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Abstract 37 

Repeatability (more generally known as intraclass correlation) represents an important quantity 38 

of interest in many scientific fields. It represents a metric for summarizing variance 39 

decomposition to identify sources of variation in an outcome of interest (e.g. organismal traits). 40 

The estimation of variance components is often achieved through linear mixed-effect models or 41 

their extension, generalized linear mixed-effect models. Here, we review variants of calculating 42 

repeatabilities from mixed-effects models for a variety of conditions and applications. We also 43 

recommend which variant might be appropriate under what conditions, focusing on behavioural 44 

biology/ecology examples. However, the decision is ultimately with the researcher, since it 45 

depends upon their research question, and there is no one-size-fits-all solution. We also highlight 46 

the importance of the scope of inference, which affects how repeatabilities are used and 47 

interpreted. We recommend transparent reporting of statistical results, including all variance 48 

components, which are the building blocks of repeatability. This review aims to assist empiricists 49 

in choosing an appropriate repeatability variant and interpretation concerning their questions and 50 

scope of inference.  51 

Keywords: variance partitioning coefficients, intra-class correlation, mixed-effects modelling, 52 

individual differences, repeatability, variance components 53 
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1 Introduction 56 

Understanding sources of organismal variation is a central goal in biology. This goal can be 57 

achieved by statistical variance decomposition if observations are replicated within a group of 58 

interests [1-3]. The choice of the grouping of interests depends on the subdiscipline; for instance, 59 

evolutionary biologists are often interested in among-family or among-genotype variance, 60 

behavioural ecologists in among-individual variance, community ecologists in among-plot 61 

variance, and molecular biologists sometimes in among-strain variance. All disciplines may be 62 

interested in measurement errors and variance within and among observers or techniques. The 63 

metrics used to partition variances and compare them thus can be critical to advancing a 64 

subfield’s research agenda.  65 

A popular and efficient tool for estimating variance components is the linear mixed-effect model 66 

(LMM) [1-4]. LMMs (and their extension, generalized linear mixed-effects models, GLMMs) 67 

allow estimation of variance explained by random effects, where random effects represent 68 

groups (or clusters) of observations, and they use the similarity of observations within groups, 69 

plus the variation in expected values across groups, to estimate those variance components. 70 

However, variances have some properties that create some challenges (cf. [5]). For example, the 71 

magnitude of variance components depends on how the outcome (e.g., an organismal trait) is 72 

measured, since variances are quantified in squared units of the measurement scale of the target 73 

outcome variable. Different scales make it challenging to compare variance components across 74 

studies.  75 

A popular approach to this problem is to present variance components relative to the total 76 

outcome variance, and such variance-standardized variance components are here called 77 
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repeatabilities. Repeatabilities can be interpreted as the expected population-level correlation 78 

among outcomes (observations) from the same group and thus represent a case of intra-class 79 

correlations, ICCs [2]. We note that repeatabilities also represent a case of variance partition 80 

coefficients, VPCs (for more on the difference between ICC and VPC, see [6]). Thus, 81 

repeatability is an extremely useful metric in many areas of biology. Because it can be used to 82 

address a variety of goals, however, various ways to calculate repeatability have arisen, which 83 

can complicate comparisons among studies. Here, we organize types of repeatability and review 84 

both their methods of calculation and the questions they can and cannot address. We note that 85 

these same concepts also underpin heritability in quantitative genetics [4], where proportionate 86 

variance attributable to additive genetic effects parallels the logic of partitioning variance among 87 

groups (although we do not discuss heritability in much detail, our arguments on repeatability are 88 

directly applicable to heritability) (cf. [7]).  89 

The original application of repeatability was by engineers who were interested in the 90 

reproducibility of particular outcomes [8], like the accuracy by which a machine might fill 91 

specific amounts of liquid into a bottle or produce a screw that fits a specific nut. More broadly, 92 

repeatabilities can be used to separate the among-group variance of interest from the sources of 93 

variance within groups. For objects that do not change, such as the width of a screw, the within-94 

object variance represents measurement errors. For objects that do change, such as a young bird 95 

undergoing development, the within-object variance represents more than measurement errors—96 

it can be a process that alters values within the group, as if a machine was sensitive to 97 

temperature. Biologically, the within-object variance includes plasticity in response to 98 

unmeasured environmental variables and other hidden biological processes (e.g., [9-11] ). The 99 

among-object variance takes on new meaning in this case because it represents consistent 100 
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differences in average group (cluster) outcomes relative to the total outcome variance in the 101 

population, thus about relative, not absolute, consistency. 102 

In behavioural biology/ecology, repeatability has become the primary metric for quantifying the 103 

relative phenotypic consistency of individuals within a population. Repeatability (R) ranges from 104 

R = 0, meaning there is no consistent difference between groups (i.e., each group exhibits the 105 

same range of outcomes as the total population), up to R = 1, meaning absolute consistency (all 106 

observations within a group are identical but groups differ). Realistically, behavioural 107 

repeatabilities often lie between these extremes, typically from near zero up to roughly 0.8, with 108 

a meta-analytically estimated average of around 0.37 [12]. A key feature of repeatability is that it 109 

is a proportion with a variance component of interest (e.g., among-individual variance) in the 110 

numerator and some measure of total variance in the denominator. Because multiple variance 111 

components can contribute to the denominator (and sometimes even the numerator), researchers 112 

may define “repeatability” differently. For instance, some studies exclude measurement error 113 

variance, while others might include additional sources of variation in their denominators. 114 

Consequently, comparing published repeatability estimates can be intricate, since not everyone 115 

calculates them in the same manner. Moreover, the concept of repeatability can address a range 116 

of questions, such as the stability of a trait over time or the influence of measurement conditions, 117 

so different “flavours” of repeatability may be relevant to different contexts. Ultimately, the 118 

choice of which variance components appear in the numerator versus the denominator depends 119 

upon the specific research question. To help clarify these distinctions, we present a taxonomy of 120 

repeatability calculations, focusing on the variants that are most commonly encountered. Before 121 

delving into these types, we begin by defining the standard or “ordinary” repeatability as it is 122 

routinely calculated.  123 
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1.1 Ordinary repeatability 124 

The definition of (ordinary) repeatability is:  125 

𝑅 = !!
!!"!"

= !!
!#

, (1.1) 126 

where VG represents the variance between groups, VW represents the variance within groups, and 127 

VO represents the total variance in the outcome (often, this is called the phenotypic variance in 128 

behavioural and evolutionary biology/ecology; [13]). For this paper, we refer to the VG as the 129 

focal variance component of interest. Furthermore, we call the specific instances of the grouping 130 

factor “objects” (these groups are often individuals in behavioural ecology or psychology [14]) 131 

and the particular outcome measures “observations”. We use “population of interest” in a 132 

biological sense, meaning the set of organisms or objects about which we make inferences 133 

Ordinary repeatability can be estimated from a mixed-effects model with a single grouping factor 134 

and a residual variance (here, assuming Gaussian distributions, but see for generalizations to 135 

other distributions in section 5). The statistical model can be expressed as (Model 1): 136 

𝑦#$ = 𝛽% + 𝛼# + 𝜀#$, (1.2) 137 

𝛼#~𝑁(0, 𝜎&'), (1.3) 138 

𝜀#$~𝑁(0, 𝜎('), (1.4) 139 

where  represents the jth observation of the ith object,  represents the population-level 140 

intercept (a fixed effect), 𝛼# represents the object-specific deviation (often called a ‘random 141 

yij β0
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intercept’) and  is the residual term. In this setup, 𝜎&' is the among-object variance (the same as 142 

VG) and 𝜎(' is the residual variance (analogous to VW although they are not the same beucase 𝜎(' 143 

could include variance due to measurement error, for example, but 𝜎(' and VW often are assumed 144 

to be the same). The repeatability from Model 1 is therefore:  145 

R = )$%

)$%")&%
, (1.5) 146 

which parallels Equation 1.1. Because this model has a single grouping factor and a single 147 

residual term, the resulting R is straightforward, hence the term ‘ordinary’ repeatability. Here, if 148 

the outcome is truly constant for each object (i.e., no within-individual plasticity), then 1 – R can 149 

be interpreted as a measure of measurement error. If the outcome is not strictly fixed (e.g., it 150 

changes across time or environments), then 1 – R also encompasses within-individual variability 151 

(such as phenotypic plasticity).  152 

However, most datasets and questions in biology are more complex, often involving multiple 153 

sources of variation that affect the outcome. This leads to multiple ways to calculate 154 

repeatability, depending on the conceptual question (which variance components are of interest) 155 

and the technical aspects of the statistical model (e.g., multiple random factors, fixed effects, or 156 

non-Gaussian data). Various labels have been proposed for these alternative implementations of 157 

repeatability. In the sections that follow, we structure these alternatives and illustrate how they 158 

can offer different biological insights depending on the outcome variable, data structure, and 159 

research goals. 160 

εij
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2 More complex random-intercept models 161 

2.1 Multiple random effects 162 

Real datasets often have a more complex hierarchical structure than expressed in Model 1, a 163 

structure with multiple grouping levels. This simultaneously increases the options for calculating 164 

repeatability and narrows the interpretation of a specific calculation. First, the complexity will 165 

have to be reflected in the statistical model so that we have a mixed-effect model with multiple 166 

random effects. A mixed-effect model with two random effects can be expressed as (Model 2): 167 

𝑦*#$ = 𝛽% + 𝛾* + 𝛼# + 𝜀*#$, (2.1) 168 

𝛾*~𝑁(0, 𝜎+'), (2.2) 169 

𝛼#~𝑁(0, 𝜎&'), (2.3) 170 

𝜀#$~𝑁(0, 𝜎('), (2.4) 171 

where 𝛾* represents the deviation for the hth level of a second grouping factor (fitted as “random 172 

intercepts”), assumed to be normally distributed with mean 0 and population-level variance 𝜎+'. 173 

For example, 𝛾* might capture variation due to different years or different observers while 𝛼# 174 

captures variation among individuals. The other terms remain as in Equation (1.2). 175 

Suppose our main interest is still the repeatability at the original group level 𝛼. Under Model 2, 176 

there are three ways to calculate repeatability, relating to how the random effects (𝛼# and 𝛾*) 177 

might be nested or crossed and how they combine to form total variance (Figure 1).  178 
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 179 

Figure 1. A conceptual example diagram of two types of pairs of random effects: a) Nested 180 

random effects, such as nestlings within a nest (and that nest is associated with a particular 181 

mother). Here, the mother identity varies at a higher level than nestling identities, creating a 182 

strictly nested hierarchical structure. b) Crossed random effects, such as multiple individual birds 183 

measured across different years. In a fully crossed design, each bird could be measured in each 184 

year (and each year contains multiple birds), although real data might only partially cross these 185 

factors if not all birds are observed yearly. The random effects included in a model should reflect 186 

the sampling design used to collect data, and it is possible to have multiple nested effects, 187 

multiple crossed effects, or a combination of both.  188 
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Sometimes, the second random effect of a model captures measurement errors rather than 189 

intrinsic biological variation. For example, if multiple observers or instruments were used, then 190 

the variability attributable to that factor may be considered ‘design-induced’. In such cases, one 191 

may exclude the second random effect’s variance from the denominator. We call the resulting 192 

measure adjusted repeatability, 𝑅,-, which is calculated (under Model 2) as [2]: 193 

𝑅,- =
)$%

)$%")&%
. (2.5) 194 

Note that omitting 𝜎+' means the denominator of 𝑅,-, no longer reflects the total measured 195 

variance. However, if γ is indeed an experimental artefact (e.g., observer identity) rather than 196 

meaningful biological variation, 𝑅,-, can approximate the ‘true’ proportion of variance that is 197 

genuinely biological.. 198 

In other instances, the second random effect represents a real biological process, such as multiple 199 

years or environmental conditions (Figure 1). If the goal is to express the variance of the focal 200 

grouping factor (α) as a fraction of the total outcome variance, the second factor’s variance (𝜎+') 201 

should remain in the denominator. This approach leads to unadjusted repeatability, 𝑅,': 202 

𝑅,' =
)$%

)$%")'%")&%
. (2.6) 203 

Conceptually, 𝑅,' resembles ‘ordinary’ repeatability (Equation 1.5), except it arises from a more 204 

complex dataset and includes 𝜎+' in the denominator. This version of repeatability is suitable 205 

when 𝛾* is crossed or nested below 𝛼# or simply whenever both factors are legitimate 206 

contributors to the total variance, one aims to partition. 207 
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Finally, if the two random effects are strictly nested, meaning 𝛾* lies at a higher level than 𝛼#, 208 

one may opt to include both 𝜎&' and 𝜎+' in both the numerator and the denominator. We refer to 209 

this as multi-cluster repeatability, 𝑅,.: 210 

𝑅,. =
)$%")'%

)$%")'%")&%
. (2.7) 211 

We recommend 𝑅,. only when the nested structure is unambiguous and α is truly a sub‐level of 212 

𝛾*. An example is offspring nested within parents (e.g., [15, 16]). If nestling variance (𝛼#) and 213 

parent variance (𝛾*) both describe the among‐group component of interest, including them 214 

together in the numerator and denominator (Equation 2.7) quantifies the overall repeatability of 215 

individuals, including “family” effects. Indeed, if one ignores parents entirely and fits a simpler 216 

Model 1, the results will approximate 𝑅,.. However, if the researcher’s focal question is the 217 

repeatability across parents, treating nestling variance as part of the denominator, then 𝑅,' 218 

(Equation 2.6) is more appropriate. 219 

Crossed designs also arise when, for example, individuals are measured repeatedly across years 220 

(Figure 1b). In that scenario, the variance for year does not feed into the among‐individual 221 

variance; rather, the two factors are independent. Hence, multi‐cluster repeatability, 𝑅,., is 222 

inappropriate. The choice between adjusted or unadjusted repeatability (𝑅,- vs. 𝑅,') depends 223 

upon whether ‘year’ is a nuisance factor or a meaningful contributor to the total variance. In 224 

many studies, it may also be valuable to calculate both variants to show how results change when 225 

controlling for year versus treating year as part of the phenotypic background. 226 

2.2 Single fixed effects 227 
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Most biological studies have broader goals than simply partitioning variance among random 228 

effects. Researchers often incorporate treatments or covariates as fixed effects, reflecting 229 

hypotheses about how these factors influence the outcome. Accordingly, the resulting models are 230 

termed ‘mixed-effect’ models because they include both random and fixed components. For 231 

instance, consider a relatively simple model with one fixed effect (Model 3): 232 

𝑦#$ = 𝛽% + 𝛽-𝑥-#$ + 𝛼# + 𝜀#$, (2.8) 233 

𝛼#~𝑁(0, 𝜎&'), (2.9) 234 

𝜀#$~𝑁(0, 𝜎('), (2.10) 235 

where 𝛽- is the population-level regression coefficient for a covariate 𝑥-#$ and other terms follow 236 

Model 1. Because model output typically does not provide a direct variance estimate associated 237 

with the fixed effect term (𝛽-𝑥-#$), one must custom calculate it (e.g., following [17]): 238 

𝜎/' = 𝑉𝑎𝑟(𝛽-𝑥-#$) (2.11) 239 

or 240 

𝜎/' = 𝛽-' ∙ 𝑉𝑎𝑟(𝑥-#$), (2.12) 241 

where 𝑉𝑎𝑟(𝑥-#$) represents the variance in the covariate or predictor. With this additional 242 

variance component 𝜎/', as with the random effects above (Section 2.1), we can calculate three 243 

repeatabilities, which differ in whether or not the fixed effect variance 𝜎/' is included in the 244 

denominator and, if so, whether it is also included in the numerator. 245 



 14 

Suppose a dataset comes from two labs analysing the same subject strains. Although ‘lab’ might 246 

conceivably be modelled as a random effect, having only two levels often leads us to treat it as a 247 

fixed effect. The variance associated with labs, however, is likely an artefact of the conditions 248 

and measures of those labs. Accordingly, we can calculate adjusted repeatability by omitting lab-249 

induced variance from the denominator, just as in Equation 2.5. In this particular case, we can 250 

use our earlier, simple calculation of repeatability: 251 

𝑅,- =
)$%

)$%")&%
, (2.13) 252 

note that now the denominator no longer represents the total variance. Many published 253 

repeatabilities in mixed-effect models with fixed effects are of this adjusted kind [2, 12]. 254 

However, this is frequently an unintended outcome because standard software packages typically 255 

only provide random-effect variances by default, thereby excluding fixed-effect variances from 256 

the denominator, often with no explicit decision by the researcher. 257 

When one’s goal is simply to remove design artefacts (e.g., lab differences) from the total 258 

variance, 𝑅,- can be appropriate. But if a fixed effect represents a genuinely biological process 259 

(e.g., a temperature gradient), subtracting its variance from the denominator does yield a biased 260 

estimate of population-level repeatability. Instead, it only gives the repeatability at a single 261 

reference value (e.g., the mean temperature or one specific lab). Hence, removing biologically 262 

relevant sources of variation understates the total phenotypic variance. 263 

Most fixed effects in statistical models capture processes that affect trait variation. If a factor or 264 

covariate varies within the focal grouping, it typically pulls variance from the residual term, in 265 
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which case repeatability should not be adjusted; the fixed-effect variance then belongs to the 266 

denominator. An unadjusted repeatability that includes the fixed-effect variance, 𝑅,', might be 267 

calculated as:  268 

𝑅,' =
)$%

)$%")(
%")&%

. (2.14) 269 

As in Equation 2.6, 	𝜎&' + 𝜎/' + 𝜎(' represents an estimate of the total outcome variance. This is 270 

useful if we are interested in putting variance components in perspective of the total phenotypic 271 

variance [7].  272 

In some situations, a fixed effect is itself a group-level attribute (e.g., the altitude of each plot). In 273 

that case, adjusting for altitude would partially reduce the among-plot variance (𝜎&'), thus 274 

understating the natural variation among plots. One may instead calculate a repeatability that 275 

restores this fixed-effect variance to the numerator and the denominator, for instance: 276 

𝑅,. =
)$%")(

%

)$%")(
%")&%

, (2.15) 277 

which has previously been called “enhanced” repeatability [3]. We note that this is equivalent to 278 

ordinary repeatability, if we had omitted the altitude of the plot in the model.  279 

As seen in Sections 2.1 and 2.2, the term ‘adjusted’ repeatability (Equations 2.5 and 2.13) does 280 

not indicate which sources of variance were excluded. Complex fixed-effect structures—281 

especially those that vary at multiple levels—can yield blends of adjusted and enhanced 282 

repeatabilities. It is therefore crucial for authors to explicitly state how they compute 283 

repeatability if the goal is to allow cross-study comparisons. In behavioural and evolutionary 284 
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research, non-biological factors (e.g., instruments, lab IDs) can often be omitted, whereas 285 

biological factors (e.g., temperature, altitude, body size) should generally remain in the 286 

denominator (and sometimes the numerator) unless one is specifically interested in the value of 287 

repeatability at a reference setting. 288 

For example, if one measures individual birds in two forests [18], using 𝑅,- might make sense if 289 

the two-forest difference is truly an experimental artefact (e.g., forced sampling from both sites). 290 

Conversely, if individuals might select forests according to habitat preference, or if the forests 291 

reflect genuine environmental gradients, then treating ‘forest’ as part of phenotypic variance (an 292 

unadjusted or “enhanced” version; 𝑅,' or 𝑅,.) is likely more biologically meaningful. 293 

Ultimately, the data alone cannot dictate which repeatability variant is ‘correct’; it depends on 294 

the biological context and the research question (see Figure 2).  295 
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 296 

Figure 2. A conceptual diagram of three types of repeatability with an extra random effect 297 

or a fixed effect: 1) 𝑅,- represents adjusted repeatability controlling for an extra random effect 298 

or fixed effect, 2) 𝑅,' represents another type of adjusted repeatability where the extra variance 299 

components are not part of the focal variance (e.g., individual ID), 3) 𝑅,. represents either multi-300 

cluster repeatability (with nested random-effect structure) and enhanced repeatability (with a 301 

fixed effect that is biological or a part of focal variance). Note, however, that it is sometimes 302 

difficult to know what is biological and what is not (see the main text).  303 

  304 
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2.3 Multiple fixed effects 305 

Real datasets in many areas of biology often include multiple fixed effect predictors. The 306 

presence of two or more fixed effects adds both conceptual and technical issues to repeatability 307 

estimates. A model fitting two fixed effect predictors can be expressed as (Model 4): 308 

𝑦#$ = 𝛽% + 𝛽-𝑥-#$ + 𝛽'𝑥'#$ + 𝛼# + 𝜀#$ (2.16) 309 

𝛼#~𝑁(0, 𝜎&') (2.17) 310 

𝜀#$~𝑁(0, 𝜎(') (2.18) 311 

where 𝛽' represents the population-level regression coefficient for the second covariate or 312 

predictor, 𝑥'#$ represents the covariate value for the ith objects measured at the jth observation of 313 

the second predictor, and other terms are the same as in Model 3. 314 

The variance explained by a set of fixed effects, regardless of correlations among the fixed 315 

effects, can be lumped into a single variance component by calculating the variance in the linear 316 

predictor: 317 

𝜎/' = 𝑣𝑎𝑟(βX) (2.19) 318 

where β represents the vector of regression coefficients, and X represents the fixed effect design 319 

matrix. The variance 𝜎/' can then be treated as in section 2.2. 320 
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However, the situation is more complicated when fixed effects covary and the two covarying 321 

fixed effects are to be treated differently with respect to repeatability variants 𝑅,-, 𝑅,' and 𝑅,.. 322 

If predictors are partially correlated, there is no unequivocal splitting of the outcome variance 323 

into a part of the variance explained by 𝑥- and a part explained by 𝑥'. Parts of the variance will 324 

be explained by both 𝑥- and 𝑥'. Note that while in section 2.2, 𝜎/' = 𝑉𝑎𝑟(𝛽-𝑥-) and 𝜎/' =325 

𝛽-'𝑉𝑎𝑟(𝑥-) were conceptually equivalent (even if numerically often slightly different) 326 

𝑉𝑎𝑟(βX) ≠ ∑𝛽0' 𝑉𝑎𝑟(𝑥0) with correlated predictors unless the variance is explained by both 327 

predictors 𝑥- and 𝑥' is subtracted on the right-hand side of the equation. We do not have the 328 

same issue when there are multiple random effects, which are modelled as independent of each 329 

other (cf. [19]).  330 

There are options for partitioning the variance using partial variances explained [20]), but the 331 

solutions will be highly case-specific. Some outcome variance is likely explained by both 332 

predictors, and the question is where the shared variance components are assigned. In the general 333 

case with multiple predictors and interactions, where interaction terms are correlated to their 334 

main effects, there are multiple ways to attribute the variance to each predictor (i.e., input 335 

variable; sensu [1]) and their interaction terms (see [20]).  336 

3 Random-slope models 337 

Many biological subfields are interested in how an outcome variable changes with a predictor 338 

and whether that change varies among objects in a grouping factor. For instance, individual or 339 

genetic variation in phenotypic plasticity is a major topic in evolutionary biology. Models that 340 

capture this variation are often called ‘random-regression’ or ‘random-slope’ models because 341 
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they fit an interaction between a fixed effect and a random effect, allowing each group (e.g., 342 

individual, genotype) to have its own slope.  343 

A simple random-slope model with one covariate and one grouping factor can be expressed as 344 

(Model 5): 345 

𝑦*#$ = 𝛽% + (𝛽- + 𝛼-#)𝑥-#$ + 𝛼%# + 𝜀#$ (3.1) 346 

[𝛼%# , 𝛼-#]~𝑁([0, 0], 𝚺) (3.2) 347 

𝚺 = @ 𝜎&%' 𝜌𝜎&%𝜎&-
𝜌𝜎&%𝜎&- 𝜎&-'

B (3.3) 348 

𝜀#$~𝑁(0, 𝜎(') (3.4) 349 

where  represents the population-level slope for an observation-level predictor 𝑥- and 𝛼-# 350 

represents the object-specific deviation from the population slope. The random components 𝛼%# 351 

and 𝛼-# are assumed to be multivariate normally distributed with means of 0 and variance and 352 

covariances summarized by the matrix 𝚺, where 𝜎&%'  and 𝜎&-'  are the variances and 𝜌𝜎&%𝜎&- the 353 

covariance (𝜌 represents the correlation between random intercept and slopes). The other terms 354 

are as in Model 3.  355 

With such variation in the slope depending upon the level of the grouping factor, the 356 

repeatability calculation becomes even more involved. There is no universal repeatability 357 

anymore, since the variance explained by the grouping factor of interest changes as the covariate 358 

changes [21]. In these cases, repeatability can be estimated at particular points along the 359 

β1
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covariate, termed a ‘conditional repeatability’ (as it is conditioned on the value of the covariate), 360 

or an overall repeatability can be estimated across the entire range of the covariate, typically 361 

called the ‘marginalized repeatability’. In the following, we first treat this variability in the form 362 

of conditional repeatabilities and then suggest the marginalized repeatability as a valuable 363 

benchmark for overall repeatability in the outcome with respect to the grouping factor of interest. 364 

3.1 Conditional repeatabilities 365 

Although we have a random‐intercept component and residual variance as in Model 3, a 366 

repeatability calculation following Equation 2.13 will result in a repeatability estimate that 367 

applies only to the point where the covariate (as fitted in the model) is zero. This point is often 368 

arbitrary and does not represent the overall relative magnitude of group‐level variances [22], 369 

since in a random‐slope model, the group‐level variance itself changes with the covariate’s 370 

value. 371 

With random‐slope models, any specific repeatability estimate is conditional on the precise value 372 

of the covariate, and is therefore referred to as the ‘conditional’ repeatability [22] (see also [2]). 373 

Notably, conditional repeatability is not an ‘adjusted’ repeatability (as in Equations 2.5 and 374 

2.16), because it is conditioned on a specific point with a specific group‐level variance, rather 375 

than being adjusted for the entire range (where variance may differ substantially at different x-376 

values). Indeed, conditional repeatability is effectively a function of x (the covariate) rather than 377 

a single constant [22]. 378 

The random-slope variance component 𝜎&-'  determines the magnitude of change across values of 379 

the covariate (at the extreme end if 𝜎&-' = 0, the model reduced to a random-intercept model), 380 
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while the covariance 𝜌𝜎&%𝜎&- determines where (sign) and how far (magnitude) from 𝑥- = 0 381 

where the minimum value of the conditional repeatability is located (Figure 3a). Negative 382 

covariances occur if the minimum of the among-group variance component is located at positive 383 

covariate values, while a positive covariance occurs if the minimum is located at negative 384 

covariate values [22]). In other words (in strictly linear models), the correlation between random 385 

intercepts and slopes can approach +1 or −1 as the absolute vale of x grows large in either 386 

direction, which may be biologically unrealistic unless the range of x is bounded [23]. 387 

The conditional repeatability (𝑅1) for any point of the covariate can be calculated as: 388 

𝑅1 =
)$)% ")$*% 2*∗"'3)$))$*2*∗

)$)% ")$*% 2*∗"'3)$))$*2*∗")&%
, (3.5) 389 

where 𝑥-∗ represents a specific value of  (like 25°Co for temperature, 245 days for age, or 45% 390 

for humidity). 391 

Conditional repeatabilities have rarely been explored (but see [24-26]), perhaps because it is not 392 

generally understood that random-slope models imply variable group-level variances. 393 

Repeatabilities can dramatically change along the range of the covariate (see Figure 3b). We note 394 

that 𝑥-∗ can be a binary variable (including dummy coded variables). For example, 𝑥-∗ = 0 it 395 

might represent one environment (forest A) and 𝑥-∗ = 1, another environment (forest B). With 396 

Equations 3.5, we can obtain environment-specific repeatability estimates in this case. Note, 397 

however, that this assumes that the residual variance 𝜎(' is the same in both environments 398 

(forests). 399 

x1
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We can combine adjusted repeatability and conditional repeatability. If there are more predictors 400 

in the model, we can condition on some and adjust (or not) for others (choice of 𝑅,-, 𝑅,', and 401 

𝑅,.). Indeed, all three types of repeatabilities (𝑅,-, 𝑅,', and 𝑅,.) can be used with conditional 402 

repeatability and marginalized repeatability (which we will introduce in the next section see 403 

Figure 3), given we have several fixed effects or covariates.  404 
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 405 

Figure 3. A conceptual diagram of conditional and marginalized repeatability. using 406 

‘Activity Level’ in an aquatic species as the outcome and ‘Water Temperature’ as the 407 

covariate. a) The four panels show different possibilities for the intercept–slope correlation ρ. b) 408 

The panel depicts hypothetical individual responses (lines) to changing water temperature. Each 409 

individual has its intercept and slope, leading to varying differences in activity at each 410 

temperature point (10°C, 20°C, 30°C). The conditional repeatability 𝑅1  is estimated at a specific 411 

temperature x, while the marginalized repeatability 𝑅5 averages across the entire temperature 412 

range.  413 
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3.2 Marginalized repeatabilities 414 

In random-slope models, no single value of 𝑅1  will be representative of the relative magnitude of 415 

group-level variances (the larger the random-slope variance the less representative a specific 416 

value of 𝑅1  will be) across the entire range of the covariate (except maybe for binary covariates 417 

when we are interested in environment-specific repeatabilities as described above). However, 418 

assuming that the range of the covariate as it occurs in the data is representative of the range of 419 

conditions in the population of interest, we can calculate what we call ‘marginalized 420 

repeatability’ that effectively averages group-level variances across the range of the covariate 421 

(cf. [17, 27]). The marginalized among-group variance can be calculated as: 422 

𝜎D&' = 𝜎&%' + 𝜎&-' 𝑉𝑎𝑟(𝑥-) + �̅�-'𝜎&-' + 2�̅�-𝜌𝜎&%𝜎&-, (3.6) 423 

where �̅�- is the population-level mean value of the fixed effect 𝑥-. We can obtain marginalized 424 

repeatability as (note that we assume here that there is only one fixed effect in the model): 425 

𝑅5 = )6$%

)6$%")&%
, (3.7) 426 

where 𝜎/' is the outcome variance induced by the population-level slope as in Equations 2.11 and 427 

2.12. Note that calculations are considerably more tedious for multiple correlated predictors, 428 

although manageable (see [22]). 429 

4 Post-stratification 430 

For outcome variance explained by fixed effects (Equations 2.11, 2.12, and 2.19) and for 431 

marginalized repeatabilities (Equation 3.6), the resulting repeatability values depend on the 432 
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distribution of the covariate (specifically, the variance in the covariate and, in the case of 433 

marginalized repeatabilities, also on the mean). In those calculations, we need not use the exact 434 

covariate values observed in our data. Other values may be more representative of the population 435 

of interest. Specifically, the variance of the covariate can be replaced by theoretically justified 436 

values, a procedure known as ‘post-stratification’ (sensu [28]). This process modifies the scope 437 

of inference (see Section 6 for further discussion). 438 

An intuitive example of the usefulness of post‐stratification comes from an animal study with 439 

two sexes. Suppose that, due to a particular experimental design, we sampled disproportionately 440 

more females than males, whereas the natural population has an even sex ratio. If we compute 441 

the variance explained by sex (Equations 2.11, 2.12, and 2.19) using our sampled data, we 442 

misrepresent the actual variance in the population. Likewise, when calculating a marginalized 443 

repeatability (Equation 3.6), both the mean and variance of sex (coded as a covariate) would 444 

reflect our sample rather than the population. By applying post‐stratification, we can weigh our 445 

calculations to match the true sex ratio, ensuring the fixed‐effect variance for ‘sex’ aligns with 446 

the population distribution. 447 

Extrapolation to more extreme ranges of the covariate or to unobserved variances and means can 448 

be risky if done without strong justification. However, interpolation may be useful. In many 449 

experiments, environmental conditions are deliberately pushed toward extremes (e.g., setting 450 

temperature near a species’ upper tolerance) to magnify potential effects. If we assume the 451 

linearity of the effect, we can interpolate to a narrower or less extreme range of the covariate, 452 

thereby avoiding an inflated total phenotypic variance. For instance, [7] illustrates how one 453 

might shift from experimental extremes to more moderate conditions by adjusting the fixed‐454 
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effect variance. Such interpolation aligns the functional insights from experiments with the 455 

natural variation present in wild populations. 456 

5 Non-Gaussian models 457 

All the examples above have used Gaussian data-generating processes with (implicit) identity 458 

links. Models 1-5 are thus often called linear mixed-effect models (LMM). However, all the 459 

calculations can be generalized to non-Gaussian outcomes and links other than identity links. 460 

Generalized linear mixed-effect models (GLMM) can be expressed as (Model 6): 461 

ℓ#$ = 𝛽% + 𝛼#, (5.1) 462 

𝛼#~𝑁(0, 𝜎&'), (5.2) 463 

𝜂#$ = 𝑔7-(ℓ#$), (5.3) 464 

𝑦#$ = 𝐷(𝜂#$ , θ), (5.4) 465 

where ℓ#$ represents the expected value for the ith object at the jth observation on the link scale, 466 

𝛽% represents the intercept on the link scale, 𝛼# represents the object-specific random deviations 467 

on the link scale, 𝑔7-Lℓ#$M represents the inverse of the link function, 𝐷(𝜂#$ , θ) represents the 468 

process-generating distribution, with a linear predictor 𝜂#$ and potentially other distribution-469 

specific parameters 𝜃. 470 

The parameterization of the distribution will differ between models. For example, a Poisson 471 

model holds only a single rate parameter, such that 𝐷L𝜂#$ , θM in the general example above, 472 



 28 

reduces to 𝑃𝑜𝑖𝑠L𝜂#$M where 𝜂#$ is the rate of occurrence of an event of interest. In the case of a 473 

binomial model, 𝐷L𝜂#$ , θM transfers to 𝐵(𝑛, 𝜂#$) where n is the number of trials and 𝜂#$ is the 474 

probability of success. As with many other distributions, the Poisson and the Binomial 475 

distribution do not include a parameter for the variance, since the variance depends directly on 476 

the expectation: 𝜂#$ for the rate in Poisson and 𝜂#$ for the probability of success in the Binomial 477 

distribution. In such cases, it is usually necessary to include another residual term on the link 478 

scale in the form of an observation-level random effect (OLRE) with as many levels as there are 479 

observations ([29-31]; alternatively, negative binomial distributions could be used). Such a 480 

GLMM with an OLRE can be expressed as (Model 7): 481 

ℓ#$ = 𝛽% + 𝛼# + 𝜔#$, (5.5) 482 

𝛼#~𝑁(0, 𝜎&'), (5.6) 483 

𝜔#$~𝑁(0, 𝜎8'), (5.7) 484 

𝜂#$ = 𝑔7-(ℓ#$), (5.8) 485 

𝑦#$ = 𝐷(𝜂#$ , θ), (5.9) 486 

where 𝜔#$ represents the residual (observation-level) deviation on the link scale, which is 487 

assumed to be normally distributed with a mean of 0 and a population-level variance of 𝜎8'  on 488 

the link scale (i.e., the variance of the observation-level random effect), and other terms as in 489 

Model 5. Also note that 𝜔#$ is known as the additive dispersion term, which contrasts with the 490 

multiplicative dispersion term, implemented, for example, in generalized linear models fitted by 491 
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the glm function in the software R (for more details on these two types of dispersion terms, see 492 

[2]). 493 

Non-Gaussian models can be thought of as having three scales ([32]). (1) The link scale of ℓ#$ on 494 

which terms are linear, and the link-scale model behaves like a Gaussian model. (2) The 495 

expected data scale of 𝜂#$ that represents a non-linear transformation of the link scale by the 496 

inverse of the link function. (3) The observed data scale of 𝑦#$ on which outcomes are observed. 497 

The observed data scale is the scale of the outcome, and we usually want the repeatabilities on 498 

that scale. 499 

Among multiple alternatives (see [2]), the most straightforward way to calculate the repeatability 500 

for non-Gaussian models is to infer the distribution-specific variance 𝜎9' that depends on the 501 

process-generating distribution and the link function. This distribution-specific variance can then 502 

be added to the denominator if appropriate: 503 

𝑅 = )$%

)$%"),%")-
% . (5.10) 504 

The distribution-specific variance 𝜎9' is known for many popular distributions and link functions 505 

[2, 27] and can be inferred for other distributions using the Delta method [27]. Consideration 506 

should be given to whether the distribution-specific variance should be added to the denominator 507 

[33]. This variance is related to the data generating process, and may represent sampling 508 

variance, for example in the case of count data. Often count data represents a sample (e.g., 509 

number of individuals in a sampling area, number of occurrences of a behaviour in a sampling 510 

period), and the Poisson variance represents the uncertainty generated by the sampling process. 511 
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This sampling variance is a function of the mean and so relies upon the sampling effort. The 512 

proportion of the total variance due to the Poisson sampling variance is reduced as the mean 513 

increases, and so the maximum attainable repeatability will increase with sampling effort [33]. In 514 

the case where the counts are based on a sample, it is more appropriate, therefore, to exclude this 515 

distribution-specific variance in the denominator.  516 

In case fixed effects are fitted on the link scale, there will be an additional source of variance; the 517 

outcome variance due to fixed effects and considerations as in Sections 2.2, 2.3 and 3.2 do apply. 518 

However, in generalized linear mixed-effects models (GLMMs), we have the non-linear link 519 

function. A heuristic approach is to calculate the link-scale fixed effect variance following 520 

Equation 2.11. However, since the link functions are inherently non-linear, it is better to use 521 

integration over the range of the covariates to derive the variance on the expected data and, 522 

finally, the observed data scale [32]. Nonetheless, repeatabilities on the link (latent) scale 523 

described above is easier to obtain and can be useful [27].  524 

6 A matter of scope 525 

Above, we have reviewed some of the different options for calculating repeatabilities. The 526 

choice depends on the research question. In the context of behavioural biology/ecology and the 527 

study of individual differences, we are usually interested in having all components that represent 528 

or are attributes of individuals in the numerator and all biologically relevant components that 529 

contributed to outcome (phenotypic) variance in the denominator.  530 

6.1 Pseudo-repeatabilities 531 
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There are some pitfalls, however, and they can give rise to “pseudo-repeatabilities” that do not 532 

represent the relative magnitude of individual (group) differences as desired [34, 35]. Often, the 533 

issue of pseudo-repeatabilities comes down to a mismatch between the scope of the data (used to 534 

derive estimates) and the intended scope of inference (the estimand of interest, i.e. the target 535 

parameter). If the scope of inference is larger than the scope of the data, we have to generalize 536 

beyond the data, which can be problematic and misleading. 537 

All estimates of variances are also specific to the environment in which data were collected and 538 

the sampling regime that was followed. Even the magnitude of among‐group variances might 539 

differ across environments, or between subpopulations. For example, repeatability of activity 540 

level could differ substantially between warm and cold days [36], or between the sexes. 541 

Similarly, juvenile repeatabilities might not represent those of adults. In genetics, a parallel issue 542 

exists with heritability when data are collected from a restricted environment, but inferences are 543 

drawn for a broader context (see e.g., [37]). 544 

6.2 Understanding scope and timing 545 

Similar considerations apply to the time scale of data collection. Repeatabilities over short time 546 

scales are often comparatively high because individuals (objects) experience similar external 547 

influences (over short frames), and these influences may differ more among individuals than 548 

within them. If the scope of inference is about long‐term repeatabilities—such as 549 

lifetimconsistency in behaviour—short‐term estimates are likely misleading, since they tend to 550 

be upward biased by semi‐stable external influences. That is, the estimate is not aligned with the 551 

target of estimation (i.e., the estimand). To estimate long‐term repeatabilities, we need data at an 552 
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appropriate scope—e.g., repeated measurements per individual over their entire lifespan (cf. 553 

[38]). 554 

The choice between alternative ways of quantifying repeatabilities (described in Sections 2 and 555 

3) ultimately depends on the scope of inferences. For instance, deciding whether to adjust for sex 556 

(𝑅,-) or not (𝑅,') depends on whether one aims to compare within‐sex differences or across the 557 

entire population. Since sex—in most gonochoric animals—is an inherent attribute of 558 

individuals, some researchers treat variance explained by sex as part of the among‐individual 559 

variance, whereas others treat it as an additional explanatory factor that is removed from the 560 

denominator. Neither option is inherently wrong, but each leads to a different implication. This 561 

point again highlights that which variance components appear in the repeatability calculation is 562 

dictated by the research question—albeit with the caveat that any component in the numerator 563 

should also appear in the denominator (cf. [37]). 564 

Another general timing problem arises if observations occur at a fixed time (e.g., midday), but 565 

inference is sought about a broader range of times. Repeatabilities based on a single time point 566 

can appear overestimated in that case. Similarly, if objects were measured across different times 567 

but the time‐level variance is excluded (i.e., using an adjusted repeatability), inferences may 568 

again be incorrect. For instance, if the goal is to describe group‐level variance over the full day, 569 

an adjusted repeatability that removes all ‘time’ variance would be ‘over‐adjusted’, so we could 570 

call it  “over‐adjusted repeatability”. In other words, one might intend to estimate 𝑅,' but instead 571 

(by ignoring time) end up with 𝑅,-. 572 

6.3 Missing components and over-adjustment 573 
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Sometimes, not all relevant components will be known, or no data have been sampled to model 574 

certain fixed and/or random effects. Such sampling regimes can lead to biased repeatability 575 

estimates. In particular, omitting a higher‐level random effect that is not a legitimate attribute of 576 

the focal groups can also yield pseudo‐repeatabilities. The lower‐level random effects will then 577 

absorb variance that belongs at a higher level [19, 39]. That is, although we might be calculating 578 

𝑅,- following Equation 2.5, we implicitly calculate a version of 𝑅,. when, in fact, we want 𝑅,'.  579 

Notably, many published studies over‐adjust repeatability. For example, Bell and colleagues [12] 580 

found that most estimates were adjusted repeatabilities excluding any fixed‐effect variance from 581 

the denominator—even when those fixed effects captured biologically meaningful variation. For 582 

instance, we might not want to remove age effects on a trait if it is truly relevant (age can 583 

contribute both among‐ and within‐individual variance; e.g., [24, 40]). At the same time, there 584 

are cases where we do wish to isolate a trait’s repeatability at a particular age, so it can be valid 585 

to adjust for age—provided the goal is explicitly stated and we also compare it to the unadjusted 586 

counterpart. 587 

Ultimately, researchers should be clear whether they are over‐adjusting (i.e., omitting 588 

meaningful biological variance from the denominator). Ensuring that all relevant higher‐level 589 

effects (e.g., multi‐year or multi‐site data) are included can help avoid pseudo‐repeatabilities. 590 

Conversely, if certain effects are purely methodological (such as instrumentation) and not of 591 

biological interest, excluding them may yield a more appropriate estimate. The key is that the 592 

chosen scope of inference aligns with how the variance components are assembled into the 593 

repeatability measure.  594 

7 Concluding remarks 595 
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Repeatability, which we reviewed here (Table 1), is an important metric in many areas of 596 

biology. It has expanded well beyond its original purpose of assessing the quality of 597 

measurement techniques [41]. If used appropriately, repeatability can allow for new insights into 598 

sources of phenotypic variance and how such variance evolves. Many of the issues we have 599 

presented here also apply to measures of heritability (a standardized measure of additive genetic 600 

variance for a referent population). We also note that there are alternatives for standardizing 601 

variances, in particular mean standardization, in which variances are divided by the square of the 602 

mean outcome value rather than the sum of variance components (the square root of this quantity 603 

is known as CV or coefficient of variation; see [42, 43]). Our equations and considerations apply 604 

equally when the population-level mean (or expectation) of the outcome average 𝑦' or better 605 

𝐸(𝑦)'	replaces denominators in each equation. Such mean-standardized variance measurements 606 

remove the need to consider what is included in the denominator but still require careful 607 

consideration of what is included in the numerator. Therefore, what we have described for 608 

repeatabilities (ICC) helps obtain a mean-standardized variance value (e.g., CV) of interest.  609 

The challenges researchers face is that any real dataset has unique structures that make simple 610 

calculations of repeatability (or heritability) problematic. Our survey of these complications and 611 

the types of repeatabilities that can be calculated tackles the most common complexities that may 612 

exist. Navigating these in specific cases will take careful thought. We emphasize that having a 613 

clear goal of presenting repeatability and a thorough understanding of how the data may or may 614 

not be suitable for that goal is of primary importance. Usually, the goal of using any standardized 615 

variance estimate is to make an inference about a natural population. If so, then the central task is 616 

to understand how a dataset is or is not representative of that population. This is not easy, but it 617 

is necessary and means that some thought is required and decisions made about what to use in 618 
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the calculation. Thus, we advise that any published repeatability estimate comes with explicit 619 

descriptions of how repeatability was calculated and why; more importantly, all variance 620 

components should be reported regardless. Because we often do not know how well a dataset 621 

matches the referent population, we might need several repeatabilities calculated under different 622 

hypotheses for the potential mismatches. Such details will allow repeatability to be appropriately 623 

used for comparative analyses. The potential for insight into the structure and evolution of 624 

phenotypic variance can be achieved only with such details.   625 
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Table 1. Types of repeatability, the symbol used for them in the text, the data structure of 626 

relevance, and the inference goal for repeatability. 627 

Name Symbol Data structure Inference 

Ordinary R One grouping variable with 
sampling within and among 

How well the observation 
is predicted by the group it 
is in 

Adjusted 𝑅,- As above plus one or more 
random or fixed effects that 
explain artefactual variance 
(such as lab or assay plate) 

Adjustment to accurately 
assess how group identity 
predicts values when 
aspects of data collection 
produce artefacts or biases 

Unadjusted 𝑅,' Grouping variable plus 
additional variables (either 
fixed or random) that are not 
artefacts 

Same goal as for ordinary 
repeatability but with more 
complex data 

Multi-cluster 𝑅,. Hierarchical nested random 
effects 

To assess how well lower 
random effect predicts 
values 

Enhanced 𝑅,. When a fixed effect varies at 
the grouping level 

To include explained 
variance at the group level, 
as it would contribute to 
group identity predicting 
values 

Conditional 𝑅1  Data having 1+ random effect 
and 1+ fixed effect with the 
magnitude of the fixed effect 
depending on group identity 
(random slope) 

To assess how well group 
identity predicts values in 
a specified condition 

Marginalized 𝑅,. Same as for Conditional Given random slopes, to 
assess how well group 
identity predicts values 



 37 

across the range of the 
covariate 

Extrapolated - Data structure is non-
representative of the 
population at large 

Same goal as for Ordinary 
but using known bias to 
extrapolate to the referent 
population 

Interpolated - Data structure is artificially 
exaggerated (e.g., 
experimental conditions 
exceed natural ones) 

Same goal as for Ordinary 
but using known range of 
data to adjust for the 
referent population 

  628 



 38 

8 Literature 629 

[1] Gelman, A. & Hill, J. 2007 Data analysis using regression and multilevel/hierarchical 630 
models. Cambridge ; New York, Cambridge University Press; xxii, 625 p. p. 631 
[2] Nakagawa, S. & Schielzeth, H. 2010 Repeatability for Gaussian and non-Gaussian data: a 632 
practical guide for biologists. Biol Rev 85, 935-956. (doi:10.1111/j.1469-185X.2010.00141.x). 633 
[3] Stoffel, M.A., Nakagawa, S. & Schielzeth, H. 2017 rptR: repeatability estimation and 634 
variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8, 1639-635 
1644. (doi:10.1111/2041-210x.12797). 636 
[4] Henderson, C.R. 1950 Estimation of Genetic Parameters. Ann Math Stat 21, 309-310. 637 
[5] Pick, J.L., Kasper, C., Allegue, H., Dingemanse, N.J., Dochtermann, N.A., Laskowski, K.L., 638 
Lima, M.R., Schielzeth, H., Westneat, D.F., Wright, J., et al. 2023 Describing posterior 639 
distributions of variance components: Problems and the use of null distributions to aid 640 
interpretation. Methods Ecol Evol 14, 2557-2574. (doi:10.1111/2041-210x.14200). 641 
[6] Goldstein, H. 2011 Multilevel statistical models. 4th ed. Chichester, West Sussex, Wiley; xxi, 642 
358 p. p. 643 
[7] de Villemereuil, P., Morrissey, M.B., Nakagawa, S. & Schielzeth, H. 2018 Fixed-effect 644 
variance and the estimation of repeatabilities and heritabilities: issues and solutions. J Evolution 645 
Biol 31, 621-632. (doi:10.1111/jeb.13232). 646 
[8] Shewhart, W.A. 1931 Economic control of quality of manufactured product. New York,, D. 647 
Van Nostrand Company, Inc.; xiv, 501 p. p. 648 
[9] Westneat, D.F., Wright, J. & Dingemanse, N.J. 2015 The biology hidden inside residual 649 
within-individual phenotypic variation. Biol Rev 90, 729-743. (doi:10.1111/brv.12131). 650 
[10] Berdal, M.A. & Dochtermann, N.A. 2019 Adaptive Alignment of Plasticity With Genetic 651 
Variation and Selection. J Hered 110, 514-521. (doi:10.1093/jhered/esz022). 652 
[11] Dochtermann, N.A. 2023 The role of plasticity, trade-offs, and feedbacks in shaping 653 
behavioral correlations. Behav Ecol 34, 913-918. (doi:10.1093/beheco/arad056). 654 
[12] Bell, A.M., Hankison, S.J. & Laskowski, K.L. 2009 The repeatability of behaviour: a meta-655 
analysis. Anim Behav 77, 771-783. (doi:10.1016/j.anbehav.2008.12.022). 656 
[13] Allegue, H., Araya-Ajoy, Y.G., Dingemanse, N.J., Dochtermann, N.A., Garamszegi, L.Z., 657 
Nakagawa, S., Réale, D., Schielzeth, H. & Westneat, D.F. 2017 Statistical Quantification of 658 
Individual Differences (SQuID): an educational and statistical tool for understanding multilevel 659 
phenotypic data in linear mixed models. Methods Ecol Evol 8, 257-267. (doi:10.1111/2041-660 
210x.12659). 661 
[14] Shrout, P.E. & Fleiss, J.L. 1979 Intraclass Correlations - Uses in Assessing Rater 662 
Reliability. Psychol Bull 86, 420-428. (doi:Doi 10.1037/0033-2909.86.2.420). 663 
[15] Arct, A., Drobniak, S.M., Mellinger, S., Gustafsson, L. & Cichon, M. 2019 Parental genetic 664 
similarity and offspring performance in blue tits in relation to brood size manipulation. Ecol Evol 665 
9, 10085-10091. (doi:10.1002/ece3.5367). 666 



 39 

[16] Magierecka, A., Cooper, B., Sloman, K.A. & Metcalfe, N.B. 2023 Unpredictability of 667 
maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an 668 
annual vertebrate. Horm Behav 154. (doi:ARTN 10539610.1016/j.yhbeh.2023.105396). 669 
[17] Nakagawa, S. & Schielzeth, H. 2013 A general and simple method for obtaining R2 from 670 
generalized linear mixed-effects models. Methods Ecol Evol 4, 133-142. (doi:10.1111/j.2041-671 
210x.2012.00261.x). 672 
[18] Araya-Ajoy, Y.G. & Dingemanse, N.J. 2017 Repeatability, heritability, and age-dependence 673 
of seasonal plasticity in aggressiveness in a wild passerine bird. J Anim Ecol 86, 227-238. 674 
(doi:10.1111/1365-2656.12621). 675 
[19] Schielzeth, H. & Nakagawa, S. 2013 Nested by design: model fitting and interpretation in a 676 
mixed model era. Methods Ecol Evol 4, 14-24. (doi:10.1111/j.2041-210x.2012.00251.x). 677 
[20] Stoffel, M.A., Nakagawa, S. & Schielzeth, H. 2021 partR2: partitioning R in generalized 678 
linear mixed models. Peerj 9. (doi:ARTN e1141410.7717/peerj.11414). 679 
[21] Martin, J.G.A., Nussey, D.H., Wilson, A.J. & Réale, D. 2011 Measuring individual 680 
differences in reaction norms in field and experimental studies: a power analysis of random 681 
regression models. Methods Ecol Evol 2, 362-374. (doi:10.1111/j.2041-210X.2010.00084.x). 682 
[22] Schielzeth, H. & Nakagawa, S. 2022 Conditional repeatability and the variance explained 683 
by reaction norm variation in random slope models. Methods Ecol Evol 13, 1214-1223. 684 
(doi:10.1111/2041-210x.13856). 685 
[23] Mitchell, D.J. & Houslay, T.M. 2021 Context-dependent trait covariances: how plasticity 686 
shapes behavioral syndromes. Behav Ecol 32, 25-29. (doi:10.1093/beheco/araa115). 687 
[24] Holtmann, B., Santos, E.S.A., Lara, C.E. & Nakagawa, S. 2017 Personality-matching 688 
habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype-environment 689 
covariance. P Roy Soc B-Biol Sci 284. (doi:ARTN 20170943 690 
10.1098/rspb.2017.0943). 691 
[25] Briffa, M., Sneddon, L.U. & Wilson, A.J. 2015 Animal personality as a cause and 692 
consequence of contest behaviour. Biol Letters 11. (doi:ARTN 693 
2014100710.1098/rsbl.2014.1007). 694 
[26] Westneat, D.F. 2024 Biological Links between Personality and Plasticity: Testing Some 695 
Alternative Hypotheses. Am Nat 203, 174-188. (doi:10.1086/727700). 696 
[27] Nakagawa, S., Johnson, P.C.D. & Schielzeth, H. 2017 The coefficient of determination and 697 
intra-class correlation coefficient from generalized linear mixed-effects models revisited and 698 
expanded. J R Soc Interface 14. (doi:ARTN 20170213 699 
10.1098/rsif.2017.0213). 700 
[28] Gelman, A., Hill, J. & Vehtari, A. 2020 Regression and other stories, Cambridge University 701 
Press. 702 
[29] Hinde, J. 1982 Compound Poisson regression models. In Glim 82: Proceedings of the 703 
international conference on generalised linear models (pp. 109-121, Springer. 704 
[30] Harrison, X.A. 2014 Using observation-level random effects to model overdispersion in 705 
count data in ecology and evolution. Peerj 2. (doi:ARTN e61610.7717/peerj.616). 706 



 40 

[31] Harrison, X.A. 2015 A comparison of observation-level random effect and Beta-Binomial 707 
models for modelling overdispersion in Binomial data in ecology & evolution. Peerj 3. 708 
(doi:ARTN e1114 709 
10.7717/peerj.1114). 710 
[32] de Villemereuil, P., Schielzeth, H., Nakagawa, S. & Morrissey, M. 2016 General Methods 711 
for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models. Genetics 204, 712 
1281-+. (doi:10.1534/genetics.115.186536). 713 
[33] Pick, J.L., Khwaja, N., Spence, M.A., Ihle, M. & Nakagawa, S. 2023 Counter culture: 714 
causes, extent and solutions of systematic bias in the analysis of behavioural counts. Peerj 11. 715 
(doi:ARTN e1505910.7717/peerj.15059). 716 
[34] Dingemanse, N.J. & Dochtermann, N.A. 2013 Quantifying individual variation in 717 
behaviour: mixed-effect modelling approaches. J Anim Ecol 82, 39-54. (doi:10.1111/1365-718 
2656.12013). 719 
[35] Westneat, D.F., Hatch, M.I., Wetzel, D.P. & Ensminger, A.L. 2011 Individual Variation in 720 
Parental Care Reaction Norms: Integration of Personality and Plasticity. Am Nat 178, 652-667. 721 
(doi:10.1086/662173). 722 
[36] Biro, P.A., Beckmann, C. & Stamps, J.A. 2010 Small within-day increases in temperature 723 
affects boldness and alters personality in coral reef fish. P Roy Soc B-Biol Sci 277, 71-77. 724 
(doi:10.1098/rspb.2009.1346). 725 
[37] Wilson, A. 2008 Why h 2 does not always equal VA/VP? J Evolution Biol 21, 647-650. 726 
[38] Araya-Ajoy, Y.G., Mathot, K.J. & Dingemanse, N.J. 2015 An approach to estimate short-727 
term, long-term and reaction norm repeatability. Methods Ecol Evol 6, 1462-1473. 728 
(doi:10.1111/2041-210x.12430). 729 
[39] Schielzeth, H., Dingemanse, N.J., Nakagawa, S., Westneat, D.F., Allegue, H., Teplitsky, C., 730 
Reale, D., Dochtermann, N.A., Garamszegi, L.Z. & Araya-Ajoy, Y.G. 2020 Robustness of linear 731 
mixed-effects models to violations of distributional assumptions. Methods Ecol Evol 11, 1141-732 
1152. (doi:10.1111/2041-210x.13434). 733 
[40] Bouwhuis, S., Sheldon, B.C., Verhulst, S. & Charmantier, A. 2009 Great tits growing old: 734 
selective disappearance and the partitioning of senescence to stages within the breeding cycle. P 735 
Roy Soc B-Biol Sci 276, 2769-2777. (doi:10.1098/rspb.2009.0457). 736 
[41] Lessells, C.M. & Boag, P.T. 1987 Unrepeatable Repeatabilities - a Common Mistake. Auk 737 
104, 116-121. (doi:Doi 10.2307/4087240). 738 
[42] Dochtermann, N.A. & Royauté, R. 2019 The mean matters: going beyond repeatability to 739 
interpret behavioural variation. Anim Behav 153, 147-150. (doi:10.1016/j.anbehav.2019.05.012). 740 
[43] Stirling, D.G., Réale, D. & Roff, D.A. 2002 Selection, structure and the heritability of 741 
behaviour. J Evolution Biol 15, 277-289. (doi:DOI 10.1046/j.1420-9101.2002.00389.x). 742 
 743 


