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Abstract 23 

Lack’s seminal work on bird clutch sizes has spurred expansive research on reproductive trade-24 

offs, especially focusing on offspring quantity–quality trade-offs and the potential fitness 25 

consequences for the parents. The environment is a critical driver of the expression of individual 26 

reproductive traits, influencing them through plastic responses. However, the plasticity of 27 

reproductive trade-offs themselves across environments has seldom been studied, and these 28 

studies were often limited to experimental approaches and dichotomous environments. Using 29 

58 years of detailed data from a great tit population, we employ the recently developed 30 

‘covariance reaction norm’ (CRN) model to explore how continuous environmental variation 31 

influences the shape of reproductive trade-offs among individuals. Our analysis reveals that the 32 

correlation potentially indicative of the offspring quantity–quality trade-off is predominantly 33 

stable across years, with minimal variation linked to ecological harshness during the breeding 34 

season. However, the CRN also demonstrated that, despite some uncertainty associated with the 35 

results, the correlation between offspring mass and future offspring recruitment was positive, 36 

but only under harsh environmental conditions, suggesting that producing larger offspring 37 

provides fitness benefits when breeding conditions are suboptimal, which may reflect the 38 

importance of size for early-life competition. Altogether, this work highlights that there is 39 

temporal variation in some of the phenotypic correlations. This is a consequence of variation in 40 

offspring investment across breeding seasons, which is mostly driven by environmental 41 

conditions. Our study shows the benefits of exploring old ecological questions in the light of new 42 

statistical methods, highlighting the importance of understanding how environmental variation 43 



shapes the expression of life history trade-offs and the evolution of plasticity in reproductive 44 

strategies. 45 

Introduction 46 

The offspring quantity–quality trade-off has been a central area of interest in life-history biology, 47 

with numerous studies exploring this long-standing topic, both theoretically (Williams, 1966; 48 

Smith & Fretwell, 1974; Fischer et al., 2011), as well as empirically in various species (Lack, 1954; 49 

Sinervo & Licht, 1991; Einum & Fleming, 2000) including humans (Lawson & Mulder, 2016). All 50 

else being equal, selection should favor females producing more offspring, but these females also 51 

require enough resources to allocate to each offspring to ensure their survival, as larger offspring 52 

usually have better survival prospects (Sogard, 1997; Einum & Fleming, 2000; Marshall et al., 53 

2003; Fischer et al., 2011). It was, therefore, initially proposed in Lack’s hypothesis that each 54 

female has an inherent optimal brood size, such that it yields the highest possible recruitment, 55 

whereby any deviations from this brood size would lead to suboptimal offspring quality and thus 56 

lower overall recruitment (Lack, 1954). Overall, while some evidence agrees with Lack’s initial 57 

hypothesis (Smith & Fretwell, 1974), with manipulated increases or decreases in clutch size 58 

leading to changes in offspring condition and suboptimal recruitment as a consequence (Pettifor 59 

et al., 1988, 2001), most studies found that any increase in clutch size does not necessarily 60 

decrease offspring quality, and can even lead to higher recruitment (Perrins & Moss, 1975; Boyce 61 

& Perrins, 1987). Recent work has also shown how selection on offspring quality across breeding 62 

seasons can promote rather than constrain variability in females’ clutch size in response to 63 

seasonal fluctuations (Westneat et al., under review). 64 



Several hypotheses have been put forward to explain such results, but the role of 65 

environmental variability in impacting the relationship between brood size and recruitment has 66 

not often been addressed. One of a few attempts was made by Högstedt (1980), showing that 67 

optimal clutch size in magpies Pica pica is mostly mediated through variation in territory quality, 68 

with the average clutch size only being optimal for individuals occupying territories of average 69 

quality. However, models on optimal brood size have still too often ignored the role played by 70 

the environment in mediating such reproductive trade-offs (Smith & Fretwell, 1974), as in many 71 

species, individuals adjust their offspring number and size via phenotypic plasticity (Fischer et al., 72 

2011). 73 

The effect of environmental variation over space and time on traits and trade-offs 74 

between these traits can favour phenotypic plasticity (Service & Rose, 1985; Björklund, 2004). 75 

These plastic changes in trait expression as a response to environmental variability can lead to 76 

changes in the variance and covariance between traits (de Jong, 1989; Martin, 2025), with the 77 

latter being determined by the relative amount of variance in resource acquisition vs. resource 78 

allocation between the given traits (van Noordwijk & de Jong, 1986). These phenotypic 79 

correlations are usually indicative of trade-offs (Stearns, 1989; Agrawal et al., 2010), and negative 80 

correlations are usually expected when the variance in resource allocation is greater than the 81 

variance in acquisition (van Noordwijk & de Jong, 1986). The environment influences the 82 

evolution of traits such as optimal offspring size, optimal clutch size, and their plasticity (Parker 83 

& Begon, 1986), which have since been widely studied (Braby, 1994; Fox & Czesak, 2000; 84 

Taborsky et al., 2007; Allen et al., 2008; Marshall et al., 2008; Leips et al., 2009). However, little 85 

is known about how the environment, which influences reproductive traits, can consequently 86 



lead to changes in the correlations between traits in wild populations, which could themselves 87 

be indicative of changes in the expression of trade-offs. To date, most explorations have been 88 

limited to experimental approaches with discrete environments, or a dichotomization of the 89 

underlying continuous environmental variation (Messina & Slade, 1999; Czesak & Fox, 2003; 90 

Houslay et al., 2018; Mitchell & Houslay, 2021). Discretizing continuous processes is rarely 91 

justifiable (MacCallum et al., 2002; Beltran & Tarwater, 2024). Historically this was done largely 92 

for practical reasons when studying trade-offs, as no modeling approach was available to easily 93 

study the influence of continuous, multivariate environmental variation on traits covariances 94 

with typical study designs in the field (Martin, 2025). However, it is likely that reproductive trade-95 

offs in wild populations are influenced by the continuous environmental variation experienced 96 

by reproductive females. We therefore aim to use a new multivariate statistical approach that 97 

allows us to explore the role of continuous environmental variability on traits phenotypic 98 

correlations, which are potentially representing reproductive trade-offs. 99 

Here, we used one of the largest individual-based dataset of wild birds with the aim of 100 

applying a new statistical tool — the covariance reaction norm (CRN) model (Martin, 2025; Bliard 101 

et al., 2025) — to revisit longstanding questions related to reproductive trade-offs faced by 102 

reproductive individuals in wild populations. The CRN model provides a novel framework to 103 

examine how continuous environmental variation influences the covariance between traits, 104 

allowing us to test longstanding hypotheses about trade-offs in a more ecologically realistic 105 

context (Martin, 2025; Bliard et al., 2025). This model has been previously applied on other taxa 106 

(Soay sheep and yellow-bellied marmots) as a mostly methodological proof of concept study 107 

highlighting that context dependence in trait correlations indicative of trade-offs can be 108 



detected. This allows us to build upon this previous proof of concept study, now making use of a 109 

much larger dataset, to get new biological insights into reproductive trade-offs in the great tit 110 

population that initially formed the basis for the formulation of Lack’s principle. Here, we 111 

explored the dependence on key environmental variables of the phenotypic correlations (i.e., 112 

among-mother) between three key traits: brood size, offspring mass, and offspring recruitment, 113 

with each trait viewed as a maternal character (i.e., analysed at the level of the brood). Overall, 114 

based on prior work, we hypothesized that we would find a negative correlation between brood 115 

size and offspring mass (Nur, 1984; Smith et al., 1989), and that this correlation would become 116 

more negative in years of harsh ecological conditions (i.e., high density, low precipitation, low 117 

temperature, low beech mast), as trade-offs have often been shown to be stronger in poor 118 

conditions (Cohen et al., 2020). We also hypothesized that the phenotypic correlation between 119 

offspring mass and recruitment would be positive overall, as females producing larger offspring 120 

should have an improved recruitment, with more of these offspring surviving and reproducing in 121 

following years (Perrins & Moss, 1975; Nur, 1984). Importantly, we expected this correlation to 122 

be more positive under harsh ecological conditions, as in such conditions producing larger 123 

offspring might be key for their survival. When ecological conditions are milder or favorable (i.e., 124 

low density, high precipitation, high temperature, high beech mast), this correlation is expected 125 

to become close to zero, as even smaller offspring might be as likely to survive in such conditions. 126 

Finally, following Lack’s hypothesis predicting that the size of a brood is optimised, we did not 127 

necessarily expect to find a correlation between brood size and recruitment. This is because if 128 

any deviations in brood size lead to lower recruitment, the relationship between these two 129 

variables is potentially non-linear, which cannot be captured by their correlation. 130 



 131 

Methods 132 

In this study, we explored whether the phenotypic correlations between three main traits linked 133 

to reproduction depended on the environmental context. To this aim, we used 58 years of 134 

individual demographic and life-history data from the monitoring of a great tit population in 135 

Wytham Woods and applied a CRN model to brood size, offspring mass, and recruitment of 136 

offspring into the population in following years. In this model, we explored the role of ecological 137 

and environmental variables in governing the phenotypic correlations between these traits. 138 

Study system 139 

The great tit is a common and widespread species across Eurasia, member of the Paridae family 140 

(Gosler et al., 2020), and is one of the most widely studied passerines, that has become a model 141 

species for the study of behavioral and evolutionary ecology. It dwells in woodland and wooded 142 

farmland, as well as urban areas (Gosler et al., 2020), and nests in tree cavities and artificial nest 143 

boxes. Great tits are annual breeders, forming pairs and breeding in the spring, usually producing 144 

a single clutch per year consisting of 5-12 eggs, even though second clutches later in the spring 145 

sometimes occur (Perrins, 1965). The study population is from Wytham Woods (Oxfordshire, 146 

United Kingdom, 51°77ʹN, 1°32ʹW), which has been monitored since 1947 (Perrins, 1965), and 147 

the monitoring has been standardized with a stable number of nest boxes since 1961 (Perrins, 148 

1965; Perrins & McCleery, 1989). As part of this long-term individual-based monitoring, 149 

individuals were fitted with unique metal rings to allow individual identification and followed 150 

throughout their lifespan (Lack, 1964). All breeding attempts were monitored until offspring 151 

fledged, and both parents and offspring were usually caught, identified, and individually 152 



measured (e.g., mass, tarsus length). The curated and standardized data used in this study were 153 

accessed through SPI-Birds: study name “Wytham Woods”, study ID “WYT”, version 1.1.0 on 154 

October 16th 2023 (Culina et al., 2021). 155 

 156 

Individual and environmental variables 157 

Using 58 years of individual-based monitoring data from 1961 to 2018, we analyzed three 158 

different traits. These were the response variables in our model (see “Data analysis” section) and 159 

include the size of the brood (number of nestlings; measured at the brood level), the mass of 160 

offspring (g; measured at the offspring level), and the subsequent number of successful recruits 161 

from the brood (measured at the brood level). Most offspring in the population were weighed at 162 

14 days old, and we excluded mass measurements taken on offspring older or younger than 14 163 

days old. Each brood size was recorded 14 days after hatching. We chose to analyse brood size 164 

and offspring mass instead of clutch parameters (clutch size and egg mass), which is a deviation 165 

from Lack’s principle. Brood reduction happens in our data but is infrequent and usually limited 166 

to a few offspring (Figure S1). We decided to analyse brood parameters because this should 167 

better reflect the investment effort of the mothers during the breeding season as it encompasses 168 

the costs of both egg laying and nestling rearing. The fate of offspring from the brood was 169 

tracked, with recruitment defined as the number of offspring in a brood seen breeding within the 170 

population in subsequent years, a good measure of reproductive success that is often used as a 171 

proxy of parental fitness (McCleery & Clobert, 1990; Both & Visser, 2000; Wilkin et al., 2006). It 172 

is important to note that both offspring mass and offspring recruitment could also be considered 173 

as offspring fitness measures rather than parental fitness (see Wolf & Wade, 2001 for a critical 174 



perspective). In addition, this measurement of offspring recruitment has often been used but is 175 

imperfect for many reasons, such as being confounded by natal dispersal. However, this bias is 176 

expected to be limited, as natal dispersal is limited in great tits, with many offspring dispersing 177 

short distances and therefore likely staying within the study population (Greenwood et al., 1979; 178 

Verhulst et al., 1997). In total, this yielded a final dataset encompassing 7287 broods from 5032 179 

females across 58 years, with individual measures of mass and recruitment in the population in 180 

following years for 53753 offspring. 181 

The explanatory variables in our model included both individual and environmental 182 

variables. The individual variables were the mass of the mother (g) of each brood, as well as the 183 

breeding age of the mother, which has an influence on reproductive success (Bouwhuis et al., 184 

2009). All breeding individuals were aged as first year breeders (1 year old) or older breeders (>1 185 

year old), and this categorisation was based on plumage characteristics during captures when 186 

the exact age was not known from the ring number (Crates et al., 2016; Simmonds et al., 2020). 187 

Nestling sex is known to influence their mass, with sexual dimorphism in body mass being present 188 

in great tit nestlings, and male nestlings weighing on average ~0.6-0.7 gram more than female 189 

nestlings around 14 days after hatching (Oddie, 2000; Tschirren et al., 2003; Radersma et al., 190 

2011). However, information about nestling sex was not recorded for the majority of offspring, 191 

and was often only known for the small proportion of individuals which recruited in the 192 

population in following years. Therefore, we could not include offspring sex as an explanatory 193 

variable in the model. 194 

The environmental variables were spring temperature, spring precipitation, population 195 

density, beech mast index, and synchrony of laying dates with the caterpillar peak, which are all 196 



known to be important for great tit reproduction. These predictors were chosen because they 197 

directly influence resource availability, breeding timing, or parental effort in great tits. For 198 

instance, lower spring temperatures and precipitation may limit caterpillar abundance, a key 199 

food source, increasing the cost of brood provisioning, while population density may reflect 200 

competition for resources. Spring temperature and precipitation were obtained from the nearby 201 

Radcliffe Meteorological Station (Burt & Burt, 2019). Spring precipitation was defined as the sum 202 

of precipitation from April 1st to May 31st, the period when offspring are in the nest (Simmonds 203 

et al., 2020). Following Simmonds et al. (2020) analysis of climatic windows critical for great tits 204 

(Bailey & Pol, 2016; van de Pol et al., 2016; Simmonds et al., 2020), spring temperature was 205 

defined as the daily mean temperature from March 1st to May 9th. As usually estimated in this 206 

system, population density in a given year was calculated as the number of females hatching at 207 

least one egg (Simmonds et al., 2020). Beech mast index has been routinely collected in Wytham 208 

Woods and across Europe (Lack, 1964; Perdeck et al., 2000; Grøtan et al., 2009), and is scored as 209 

an ordinal variable of increasing beech mast ranging from 0 to 2. Years of high beech mast are 210 

expected to be beneficial for fledgling survival in the fall and over winter by providing abundant 211 

food resources, and is therefore an important factor for offspring recruitment. Finally, synchrony 212 

is an individual’s measure of phenological timing in relation to an annual, population-wide, 213 

measure of caterpillar abundance. More precisely, we calculated it as the difference between the 214 

half-fall date, which is the median date of capture of 5th instar caterpillars of the of winter moth 215 

Opheroptera brumata larvae, which indexes the timing of peak abundance of this species (Van 216 

Noordwijk et al., 1995; Hinks et al., 2015), and the female’s laying date. We assessed the 217 

collinearity of all predictor variables (Figure S2), highlighting low correlations among most 218 



covariates and moderate correlation between spring temperature and population density, but 219 

collinearity of predictors is not an issue in multiple regression analyses (Morrissey & Ruxton, 220 

2018; Vanhove, 2021). 221 

 222 

Missing data imputation 223 

The final datasets contained missing data for some variables. More specifically, out of a total of 224 

7287 broods, the mass of the mother was missing for 1147 observations (15.7%), while the 225 

breeding age was not known for 210 observations (2.9%). Regarding the environmental variables 226 

across the 58 years of monitoring, 14 years had an unknown half fall date (24.1%) and 5 years 227 

had a missing beech mast index (8.6%). We imputed these missing data points using predictive 228 

mean matching with the R package mice (Buuren & Groothuis-Oudshoorn, 2011; Buuren et al., 229 

2023). To account for imputation uncertainty, we generated 20 alternative imputed datasets 230 

using this method, and each of these datasets was then analyzed and subsequently combined, 231 

successfully propagating imputation uncertainty in the results throughout the analysis. 232 

Additionally, we also ran the CRN model on a reduced dataset wherein the missing data were not 233 

imputed, thus keeping only complete cases, finding that parameters estimates were broadly 234 

similar in most cases (Supplementary methods; Figure S3-S4). 235 

 236 

Data analysis 237 

We aim to explore the ecological correlates of phenotypic correlations between maternal traits 238 

linked to reproduction in great tits, more precisely the phenotypic correlations between brood 239 

size and offspring quality (using mass as a proxy), and between offspring quality and offspring 240 



recruitment in the population in following years. To this aim, we used a multivariate Covariance 241 

Reaction Norm (CRN) model, which is a recently developed model (Martin, 2025) that we have 242 

previously tailored to routinely collected demographic data which sometime lack repeated 243 

measurements within years for some traits (Bliard et al., 2025), allowing phenotypic covariances 244 

to vary through time or space in response to environmental variation. We encourage readers 245 

interested in the CRN methodology and its application to demographic data to refer to Martin 246 

(2025) and Bliard et al. (2025). Here, we apply this method on the three traits of interest in this 247 

study: brood size, offspring mass, and offspring recruitment (all treated as maternal traits, 248 

analysed at the level of the brood). 249 

We first modeled offspring mass at day 14 with a Gaussian distribution (equation 1), as a 250 

function of X1 (a N x P matrix of N measurements of P predictors, including an intercept), with 251 

predictors being spring temperature, spring precipitation, population density, beech mast index, 252 

synchrony and its quadratic effect, the mass of the mother and the age of the mother. All the 253 

continuous variables were standardized. In addition, we included a year random effect δ1 and a 254 

nestbox random effect γ1. The year random effect describes the unmodelled inter-annual 255 

variability in environmental conditions, while the nestbox random effect partitions the potential 256 

variation in territory quality or non-random selection of specific nestboxes by reproductive 257 

individuals. These random effects ensure that observed phenotypic correlations are not biased 258 

by unmeasured temporal or spatial factors. We also added a year-specific mother random effect 259 

𝛼1(Y) structured across repeated measurements by W (a N x J matrix of J mothers), which as 260 

explained further below could vary in response to year-specific ecological conditions. Finally, 𝜎 is 261 

the residual variation describing the within-brood variance. 262 



 263 

As our second trait, brood size, is underdispersed relative to a Poisson distribution, we modeled 264 

it using an ordinal regression (also called cumulative logistic regression; equation 2), as a function 265 

of X2, with covariates being the same as in X1, but not containing an intercept and differing in the 266 

number of observations. Similarly, we also included a year random effect δ2 and a nestbox 267 

random effect γ2. In the absence of repeated measurement for each mother in a given year (a 268 

single brood per female in a breeding season), as indicated by the exclusion of W, we included a 269 

year-specific observation-level random effect o2(Y), which describes the residual variation. Here, 270 

the cumulative probability of having at most i offspring is given as a function of the thresholds 𝜃!  271 

and the matrix of covariates X2, as well as the random effects. 272 

 273 

We modeled the third trait, offspring recruitment, describing the number of offspring from a 274 

given brood found breeding in the population in following years, with a zero-inflated Poisson 275 

distribution (equation 3). Recruitment data were expected to be heavily zero-inflated because 276 

many broods produced no recruits, due to factors such as brood predation and low offspring 277 

survival. The zero-inflation term 𝜓 was included because posterior predictive checks with a 278 

simpler Poisson model without zero inflation highlighted an over-representation of zeros, causing 279 

the model to fit poorly to the data. The probability of observing a given number of offspring 280 

recruited into the population in following years was modeled as a function of X3, which is similar 281 

to X3 with the addition of an intercept. Year δ3 and nestbox γ3 random effects were included as 282 



well. Since offspring recruitment was analyzed at the level of the brood (one measure of 283 

recruitment per brood), we did not have repeated measurements in a given year for mothers, 284 

and therefore included a year-specific observation-level random effect o3(Y), characterising the 285 

residual variation. 286 

 287 

We also tried an alternative modeling approach instead of equation (3) by using a binomial 288 

distribution to estimate the probability of offspring recruiting in the population, but 289 

unfortunately this model suffered from convergence issues that could not be resolved. 290 

To investigate context dependence of the phenotypic correlations among the three 291 

response variables (brood size, offspring mass, offspring recruitment), the year-specific among-292 

individual random effect 𝛼1(Y) and observation-level random effects o2(Y) and o3(Y) were drawn 293 

from a multivariate normal distribution governed by year-specific covariance matrices P(Y) 294 

(equation 4). The year-specific covariance matrices can then be decomposed in their primary 295 

elements, i.e., the year-specific phenotypic correlations between the three traits (r12,r13,r23) and 296 

their variances (𝜎𝛼1
2, 𝜎o2

2, 𝜎o3
2), given that a covariance is just the product of the correlation 297 

between traits and the square roots of the variances. We then model the year-specific 298 

phenotypic correlations (r(Y)), as well as the year specific variances (𝜎2
(Y)), as a function of a subset 299 

of the environmental covariates contained in X4 (equation 4). The covariates are spring 300 

temperature, spring precipitation, population density, and beech mast index. 301 



 302 

The inverse hyperbolic tangent function atanh is used as a link function, which is akin to a logistic 303 

regression with bounds in [-1;1], thus being suitable to predict correlation coefficients (see more 304 

details in Martin 2025). Regarding the choice of priors, we used a standard flat prior for the zero-305 

inflation coefficient 𝜓 (equation 5), which is a default prior for this parameter in most statistical 306 

software. 307 

 308 

We specified regularizing priors for all the 𝛽 slope coefficients (equation 6) to reduce our risk of 309 

false positive and increase the robustness and generalizability of our findings (see Lemoine, 2019 310 

for discussion). Narrower priors were used for 𝛽4 to avoid putting too much weight on extreme 311 

correlations (see Figure S5). 312 

 313 

For the year-specific among-individual 𝜎𝛼 and year-specific observation-level 𝜎o standard 314 

deviations, as well as for the within-brood variance 𝜎, we used exponential priors (equation 7). 315 

  316 



We specified the year random effects δ on the three traits studied by drawing them from 317 

univariate (i.e. non-correlated) normal distributions, also using exponential distributions for the 318 

variance terms λ (equation 8). 319 

 320 

Finally, since breeding individuals could sample nestboxes non-randomly and territories can vary 321 

in quality, the nextbox random effects γ partitioning spatial variation in the conditions 322 

experienced by individuals were specified as multivariate, thus estimating the among-nestbox 323 

covariances, as not accounting for this correlation could potentially lead to biasing the estimation 324 

of the context-dependent among-individual correlations we aimed to detect. We therefore drew 325 

the γ vectors from a multivariate normal distribution with covariance matrix Σ. The covariance 326 

matrix Σ is decomposed into its standard deviation matrix S, with exponential priors for each 327 

standard deviation parameter 𝜔, and its correlation matrix R, which is specified with a 328 

Lewandowski-Kurowicka-Joe prior distribution (equation 9). 329 

 330 

We also performed the same model as the one described above, but excluding the year random 331 

effects γ on brood size, offspring mass, and recruitment, as well as another one where we 332 



excluded both the year random effects and the environmental covariates on brood size, offspring 333 

mass, and recruitment (Figure S6-S7). Finally, given the unintuitive results found regarding the 334 

effect of beech mast index, we also performed the same model as the one presented in the main 335 

text with the addition of interaction effects between beech mast index and population density 336 

on the phenotypic correlations (Figure S8-S9). 337 

Model implementation 338 

The multivariate CRN model (Martin, 2025; Bliard et al., 2025) described above was implemented 339 

in a Bayesian framework using the statistical programming language Stan (Carpenter et al., 2017), 340 

which uses an Hamiltonian Monte Carlo algorithm (Hoffman & Gelman, 2014). We ran the model 341 

through R version 4.3 (R Core Team, 2023), using the R package CmdStanR version 0.8.1 (Gabry 342 

& Češnovar, 2020). As detailed in the previous methods section, weakly informative regularizing 343 

priors were used for all parameters. We performed 20 alternative models, one for each of the 344 

imputed dataset, to ensure that imputation uncertainty was propagated through the analysis. 345 

Each model ran on 3 chains with a warm-up period of 1000 iterations, and sampled for 1000 346 

iterations per chain, keeping all the iterations (Link & Eaton, 2012), thus totalling 3000 saved 347 

posterior samples per alternative model. We ensured that convergence was reached for each 348 

model by obtaining R-hat values below 1.01 for all parameters (Gelman & Rubin, 1992), and by 349 

visually inspecting trace plots. We then merged the posterior distributions of all the 20 350 

alternative models, thus obtaining a single posterior distribution made of 60000 posterior 351 

samples (3000 x 20) for the combined model accounting for imputation uncertainty. Throughout 352 

the results, we report the posterior median effect sizes, alongside credible intervals. We provide 353 



the Stan code on GitHub (https://github.com/lbiard/tradeoffs_parus_major) and will archive it 354 

on Zenodo upon acceptance of the manuscript. 355 

 356 

Results 357 

Our results reveal that the correlation between brood size and offspring mass is negative across 358 

all environmental contexts, with the correlation slightly less negative under favourable 359 

conditions. In contrast, the phenotypic correlation between offspring mass and recruitment is 360 

strongly context-dependent, becoming indistinguishable from zero under favourable conditions 361 

such as low density but tending to be positive in harsher years. Contrary to our hypothesis, we 362 

found no correlation between brood size and recruitment, which was estimated with a large 363 

uncertainty. 364 

 We expected the correlation between brood size and offspring mass to be highly 365 

constrained, whereby mothers producing larger broods would also produce smaller offspring. 366 

The results of our model potentially confirm this expectation, as the correlation between brood 367 

size residual variation and among-mother variation in offspring mass was found to be negative 368 

across all environmental contexts (Figure 1). The negative correlation between brood size and 369 

offspring mass was slightly relaxed in years of high precipitation, and, in years combining low 370 

population density and high beech mast, although these effects were small and are associated 371 

with high uncertainties (Figure 1, Figure S9). 372 

 The correlation between the mass of offspring produced and their recruitment in 373 

subsequent years tended to be positive overall (Figure 2), such that mothers producing larger 374 

offspring tend to have higher offspring recruitment. This follows expectations that larger 375 



offspring are more likely to survive, thus being more likely to be present as breeders in following 376 

years. However, we found rather strong effects of the environmental context on this correlation. 377 

Following our expectations, under favorable conditions such as low population density, high 378 

spring temperature, or high spring precipitation, this correlation tended to be small, such that 379 

the mass of offspring was not clearly associated with their recruitment (Figure 2). While we 380 

expected the same for beech mast index, we found the opposite result, with the correlation 381 

becoming indistinguishable from zero in years of low beech mast (Figure 2). 382 

 Contrary to our hypothesis, we found that the correlation between brood size and 383 

recruitment was centered on zero and invariant across environmental contexts (Figure 3). 384 

 The among-nestbox correlations between brood size and offspring mass (median = 0.033 385 

[10-90% intervals = -0.519; 0.563]) and between brood size and recruitment (0.032 [-0.525; 386 

0.575]) were found to be close to zero with large credible intervals. However, we found an overall 387 

positive correlation among nest boxes between offspring mass and recruitment albeit with 388 

substantial estimate uncertainty (0.387 [-0.249; 0.776]), which could reflect some degree of 389 

spatial variation in nestbox or overall territory quality. 390 

Estimated effects of all the covariates on the three phenotypic correlations highlight that 391 

the uncertainty around the median estimated effects is fairly large despite the high sample size 392 

used (Figure 4), as we are ultimately limited by the dataset length in the number of breeding 393 

seasons monitored. In addition, it is important to note that some results are sensitive to model 394 

structure, with slightly different estimates found when year random effects were excluded 395 

(Figure S6, S7). Environmental covariates are also found to influence trait variances in various 396 

ways (Figure S12, S13, S14, S15). Overall, covariate effects on the primary traits (Figure S10, S11) 397 



align with previous studies: population density negatively affected reproductive traits, while 398 

beech mast index and maternal breeding age had positive effects across all traits. In addition, 399 

posterior predictive checks highlight a good fit of the model to the data (Figure S16). 400 

 401 

Discussion 402 

We used individual-based data from one of the longest individual-based monitoring of a great tit 403 

population, together with a newly developed hierarchical “covariance reaction norm” model 404 

(Martin, 2025) tailored for demographic data lacking repeated measurements within years for 405 

some traits (Bliard et al., 2025). Despite some uncertainty in the results, we found evidence that 406 

the phenotypic correlations between brood size and offspring mass, and especially between 407 

offspring mass and offspring recruitment, are temporally variable and dependent on the 408 

environmental conditions experienced during the breeding season. Overall, harsher conditions 409 

lead females who lay larger broods to have smaller offspring, and the propensity for these smaller 410 

offspring to recruit is lower. Interestingly, smaller offspring born during favorable breeding 411 

seasons are equally as likely to recruit as their larger counterparts. Yet, regardless of the 412 

environment, the fitness outcome for mothers does not seem to be influenced by the size of their 413 

brood, as it is not ultimately associated with offspring recruitment, though offspring recruitment 414 

is not always a reliable fitness proxy for mothers (Wolf & Wade, 2001). We discuss these findings 415 

and potential limitations of our modeling approach that could blur some of the biological 416 

associations studied here. 417 

The correlation between offspring quantity and offspring quality was found to be strongly 418 

negative and highly constrained in this population of great tit. Regardless of the environmental 419 



conditions experienced during the breeding seasons, the correlation between brood size residual 420 

variation and the among-female offspring mass variation was close to -1, thus being potentially 421 

indicative of a strong quantity-quality trade-off. We only found a weak influence of the 422 

environmental context (Figure 4), though these effects were statistically uncertain and sensitive 423 

to data imputation (Figure S3, S4) and model structure (Figure S6, S7). This correlation was only 424 

slightly less negative in years combining low population density and high beech mast index, 425 

potentially indicating a slightly relaxed quantity-quality trade-off under these conditions (Figure 426 

S8, S9). Convincing evidence of context-dependence between offspring number and size has 427 

been found in studies on human fertility, whereby such trade-off is absent in favorable socio-428 

economic classes while being found under poorer socio-economic conditions (Gillespie et al., 429 

2008; Meij et al., 2009; Lawson & Mulder, 2016). Similarly, laboratory studies on invertebrates 430 

found phenotypic and genetic correlations between offspring number and size to depend on the 431 

degree of food availability (Messina & Slade, 1999; Czesak & Fox, 2003; Messina & Fry, 2003). 432 

However, we found that the correlation is negative across environments, potentially indicating 433 

that this trade-off is always expressed in great tits, and a potential explanation could be that little 434 

variance in quality or resource acquisition remains among females once accounting for primary 435 

predictors such as mother’s mass and age. For instance, the study of Ebert (1993) on Daphnia 436 

has shown that the offspring number and size trade-off is initially found to be influenced by food 437 

availability, but the genetic correlations all became negative once accounting for mother’s 438 

condition. Similarly, negative phenotypic correlations between offspring quantity and quality 439 

were found after adjusting for maternal size in a meta-analysis across animal species (Lim et al., 440 



2014). Therefore, if our primary covariates accounted well for maternal heterogeneity in this 441 

great tit population, it could result in such a strongly negative correlation. 442 

We found that the correlation between offspring mass and recruitment is overall positive 443 

(Figure 2), such that larger offspring are better quality offspring, thus being more likely to recruit 444 

in the population in following years. This is in line with numerous other past results in great tits, 445 

wherein offspring mass or size are usually found to be associated with future outcomes, from 446 

survival to recruitment (Both et al., 1999; Monrós et al., 2002; Garant et al., 2004; Wilkin et al., 447 

2006; Bouwhuis et al., 2015; Rodríguez et al., 2016), while being independent of their laying date 448 

(Wilkin et al., 2006). However, our study also explores the dependence of this association on 449 

environmental conditions experienced during the breeding season. Interestingly, we found that 450 

this association was stronger under harsh conditions, whereby producing small offspring might 451 

be particularly detrimental as they would not fare well due to poor climatic conditions (e.g., dry 452 

and cold springs; Figure 2) or stronger competition from a higher population density (Both et al., 453 

1999). However, during favorable breeding seasons, the correlation between offspring mass and 454 

recruitment becomes indistinguishable from zero, with mild conditions and low competition 455 

allowing even frail offspring to survive and recruit in following seasons, thus highlighting that 456 

phenotypic selection for offspring body mass is likely variable and its temporal dynamics are 457 

potentially mediated by environmental conditions (Braby, 1994; Grant & Grant, 2002; Siepielski 458 

et al., 2009). This echoes findings from Bouwhuis et al. (2015), where broods with heavier 459 

offspring experienced a better recruitment probability, with this relationship being stronger 460 

during warmer springs. Such fluctuating selection is expected to promote the evolution of 461 

adaptive plasticity in reproductive behavior (de Jong, 1995).  462 



Despite most results following our expectations, the estimated effect for the beech mast 463 

index goes opposite to our predictions, with theoretically better years (i.e., higher beech mast 464 

index) associated with a stronger, more positive correlation. Although speculative, one possible 465 

explanation could be that females do an anticipatory adjustment of brood size based on future 466 

resource availability, whereby they would adjust brood size based on some external cues that 467 

correlate with beech seed production in the autumn following the breeding season. For instance, 468 

these anticipatory effects in relation to masting events have been found in red squirrels 469 

Tamiasciurus hudsonicus and Sciurus vulgaris (Boutin et al., 2006). In great tits, this might lead to 470 

increased brood size at the population level during years of high beech mast (Figure S10), which 471 

in turn is likely to increase nestling and fledgling abundance in the population. This increase in 472 

the abundance of great tits and potentially other bird species might lead to a decrease in 473 

individual perceived predation risk (e.g., through dilution effects), thus making it less detrimental 474 

for nestlings to put on weight (Gentle & Gosler, 2001; Macleod et al., 2005). Though the 475 

estimated effect is rather modest in size and somewhat uncertain (Figure 4), warranting caution 476 

with biological interpretation, and it does not seem to be explained by an interaction between 477 

population density and beech mast index (Figure S8-S9), this highlights the need for further 478 

exploration of the indirect effects of environmental variables on reproductive trade-offs. 479 

Overall, we found a lack of correlation between brood size and subsequent successful 480 

recruitment, together with no evidence of a dependence on the environmental context and 481 

extremely large uncertainty in the estimates (Figure 3). Several non-mutually exclusive reasons, 482 

both biological and statistical, could explain this invariant correlation indistinguishable from zero 483 

across all environments, and the large credible intervals surrounding it. First, the lack of 484 



association could just reflect that after accounting for primary predictors on both traits, there is 485 

just no biological association between residual brood size and recruitment and no environmental 486 

effects. This may simply be due to the fact that residual variances for size and particularly 487 

recruitment were very small (Fig. S10-11), limiting our ability to estimate their correlation 488 

independently of mean-scaling effects, despite our large sample size. However, this correlation 489 

did not change even when excluding primary predictors on traits (Figure S7). This lack of 490 

association would mean that regardless of environmental conditions, producing a small brood of 491 

big nestlings or a large brood of small nestlings is likely leading to the same fitness outcome for 492 

females. Second, the lack of correlation between brood size and offspring recruitment could 493 

actually reflect Lack’s initial statement, with brood size being optimized (Williams, 1966). Indeed, 494 

under this hypothesis, we might expect a non-linear association between brood size and fitness, 495 

such that recruitment initially increases with brood size up to an optimal value, and then 496 

decreases as brood size effects on offspring quality become apparent. Therefore, any deviation 497 

is likely leading to reduced recruitment (Gustafsson & Sutherland, 1988; Pettifor et al., 1988). 498 

While the covariance reaction norm model is ideal for estimating nonlinear changes in trait 499 

associations, this non-linear relationship would not be directly captured by the covariance terms 500 

estimated in our model, which could explain the absence of a clear correlation in our results. 501 

These non-linear associations could be more directly analysed using recently proposed methods 502 

for nonlinear selection analysis on latent variables (Dingemanse et al., 2021; Martin et al., 2021), 503 

but this would require a highly complex and much more difficult to interpret hierarchical model 504 

in the context of this study. Third, brood size and recruitment are both non-repeated measures 505 

within a given year (i.e., context). Thus, by not having several measures per individual in a given 506 



year, within- and among-individual covariances cannot be properly disentangled. Such 507 

observation-level correlation will therefore reflect either the among-individual correlation if 508 

traits repeatabilities are high, or the within-individual correlation if traits repeatabilities are low 509 

(Bliard et al., 2025), or a combination of both, hence contributing to the large uncertainty found 510 

in our results. The repeatability of clutch size in great tits is usually medium to high (e.g., 0.51 in 511 

Perrins and Jones (1974)). However, depending on whether females’ offspring recruitment is 512 

environmentally labile, our estimate could either reflect the among- or within-individual 513 

correlation between both traits (Searle, 1961; Dingemanse & Dochtermann, 2013; Bliard et al., 514 

2025). 515 

Other limitations could explain the lack of correlation between brood size and 516 

recruitment. Recruitment of offspring into the population in following years is an imperfect 517 

measure of fitness. As previously noted, because offspring effects on recruitment may be 518 

independent of maternal traits, it might thus be a poor proxy of females’ fitness per se (Wolf & 519 

Wade, 2001). It is necessarily an underestimate due to imperfect detection, being confounded 520 

with long distance (i.e., outside the study area) natal dispersal (Gimenez et al., 2008). Dispersal 521 

events could themselves be linked to the environmental context experienced by the nestlings 522 

(McCaslin et al., 2020). For instance, it had been argued that social dominance, which could 523 

hypothetically be related to the size of the brood an offspring was reared in, could in turn 524 

influence the natal dispersal distance of offspring (Nilsson & Smith, 1985; Smith & Nilsson, 1987; 525 

Smith et al., 1989). Such a limitation could potentially obscure any association between brood 526 

size and recruitment (Gimenez et al., 2008). Finally, it is also possible that the lack of association 527 

and lack of environmental effects result from interaction effects between environmental 528 



variables that were not accounted for, even though it did not seem to be the case (Figure S8-S9), 529 

and we did not have additional specific biologically motivated interactions to include. 530 

Altogether, we found indication that, although the brood size – offspring mass trade-off 531 

was highly constrained, the phenotypic correlation between offspring mass and recruitment was 532 

strongly dependent on changes in population density and harshness of the environment during 533 

the breeding season, with females producing larger offspring experiencing higher recruitment 534 

only during harsh breeding seasons. This study demonstrates that in this great tit population, 535 

phenotypic covariances respond to continuous environmental change and temporal variation in 536 

population density, a phenomenon that has mostly been neglected up to now, which highlights 537 

that knowledge about life-history theory and trade-offs can be improved through the 538 

incorporation of context dependence. Future studies could extend this approach to other 539 

populations or species (Culina et al., 2021), to further understand how environmental variation 540 

shapes trade-offs and life-history evolution (Chantepie et al., 2024). Overall, such a framework 541 

allows us to revisit old ecological questions related to patterns of selection in fluctuating density-542 

dependent environments through the lens of new multivariate statistical methods, and therefore 543 

expand from an often univariate view on the topic to studying multivariate patterns of trait 544 

(co)expression (Wright et al., 2019; Martin, 2025). 545 
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Figures 573 

 574 

Figure 1: Estimated phenotypic correlations between offspring mass and brood size as a function 575 

of population size (top left panel), spring temperature (top right panel), spring precipitation 576 

(bottom left panel), and beech mast index (bottom right panel). Posterior median effect sizes are 577 

represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded 578 

bands. 579 

 580 

 581 

 582 



 583 

Figure 2: Estimated phenotypic correlations between offspring mass and recruitment as a 584 

function of population size (top left panel), spring temperature (top right panel), spring 585 

precipitation (bottom left panel), and beech mast index (bottom right panel). Posterior median 586 

effect sizes are represented by the darker lines, and 10% to 90% credible intervals are 587 

represented by the shaded bands. 588 
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 592 



 593 

Figure 3: Estimated phenotypic correlations between brood size and recruitment as a function of 594 

population size (top left panel), spring temperature (top right panel), spring precipitation (bottom 595 

left panel), and beech mast index (bottom right panel). Posterior median effect sizes are 596 

represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded 597 

bands. 598 
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 601 

 602 



 603 

Figure 4: Estimated effects of standardized predictors on the phenotypic correlations between 604 

offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and 605 

recruitment (green). 606 

 607 

 608 

 609 

 610 

 611 



Supplementary materials 612 

Supplementary methods: 613 

As mentioned in the main text, the final dataset contained missing data for some variables in 614 

some observations. We imputed these missing data points using predictive mean matching with 615 

the R package mice. For each missing entry, the method compares this observation with all other 616 

complete cases, and based on the other variables selects a group of candidate observations (5 617 

observations, the default in mice R package) that most closely matches the given observation 618 

with missing data. From this pool of 5 observations, one is then drawn at random and used to 619 

impute the missing data. Given that it draws real values from the data, it is less likely to impute 620 

implausible data, and the method usually works well (Kleinke 2017). 621 

To assess the influence of the data imputation, we performed the same CRN model 622 

keeping only complete cases, thus excluding any observation that contained missing data for at 623 

least one variable. This yielded a smaller dataset made of 35570 offspring mass measurements 624 

from 4710 breeding attempts. However, this also led to a quite strong reduction in the number 625 

of breeding seasons with complete case observations, with this reduced dataset spanning only 626 

27 breeding seasons (vs. 58 breeding seasons in the full dataset). Overall, we found broad 627 

concordance between the results of the CRN model with full imputed dataset and reduced non-628 

imputed dataset. However, we want to point out that some specific parameter estimates 629 

appeared to change between the two analyses (Figure S3; effect of population density and spring 630 

precipitation on the brood size - offspring mass correlation). But given that these effects did not 631 

involve any of the imputed variables, it is more likely that these changes stem from the loss of 632 

more than half of the breeding seasons in the reduced dataset (58 vs 27 years). 633 



 634 

 635 

Figure S1: histogram of brood reduction across all broods analysed. This highlights the number 636 

of broods analysed that went through a brood reduction, with values representing the difference 637 

between observed clutch size and observed brood size at day 14. Brood reduction appears to be 638 

infrequent or limited to a few offspring.  639 
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 646 

Figure S2: Correlations among the predictor variables used in the model, highlighting low to 647 

moderate collinearity among all variables. 648 
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 658 

Figure S3: Estimated effects of standardized predictors on the phenotypic correlations between 659 

offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and 660 

recruitment (green), using the reduced, non-imputed dataset. 661 
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 666 

Figure S4: Estimated effects of standardized predictors on primary traits: offspring mass (blue), 667 

brood size (red), and recruitment (green), using the reduced, non-imputed dataset. 668 
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 674 

Figure S5: Comparison of prior distributions between a narrower (in red; N(0,0.5)) and a wider 675 

(in blue; N(0,1)) normal distribution after transformation by a hyperbolic tangent function. This 676 

highlights that the wider normal distribution puts higher density on extreme correlations, while 677 

the narrower one puts less weight on extreme correlations. 678 
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 686 

Figure S6: Estimated effects of standardized predictors on the phenotypic correlations between 687 

offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and 688 

recruitment (green), when using a model that did not include the year random effects on primary 689 

traits. 690 
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 694 

Figure S7: Estimated effects of standardized predictors on the phenotypic correlations between 695 

offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and 696 

recruitment (green), when using a model that did not include the year random effects on primary 697 

traits, nor the environmental covariates on the primary traits. 698 
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 702 

Figure S8: Estimated effects of standardized predictors on the phenotypic correlations between 703 

offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and 704 

recruitment (green), when using a model that includes interactive effects between beech mast 705 

index and population density on the phenotypic correlation between traits. 706 

 707 

 708 

 709 



 710 

Figure S9: Estimated phenotypic correlations between offspring mass and brood size (top panels), 711 

offspring mass and recruitment (middle panels), and brood size and recruitment (bottom panels), 712 

as a function of population density, beech mast index, and their interactive effects. This highlights 713 

that the interaction between beech mast index and population density mostly has a weak or no 714 

effect on the phenotypic correlations between reproductive traits. 715 



 716 

Figure S10: Associations estimated by the model between spring temperature, spring 717 

precipitation, population density, beech mast index, breeding age, parental mass, and laying date 718 

synchrony (panels from left to right) with offspring mass (top row), brood size (middle row), and 719 

recruitment (bottom row). Posterior median effect sizes are represented by the darker lines, and 720 

10% to 90% credible intervals are represented by the shaded bands. Each circle represents a data 721 

point, and a small amount of jitter and transparency were added for display only to avoid 722 

overlapping points. 723 
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 729 

Figure S11: Estimated effects of standardized predictors on primary traits: offspring mass (blue), 730 

brood size (red), and recruitment (green). 731 
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 736 



 737 

Figure S12: Estimated among-mother variance in offspring mass as a function of population size 738 

(top left panel), spring temperature (top right panel), spring precipitation (bottom left panel), 739 

and beech mast index (bottom right panel). Posterior median effect sizes are represented by the 740 

darker lines, and 10% to 90% credible intervals are represented by the shaded bands. 741 
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 746 



 747 

Figure S13: Estimated observation-level variance in brood size as a function of population size 748 

(top left panel), spring temperature (top right panel), spring precipitation (bottom left panel), 749 

and beech mast index (bottom right panel). Posterior median effect sizes are represented by the 750 

darker lines, and 10% to 90% credible intervals are represented by the shaded bands. 751 
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 757 

Figure S14: Estimated observation-level variance in offspring recruitment as a function of 758 

population size (top left panel), spring temperature (top right panel), spring precipitation (bottom 759 

left panel), and beech mast index (bottom right panel). Posterior median effect sizes are 760 

represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded 761 

bands. 762 
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 767 

Figure S15: Estimated effects of standardized predictors on the among-mother variance in 768 

offspring mass (blue), observation-level variance in brood size (red), and observation-level 769 

variance in offspring recruitment (green). 770 
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 775 

Figure S16: Posterior predictive checks showing the concordance between the distribution of the 776 

data (y) and the distribution of data generated under the statistical model (yrep), for brood size 777 

(top panel), offspring mass (middle panel), and offspring recruitment (bottom panel). This 778 

highlights a decent fit of the models, but a small overestimation of zeros in recruitment. 779 
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