancing evidence-based ecological research and practice. The event convened students and
researchers from computer science and ecology, fostering interdisciplinary collaboration across virtual and
in-person formats. Hosted at the ZiF Campus at Bielefeld University, EcoHack was organized as part of the
ZiF resident group Mapping Evidence to Theory in Ecology: Addressing the Challenges of Generalization
and Causality, convened by Tina Heger. The event attracted 30 participants, primarily from Germany,
alongside attendees from Spain, the UK, and Poland.

The event commenced with a series of welcome talks providing participants with the broader research
context. Tina Heger introduced the objectives of the ZiF resident group (video link), Birgitta König-Ries pre-
sented the planned EcoWeaver Toolkit (video link), and Jennifer D’Souza, the EcoHack Convener, delivered
an introductory talk on LLM-based search systems, Long-Term Solutions vs. Hackathon Prototypes (video
link). Following these presentations, participants self-organized into teams or chose to work individually,
dedicating two days to prototyping solutions.

To support participants, we provided pre-event resources via the EcoHack mailing list. One of which
were Miro boards for collaborative brainstorming and idea development. Two Miro boards were made
available: the Hackathon Starter Kit, offering new participants guidance on hackathon structure, team
formation, and ideation strategies, and the Hackathon Collaboration and Ideation board, where participants
could propose ideas and form teams. To facilitate communication, we established a dedicated Element
channel featuring spaces for Introductions, Resources, Announcements, and general discussions. Participants
could also directly message others to form teams. Additionally, we released a resource guide with potential
project ideas. The challenge was intentionally open-ended, encouraging participants to explore a wide range
of ecological applications using open-source, state-of-the-art LLMs to develop innovative, impactful, and
scalable solutions.

The event culminated on January 22nd with a lightning talk session, where teams presented their pro-
totypes in concise two-minute pitches. This was followed by an interactive demonstration session, allowing
attendees to engage directly with project teams and explore their solutions. The prize evaluation process
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Figure 1: Feedback collected on Mentimeter from the EcoHack participants to the question “Tell us about
your hackathon experience”.

spanned two weeks, during which organizers assessed submissions. On February 7th, 2025, the awards cere-
mony was conducted virtually via Zoom, accompanied by an interactive feedback session using Mentimeter.
Figure 1 presents a word cloud summarizing participants’ reflections, with full feedback available here.

EcoHack 2025 successfully integrated in-person engagement with remote participation, fostering an inclu-
sive, interdisciplinary event that transcended geographical boundaries. The hackathon’s dedicated repository
is accessible on GitHub.

Overview of Submissions
The hackathon resulted in 11 team submissions, categorized as shown in Table 1. From these submissions,
we identified six key application areas:

1. AI-Enhanced Decision Support and Automation: AI tools that facilitate decision-making and
automate processes in ecological research and conservation. These systems help researchers, practi-
tioners, and governmental organizations monitor, manage, and analyze ecological data more efficiently
through dashboards, workflow automation, and intelligent interfaces.

2. Scientific Search and Communication: AI-powered systems that enhance the accessibility and
communication of scientific knowledge, particularly in ecological and agricultural contexts. These
tools bridge the gap between farmers, researchers, policymakers, and practitioners by making ecological
insights more understandable and actionable.

3. Knowledge Extraction and Reasoning: AI tools designed to structure, extract, and recommend
ecological knowledge, supporting scientific discovery and decision-making. These systems enable re-
searchers to navigate complex information landscapes by identifying relationships, concepts, and rele-
vant research.

4. AI for Ecological Modeling, Forecasting, and Simulation: AI-driven models that simulate eco-
logical processes, predict environmental changes, and support ecosystem recovery planning. These tools
assist researchers and other relevant stakeholders in understanding future ecological trends, assessing
risks, and optimizing restoration strategies.
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5. Causal Inference and Ecological Reasoning: AI models that support causal reasoning in ecological
studies by distinguishing correlation from causation. These tools improve our ability to understand
complex ecological interactions and validate hypotheses about environmental systems.

6. AI for Biodiversity Monitoring and Conservation: AI applications that aid in wildlife monitor-
ing, species conservation, and environmental protection. These tools use machine learning, bioacoustics,
and computer vision to analyze ecological data and support conservation efforts.

We next discuss each application area in more detail and highlight exemplar projects in each.

1. AI-Enhanced Decision Support and Automation
The central theme here is the application of AI to create prescriptive analysis tools that not only interpret
past and present data (as in descriptive and predictive analytics) but also suggest specific actions or policies
to achieve desired outcomes. In terms of the nuts and bolts of such a system, AI-enhanced decision sup-
port and automation in spatial planning could rely on integrating heterogeneous datasets, including
global biodiversity databases (e.g., GBIF), remote sensing and land-use data, socio-economic datasets, and
spatial metrics to model ecosystem dynamics and human-environment interactions. Various AI method-
ologies—such as greedy algorithms, metaheuristics, mixed-integer linear programming (MILP), constraint
programming (CP), and reinforcement learning—can be applied to process and optimize data-driven de-
cisions, each balancing efficiency, interpretability, and scalability. While black-box machine learning
models automate predictive insights, symbolic AI approaches like CP and MILP enable transparent,
constraint-driven optimization, making them particularly relevant for policy-driven and stakeholder-engaged
decision processes [4].

Beyond spatial planning, AI-driven innovations leveraging machine learning (ML), deep learning (DL),
computer vision (CV), and natural language processing (NLP) enable real-time environmental data collec-
tion, analysis, and action. These tools enhance forecasting models, improve data collection via IoT sensor
networks, and facilitate decision-making in areas such as precision agriculture, climate change miti-
gation, and wildlife conservation [5]. By identifying critical areas requiring intervention, AI enhances
precision conservation, shifting strategies from reactive to proactive management [6]. However, while AI
presents numerous advantages in ecological contexts, challenges related to data privacy, ethical implica-
tions, and over-reliance on technology must be addressed to ensure its sustainable and responsible use
in environmental monitoring.
Exemplar project: One submission could be categorized here. The EcoSmile one-person team (Jalloul,
section 1) developed the EcoGuard Insights Dashboard as a web-based decision-support system designed
to integrate and analyze decentralized environmental datasets, addressing deforestation, carbon emissions,
and biodiversity loss. Built using Python and Streamlit, the system processes heterogeneous data sources
(e.g., Global Forest Watch, Map of Life) through data aggregation and statistical analysis with pandas
and NumPy. Geospatial mapping, implemented via folium, enables interactive visualization of forest loss
and biodiversity hotspots, while time-series forecasting models, leveraging scikit-learn regression techniques,
predict deforestation trends up to 2046 based on historical data (2001–2023). Dynamic visualizations pow-
ered by matplotlib and Plotly provide real-time analytical updates, equipping policymakers and researchers
with actionable insights. With its modular and scalable architecture, EcoGuard facilitates evidence-based
decision-making, bridging the gap between complex environmental data and practical conservation strategies.

2. Scientific Search and Communication
AI-powered systems are transforming scientific search and communication, particularly in ecological and agri-
cultural contexts. Broadly, LLM-based techniques make it possible to obtain highly condensed scientific
knowledge summaries of research literature, improving knowledge accessibility [7]. Automated AI-driven
knowledge synthesis extends beyond summarization to compiling structured overviews of key ecological
research aspects, ensuring insights remain contextually rich [8, 9]. Enhancing search efficiency, AI-driven
scientific search engines use deep learning-based ranking methods, such as bi-encoders and retrieval-based
architectures, to improve literature discovery while mitigating biases in traditional search systems [10, 11,
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12]. Beyond retrieval, AI also facilitates clearer and more inclusive communication of scientific knowl-
edge. GenAI tools assist non-native English speakers in producing coherent academic texts and generating
research summaries, abstracts, and social media posts to improve accessibility and policy engagement [13].
AI-powered real-time interpretation and subtitles further promote inclusivity in scientific discussions by
enabling broader participation [14]. Additionally, automated slide-generation techniques like DOC2PPT
[15] streamline research dissemination by converting scientific papers into structured presentations, making
complex insights more accessible to diverse audiences.

Despite these advancements, ensuring the accuracy, transparency, and ethical use of AI-generated content
remains a challenge. Risks such as misinformation and fraud must be mitigated, for instance in use of
AI to generate multimedia from biodiversity surveys and citizen science projects [16]. AI interpretation
technologies require further refinement to support diverse languages and dialects [14]. Algorithmic
biases in AI-driven search and summarization tools necessitate continuous evaluation and improvements [17,
18]. Additionally, concerns around data privacy and technological readiness must be addressed to build trust
in AI applications for scientific communication [19, 20]. Collaboration between AI developers and researchers
is crucial to overcoming these challenges and ensuring AI-powered tools equitably enhance scientific discourse,
knowledge dissemination, and decision-making across ecological and agricultural domains.
Exemplar projects: In practice, researchers and developers are actively exploring ways to refine and apply
AI technologies, as seen in EcoHack’s four hackathon projects. The team behind AutoDeck-AI (Jadhav et
al., section 2) developed an AI-powered slide generator designed to streamline scientific communication in
ecology by automatically extracting figures, tables, and key insights from PDFs using PyPDF2, PyMuPDF,
and GPT-4o to generate structured presentations tailored for researchers, practitioners, and funding bodies.
Meanwhile, the team working on Agri-Chatbot (Kommineni et al., section 3) tackled the challenge of
making agricultural research more accessible to farmers by integrating retrieval-augmented generation (RAG)
[10] with a FAISS vector store containing over 500,000 structured data entries, leveraging LLaMA 3.3-70B
to generate precise, science-backed responses. At the same time, FarmGuide (Viso et al., section 4) sought
to bridge the gap between ecological research and practical farming by using LLMs (GPT-4, Llama3.1
via Ollama) to extract relevant insights from scientific literature, ranking articles based on all-MiniLM-v6
embeddings, and providing an interactive chatbot interface for personalized guidance on crop protection and
pollination strategies. In a different vein, DiversiTeam (Bachinger et al., section 5) introduced EcoSearch,
a tool that enhances literature discovery in ecology by re-ranking search results based on the geographical
distribution of authors, fostering a more inclusive and representative scientific discourse. Collectively, these
projects demonstrate the power of AI to enhance scientific communication, facilitate knowledge transfer, and
support data-driven decision-making across ecological and agricultural domains.

3. Knowledge Extraction and Reasoning
Tapping into LLMs’ potential for expert-level scientific creativity requires proficiency in specialized
knowledge and deductive reasoning [21]. One approach to enhancing this capability is the construction
of ontological knowledge graphs from scientific literature, which uncover interdisciplinary relationships, aid
researchers in navigating complex information landscapes, and advance discovery. These graphs leverage
transitive and isomorphic properties to reveal novel connections, enabling tasks like query answering, iden-
tifying knowledge gaps, proposing new material designs, and predicting material behaviors. Deep node
embeddings facilitate combinatorial node similarity ranking, using path sampling strategies to link previ-
ously unrelated concepts [22]. Ontologies serve as interdisciplinary bridges, employing cognitive modeling to
analyze causal relationships and visualize structured knowledge, integrating research across energy, ecology,
and quality of life [23]. Ontologies and Bayesian networks also support the integration and interpretation of
heterogeneous ecological data, aiding in the discovery of ecological interactions, such as behavioral rela-
tionships between individual plants and insects and their population-level consequences [24]. While AI tools
enhance ecological knowledge extraction, their anthropocentric design risks overlooking the interconnected-
ness of human and ecological systems. Aligning AI development with ecological thinking is recommended
for fostering a more sustainable human-environment relationship and eco-centric reasoning [25].
Exemplar project: There was one EcoHack project in this category with a unique search application to
help reduce manual effort in systematic reviews. The team behind MatchBox (Brinner et al., section 6),
focused on improving concept extraction and ontology mapping in ecological research using LLMs and
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transformer-based models. It employed Llama-3-8B-Instruct [26] for concept extraction from abstracts,
DeBERTa [27] for token-level classification and semantic similarity scoring, and a reranker model for refining
ontology alignment. The system integrates ENVO and INBIO ontologies, providing an interactive tool for
highlighting key terms, linking them to ontology definitions, and enabling concept-based literature search
via similarity embeddings rather than keyword matching.

4. AI for Ecological Modeling, Forecasting, and Simulation
Multiagent systems (MAS) with AI and model-driven engineering offer a powerful framework for modeling
and verifying ecosystem resilience dynamics. These systems synthesize heterogeneous ecological data and
employ adaptable neural network architectures to simulate complex interactions between species, environ-
mental factors, and stakeholders, enhancing predictive modeling for ecosystem management [28]. However, a
key challenge lies in addressing AI’s lack of robustness and generalization across diverse ecological contexts,
necessitating a more purposeful synergy between AI and ecological resilience research [29]. Advances in MAS
have also led to the development of open-source ecosystem simulators, such as Ecotwin [30], which leverage
game engines like Unity to model ecosystems containing inanimate objects, flora, and fauna. These simu-
lators serve as valuable tools for predicting the consequences of human interventions, training AI agents in
dynamic environments, and improving our understanding of ecological systems. Beyond modeling ecological
processes, ecological principles themselves are influencing AI development, as seen in collaborative multi-
agent systems inspired by mutualistic interactions in nature [31]. Techniques like multi-agent reinforcement
learning (MARL) are also being applied to simulate complex socio-ecological interactions, contributing to
sustainability research and insights into human decision-making [32].

Beyond MAS, vision-based deep learning models enhance ecological forecasting. Deepbiosphere inte-
grates remote sensing, citizen science, and convolutional neural networks to track plant community shifts
[33]. Satellite platforms like Landsat and Sentinel-2, combined with Vision Transformers and Generative
Adversarial Networks, improve biodiversity and vegetation monitoring [34, 35]. These AI-driven tools sup-
port applications from post-fire recovery to species distribution modeling [36, 37], though challenges remain
in data quality, model interpretability, and ecosystem complexity [38].
Exemplar projects: There were two EcoHack projects in this category. BioSim (Ling & Miao, section 8)
explores the challenge of biological invasions through a multi-agent simulation framework that integrates
LLMs with agent-based modeling. By enabling species agents to interact dynamically based on ecologi-
cal principles, real-time literature integration, and structured input data, BioSim enhances scalability and
adaptability in predicting invasion dynamics. The framework employs visualization tools and multi-agent
interactions to model species competition and conservation scenarios. On the other hand, HealingFactor
(Krutsylo) addresses a different ecological issue—forecasting ecosystem recovery in war-affected regions of
Ukraine using Sentinel-2 satellite imagery accessed via Microsoft Planetary Computer. The system applies a
convolutional long short-term memory model, utilizing spectral bands to capture spatial and temporal veg-
etation patterns and predict health trends. While BioSim simulates species interactions through AI-driven
multi-agent modeling, HealingFactor leverages remote sensing and deep learning to forecast ecological re-
covery. Together, they highlight the versatility of AI in addressing ecological challenges, from species-level
dynamics to landscape-scale restoration.

5. Causal Inference and Ecological Reasoning
In ecological studies, identifying causal relationships is crucial for understanding how environmental fac-
tors influence ecosystem structure and function. AI-driven causal inference models, such as Struc-
tural Causal Models (SCMs) and Bayesian Networks (BNs), have been applied to infer causal depen-
dencies in biodiversity and ecosystem productivity, helping researchers understand how species richness
affects ecosystem resilience [39]. SCMs have also identified temperature, salinity, and pH as key causal
drivers of chlorophyll concentration in marine ecosystems [40] and soil temperature as the dominant factor
in wetland CH4 emissions [41]. BNs, in particular, have been used to explore causal relationships between
forest aboveground biomass and its potential driving factors, offering a probabilistic framework to handle
uncertainty and complexity in ecological systems [42]. They are also applied to model uncertainty, uncover-
ing drivers of cyanobacteria blooms [43] and linking land-cover changes to bird abundance [44]. Additionally,
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machine learning-based causal discovery, such as Granger causality and EcohNet, enhances forecasting of
ecosystem components [43], while PCMCI and Optimal Information Flow (OIF) models infer long-term
causal dependencies in climate-ecosystem interactions [45, 46].

A new avenue of exploration is training LLMs to engage in causal reasoning about ecological systems.
Current LLMs primarily capture statistical associations, but benchmarks designed to evaluate their ability
to distinguish causal from correlational reasoning would advance their applicability in ecological research.
By integrating AI-driven causal inference with LLM-based hypothesis generation and validation,
researchers can develop more robust, scalable tools for analyzing ecological interactions and predicting envi-
ronmental change.
Exemplar project: In an individual contribution, the EcoLogic (Heider, section 10) project introduced an
algorithm to build a benchmark to assess LLMs’ ability to distinguish causal from correlational reasoning in
ecological systems. Using food-web-based tasks derived from the Global Biotic Interactions (GloBi) dataset,
it evaluated models on causal, correlational, and mixed reasoning. An automated solver, based on discrete
simulations of predator-prey dynamics, generated ground truth data, ensuring scalable assessment. Prelim-
inary results showed that frontier models excel, while smaller models struggled with tasks like interpreting
Latin animal names.

6. AI for Biodiversity Monitoring and Conservation
AI is transforming biodiversity monitoring and conservation through automated species identification, real-
time monitoring, acoustic detection, and ecological forecasting. Machine learning, computer vision, and
bioacoustics enable efficient analysis of ecological datasets, improving conservation strategies [47]. Large
datasets like BioTrove (161 million images, 366,600 species) and the iNaturalist Species Classification and
Detection Dataset (859,000 images, 5,000 species) support AI-driven biodiversity research [48, 49]. Deep
learning models such as YOLO [50] and Phi-3.5-vision-instruct achieve high accuracy in species detection
[51, 52], while AI-powered alert systems like TrailGuard detect poachers and habitat disturbances [53]. AI-
driven bioacoustic monitoring enables non-invasive species tracking, with tools like Haikubox identifying bird
species through their songs [54]. CNN-based acoustic monitoring detects species like the marbled murrelet,
and AI-integrated UAVs track endangered species such as black rhinos in remote environments [55, 56]. AI
also supports habitat mapping and restoration, analyzing satellite imagery to assess environmental changes
and predict biodiversity threats, such as species population declines and habitat loss [57].

Despite advancements, challenges persist in data quality, model biases, and ethical concerns. Detecting
smaller species with drone-based AI requires advanced image processing [56], while privacy and security in
real-time monitoring demand careful consideration [58]. Nonetheless, AI continues to improve biodiversity
research, offering scalable and efficient solutions for species conservation and ecosystem management.
Exemplar project: One EcoHack team belongs to this category. The BirdTeam (Mendu et al., section 11)
developed a machine learning model to classify bird alarm calls as indicators of stress from anthropogenic
disturbances. Using the BirdCLEF 2022 dataset, they fine-tuned the BirdNet residual neural network,
incorporating pre-processing, four residual stacks, and a classification block. Their classifier was claimed to
achieve over 90% AUPRC and AUROC on the training set.

Reflections and Lessons Learned
For most of the organizers, EcoHack was their first experience hosting an event of this kind. Reflecting on
our journey, we summarize below the key lessons learned, with the hope that these insights will support and
inspire other first-time hackathon organizers:

• Pre-event preparation was valuable, but early group formation proved challenging. While
participants made extensive use of the resources we provided in advance—and found them highly
useful—our expectation that teams would form prior to the event proved overly optimistic. Many
individuals did come with concrete project ideas, which served as natural starting points on the first
day. In hindsight, hosting a virtual meet-and-greet or ideation session one to two weeks before the
event might have encouraged earlier team formation and topic alignment.
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• The hybrid format worked well, but time zone differences posed challenges. EcoHack
functioned effectively as a hybrid event, enabling both in-person and remote participation. However,
coordinating across time zones proved more difficult than expected and may have contributed to
participant attrition. To enable more inclusive participation, future events could consider running
parallel sessions by time zone, scheduling staggered working days, or focusing on a specific set of time
zones while communicating this clearly in advance.

• Access to domain experts was highly beneficial—but underutilized. Co-location with a
workshop by the ZiF resident group provided access to several ecologists who engaged with participants.
These interactions were especially valuable and helped shape several solutions. Nevertheless, not all
teams took advantage of this opportunity. To encourage such engagement, organizers might consider
integrating structured formats—such as expert Q&A sessions, mentoring hours, or facilitated discussion
slots—into the event agenda.

• There is room to broaden the event’s thematic scope. This edition of EcoHack was strongly
focused on coding and technical development. Future editions could explore a broader thematic range,
including conceptual, theoretical, or policy-oriented work. Expanding the scope could help attract
participants from diverse backgrounds and skill sets, enriching the event’s interdisciplinary character.

• The effort was significant—but overwhelmingly worthwhile. Perhaps the most important
lesson was that organizing EcoHack was genuinely worth the effort. While the workload—before,
during, and after the event—should not be underestimated, the experience, participant engagement,
and quality of outcomes far exceeded our expectations.

Discussion: Hackathons as a Catalyst for SDG Innovation
The United Nations Sustainable Development Goals (SDGs) provide a global framework for addressing crit-
ical challenges, including climate change, biodiversity loss, and environmental sustainability [59]. Events
like the EcoHack serve as incubators for translating these ambitious objectives into actionable solutions,
leveraging AI-driven innovations to enhance decision-making, knowledge extraction, and ecological monitor-
ing. In particular, SDG 13 (Climate Action) [60], SDG 14 (Life Below Water) [61], and SDG 15 (Life on
Land) [62] underscore the urgency of protecting ecosystems and mitigating environmental risks. AI-powered
modeling and forecasting are already transforming climate adaptation strategies, sustainable marine man-
agement, and terrestrial conservation by enabling more precise predictions, automation, and large-scale data
analysis. Beyond ecological goals, AI applications also intersect with SDG 2 (Zero Hunger) [63], through
advancements in sustainable agriculture, and SDG 4 (Quality Education) [64], by enhancing accessibility to
scientific knowledge. Hackathons like EcoHack create a collaborative space where interdisciplinary teams
can prototype AI solutions that bridge research and real-world implementation, accelerating progress toward
sustainability targets. By fostering innovation and cross-sectoral collaboration, such events not only generate
novel technological approaches but also cultivate a mindset of applied problem-solving, positioning AI as a
key enabler of sustainable development.

Conclusion
The 2025 EcoHack highlighted the transformative role of AI and LLMs in ecological research, with par-
ticipants developing innovative solutions across six key areas, including decision support, scientific search,
biodiversity monitoring, and causal inference. Projects leveraged diverse AI methodologies, from retrieval-
augmented generation and knowledge graph-based reasoning to multi-agent simulations and deep learning
models for ecological forecasting. Approaches such as natural language processing for literature synthesis,
Bayesian networks for causal inference, and computer vision for species monitoring showcased AI’s versatility
in addressing complex ecological questions.

The hackathon’s hybrid format fostered interdisciplinary collaboration, uniting researchers across ecology
and AI to explore new ways of integrating machine learning into ecological research and practice. By applying
AI-driven techniques to ecological modeling, forecasting, and knowledge extraction, teams demonstrated how
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computational methods can bridge scientific insights with real-world conservation and management efforts.
As AI continues to integrate into ecology, EcoHack reinforces the value of collaborative hackathons in driving
innovation, fostering scientific partnerships, and accelerating the development of AI-powered solutions for
evidence-based ecological research and decision-making.

Table 1: Overview of the tools developed by the various teams, and links to source code repositories. Full
descriptions of the projects can be found in the appendix.

Project Authors Links

AI-Enhanced Decision Support and
Automation

EcoSmile at EcoHack-2025: EcoGuard Insights
Dashboard for Planetary Preservation

Basma Jalloul GitHub

Scientific Search and Communication

AutoDeck-AI at EcoHack-2025: Eco-Centric Slide
Generator

Hrishikesh Jadhav, Javad Razavian,
Moiz Khan Sherwani

GitHub

Agri Chatbot: From Science to Soil Vamsi Krishna Kommineni, Anne
Peter, Caren Daniel, Alexander Espig

GitHub

FarmGuide: A bridge between scientists and farmers
for natural agriculture practices

Bartolome Ortiz Viso, Lorenz
Gunreben, Mir Nafis Sharear
Shopnil, Nayanika Das

GitHub

DiversiTeam at EcoHack-2025: EcoSearch Sarah T. Bachinger, Daphne
Frederike Auer, Edward Gow-Smith

GitHub

Knowledge Extraction and Reasoning

Matchbox at EcoHack-2025: Empowering Ecology
Research with Efficient Concept Mapping

Marc Brinner, Nadeen Fathallah,
Tarek Al Mustafa

GitHub

EcoSci Recommender Samira Korani GitHub

AI for Ecological Modeling, Forecasting, and
Simulation

BioSim: A Multi-Agent Framework for Biological
Invasion Simulation

Zijian Ling, Shuhan Miao GitHub

Healing Factor at EcoHack-2025: Forecasting
Ecosystem Recovery Efforts in Ukraine

Andrii Krutsylo GitHub

Causal Inference and Ecological Reasoning

EcoLogic: A Benchmark for Causal and Correlational
Reasoning of LLMs Based on Ecological Interactions

Nico Heider GitHub

AI for Biodiversity Monitoring and
Conservation

BirdTeam: Bird Alarm Call Classifier Vaishnavi Mendu, Moritz Plenz, Will
Woof

Hugging-
Face
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1 EcoSmile at EcoHack-2025: EcoGuard Insights Dashboard for
Planetary Preservation

Authors: Basma Jalloul

1.1 Problem Addressed
The planet is facing converging environmental crises—deforestation, biodiversity loss, and greenhouse gas
emissions—yet the tools available to decision-makers remain fragmented, complex, and inaccessible. These
ecological threats are often studied in isolation, with data scattered across various platforms and published
in inconsistent formats. As a result, decision-makers are left without an integrated view of the situation or
tools that can translate raw data into actionable insights. Additionally, the lack of interoperability between
datasets and analytical models prevents the formulation of holistic, evidence-based environmental strategies.
There is a critical need for a system that not only connects the dots across these domains but also simplifies
complex environmental patterns for non-technical stakeholders [1, 2].

1.2 Motivation
Over 10 million hectares of forest are lost each year, and this trend shows little sign of abating. These forests
are not only biodiversity reservoirs but also pivotal carbon sinks, meaning their loss has a compounding
effect on both climate and species survival. Conventional policy tools and forecasting methods often fail to
anticipate cascading impacts, such as the way deforestation triggers biodiversity decline and elevates atmo-
spheric carbon levels. With global environmental targets on the line, the challenge lies not just in detecting
these patterns but in making them intelligible to those who shape policy [3, 4].This project was motivated
by the urgent need to democratize access to environmental forecasting tools and to equip communities and
lawmakers with an intuitive, evidence-based interface to support sustainable governance.

Figure 2: EcoGuard Insights Dashboard: A unified tool for visualizing deforestation, carbon emissions, and
biodiversity loss

1.3 Solution
We present EcoGuard Insights Dashboard, a unified platform that brings together disparate datasets
and transforms them into a coherent, interactive system for ecological risk analysis. The dashboard enables
users to visualize country-specific environmental trends, simulate future outcomes under multiple policy
scenarios, and identify areas at heightened ecological risk. By synthesizing time-series analysis, geospatial
mapping, and predictive modeling, the dashboard empowers users to understand both historical patterns
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and projected futures. The system is designed for scalability and ease of use, targeting a broad range of
stakeholders—from researchers and conservationists to policymakers and regional planners.

1.4 Non-Technical Description
The EcoGuard Insights Dashboard provides a simplified, yet powerful, interface for exploring the planet’s
ecological trajectory:

• Interactive World Map: Track forest loss, emissions, and species decline across countries and
timeframes.

• Forecasting Panel: Explore how the environment may evolve under different policy scenarios (miti-
gation vs. business-as-usual).

• Insight Cards: Receive synthesized, easy-to-understand findings and recommendations tailored to
each region’s environmental profile.

• Country Comparisons: Benchmark performance across regions and assess progress against sustain-
ability goals.

Designed with accessibility in mind, the platform does not require users to have a background in data
science or environmental modeling.

1.5 Technical Description
EcoGuard Insights is developed as a modular, Python-based web application, using Streamlit for the front-
end interface and a custom-built backend to manage environmental data workflows.

Core Components as show in Figure 7:

• Data Integration: The dashboard ingests heterogeneous datasets, including tree cover loss (Global
Forest Watch), biodiversity observations (Map of Life), and carbon emissions. These datasets are
normalized, cleaned, and temporally aligned to ensure interoperability.

• Geospatial Mapping: With folium and GeoJSON, the application delivers interactive maps high-
lighting deforestation intensity, biodiversity risk zones, and carbon emission hot spots.

• Trend Analysis: Using pandas, NumPy, and scikit-learn, historical data is aggregated and analyzed
to identify patterns. A forecasting module extends trends into the future using regression models.

• Dynamic Visualizations: Time-series graphs and choropleth maps generated with matplotlib and
Plotly allow users to interact with data filters, select countries or years, and view changes over time.

• Scenario Simulation: Scenario simulations apply multipliers based on historical policy effectiveness,
a method validated in environmental modeling literature [5, 6].

• Extensibility: The backend is structured around modular data processing functions, enabling future
extensions (new data sources or predictive models) without architectural overhaul.

1.6 Future Recommendations
1. Incorporate satellite imagery for real-time forest loss detection.

2. Implement advanced species distribution models to estimate extinction risk under future scenarios.

3. Enable multilingual output to increase accessibility for a global audience.

4. Add crowdsourced reporting features to collect local environmental data from communities and NGOs.

5. Develop a responsive mobile version for fieldwork and remote monitoring.
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Figure 3: Interactive Map for Deforestation
and Species Loss by Filtrable by Year and Country.

Figure 4: Country-Level Trends for Deforestation,
Carbon Emissions, and Species Loss over the Years.

Figure 5: Actionable Insights for Law Makers and
Future Predictions based on 3 Scenarios.

Figure 6: Country Specific Warning Based on the
Future Predictions and Incentive for Policy Makers.

Figure 7: Overview of the interactive dashboard visualizing ecological forecasting, including deforestation
trends, carbon emissions, and fire predictions under multiple policy scenarios.
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2 AutoDeck-AI at EcoHack-2025: Eco-Centric Slide Generator
Authors: Hrishikesh Jadhav, Javad Razavian, Moiz Khan Sherwani

2.1 Problem Statement
Creating targeted scientific presentations for ecological research is both inefficient and labor-intensive. Ecolo-
gists and related stakeholders must synthesize raw data, abstracts, and supplementary materials from diverse
sources, yet current presentation tools do not effectively extract critical figures or adapt content for varied
audiences. This inadequacy hampers communication with researchers, practitioners, and funding agencies,
thereby impeding timely decision-making and dissemination of research findings [1, 2].

2.2 Motivation
Ecological research is essential to address environmental issues such as climate change, species extinction,
and conservation efforts [3]. The ability to present complex data in a clear, audience-tailored manner
can foster interdisciplinary collaboration, secure research funding, and translate scientific discoveries into
actionable strategies. The motivation for our work stems from the need to simplify the generation of high-
quality presentations from scientific manuscripts and supplementary materials, thereby reducing the time
researchers spend on formatting and allowing them to focus on core scientific questions [4].

2.3 Solution
AutoDeck-AI integrates advanced artificial intelligence techniques to automatically generate presentations
tailored to the needs of ecological research audiences. In our approach, we generate ecological research
presentations tailored to specific audiences, including researchers, practitioners, and funding organizations.
The solution automatically extracts visual elements such as images, charts, and tables from the uploaded
manuscript, generates corresponding captions and assigns them to the appropriate slide sections; a func-
tionality notably absent in existing tools. Moreover, the pipeline is designed to work efficiently even with
incomplete drafts or abstracts accompanied by supplementary materials, rendering it uniquely adaptable for
preliminary research presentations. Our system leverages a fine-tuned language model (based on GPT-4)
to generate appropriate content for the targetted audience. The resulting outputs are merged using prompt
engineering techniques to remove redundancies and ensure clarity, and they are subsequently formatted into
a professional PowerPoint presentation via python-pptx. This integration of multiple data streams ensures
that the final slide deck is both scientifically robust and practically applicable [5].

Figure 8: End-to-end workflow of AutoDeck-AI system: From user input (PDF/abstract) through content
extraction, audience-specific slide generation, to validated PowerPoint output. Dashed lines indicate optional
processing paths.
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2.4 Non-technical Description
AutoDeck-AI offers an intuitive, user-friendly interface that enables researchers and practitioners to gen-
erate high-quality presentations without extensive manual formatting. Users simply upload their scientific
manuscripts or abstracts along with supplementary materials. The system then processes the documents,
extracts essential figures and tables, and automatically organizes the content into a cohesive slide deck. This
streamlined approach not only saves time but also improves the accessibility of complex scientific information,
making it easier for non-experts to understand and apply the findings.

2.5 Technical Description
The tool uses PyPDF2 and PyMuPDF to extract text, figures, and tables from PDF/abstract and supplemen-
tary materials, using heuristics to detect visual components and GPT-4o to create synthetic labels, content
generation based on prompts and content structuring. Content is designed for academics, practitioners, and
funding organizations, and uses customizable themes to increase engagement.

Text is divided into coherent sections and slides are created with integrated images and subtitles. FAISS
embeddings facilitate rapid information retrieval, while python-pptx ensures consistent, high-quality pre-
sentations. Effective error handling ensures results despite processing complications and facilitates the
development of professional, audience-focused slideshows.

Figure 9: Core technical pipeline of AutoDeck-AI showing PDF/abstract processing through PyMuPDF
extraction, component classification with GPT-4, and FAISS vectorization for content structuring.

2.6 Future Recommendations
Future work should focus on further enhancing retrieval precision by incorporating hierarchical vector stores
and context-specific filtering techniques. In addition, extending the system to support multilingual queries
and integrating voice recognition could make the tool accessible to a broader audience. Real-time data
integration from IoT devices and environmental sensors would also allow the system to provide dynamic, up-
to-date presentations. Finally, offering customizable slide templates could further empower users to create
presentations that best suit their specific needs.
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3 Agri Chatbot: From Science to Soil
Authors: Vamsi Krishna Kommineni, Anne Peter, Caren Daniel, Alexander Espig

3.1 Problem Addressed
Farmers often encounter an overwhelming amount of information from diverse sources, including scientific
literature, research data, and agricultural advice platforms [1, 2]. This information overload complicates the
process of extracting actionable, relevant insights that can aid in decision-making [3, 1]. Farmers require
a system that simplifies the discovery of critical information, enabling them to apply scientific knowledge
effectively to their specific agricultural contexts [4, 5]. This challenge calls for a solution that makes accessing,
interpreting, and applying scientific research, structured data, and expert advice easier.

3.2 Motivation
The agricultural sector faces increasing demands to improve efficiency, sustainability, and resilience to climate
change [6]. To meet these challenges, farmers need timely and relevant scientific insights. However, navigating
the vast landscape of scientific articles, datasets, and advisory resources can be daunting, especially when
the information is fragmented or complex [5]. Motivated by the need to bridge this gap, our goal was to
build a solution that would empower farmers with quick, science-backed answers to their questions, thus
enabling informed decision-making while minimizing the complexity of accessing and interpreting scientific
data.

3.3 Solution
This solution provides farmers with a simple user interface (UI) connected to a three-stream pipeline powered
by Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG). The pipeline processes
agricultural data from three sources: 1) 201 scientific publications and articles, 2) Over 500,000 scientific
tabular data entries, including crop information, pesticide information, and some environmental datasets,
and 3) Direct Query Responses (LLM answers the query based on its trained data). A Streamlit UI allows
farmers to interact with the system, input queries, and refine their prompts for better results, ensuring they
receive scientifically-backed and actionable information. We used LLaMA 3.3-70B as the LLM and a FAISS
vector store in our proposed workflow.

3.4 Non-technical Description
Farmers are often overwhelmed by the information available, making it difficult to find valuable insights for
improving their practices. Our solution simplifies this process by providing an intelligent chatbot combining
scientific research publications and tabular data to give farmers clear and actionable answers. Through
a user-friendly chatbot interface, farmers can ask specific queries and receive responses grounded in both
the latest research and practical data. Moreover, the system offers practical guidance on improving query
formulation, enabling farmers to get better results over time.

3.5 Technical Description
From a technical standpoint, the solution implements a three-stream pipeline (Figure 1) that leverages RAG
to enhance the accuracy and relevance of responses:

• Vector Database for Scientific Publications: A vector store is created from 201 scientific publications
and articles, and an RAG model retrieves the most relevant documents in response to a user query. An
LLM then processes the retrieved documents to generate detailed and contextually accurate answers.

• Vector Database for Scientific Tabular Data: Similarly, the system creates a vector store for more
than 500,000 scientific tabular data (e.g., agricultural datasets). It uses RAG-based retrieval to fetch
relevant data points in response to specific queries. The system processes these data points to provide
a comprehensive data-backed answer.
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Figure 10: Overview of the approach

• Direct Query Processing with LLM: When a user asks a question, the LLM processes the query and
generates a response based on its trained knowledge. This is done through the LLM’s built-in capabil-
ities, using its pre-existing knowledge. This part of the pipeline is more helpful when the information
about the query is not available in scientific publications and larger datasets.

Fusing answers from all three streams is key to the solution, ensuring the final response is scientifically
accurate and practically applicable. The system also uses a prompt to refine and streamline the responses
by removing redundancy and providing clarity.

Finally, a Streamlit UI is used to interact with the solution, which not only allows farmers to input
questions via a chatbot interface but also includes a side panel designed to guide farmers in writing effective
prompts for better results

3.6 Recommendations for Future Extensions
• Vector Store and Retrieval Improvement: Enhance retrieval with techniques like hierarchical vector

stores or context-specific filters to improve speed and precision.

• Multilingual Support and Voice Commands: Add support for multiple languages and integrate voice
recognition, allowing farmers to interact using natural language in their preferred language.

• Real-time Data Integration: Incorporate real-time data (e.g., weather, IoT devices) for more accurate
and personalised responses.
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4 FarmGuide: A bridge between scientists and farmers for natural
agriculture practices

Authors: Bartolome Ortiz-Viso, Lorenz Gunreben, Mir Nafis Sharear Shopnil, Nayanika Das

4.1 Problem Addressed
Scientific findings on crop protection, pollination, and pest management are often scattered across numerous
research papers, making it challenging for farmers to apply this knowledge in their daily practices effectively.
The absence of easily accessible, science-based insights results in suboptimal decision-making, which can
negatively impact crop yields, sustainability, and economic outcomes. Ultimately, this situation undermines
farmers’ ability to make well-informed decisions. Furthermore, the way information is presented on this
topic is crucial. Insects, for example, can be seen both as beneficial pollinators and as harmful pests [1, 2].
With the ongoing decline in insect populations, explaining their essential role and the importance of their
preservation for agriculture has become a significant challenge that needs to be addressed.

4.2 Motivation
Insect-plant interactions are fundamental to agricultural ecosystems [3, 4], directly influencing crucial pro-
cesses such as pollination, pest control, and crop health. These interactions are key to improving crop yields
and promoting sustainable farming practices [5]. However, farmers face significant barriers when accessing
and applying scientific research. The sheer volume of literature, the specificity and context dependability
of it [6] combined with the technical language and complexity of ecological studies, makes it difficult for
farmers to extract relevant and actionable insights.

As a result, the valuable knowledge from scientific research often remains out of reach for those who
need it most. Bridging this gap is necessary and critical to equipping farmers with the tools and knowledge
required to make informed, science-backed decisions that promote crop protection, increase productivity, and
ensure environmental sustainability [1, 7]. By making complex research more accessible and understandable,
we can drive positive change in agricultural practices and improve outcomes for farmers, biodiversity and
ecosystems.

Figure 11: Farmguide logo.

4.3 Solution and Non-technical Description
The solution we propose for this problem is called Farmguide (Figure 11). It leverages large language models
(LLMs) to extract features that help identify which research articles might be helpful for farmers across
various scenarios. Once these articles are identified, we use LLMs to enable farmers to interact with the
information in natural language. This allows them to ask questions, better understand the articles, and
make informed decisions about whether to implement the recommendations and how to do so effectively. To
achieve this, we have developed a graphical interface that provides a service where farmers can input basic
information about their crops, ecosystem and cultivation method.
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The system then suggests relevant articles, provides tailored advice, and activates a natural language
chat feature. Through this chat, users can ask questions and receive answers as if engaging in a conversation
(Figure 13).

4.4 Technical Description
We develop a pipeline (See Figure 12 for a complete diagram of the pipeline) designed to process a collection
of scientific articles and perform unsupervised label extraction using a Large Language Model (LLM). The
system leverages each article’s title, abstract, and results sections to identify and extract key attributes
such as geographic location, ecosystem type, agricultural dynamics, and crop species. This automated
process generates an initial dataset (Table 2) that includes the original articles, a set of extracted labels, and
complementary textual responses produced by the LLM.

Paper title Country Crop Ecosystem Agriculture Region Additional
data

Functional land cover scale for
three insect pests with contrast-
ing dispersal strategies in a frag-
mented coffee-based landscape
in Central Kenya

Kenya Coffee Agrosystem Smallholder
agriculture

Eastern
Africa
highlands

Abstract,
results,
ques-
tions...

Making biodiversity work for
coffee production. A case study
of Gayo Arabica coffee in In-
donesia

Indonesia Coffee Tropical rain
forests and
savannah type
ecosystems

Not stated Sumatra
(Gayo
highlands)

Abstract,
results,
ques-
tions...

Table 2: Extract from the data frame generated as the first step of the Farmguide pipeline.

To support user interaction, we developed a Flask1-based web service (screenshots in Figure 13) that
allows dynamic querying and ranking of articles. The service is modular and can connect either to a locally
hosted LLM (e.g., Llama 3.2 served via Ollama3) or a cloud-based model through API keys (e.g., GPT-44).
Within our web interface, users configure a profile selecting their thematic or research interests; this profile
collect users crop, location, surrounding ecosystem, etc.

Once a profile is selected, the system computes the semantic similarity between the user’s profile and
all extracted labels using sentence embeddings (all-MiniLM-v65). Each label type (e.g., crop, location) is
assigned a configurable weight to reflect its relevance to the user query. These weighted similarities are then
aggregated using a weighted average to generate a ranked list of articles most relevant to the selected profile.

This ranked list is used in two ways:

• As contextual grounding for prompt generation sent to the LLM.

• As a visual or summarized output for the user, either as a ranked article list or a concise evidence
summary.

Finally, the system integrates both user-defined parameters and the top-ranked contextual information
into the LLM prompt, enabling customized, context-aware response generation.

4.5 Recommendations for Future Extensions
Multiple extensions could offer valuable scientific knowledge from this project; we highlight some of them:

1https://flask.palletsprojects.com/en/stable/
2https://ollama.com/library/llama3.1
3https://github.com/ollama/ollama
4https://platform.openai.com/docs/models
5https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Figure 12: Farmguide schema, describing the system’s steps and the system’s different inputs and outputs.

Figure 13: Farmguide screenshots from profile gathering and LLM interaction after it.

• Label extraction in FarmGuide enables experimentation with various approaches. A comparative
analysis of these methods would provide valuable insights and offer clear guidelines for selecting optimal
strategies for future projects.

• The initial weights for the similarity calculation were set based on an ecologist’s recommendation, with
higher importance given to crop type and ecosystem over country and type of agriculture. This reflects
the overlap of ecosystems within countries and the difficulty of clearly defining farming types. In future
versions, these weights could be shaped by input from multiple users and experts, allowing for more
diverse and context-specific configurations. Additional factors provided by farmers—such as irrigation
methods, pesticide use, or crop rotation—could also be integrated to refine the similarity assessment.

• Another noteworthy feature is the evaluation through similarity metrics. How we handle the different
weights and which embeddings and metrics we use could offer valuable insights for future research
projects. From a more functional perspective, FarmGuide has the potential to expand across multiple
crops and ecosystems by upgrading and enlarging the corpus of articles utilised.

• Additionally, farmers could gain access to information on how to reach scientists while providing feed-
back on the usefulness and accuracy of the responses and suggestions for improvement. Simultaneously,
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scientists could play a crucial role in reviewing the feature extraction process and recommending ad-
ditional articles for inclusion in the system.

4.6 Supplementary material
• The code, explanations, documentation, visuals, and everything we generated in the project are hosted

in this GitHub repository: https://github.com/Gunreben/FarmersGuide.

• Demo video link: we link a demo video of the project prototype. In the video, you can see the
capabilities of our prototype, the graphical interface and the additional interactions a user may have
with it. https://www.youtube.com/watch?v=g3sFBekraBA
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5 DiversiTeam at EcoHack-2025: EcoSearch
Authors: Sarah T. Bachinger, Daphne Frederike Auer, Edward Gow-Smith

5.1 Motivation and Problem Addressed
When searching for research papers in ecology, the distribution of returned papers with respect to certain
diversity metrics may not be particularly heterogenous. For example, research paper search engines (such
as Google Scholar) may return papers predominantly from the global north, or from a westernised scientific
viewpoint, rather than research representing indigenous or local ecological knowledge. Such biased distri-
butions will reduce the diversity of research easily accessible to ecologists, limiting the well-roundedness of
conclusions, and thus potentially hindering the quality of subsequent research. We develop a tool which
allows the user to specify the desired geographical distribution of papers, and thus diversify the results.

5.2 Solution
We develop a tool (EcoSearch) which allows users to search for papers in the field of invasion biology based
on keywords, and then to diversify the results based on the continent of affiliation of the first author. Our
work involves: (1) expert interviews to identify key attributes, focusing on the first author’s continent; (2)
indexing 37,000 invasion biology papers, partially from [1], extracting affiliation and hypothesis data; (3)
implementing search with BM25 and a Bi-Encoder, optimized for CPU use. This is based on previous work
from [2]. (4) A Streamlit-based UI with sliders for filtering and result diversification.

Figure 14: EcoSearch dashboard prototype

5.3 Non-technical Description
First, a sample query can be selected. This would be the search term a user would enter in a running system,
i.e. the keywords of interest for finding papers. Then, the search results are shown, as well as the information
about some metadata, which is the continent of the first author’s affiliation in our example. If desired, the
results will be re-ordered to show publications from a new continent distribution, allowing the results to be
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easily diversified. Therefore, the user changes the distribution for the different continents on the left. We
also generate summaries from the first five results of the rankings with an LLM.

5.4 Technical Description
The hackathon project was coded in Python and all dependencies are listed in the file environment.yml,
which can be installed with Conda.

DATA The folder data/invasionBio contains all relevant documents. The DOIs of the publications used
can be found in corpus dois.csv. These DOIs were then used to download the title and abstract. Labels for
the countries and continent of the first author’s affiliation and labels for the hypothesis theme can be added
as metadata with the files code/DatasetCreation.ipynb and code/adding attribute labels.ipynb.

SEARCH Executing the file retrieval base.py creates a ranking using BM25 and the Transformer-based
Bi-Encoder. The first 500 results can then be reranked based on a new target distribution by running
rerank.py. The target distribution can be passed as a terminal argument. To prepare the result list for the
user interface, run create final data.py. The code is licensed under MIT.

USER INTERFACE The whole graphical user interface is saved in the gui/streamlit.py file. For the
demo, we used pre-calculated queries and attribute distributions. The search results are stored in the folder
out.

5.5 Recommendations for Future Extensions of Your Solution
The majority of extensions address the integration of further attributes that are important in the ecology
domain. As it stands, our tool only diversifies based on the continent (of affiliation) of the first author. But
there are many other metrics with which one may want to diversify the search results. Some avenues are:

• To show context-based expertise, for example, one could show the affiliations of the partners. This
could be used for clustering institutions that are active in a certain type of research, which could be
valuable for both researchers to show areas for collaboration, as well as to write grants.

• An interesting topic is to show search results containing indigenous knowledge. This includes both
academic research and grey literature. The former could be labelled as such using keywords to search
in the abstract like local, expert knowledge, indigenous, and community-specific keywords like Inuit,
Cree, etc. The latter is more difficult to find, but potential sources include practitioner reports from
agricultural institutes. As a website, https://www.ipbes.net/ was mentioned as a further potential
source.

• Using the study site for the continent representation in contrast to the author affiliation might highlight
underrepresented areas. New attributes could include ecosystems like wetlands, forest for countries or
continents.

We experimented with LLM-based summaries of the first five papers, but decided against implementing
that in the first prototype. If used, one could have the summaries for both unfiltered and diversified results
and compare both, which would be of interest to a researcher looking for two different viewpoints on an
issue. The LLM-based summaries would provide, in general, an efficient overview of the returned results.

It would be beneficial to perform some evaluation of our tool. In particular, we could conduct a user
study of the GUI and of the reranking in order to assess the benefits, drawbacks, and utility of our tool.

Another idea would be to automatically generate features for the domain of interest. Currently, we
have restricted our search results to the field of invasion biology, for which we have a number of defined
subfields. However, one could use for example GraphRAG (where a knowledge graph is generated with
LLMs: [3]) to extract features from the dataset in an unsupervised way. These features would then be used
for diversification, allowing our tool to be used in a domain-agnostic fashion.
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6 Matchbox at EcoHack-2025: Empowering Ecology Research with
Efficient Concept Mapping

Authors: Marc Brinner, Nadeen Fathallah, Tarek Al Mustafa

6.1 Problem Addressed
The increasing scale of ecological research presents challenges in systematically identifying and mapping
concepts across scientific literature. Current methods for concept extraction and ontology mapping are
inefficient, lack contextual disambiguation, and fail to account for semantic variation, resulting in inconsistent
or incomplete connections between research papers and domain-specific ontologies.

Figure 15: MatchBox user interface showcasing the ontology-concept disambiguation pipeline in action. The
tool highlights relevant concepts in a user-submitted scientific abstract using a trained DeBERTa model
and semantic embedding techniques. The left panel shows a user-submitted scientific abstract with auto-
matically highlighted candidate concepts extracted using a DeBERTa-based token classification model. The
top five ontology concepts retrieved for the selected term are displayed on the right panel with definitions
and confidence scores, enabling fine-grained semantic alignment between ecological texts and ENVO/INBIO
ontologies. The figure shows the concept disambiguation process for the selected term ”western Mediter-
ranean Sea,” along with its top-ranked ontology matches, such as marine neritic zone and coastal water
body. Top-ranked ontology matches are retrieved using embedding-based matching and LLM-based rerank-
ing to determine conceptual alignment. The system supports interactive exploration and real-time reranking
through a fine-tuned LLM-based concept verifier.

6.2 Motivation
Efficient concept mapping is critical for advancing ecology research, particularly in areas like invasion biology,
where systematic literature reviews play a central role. Existing approaches rely heavily on keyword-based
search and manual curation, which are time-consuming and error-prone. By leveraging modern advances in
large language models (LLMs) and transformer-based architectures, we aim to create an automated pipeline
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that streamlines concept extraction, semantic embedding, and ontology alignment. This enables researchers
to locate, interpret, and integrate scientific knowledge more effectively.

6.3 Solution
We developed an end-to-end pipeline that combines advanced LLMs and transformer-based models to per-
form accurate and efficient concept extraction and ontology mapping. Our approach involves:

1. Using an LLM (Llama-3-8B-Instruct) to extract and define relevant concepts from ecological abstracts.

2. Training a series of DeBERTa-based models for token-level classification, definition embedding, and
semantic similarity scoring.

3. Implementing a reranker model to improve precision by verifying semantic alignment between text
concepts and ontology definitions.

4. Creating an interactive matching tool and a concept-based search engine that enables exploration of
semantically related literature.

6.4 Non-technical Description
Our solution simplifies how ecologists discover and connect concepts in scientific texts. Imagine reading
a research paper and wondering how its ideas align with existing scientific frameworks like the ENVO or
INBIO ontologies. Our tool highlights key terms, identifies their meanings, and connects them to related
concepts in ecological databases. For instance, if a paper mentions “invasive species,” the tool identifies this
term and links it to similar concepts and definitions across various scientific texts. It also lets users search
for papers that share conceptual overlaps, even when the language differs. This system reduces the manual
effort required to find and interpret related research, empowering ecologists to focus on advancing their field.

6.5 Technical Description
As the basis for our experiments, we use a subset of 6000 paper titles and abstracts that address invasion
biology from a dataset collected using a Wikidata query [1]. We then proceeded to extract concepts from the
abstracts by prompting an LLM (Llama-3-8B-Instruct) to identify single-word or multi-word concepts that
potentially match concepts contained in ontologies like the ENVO. Then, we again used the same model to
generate five definitions for each extracted term, with the corresponding scientific abstract being provided
as additional context to ensure that the model generates a definition that explains the actual meaning of the
concept as used in the abstract. As a second part of our dataset, we used the INBIO ontology [2], and the
ENVO ontology [3], which contain the concepts we want to link to the concepts that occur in the scientific
texts. For these concepts from the ontologies, we created five additional definitions using the same LLM.
Again, we ensured that the definitions match the exact meaning of the concept from the ontology by defining
the term that is provided by the ontology as context for the LLM. The resulting dataset contains many
concepts from the ontology or concepts extracted from abstracts, both in combination with corresponding
definitions. We used this dataset to create a pipeline leveraging four different models to perform automatic
term matching between ontology and abstracts:

We trained a DeBERTa-base model to recognize relevant concepts (as identified by the LLM) in a scientific
abstract. We treated this as a token-level classification problem so the model could predict scores for each
token in the abstract, indicating whether it was part of a relevant concept. We trained the model to predict
label 1 for the first token of every word that the LLM extracted and to predict label 2 for each subsequent
token of that concept to determine exact concept boundaries even if two concepts are next to each other.
The loss function we used is the categorical cross entropy for the two “positive” labels (1 and 2). For label 0,
we decided not to use the categorical cross-entropy since it would strongly punish if additional tokens were
selected as relevant if the LLM did not. This would be undesirable since we assume that the LLM might
not have extracted all relevant concepts. Thus, we instead included an L2 penalty that drives the average
probability of labels 1 and 2 to zero for all tokens not marked as relevant by the LLM. This “softer” method
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of driving relevance scores of non-relevant tokens to 0 ensures that the model is not punished much if it
predicts additional concepts as relevant, as long as this is rarely done.

The second model we created is a definition embedding model that transforms definitions of concepts into
dense vector representations. We again used the DeBERTa base and trained it by predicting embeddings
for two definitions of the same concept (with both originating from the same abstract or the same concept
in the ontology to avoid potentially mixing definitions of different concepts that have the same name (e.g.,
invasion can be used in the medical context, which differs from invasion in ecology)) and training the model
to predict similar embeddings for those two definitions, while predicting different embeddings for unrelated
concepts. For that, we used a margin-based triplet loss: Given an anchor definition A, a positive sample B
(i.e., a definition of the same concept as A,) and a negative definition C (defining a different concept), we
defined two distances d1 = ||A − B|| and d2 = ||A − C|| and defined the loss L = relu(d1 − d2 + 1) We used
in-batch negatives and computed this loss for all possible pairs of positive and negative samples in the batch
for a single gradient update. The resulting model embeds definitions into an embedding space that places
definitions of similar concepts close to each other.

The definition embedding model allows for matching concepts from texts to concepts from the ontology
by first generating a definition for the concept from the text, embedding it, and comparing that embedding
to the embeddings for the definitions from the concepts in the ontology. However, this process is inefficient
since it requires generating a definition for each concept of interest in a given text. We, therefore, trained an
additional embedding predictor that takes a scientific abstract and directly predicts the embedding of each
token, which can then be quickly matched with the ontology embeddings. To do that, we again leveraged
our existing dataset: For a given abstract and relevant terms extracted by the LLM, we first embedded the
definitions of those concepts using the model trained in the previous section and then used those embeddings
as ground truth for training the DeBERTa model (using an L2 loss) to directly predict that embedding for
the corresponding token in the abstract without ever seeing the definition. In this way, we created a model
that directly predicts semantic embeddings for every relevant concept in the text in a single forward pass.

The resulting models are able to quickly find relevant concepts from the ontology for a given concept in
an abstract. A potential problem with this method is that similar concepts will have similar embeddings,
so multiple similar concepts are retrieved without a precise relevance ranking. The model never saw the
textual and ontology concepts simultaneously (because their embeddings are predicted in separate models).
Therefore, we trained a reranker model, a fine-tuned version of Llama-3.2-1B-Instruct. This model receives
three pieces of information as input:

• A sentence from the abstract

• The concept that we are interested in (i.e., a word from the sentence)

• A definition.

The model is then fine-tuned to return “yes” if the given definition matches the concept from the text and
“no” otherwise. The training was done using the definitions generated for the abstract terms as positive
samples and random definitions generated for other abstract concepts as negative samples. The resulting
model can thus identify if a given concept from the ontology (with corresponding definition) matches a
concept from the text.

We created a matching tool that uses all models to perform real-time term matching between user-
provided input texts and the INBIO and ENVO ontologies. If the user provides a text, the tool first uses the
concept extraction model to extract relevant terms. Then, it uses the abstract token embedding model to
generate semantic embeddings for each concept in the abstract. These are then compared to the embeddings
of all ontology concepts (which were precomputed using the definition embedding model). Finally, the top 5
candidates that were retrieved in this way for each concept are plugged into the reranker model (together with
the sentence in which the concept appears in the text) to create a final ranking of the semantic relatedness
of the concepts. This ranking is presented to the user if they click on one of the detected concepts, which
we highlight in the text.

Finally, we used our models to create a concept-based scientific search engine. If the user provides an
abstract, we again use the abstract token embedding model to generate semantic embeddings for each concept
from the abstract so that we essentially have n embeddings of relevant concepts representing a given abstract.
We did the same for each abstract in our dataset. To check the relatedness of the two abstracts, we compute
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the pairwise distances between all concept embeddings that represent the two abstracts. To decide if a
candidate paper matches our query paper, we take the minimum distance from each query-paper-embedding
to any other embedding from the candidate to get a score for each concept from our query that represents
if that concept is also addressed in the other abstract. We then average all concepts in the query to get a
single score that measures the overall concept overlap between the two papers. We found this method highly
successful at matching related concepts, even if the same words in the abstracts do not represent them.

6.6 Recommendations for Future Extensions
1. Since this project was coded in the context of a hackathon, the time for model training was sparse.

Therefore, it should be possible to enhance the system further by enhancing the models used and how
intricately they were trained.

2. Expand the system to process paper abstracts and full-text papers.

3. When talking to domain experts, it became clear that literature search is a huge practical issue in the
domain. The manual effort needed for systematic literature reviews could be reduced drastically using
similarity embeddings instead of keyword search approaches. We imagine a future system to look like
this:

• Input: ‘I’m looking for papers that contain the concept [invasive species]. Return papers that use
the concept like it is used in this example [pasted paper abstract by user].’

• Output: Papers containing a concept with an embedding similar to the embedding for [invasive
species] produced from the user query.

6.7 Supplementary material
• All code, documentation, and project materials are available in our GitHub repository: https://

github.com/EcoWeaver/EcoHack-Ontology-Concept-Disambiguation

• Demo video- A walkthrough of the prototype, showcasing its features, user interface, and interactive
capabilities: https://www.youtube.com/watch?v=ffpOjGeaZlI
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7 EcoSci Recommender
Author: Samira Korani

7.1 Problem Addressed
The primary aim is to address the challenge of organizing, analyzing, and understanding research contri-
butions, methodologies, and expertise across disciplines to facilitate innovation, detect research gaps, and
foster collaboration. The problem can be broken down into the following aspects:

• Mapping Research Contributions

• Understanding Methodologies

• Validating Research Outcomes

• Interrelating Research Topics

• Institutional Research Focus

• Domain and Skill Mapping

By addressing these problems, this framework aims to build a robust, structured, and actionable knowl-
edge base that not only enhances understanding of the research landscape but also facilitates targeted
discovery and collaboration.

7.2 Motivation
The motivation for developing a framework to map research contributions, methodologies, expertise, and
institutional focus stems from the increasing complexity and volume of academic research. As the global
research ecosystem grows, significant challenges emerge in identifying innovation opportunities, detecting
research gaps, and fostering interdisciplinary collaboration.

7.3 Core Components of the Solution
1. Entity and Relationship Extraction

2. Knowledge Graph Construction

3. Data Sources and Integration, APIs and datasets from scholarly repositories (e.g., Semantic Scholar,
PubMed, CrossRef, OpenAlex).

4. LLM-Powered Agent

5. Web Service applications

7.4 Non-technical Description
Imagine a tool that works like a highly intelligent research assistant, designed to help scientists, researchers,
and institutions navigate the overwhelming amount of research being published every day. This tool is
powered by advanced artificial intelligence (AI) and focuses on simplifying the process of discovering new
ideas, understanding research trends, and finding gaps where important questions are yet to be explored.
Here’s how it works:

• Finding Key Contributions

• Understanding Methods and Approaches

• Spotting Research Gaps

• Connecting the Dots

• Highlighting Expertise
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7.5 Technical Description
• Data Collection Layer

• NLP Layer - Relation and Entity Extraction

• Knowledge Graph Construction

• User subgraph construction

• API integration

• LLM-Powered Agent (Task-Specific Tuning)

• Update the Graph

• Web app service

7.6 Future Extensions
Ecology Semantic Search Engine
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8 BioSim: A Multi-Agent Framework for Biological Invasion Sim-
ulation

Authors: Zijian Ling, Shuhan Miao

8.1 Problem Addressed
Biological invasions pose severe ecological and economic challenges worldwide. Invasive species can outcom-
pete native species, disrupt ecosystems, and cause significant financial damage to agriculture, fisheries, and
water systems [1]. Traditional simulation models for biological invasions often lack adaptability, scalabil-
ity, and generalization, making it difficult to predict species interactions in diverse ecological contexts [2].
To address these limitations, we propose an LLM-based multi-agent framework that enhances simulation
scalability and generalizability.

Figure 16

8.2 Motivation
The increasing prevalence of invasive species has made it essential to develop more robust and dynamic simu-
lation models. Traditional models are often rigid, requiring extensive parameter tuning and predefined rules,
limiting their ability to adapt to new ecological scenarios. Recent advancements in Large Language Models
(LLMs) and multi-agent systems offer a promising alternative, allowing simulations to integrate real-time
data, reason collaboratively, and dynamically adjust based on environmental conditions [3]. Our motivation
stems from the need for a scalable, generalizable, and data-driven solution that supports conservation efforts
and invasive species management.

8.3 Solution
Our proposed framework, BioSim, leverages LLMs and a multi-agent system to simulate biological invasions.
BioSim consists of interconnected components, including structured input data, literature data integration,
agent initialization, simulation execution, and evaluation. The model enables agents (representing invasive
and native species) to interact, adapt, and reason collaboratively based on ecological rules and real-time
data. The system also provides simulation visualization and analysis tools, facilitating decision-making in
conservation and ecological management.
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8.4 Non-technical Description
The BioSim framework models the interactions between invasive and native species in a simulated environ-
ment. Consider the case of zebra mussels vs. native freshwater mussels in the Great Lakes. Zebra mussels,
being invasive, reproduce rapidly and outcompete native mussels for food and habitat. Our framework simu-
lates these interactions by allowing agents (representing the species) to behave based on predefined ecological
principles and real-time learning. Over time, the simulation demonstrates how native species decline, how
invasive species adapt, and how environmental changes influence population dynamics. The results help
ecologists and policymakers develop more effective mitigation strategies.

8.5 Technical Description
BioSim employs a multi-agent architecture where each agent represents a species with specific behavioral
rules. The system integrates:

• LLM-driven reasoning: Agents utilize an LLM for decision-making, adjusting behaviors dynamically
based on environmental inputs.

• Collaborative multi-agent interactions: Agents simulate group dynamics, resource competition, and
ecological shifts.

• Data-driven modeling: The framework incorporates literature-based ecological models and real-world
data.

• Simulation workflow: The process involves setup, initialization, running the simulation over multiple
timestamps, and evaluation.

• Visualization tools: Results are presented through charts and models to aid analysis.

8.6 Recommendations for Future Extensions
While BioSim provides a strong foundation for biological invasion simulation, future enhancements could
include:

• Advanced framework: Optimize multi-agent framework to support more realistic, comprehensive, and
large-scale simulations.

• Expanded species interactions: Incorporate more species to model complex ecological webs including
one-to-one invasion and many-to-many scenarios.

• Geospatial modeling: Integrate GIS-based environmental data for region-specific predictions.

• Climate impact integration: Simulate how climate change alters invasion dynamics.

• Policy testing and intervention strategies: Develop scenarios where different control measures (e.g.,
eradication efforts, habitat restoration) are tested in the simulation.
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9 Healing Factor at EcoHack-2025: Forecasting Ecosystem Re-
covery Efforts in Ukraine

Author: Andrii Krutsylo

9.1 Problem Addressed
The war in Ukraine has caused severe damage to local ecosystems, including burned forests, polluted waters,
and disrupted wildlife habitats [1]. Traditional restoration efforts are labor-intensive and rely on low-tech
methods, making it difficult to efficiently assess and manage restoration progress across vast affected areas.
In addition, strict government protocols limit the integration of innovative machine learning solutions into
disaster recovery operational planning and resource management.

9.2 Motivation
Effective ecological restoration in conflict-affected regions such as Ukraine requires strategic allocation of
limited resources to maximize restoration outcomes. Given the scale of environmental degradation and
regulatory constraints, there is a critical need for data-driven insights to guide where additional interventions
will have the greatest impact on ecosystem recovery. Optimizing the balance between intensity of intervention
and breadth of coverage can improve the efficiency and effectiveness of ecosystem restoration.

9.3 Solution
Healing Factor addresses this need by using Microsoft Planetary Computer’s Sentinel-2 satellite imagery to
predict the Normalized Difference Vegetation Index (NDVI), a key indicator of vegetation health [2]. The
system analyzes NDVI trends to identify areas in Ukraine that are on track for ecological recovery and
highlights regions that require further intervention. This approach provides strategic insight to optimize
resource allocation and focus restoration efforts where they are most needed and effective.

9.4 Non-technical Description
Healing Factor is a tool designed to help restore Ukraine’s damaged ecosystems by using satellite imagery
to monitor vegetation health. It processes these images to create maps that show which areas are recovering
effectively and which need additional support. These maps allow organizations and decision-makers to
allocate their efforts and resources more efficiently, ensuring that restoration initiatives are both effective
and timely.

9.5 Technical Description
9.5.1 Data Collection

Healing Factor uses Sentinel-2 satellite data accessed through the Microsoft Planetary Computer [3, 4]. The
data retrieval focuses on four spectral bands: B02 (blue), B03 (green), B04 (red), and B08 (near infrared).
Monthly satellite images within specified bounding boxes and date ranges are collected to monitor targeted
regions over time.

9.5.2 Preprocessing

• Monthly data recovery: Selects images with minimal cloud cover using Planetary Computer’s STAC
API, limiting to a maximum number per month to ensure data quality.

• Mosaicking: Combines multiple images into a single GeoTIFF per month by applying a pixel-wise
median function for each spectral band, resulting in a coherent monthly mosaic.

• Time-series windowing: Creates sequences of three-month windows from the monthly mosaics to
predict the NDVI for the subsequent month.
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• Patch Extraction: Divides each spatiotemporal sample into manageable patches of size 128×128.

9.5.3 Model Architecture

Healing Factor uses a convolutional long-term memory neural network that effectively handles both spatial
and temporal dimensions of the data [5]. Spatial dimensions are captured by convolutional layers that
process the height and width of the image patches. Temporal dimensions are handled by LSTM units that
process the sequence of monthly data. After processing all time steps, the model outputs a single channel
representing the predicted NDVI for the following month.

9.5.4 Training

• Loss Function: Mean Squared Error (MSE) is used to quantify the difference between predicted
NDVI values and ground truth NDVI.

• Performance Metrics: The ConvLSTM model achieves an MSE of less than 0.02 after 50 epochs.

• Training Duration: Training takes approximately 2 hours on an NVIDIA GeForce GTX 1050Ti.

• Validation Strategy: Utilizes 20% of randomly selected patches from the targeted region for valida-
tion to ensure model generalization and prevent overfitting.

9.5.5 Output

The trained model generates predictive NDVI maps that indicate the health and recovery trajectory of
vegetation in targeted areas. These maps serve as strategic tools for identifying regions that are recovering
well and those that require additional intervention.

9.6 Future Recommendations
1. Expand ecological metrics: Include additional indicators such as water quality, soil health, and

biodiversity indices to provide a more comprehensive assessment of ecosystem restoration.

2. Enhance accessibility: Create a user-friendly web platform to regularly update and distribute
restoration maps, making the data easily accessible to stakeholders and the public.

3. Integrate with field data: Combine satellite predictions with on-the-ground observations to validate
and refine model accuracy [6].
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10 EcoLogic: A Benchmark for Causal and Correlational Reason-
ing of LLMs Based on Ecological Interactions

Author: Nico Heider

10.1 Introduction
Large Language Models (LLMs) have emerged as powerful tools for reasoning across diverse ecological tasks,
including recommendation systems, advanced text analysis, and computational simulations. While adept
at capturing complex statistical structures from language, their ability to perform causal and correlational
reasoning in domains with intricate interdependencies—such as ecology—remains underexplored. We address
this gap by introducing EcoLogic, a benchmark that evaluates LLMs’ capacity to reason based on causation
and correlation. Unlike existing reasoning benchmarks [1, 2, 3], EcoLogic provides examples grounded
in real-world ecological interactions and is explicitly designed to help Ecologists and Computer Scientists
select the most appropriate model for their specific tasks. The code and dataset is accessible at https:
//github.com/nheider/ecologic.

10.2 Causal and Correlational Reasoning in Ecology
In the context of ecology, correlational reasoning allows LLMs to infer patterns based on statistical associ-
ations. For example, the model might recognize that the population of a predator (e.g., lions) is correlated
with the population of its prey (e.g., zebras), based on prior knowledge of their interactions. However, this
reasoning does not imply causality—it merely highlights an observed relationship. This type of reasoning
is useful in situations where direct causal relationships may not be immediately clear, but there is enough
data to identify trends or patterns. Causal reasoning, on the other hand, is more complex and involves un-
derstanding the mechanisms through which one event (e.g., the introduction of a new predator) can directly
influence another (e.g., a decline in a prey population). It requires understanding the underlying dynamics of
the system, such as feedback loops and time-dependent effects. For example, if a keystone species is removed
from an ecosystem, causal reasoning would help predict how this would affect the population dynamics of
other species in the food web, even if those interactions are not explicitly observed in the training data. Since
ecological systems are inherently complex, characterized by multifaceted interactions among species, both
causal and correlational reasoning are essential for understanding and predicting outcomes. For instance,
understanding a trophic cascade—where changes in one species affect others across multiple levels of the food
web—given a list of animals in a habitat, requires correlational reasoning to construct a graph of interactions,
based on prior knowledge on the given species, and causal reasoning to model how these changes cascade
through the food-web at different time steps. Similarly, in LLM tasks, extracting a novel hypotheses from a
paper, and placing it in a causal graph needs the model to both understand how the hypothesis correlates to
known knowledge and reason causally how this new fact would interact with other entities. Figure 13 shows
a subset of a food-web and shows the intricate interdependencies that form a predator-prey relationship in
an ecosystem.

Figure 17: Example of a food-web sub graph generated from the GloBI Dataset [4].
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10.3 Benchmark Task
The EcoLogic benchmark introduces three distinct reasoning tasks, each testing a different aspect of reason-
ing. The causal Graph Reasoning task requires the model to predict the effect of a change in one species on
another species, based solely on a given causal structure. For instance, if the predator population increases,
how does that affect the prey population? This tests the model’s ability to reason through direct causal
relationships. In the correlational reasoning task, the model predicts the outcome based on observed corre-
lations, rather than causal structures. It might rely on prior knowledge that, for example, higher predator
numbers correlate with lower prey numbers, but without explicitly understanding the causal mechanisms
behind it. The mixed reasoning task combines both causal and correlational reasoning, giving the model
enough information to use both types of reasoning to make predictions. If LLMs are more than correlational
’stochastic parrots’ and also reason causally, we would expect better performance in the mixed task, than in
the pure correlational reasoning task. The main contribution of this project is a benchmark dataset consisting
of prompts describing food-webs and asking about the impact of species population changes, accompanied
by ground truth data.

Graph reasoning task. This task requires the model to predict the effect of a change in one species on
another species, based solely on a known causal structure. For instance, if the predator population increases,
how does that affect the prey population? We obscure the species and give the model no knowledge of the
origin of the task. This tests the model’s ability to reason through given causal relationships.

B lowers C, G, F and A. G lowers C, F and A. H lowers A. E lowers A. D lowers A.

If B declines, what is the immediate effect on the occurrence of C?

Does it a) increase b) decrease, or is there c) no change?

Ecological reasoning task. In this task, the model must predict the outcomes based only on observed
correlations from the training data, rather than a given causal structure.

Lynx canadensis, Marmota monax, Vulpes vulpes, Tamiasciurus hudsonicus, Le-
pus americanus, Vulpes vulpes harrimani, Mustela erminea richardsonii, Mustela
erminea form a food-web. Assume there are no other species present.

If the population of Lynx canadensis declines, what is the immediate effect on the population of Vulpes
vulpes?

Does it a) increase b) decrease, or is there c) no change?

Mixture task. The mixed reasoning task combines both causal and correlational reasoning, giving the
model enough information to use both types of reasoning to make predictions.
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Lynx canadensis preys on Marmota monax, Vulpes vulpes, Tamiasciurus hudsonicus and Le-
pus americanus. Vulpes vulpes preys on Marmota monax, Tamiasciurus hudsonicus and
Lepus americanus. Vulpes vulpes harrimani preys on Lepus americanus. Mustela erminea
richardsonii preys on Lepus americanus. Mustela erminea preys on Lepus americanus.

If the population of Lynx canadensis declines, what is the immediate effect on the population of Vulpes
vulpes?

Does it a) increase b) decrease, or is there c) no change?

10.4 Technical Implementation
We use a subset of the Global Biotic Interactions (GloBi) [4] dataset to generate smaller sub graphs (Mammals
with the interaction type ‘preys on’) which we then use as an equilibrium state of a discrete simulation with
one time step. We simplify the complex real world interactions between species to a basic set of rules: if
a species has more predators than pray it decreases, if there is more prey than predators it increases, else
there is no change. This is done to create a task we can automatically generate ground truth data for by
using a solver. More complex interactions, such as an agent-based simulation, could better reflect ecological
reality but would be computationally inefficient and challenging to evaluate LLM performance on, given the
stochastic nature of these systems. We find that LLMs generally understand the simplified task correctly.
We randomly change the population of one node and use a solver to find the change in a target node to
generate ground truth data. The presented approach makes it possible to create a large amount of dataset
entries with ground truth, without any labelling by hand. We generate basic prompts, so further refinement
can be done via prompt engineering to adapt the benchmark to the idiosyncrasies of the different models.

10.5 Preliminary Results and Future Research
Our preliminary results indicate that the current version of the EcoLogic benchmark is often too easy for
state-of-the-art frontier models, such as Claude 3.7 and ChatGPT 4.0. In contrast, smaller models, such as
Mistral 7B, frequently struggle with simple tasks like interpreting Latin animal names. We hypothesize that
this discrepancy stems from a lack of ecological training data in smaller models, though further investigation
is required to confirm this hypothesis. These findings underscore the importance of selecting models that
align with the specific requirements of the ecological tasks they are used for. The EcoLogic benchmark is
designed to assist ecology practitioners in identifying models that are both energy- and compute-efficient
while retaining sufficient capability for their applications. By leveraging large language models responsi-
bly, researchers can maximize their utility while minimizing climate impact. To enhance the benchmark’s
utility, we plan to increase its difficulty by incorporating a broader range of interaction types and animal
classes. Future work could focus on developing methodologies to better disentangle reasoning capabilities
from knowledge retrieval, enabling a more precise evaluation of model strengths and limitations.
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11.1 Problem Addressed
Existing techniques for monitoring the health of bird populations are time consuming and costly. Often
handling individual birds is required, causing undue stress. Even then, insight into the health of the whole
population can only be inferred, as monitoring the health of each individual is logistically impossible.

11.2 Motivation
Birds encounter various forms of anthropogenic stress, such as sound pollution, traffic, and loss of natural
habitat. Understanding where these stresses occur is crucial to implementing targeted and effective restora-
tion efforts. By pinpointing these areas of stress, conservationists can allocate resources more efficiently to
address specific ecological challenges.

Bioacoustic monitoring involves the detection of species from their vocalisations and has expanded rapidly
as an ecological monitoring tool, due to recent developments in the field of machine learning. Now, indi-
vidual species can be identified and located remotely and autonomously, enabling large-scale species-level
monitoring. However, current tools only use vocalisations to identify species’ presence. This overlooks the
potential to identify different calls within a species to infer the behavioural and ecological context of the
individual detected. Here, we focus on detecting bird stress via their alarm calls.

Figure 18: Training curve.

11.3 Solution
Birds are frequently monitored by recording their audio, which offers a cost-effective and scalable method for
studying phenomena such as bird migration. Importantly, birds produce distinct calls for different situations,
such as alert calls when they feel threatened. By classifying these calls, researchers can use them as proxies
to assess bird stress levels. This approach makes it possible to identify locations where birds encounter
harmful anthropogenic stress. The data obtained from tracking bird call types can guide efforts to plan and
implement ecological restoration projects more effectively.

11.4 Non-technical Description
In this work, we demonstrate the effectiveness of classifying bird call types in a preliminary experiment.
We train a classifier that can distinguish alarm calls from other calls or songs from three bird species from
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California: the Pied-billed Grebe, California Quail, and Black-necked Stilt. We focused on alarm calls, as
we hypothesize that these are most indicative of bird stress.

11.5 Technical Description
Data We use the BirdCLEF 2022 [1, 2] dataset, which includes audio recordings of 152 bird species, their
scientific and common name, the latitude and longitude of the recording, and the type of the recorded call.
To reduce the task complexity, we selected three species based on location and similarity in alarm calls.
We use the call type as the target and aim to predict whether a recording is an alarm call in a binary
classification.

Model We finetuned a BirdNet [3] model, which is a residual neural network designed to identify bird
species from their audio recordings. It consists of a pre-processing block, four residual stacks and a clas-
sification block. The Python script was obtained from the model GitHub repository, and the model was
fine-tuned with data segregated as alarm and non-alarm calls. Our trained classifier can be accessed through
a simple prototype website that we created with HuggingFace Spaces. The website tags the audio file into
either an alarm call or a non-alarm call.

Results Our classifier achieves over 90% AUPRC and AUROC on the training set (c.f. Figure 18), but
due to time constraints during the hackathon, we could not extensively evaluate it on a test set. Manual
inspection revealed a tendency to over-classify calls as alarm calls, which follow-up work should address.
While not deployment-ready, our results provide preliminary evidence that alarm call classification is both
feasible and important for restoration ecology.

11.6 Future Extensions
Our preliminary approach classifies the alarm and non-alarm class for three species located in California as
proof of concept. Future work could extend the classifier to include more species and a wider variety of calls.
With a more nuanced and detailed dataset one could further identify the age or gender of the bird, in order
to better understand a species’ demography. Of course, our classifier could also be further improved, for
example, by including longitude and latitude information which is common practice in SOTA bird species
classification models. Another potential way to improve our model’s performance is to first classify the bird
species, and then include the species information in the call classifier.

Finally, besides classifying birds from the audio files one could also directly classify anthropogenic sounds.
This would allow direct linking of bird behavior to human impact by providing fine-grained spatiotemporal
information on human activities.
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