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Abstract
Lack’s seminal work on bird clutch sizes has spurred expansive research on reproductive trade-
offs, especially focusing on offspring quantity—quality trade-offs and the potential fitness
consequences for the parents. The environment is a critical driver of the expression of individual
reproductive traits, influencing them through plastic responses. However, the plasticity of
reproductive trade-offs themselves across environments has seldom been studied, and these
studies were often limited to experimental approaches and dichotomous environments. Using
58 years of detailed data from a great tit population, we employ the recently developed
‘covariance reaction norm’ (CRN) model to explore how continuous environmental variation
influences the shape of reproductive trade-offs among individuals. Our analysis reveals that the
correlation potentially indicative of the offspring quantity—quality trade-off is predominantly
stable across years, with minimal variation linked to ecological harshness during the breeding
season. However, the CRN also demonstrated that, despite some uncertainty associated with the
results, the correlation between offspring mass and future offspring recruitment was positive,
but only under harsh environmental conditions, suggesting that producing larger offspring
provides fitness benefits when breeding conditions are suboptimal, which may reflect the
importance of size for early-life competition. Altogether, this work highlights that there is
temporal variation in some of the phenotypic correlations. This is a consequence of variation in
offspring investment across breeding seasons, which is mostly driven by environmental
conditions. Our study shows the benefits of exploring old ecological questions in the light of new

statistical methods, highlighting the importance of understanding how environmental variation
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shapes the expression of life history trade-offs and the evolution of plasticity in reproductive
strategies.
Introduction

The offspring quantity—quality trade-off has been a central area of interest in life-history biology,
with numerous studies exploring this long-standing topic, both theoretically (Williams, 1966;
Smith & Fretwell, 1974; Fischer et al., 2011), as well as empirically in various species (Lack, 1954;
Sinervo & Licht, 1991; Einum & Fleming, 2000) including humans (Lawson & Mulder, 2016). All
else being equal, selection should favor females producing more offspring, but these females also
require enough resources to allocate to each offspring to ensure their survival, as larger offspring
usually have better survival prospects (Sogard, 1997; Einum & Fleming, 2000; Marshall et al.,
2003; Fischer et al., 2011). It was, therefore, initially proposed in Lack’s hypothesis that each
female has an inherent optimal brood size, such that it yields the highest possible recruitment,
whereby any deviations from this brood size would lead to suboptimal offspring quality and thus
lower overall recruitment (Lack, 1954). Overall, while some evidence agrees with Lack’s initial
hypothesis (Smith & Fretwell, 1974), with manipulated increases or decreases in clutch size
leading to changes in offspring condition and suboptimal recruitment as a consequence (Pettifor
et al., 1988, 2001), most studies found that any increase in clutch size does not necessarily
decrease offspring quality, and can even lead to higher recruitment (Perrins & Moss, 1975; Boyce
& Perrins, 1987). Recent work has also shown how selection on offspring quality across breeding
seasons can promote rather than constrain variability in females’ clutch size in response to

seasonal fluctuations (Westneat et al., under review).
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Several hypotheses have been put forward to explain such results, but the role of
environmental variability in impacting the relationship between brood size and recruitment has
not often been addressed. One of a few attempts was made by Hogstedt (1980), showing that
optimal clutch size in magpies Pica pica is mostly mediated through variation in territory quality,
with the average clutch size only being optimal for individuals occupying territories of average
quality. However, models on optimal brood size have still too often ignored the role played by
the environment in mediating such reproductive trade-offs (Smith & Fretwell, 1974), as in many
species, individuals adjust their offspring number and size via phenotypic plasticity (Fischer et al.,
2011).

The effect of environmental variation over space and time on traits and trade-offs
between these traits can favour phenotypic plasticity (Service & Rose, 1985; Bjorklund, 2004).
These plastic changes in trait expression as a response to environmental variability can lead to
changes in the variance and covariance between traits (de Jong, 1989; Martin, 2025), with the
latter being determined by the relative amount of variance in resource acquisition vs. resource
allocation between the given traits (van Noordwijk & de Jong, 1986). These phenotypic
correlations are usually indicative of trade-offs (Stearns, 1989; Agrawal et al., 2010), and negative
correlations are usually expected when the variance in resource allocation is greater than the
variance in acquisition (van Noordwijk & de Jong, 1986). The environment influences the
evolution of traits such as optimal offspring size, optimal clutch size, and their plasticity (Parker
& Begon, 1986), which have since been widely studied (Braby, 1994; Fox & Czesak, 2000;
Taborsky et al., 2007; Allen et al., 2008; Marshall et al., 2008; Leips et al., 2009). However, little

is known about how the environment, which influences reproductive traits, can consequently
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lead to changes in the correlations between traits in wild populations, which could themselves
be indicative of changes in the expression of trade-offs. To date, most explorations have been
limited to experimental approaches with discrete environments, or a dichotomization of the
underlying continuous environmental variation (Messina & Slade, 1999; Czesak & Fox, 2003;
Houslay et al., 2018; Mitchell & Houslay, 2021). Discretizing continuous processes is rarely
justifiable (MacCallum et al., 2002; Beltran & Tarwater, 2024). Historically this was done largely
for practical reasons when studying trade-offs, as no modeling approach was available to easily
study the influence of continuous, multivariate environmental variation on traits covariances
with typical study designs in the field (Martin, 2025). However, it is likely that reproductive trade-
offs in wild populations are influenced by the continuous environmental variation experienced
by reproductive females. We therefore aim to use a new multivariate statistical approach that
allows us to explore the role of continuous environmental variability on traits phenotypic
correlations, which are potentially representing reproductive trade-offs.

Here, we used one of the largest individual-based dataset of wild birds with the aim of
applying a new statistical tool — the covariance reaction norm (CRN) model (Martin, 2025; Bliard
et al., 2025) — to revisit longstanding questions related to reproductive trade-offs faced by
reproductive individuals in wild populations. The CRN model provides a novel framework to
examine how continuous environmental variation influences the covariance between traits,
allowing us to test longstanding hypotheses about trade-offs in a more ecologically realistic
context (Martin, 2025; Bliard et al., 2025). This model has been previously applied on other taxa
(Soay sheep and yellow-bellied marmots) as a mostly methodological proof of concept study

highlighting that context dependence in trait correlations indicative of trade-offs can be
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detected. This allows us to build upon this previous proof of concept study, now making use of a
much larger dataset, to get new biological insights into reproductive trade-offs in the great tit
population that initially formed the basis for the formulation of Lack’s principle. Here, we
explored the dependence on key environmental variables of the phenotypic correlations (i.e.,
among-mother) between three key traits: brood size, offspring mass, and offspring recruitment,
with each trait viewed as a maternal character (i.e., analysed at the level of the brood). Overall,
based on prior work, we hypothesized that we would find a negative correlation between brood
size and offspring mass (Nur, 1984; Smith et al., 1989), and that this correlation would become
more negative in years of harsh ecological conditions (i.e., high density, low precipitation, low
temperature, low beech mast), as trade-offs have often been shown to be stronger in poor
conditions (Cohen et al., 2020). We also hypothesized that the phenotypic correlation between
offspring mass and recruitment would be positive overall, as females producing larger offspring
should have an improved recruitment, with more of these offspring surviving and reproducing in
following years (Perrins & Moss, 1975; Nur, 1984). Importantly, we expected this correlation to
be more positive under harsh ecological conditions, as in such conditions producing larger
offspring might be key for their survival. When ecological conditions are milder or favorable (i.e.,
low density, high precipitation, high temperature, high beech mast), this correlation is expected
to become close to zero, as even smaller offspring might be as likely to survive in such conditions.
Finally, following Lack’s hypothesis predicting that the size of a brood is optimised, we did not
necessarily expect to find a correlation between brood size and recruitment. This is because if
any deviations in brood size lead to lower recruitment, the relationship between these two

variables is potentially non-linear, which cannot be captured by their correlation.
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Methods

In this study, we explored whether the phenotypic correlations between three main traits linked
to reproduction depended on the environmental context. To this aim, we used 58 years of
individual demographic and life-history data from the monitoring of a great tit population in
Wytham Woods and applied a CRN model to brood size, offspring mass, and recruitment of
offspring into the population in following years. In this model, we explored the role of ecological
and environmental variables in governing the phenotypic correlations between these traits.
Study system

The great tit is a common and widespread species across Eurasia, member of the Paridae family
(Gosler et al., 2020), and is one of the most widely studied passerines, that has become a model
species for the study of behavioral and evolutionary ecology. It dwells in woodland and wooded
farmland, as well as urban areas (Gosler et al., 2020), and nests in tree cavities and artificial nest
boxes. Great tits are annual breeders, forming pairs and breeding in the spring, usually producing
a single clutch per year consisting of 5-12 eggs, even though second clutches later in the spring
sometimes occur (Perrins, 1965). The study population is from Wytham Woods (Oxfordshire,
United Kingdom, 51°77'N, 1°32'W), which has been monitored since 1947 (Perrins, 1965), and
the monitoring has been standardized with a stable number of nest boxes since 1961 (Perrins,
1965; Perrins & McCleery, 1989). As part of this long-term individual-based monitoring,
individuals were fitted with unique metal rings to allow individual identification and followed
throughout their lifespan (Lack, 1964). All breeding attempts were monitored until offspring

fledged, and both parents and offspring were usually caught, identified, and individually
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measured (e.g., mass, tarsus length). The curated and standardized data used in this study were
accessed through SPI-Birds: study name “Wytham Woods”, study ID “WYT”, version 1.1.0 on

October 16%" 2023 (Culina et al., 2021).

Individual and environmental variables

Using 58 years of individual-based monitoring data from 1961 to 2018, we analyzed three
different traits. These were the response variables in our model (see “Data analysis” section) and
include the size of the brood (number of nestlings; measured at the brood level), the mass of
offspring (g; measured at the offspring level), and the subsequent number of successful recruits
from the brood (measured at the brood level). Most offspring in the population were weighed at
14 days old, and we excluded mass measurements taken on offspring older or younger than 14
days old. Each brood size was recorded 14 days after hatching. We chose to analyse brood size
and offspring mass instead of clutch parameters (clutch size and egg mass), which is a deviation
from Lack’s principle. Brood reduction happens in our data but is infrequent and usually limited
to a few offspring (Figure S1). We decided to analyse brood parameters because this should
better reflect the investment effort of the mothers during the breeding season as it encompasses
the costs of both egg laying and nestling rearing. The fate of offspring from the brood was
tracked, with recruitment defined as the number of offspring in a brood seen breeding within the
population in subsequent years, a good measure of reproductive success that is often used as a
proxy of parental fitness (McCleery & Clobert, 1990; Both & Visser, 2000; Wilkin et al., 2006). It
is important to note that both offspring mass and offspring recruitment could also be considered

as offspring fitness measures rather than parental fitness (see Wolf & Wade, 2001 for a critical
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perspective). In addition, this measurement of offspring recruitment has often been used but is
imperfect for many reasons, such as being confounded by natal dispersal. However, this bias is
expected to be limited, as natal dispersal is limited in great tits, with many offspring dispersing
short distances and therefore likely staying within the study population (Greenwood et al., 1979;
Verhulst et al., 1997). In total, this yielded a final dataset encompassing 7287 broods from 5032
females across 58 years, with individual measures of mass and recruitment in the population in
following years for 53753 offspring.

The explanatory variables in our model included both individual and environmental
variables. The individual variables were the mass of the mother (g) of each brood, as well as the
breeding age of the mother, which has an influence on reproductive success (Bouwhuis et al.,
2009). All breeding individuals were aged as first year breeders (1 year old) or older breeders (>1
year old), and this categorisation was based on plumage characteristics during captures when
the exact age was not known from the ring number (Crates et al., 2016; Simmonds et al., 2020).
Nestling sex is known to influence their mass, with sexual dimorphism in body mass being present
in great tit nestlings, and male nestlings weighing on average ~0.6-0.7 gram more than female
nestlings around 14 days after hatching (Oddie, 2000; Tschirren et al., 2003; Radersma et al.,
2011). However, information about nestling sex was not recorded for the majority of offspring,
and was often only known for the small proportion of individuals which recruited in the
population in following years. Therefore, we could not include offspring sex as an explanatory
variable in the model.

The environmental variables were spring temperature, spring precipitation, population

density, beech mast index, and synchrony of laying dates with the caterpillar peak, which are all
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known to be important for great tit reproduction. These predictors were chosen because they
directly influence resource availability, breeding timing, or parental effort in great tits. For
instance, lower spring temperatures and precipitation may limit caterpillar abundance, a key
food source, increasing the cost of brood provisioning, while population density may reflect
competition for resources. Spring temperature and precipitation were obtained from the nearby
Radcliffe Meteorological Station (Burt & Burt, 2019). Spring precipitation was defined as the sum
of precipitation from April 1°* to May 31, the period when offspring are in the nest (Simmonds
et al., 2020). Following Simmonds et al. (2020) analysis of climatic windows critical for great tits
(Bailey & Pol, 2016; van de Pol et al., 2016; Simmonds et al., 2020), spring temperature was
defined as the daily mean temperature from March 1% to May 9. As usually estimated in this
system, population density in a given year was calculated as the number of females hatching at
least one egg (Simmonds et al., 2020). Beech mast index has been routinely collected in Wytham
Woods and across Europe (Lack, 1964; Perdeck et al., 2000; Grgtan et al., 2009), and is scored as
an ordinal variable of increasing beech mast ranging from 0 to 2. Years of high beech mast are
expected to be beneficial for fledgling survival in the fall and over winter by providing abundant
food resources, and is therefore an important factor for offspring recruitment. Finally, synchrony
is an individual’s measure of phenological timing in relation to an annual, population-wide,
measure of caterpillar abundance. More precisely, we calculated it as the difference between the
half-fall date, which is the median date of capture of 5th instar caterpillars of the of winter moth
Opheroptera brumata larvae, which indexes the timing of peak abundance of this species (Van
Noordwijk et al., 1995; Hinks et al., 2015), and the female’s laying date. We assessed the

collinearity of all predictor variables (Figure S2), highlighting low correlations among most
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covariates and moderate correlation between spring temperature and population density, but
collinearity of predictors is not an issue in multiple regression analyses (Morrissey & Ruxton,

2018; Vanhove, 2021).

Missing data imputation

The final datasets contained missing data for some variables. More specifically, out of a total of
7287 broods, the mass of the mother was missing for 1147 observations (15.7%), while the
breeding age was not known for 210 observations (2.9%). Regarding the environmental variables
across the 58 years of monitoring, 14 years had an unknown half fall date (24.1%) and 5 years
had a missing beech mast index (8.6%). We imputed these missing data points using predictive
mean matching with the R package mice (Buuren & Groothuis-Oudshoorn, 2011; Buuren et al.,
2023). To account for imputation uncertainty, we generated 20 alternative imputed datasets
using this method, and each of these datasets was then analyzed and subsequently combined,
successfully propagating imputation uncertainty in the results throughout the analysis.
Additionally, we also ran the CRN model on a reduced dataset wherein the missing data were not
imputed, thus keeping only complete cases, finding that parameters estimates were broadly

similar in most cases (Supplementary methods; Figure S3-54).

Data analysis
We aim to explore the ecological correlates of phenotypic correlations between maternal traits
linked to reproduction in great tits, more precisely the phenotypic correlations between brood

size and offspring quality (using mass as a proxy), and between offspring quality and offspring
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recruitment in the population in following years. To this aim, we used a multivariate Covariance
Reaction Norm (CRN) model, which is a recently developed model (Martin, 2025) that we have
previously tailored to routinely collected demographic data which sometime lack repeated
measurements within years for some traits (Bliard et al., 2025), allowing phenotypic covariances
to vary through time or space in response to environmental variation. We encourage readers
interested in the CRN methodology and its application to demographic data to refer to Martin
(2025) and Bliard et al. (2025). Here, we apply this method on the three traits of interest in this
study: brood size, offspring mass, and offspring recruitment (all treated as maternal traits,
analysed at the level of the brood).

We first modeled offspring mass at day 14 with a Gaussian distribution (equation 1), as a
function of X1 (a N x P matrix of N measurements of P predictors, including an intercept), with
predictors being spring temperature, spring precipitation, population density, beech mast index,
synchrony and its quadratic effect, the mass of the mother and the age of the mother. All the
continuous variables were standardized. In addition, we included a year random effect ;1 and a
nestbox random effect y1. The year random effect describes the unmodelled inter-annual
variability in environmental conditions, while the nestbox random effect partitions the potential
variation in territory quality or non-random selection of specific nestboxes by reproductive
individuals. These random effects ensure that observed phenotypic correlations are not biased
by unmeasured temporal or spatial factors. We also added a year-specific mother random effect
aiy) structured across repeated measurements by W (a N x J matrix of J mothers), which as
explained further below could vary in response to year-specific ecological conditions. Finally, o is

the residual variation describing the within-brood variance.
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H1=X1B1+ 81 +y1+Wayy, 1
of fspring mass ~ Normal(uy,0y,)
As our second trait, brood size, is underdispersed relative to a Poisson distribution, we modeled
it using an ordinal regression (also called cumulative logistic regression; equation 2), as a function
of X2, with covariates being the same as in X1, but not containing an intercept and differing in the
number of observations. Similarly, we also included a year random effect 2 and a nestbox
random effect .. In the absence of repeated measurement for each mother in a given year (a
single brood per female in a breeding season), as indicated by the exclusion of W, we included a
year-specific observation-level random effect o2, which describes the residual variation. Here,
the cumulative probability of having at most i offspring is given as a function of the thresholds 9;

and the matrix of covariates X3, as well as the random effects.

logit(Pr(Noffspring < i) = 6; — (X282 + 82 + V2 + 02¢v) @)

We modeled the third trait, offspring recruitment, describing the number of offspring from a
given brood found breeding in the population in following years, with a zero-inflated Poisson
distribution (equation 3). Recruitment data were expected to be heavily zero-inflated because
many broods produced no recruits, due to factors such as brood predation and low offspring
survival. The zero-inflation term 1 was included because posterior predictive checks with a
simpler Poisson model without zero inflation highlighted an over-representation of zeros, causing
the model to fit poorly to the data. The probability of observing a given number of offspring
recruited into the population in following years was modeled as a function of Xs, which is similar

to X3 with the addition of an intercept. Year 63 and nestbox ys random effects were included as
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well. Since offspring recruitment was analyzed at the level of the brood (one measure of
recruitment per brood), we did not have repeated measurements in a given year for mothers,
and therefore included a year-specific observation-level random effect o3y, characterising the
residual variation.

log(us) = X3B3 + 63 + y3 + 03(v) ?3)

Y+ (1 — Y)Poisson(0 | u3), if Nyecruits = 0
(1 - I/))I)C”:Sson(Nrecruits | Ms). ifNrecruits >0

P(Nrecruies | ,1t5) = |
We also tried an alternative modeling approach instead of equation (3) by using a binomial
distribution to estimate the probability of offspring recruiting in the population, but
unfortunately this model suffered from convergence issues that could not be resolved.

To investigate context dependence of the phenotypic correlations among the three
response variables (brood size, offspring mass, offspring recruitment), the year-specific among-
individual random effect a1y and observation-level random effects 0zy) and o3 were drawn
from a multivariate normal distribution governed by year-specific covariance matrices Py
(equation 4). The year-specific covariance matrices can then be decomposed in their primary
elements, i.e., the year-specific phenotypic correlations between the three traits (riz,ri3,r23) and
their variances (a1, 0022, 003), given that a covariance is just the product of the correlation
between traits and the square roots of the variances. We then model the year-specific
phenotypic correlations (r(y), as well as the year specific variances (62(y), as a function of a subset

of the environmental covariates contained in Xs (equation 4). The covariates are spring

temperature, spring precipitation, population density, and beech mast index.
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[a1(y), 02(v), 03(y)] ~ Multivariate Normal(O, P(y)) 4)

"gw) T12(Y) 9, ()% 0,(¥) T13(¥) Ta; (V)% 05(¥)
Py = |T12(y) Oa,(¥)T0,(¥) ng(y) T'23(y) To,(¥)%0,(v)

T13(1) Oa; (1) T03(Y)  T23(Y) T0,(¥)T03(¥) To¥)
atanh(r(y)) = X4f4
log(o(v)) = XaBs
The inverse hyperbolic tangent function atanh is used as a link function, which is akin to a logistic
regression with bounds in [-1;1], thus being suitable to predict correlation coefficients (see more
details in Martin 2025). Regarding the choice of priors, we used a standard flat prior for the zero-
inflation coefficient 1 (equation 5), which is a default prior for this parameter in most statistical

software.

Y ~ Beta(1,1) 5)

We specified regularizing priors for all the S slope coefficients (equation 6) to reduce our risk of
false positive and increase the robustness and generalizability of our findings (see Lemoine, 2019
for discussion). Narrower priors were used for 4 to avoid putting too much weight on extreme
correlations (see Figure S5).

B1,B2,B3, Bs ~ Normal(0,1) 6)
B4~ Normal(0,0.5)

For the year-specific among-individual g, and year-specific observation-level o, standard

deviations, as well as for the within-brood variance o, we used exponential priors (equation 7).

o, ~ Exponential(2) ™



317  We specified the year random effects 6 on the three traits studied by drawing them from
318 univariate (i.e. non-correlated) normal distributions, also using exponential distributions for the

319  variance terms A (equation 8).

61 ~Normal(0,4,) (8)
6, ~ Normal(0,1;)
63 ~ Normal(0, A3)

A1,43, A3 ~ Exponential (2)
320

321 Finally, since breeding individuals could sample nestboxes non-randomly and territories can vary
322  in quality, the nextbox random effects y partitioning spatial variation in the conditions
323  experienced by individuals were specified as multivariate, thus estimating the among-nestbox
324  covariances, as not accounting for this correlation could potentially lead to biasing the estimation
325  of the context-dependent among-individual correlations we aimed to detect. We therefore drew
326  the y vectors from a multivariate normal distribution with covariance matrix Z. The covariance
327  matrix X is decomposed into its standard deviation matrix S, with exponential priors for each
328 standard deviation parameter w, and its correlation matrix R, which is specified with a

329  Lewandowski-Kurowicka-Joe prior distribution (equation 9).

[¥1, Y2, V3] ~ Multivariate Normal(Z) ()]
X = SRS
wq 0 0
0 0 w3

w1, Wy, w3 ~ Exponential(2)

R ~ LK (2)
330

331 We also performed the same model as the one described above, but excluding the year random

332  effects y on brood size, offspring mass, and recruitment, as well as another one where we
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excluded both the year random effects and the environmental covariates on brood size, offspring
mass, and recruitment (Figure S6-S7). Finally, given the unintuitive results found regarding the
effect of beech mast index, we also performed the same model as the one presented in the main
text with the addition of interaction effects between beech mast index and population density
on the phenotypic correlations (Figure $8-S9).

Model implementation

The multivariate CRN model (Martin, 2025; Bliard et al., 2025) described above was implemented
in a Bayesian framework using the statistical programming language Stan (Carpenter et al., 2017),
which uses an Hamiltonian Monte Carlo algorithm (Hoffman & Gelman, 2014). We ran the model
through R version 4.3 (R Core Team, 2023), using the R package CmdStanR version 0.8.1 (Gabry
& Cednovar, 2020). As detailed in the previous methods section, weakly informative regularizing
priors were used for all parameters. We performed 20 alternative models, one for each of the
imputed dataset, to ensure that imputation uncertainty was propagated through the analysis.
Each model ran on 3 chains with a warm-up period of 1000 iterations, and sampled for 1000
iterations per chain, keeping all the iterations (Link & Eaton, 2012), thus totalling 3000 saved
posterior samples per alternative model. We ensured that convergence was reached for each
model by obtaining R-hat values below 1.01 for all parameters (Gelman & Rubin, 1992), and by
visually inspecting trace plots. We then merged the posterior distributions of all the 20
alternative models, thus obtaining a single posterior distribution made of 60000 posterior
samples (3000 x 20) for the combined model accounting for imputation uncertainty. Throughout

the results, we report the posterior median effect sizes, alongside credible intervals. We provide
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the Stan code on GitHub (https://github.com/Ibiard/tradeoffs_parus_major) and will archive it

on Zenodo upon acceptance of the manuscript.

Results

Our results reveal that the correlation between brood size and offspring mass is negative across
all environmental contexts, with the correlation slightly less negative under favourable
conditions. In contrast, the phenotypic correlation between offspring mass and recruitment is
strongly context-dependent, becoming indistinguishable from zero under favourable conditions
such as low density but tending to be positive in harsher years. Contrary to our hypothesis, we
found no correlation between brood size and recruitment, which was estimated with a large
uncertainty.

We expected the correlation between brood size and offspring mass to be highly
constrained, whereby mothers producing larger broods would also produce smaller offspring.
The results of our model potentially confirm this expectation, as the correlation between brood
size residual variation and among-mother variation in offspring mass was found to be negative
across all environmental contexts (Figure 1). The negative correlation between brood size and
offspring mass was slightly relaxed in years of high precipitation, and, in years combining low
population density and high beech mast, although these effects were small and are associated
with high uncertainties (Figure 1, Figure S9).

The correlation between the mass of offspring produced and their recruitment in
subsequent years tended to be positive overall (Figure 2), such that mothers producing larger

offspring tend to have higher offspring recruitment. This follows expectations that larger
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offspring are more likely to survive, thus being more likely to be present as breeders in following
years. However, we found rather strong effects of the environmental context on this correlation.
Following our expectations, under favorable conditions such as low population density, high
spring temperature, or high spring precipitation, this correlation tended to be small, such that
the mass of offspring was not clearly associated with their recruitment (Figure 2). While we
expected the same for beech mast index, we found the opposite result, with the correlation
becoming indistinguishable from zero in years of low beech mast (Figure 2).

Contrary to our hypothesis, we found that the correlation between brood size and
recruitment was centered on zero and invariant across environmental contexts (Figure 3).

The among-nestbox correlations between brood size and offspring mass (median = 0.033
[10-90% intervals = -0.519; 0.563]) and between brood size and recruitment (0.032 [-0.525;
0.575]) were found to be close to zero with large credible intervals. However, we found an overall
positive correlation among nest boxes between offspring mass and recruitment albeit with
substantial estimate uncertainty (0.387 [-0.249; 0.776]), which could reflect some degree of
spatial variation in nestbox or overall territory quality.

Estimated effects of all the covariates on the three phenotypic correlations highlight that
the uncertainty around the median estimated effects is fairly large despite the high sample size
used (Figure 4), as we are ultimately limited by the dataset length in the number of breeding
seasons monitored. In addition, it is important to note that some results are sensitive to model
structure, with slightly different estimates found when year random effects were excluded
(Figure S6, S7). Environmental covariates are also found to influence trait variances in various

ways (Figure S12, S13, S14, S15). Overall, covariate effects on the primary traits (Figure S10, S11)
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align with previous studies: population density negatively affected reproductive traits, while
beech mast index and maternal breeding age had positive effects across all traits. In addition,

posterior predictive checks highlight a good fit of the model to the data (Figure S16).

Discussion

We used individual-based data from one of the longest individual-based monitoring of a great tit
population, together with a newly developed hierarchical “covariance reaction norm” model
(Martin, 2025) tailored for demographic data lacking repeated measurements within years for
some traits (Bliard et al., 2025). Despite some uncertainty in the results, we found evidence that
the phenotypic correlations between brood size and offspring mass, and especially between
offspring mass and offspring recruitment, are temporally variable and dependent on the
environmental conditions experienced during the breeding season. Overall, harsher conditions
lead females who lay larger broods to have smaller offspring, and the propensity for these smaller
offspring to recruit is lower. Interestingly, smaller offspring born during favorable breeding
seasons are equally as likely to recruit as their larger counterparts. Yet, regardless of the
environment, the fitness outcome for mothers does not seem to be influenced by the size of their
brood, as it is not ultimately associated with offspring recruitment, though offspring recruitment
is not always a reliable fitness proxy for mothers (Wolf & Wade, 2001). We discuss these findings
and potential limitations of our modeling approach that could blur some of the biological
associations studied here.

The correlation between offspring quantity and offspring quality was found to be strongly

negative and highly constrained in this population of great tit. Regardless of the environmental
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conditions experienced during the breeding seasons, the correlation between brood size residual
variation and the among-female offspring mass variation was close to -1, thus being potentially
indicative of a strong quantity-quality trade-off. We only found a weak influence of the
environmental context (Figure 4), though these effects were statistically uncertain and sensitive
to data imputation (Figure S3, S4) and model structure (Figure S6, S7). This correlation was only
slightly less negative in years combining low population density and high beech mast index,
potentially indicating a slightly relaxed quantity-quality trade-off under these conditions (Figure
S8, S9). Convincing evidence of context-dependence between offspring number and size has
been found in studies on human fertility, whereby such trade-off is absent in favorable socio-
economic classes while being found under poorer socio-economic conditions (Gillespie et al.,
2008; Meij et al., 2009; Lawson & Mulder, 2016). Similarly, laboratory studies on invertebrates
found phenotypic and genetic correlations between offspring number and size to depend on the
degree of food availability (Messina & Slade, 1999; Czesak & Fox, 2003; Messina & Fry, 2003).
However, we found that the correlation is negative across environments, potentially indicating
that this trade-off is always expressed in great tits, and a potential explanation could be that little
variance in quality or resource acquisition remains among females once accounting for primary
predictors such as mother’s mass and age. For instance, the study of Ebert (1993) on Daphnia
has shown that the offspring number and size trade-off is initially found to be influenced by food
availability, but the genetic correlations all became negative once accounting for mother’s
condition. Similarly, negative phenotypic correlations between offspring quantity and quality

were found after adjusting for maternal size in a meta-analysis across animal species (Lim et al.,
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2014). Therefore, if our primary covariates accounted well for maternal heterogeneity in this
great tit population, it could result in such a strongly negative correlation.

We found that the correlation between offspring mass and recruitment is overall positive
(Figure 2), such that larger offspring are better quality offspring, thus being more likely to recruit
in the population in following years. This is in line with numerous other past results in great tits,
wherein offspring mass or size are usually found to be associated with future outcomes, from
survival to recruitment (Both et al., 1999; Monrds et al., 2002; Garant et al., 2004; Wilkin et al.,
2006; Bouwhuis et al., 2015; Rodriguez et al., 2016), while being independent of their laying date
(Wilkin et al., 2006). However, our study also explores the dependence of this association on
environmental conditions experienced during the breeding season. Interestingly, we found that
this association was stronger under harsh conditions, whereby producing small offspring might
be particularly detrimental as they would not fare well due to poor climatic conditions (e.g., dry
and cold springs; Figure 2) or stronger competition from a higher population density (Both et al.,
1999). However, during favorable breeding seasons, the correlation between offspring mass and
recruitment becomes indistinguishable from zero, with mild conditions and low competition
allowing even frail offspring to survive and recruit in following seasons, thus highlighting that
phenotypic selection for offspring body mass is likely variable and its temporal dynamics are
potentially mediated by environmental conditions (Braby, 1994; Grant & Grant, 2002; Siepielski
et al., 2009). This echoes findings from Bouwhuis et al. (2015), where broods with heavier
offspring experienced a better recruitment probability, with this relationship being stronger
during warmer springs. Such fluctuating selection is expected to promote the evolution of

adaptive plasticity in reproductive behavior (de Jong, 1995).
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Despite most results following our expectations, the estimated effect for the beech mast
index goes opposite to our predictions, with theoretically better years (i.e., higher beech mast
index) associated with a stronger, more positive correlation. Although speculative, one possible
explanation could be that females do an anticipatory adjustment of brood size based on future
resource availability, whereby they would adjust brood size based on some external cues that
correlate with beech seed production in the autumn following the breeding season. For instance,
these anticipatory effects in relation to masting events have been found in red squirrels
Tamiasciurus hudsonicus and Sciurus vulgaris (Boutin et al., 2006). In great tits, this might lead to
increased brood size at the population level during years of high beech mast (Figure $10), which
in turn is likely to increase nestling and fledgling abundance in the population. This increase in
the abundance of great tits and potentially other bird species might lead to a decrease in
individual perceived predation risk (e.g., through dilution effects), thus making it less detrimental
for nestlings to put on weight (Gentle & Gosler, 2001; Macleod et al., 2005). Though the
estimated effect is rather modest in size and somewhat uncertain (Figure 4), warranting caution
with biological interpretation, and it does not seem to be explained by an interaction between
population density and beech mast index (Figure S8-S9), this highlights the need for further
exploration of the indirect effects of environmental variables on reproductive trade-offs.

Overall, we found a lack of correlation between brood size and subsequent successful
recruitment, together with no evidence of a dependence on the environmental context and
extremely large uncertainty in the estimates (Figure 3). Several non-mutually exclusive reasons,
both biological and statistical, could explain this invariant correlation indistinguishable from zero

across all environments, and the large credible intervals surrounding it. First, the lack of
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association could just reflect that after accounting for primary predictors on both traits, there is
just no biological association between residual brood size and recruitment and no environmental
effects. This may simply be due to the fact that residual variances for size and particularly
recruitment were very small (Fig. S10-11), limiting our ability to estimate their correlation
independently of mean-scaling effects, despite our large sample size. However, this correlation
did not change even when excluding primary predictors on traits (Figure S7). This lack of
association would mean that regardless of environmental conditions, producing a small brood of
big nestlings or a large brood of small nestlings is likely leading to the same fitness outcome for
females. Second, the lack of correlation between brood size and offspring recruitment could
actually reflect Lack’s initial statement, with brood size being optimized (Williams, 1966). Indeed,
under this hypothesis, we might expect a non-linear association between brood size and fitness,
such that recruitment initially increases with brood size up to an optimal value, and then
decreases as brood size effects on offspring quality become apparent. Therefore, any deviation
is likely leading to reduced recruitment (Gustafsson & Sutherland, 1988; Pettifor et al., 1988).
While the covariance reaction norm model is ideal for estimating nonlinear changes in trait
associations, this non-linear relationship would not be directly captured by the covariance terms
estimated in our model, which could explain the absence of a clear correlation in our results.
These non-linear associations could be more directly analysed using recently proposed methods
for nonlinear selection analysis on latent variables (Dingemanse et al., 2021; Martin et al., 2021),
but this would require a highly complex and much more difficult to interpret hierarchical model
in the context of this study. Third, brood size and recruitment are both non-repeated measures

within a given year (i.e., context). Thus, by not having several measures per individual in a given
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year, within- and among-individual covariances cannot be properly disentangled. Such
observation-level correlation will therefore reflect either the among-individual correlation if
traits repeatabilities are high, or the within-individual correlation if traits repeatabilities are low
(Bliard et al., 2025), or a combination of both, hence contributing to the large uncertainty found
in our results. The repeatability of clutch size in great tits is usually medium to high (e.g., 0.51 in
Perrins and Jones (1974)). However, depending on whether females’ offspring recruitment is
environmentally labile, our estimate could either reflect the among- or within-individual
correlation between both traits (Searle, 1961; Dingemanse & Dochtermann, 2013; Bliard et al.,
2025).

Other limitations could explain the lack of correlation between brood size and
recruitment. Recruitment of offspring into the population in following years is an imperfect
measure of fitness. As previously noted, because offspring effects on recruitment may be
independent of maternal traits, it might thus be a poor proxy of females’ fitness per se (Wolf &
Wade, 2001). It is necessarily an underestimate due to imperfect detection, being confounded
with long distance (i.e., outside the study area) natal dispersal (Gimenez et al., 2008). Dispersal
events could themselves be linked to the environmental context experienced by the nestlings
(McCaslin et al., 2020). For instance, it had been argued that social dominance, which could
hypothetically be related to the size of the brood an offspring was reared in, could in turn
influence the natal dispersal distance of offspring (Nilsson & Smith, 1985; Smith & Nilsson, 1987;
Smith et al., 1989). Such a limitation could potentially obscure any association between brood
size and recruitment (Gimenez et al., 2008). Finally, it is also possible that the lack of association

and lack of environmental effects result from interaction effects between environmental
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variables that were not accounted for, even though it did not seem to be the case (Figure S8-59),
and we did not have additional specific biologically motivated interactions to include.
Altogether, we found indication that, although the brood size — offspring mass trade-off
was highly constrained, the phenotypic correlation between offspring mass and recruitment was
strongly dependent on changes in population density and harshness of the environment during
the breeding season, with females producing larger offspring experiencing higher recruitment
only during harsh breeding seasons. This study demonstrates that in this great tit population,
phenotypic covariances respond to continuous environmental change and temporal variation in
population density, a phenomenon that has mostly been neglected up to now, which highlights
that knowledge about life-history theory and trade-offs can be improved through the
incorporation of context dependence. Future studies could extend this approach to other
populations or species (Culina et al., 2021), to further understand how environmental variation
shapes trade-offs and life-history evolution (Chantepie et al., 2024). Overall, such a framework
allows us to revisit old ecological questions related to patterns of selection in fluctuating density-
dependent environments through the lens of new multivariate statistical methods, and therefore
expand from an often univariate view on the topic to studying multivariate patterns of trait

(co)expression (Wright et al., 2019; Martin, 2025).
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Figure 1: Estimated phenotypic correlations between offspring mass and brood size as a function
of population size (top left panel), spring temperature (top right panel), spring precipitation
(bottom left panel), and beech mast index (bottom right panel). Posterior median effect sizes are
represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded

bands.
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Figure 2: Estimated phenotypic correlations between offspring mass and recruitment as a
function of population size (top left panel), spring temperature (top right panel), spring
precipitation (bottom left panel), and beech mast index (bottom right panel). Posterior median
effect sizes are represented by the darker lines, and 10% to 90% credible intervals are

represented by the shaded bands.
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Figure 3: Estimated phenotypic correlations between brood size and recruitment as a function of
population size (top left panel), spring temperature (top right panel), spring precipitation (bottom
left panel), and beech mast index (bottom right panel). Posterior median effect sizes are
represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded

bands.
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Figure 4: Estimated effects of standardized predictors on the phenotypic correlations between
offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and

recruitment (green).
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Supplementary materials

Supplementary methods:

As mentioned in the main text, the final dataset contained missing data for some variables in
some observations. We imputed these missing data points using predictive mean matching with
the R package mice. For each missing entry, the method compares this observation with all other
complete cases, and based on the other variables selects a group of candidate observations (5
observations, the default in mice R package) that most closely matches the given observation
with missing data. From this pool of 5 observations, one is then drawn at random and used to
impute the missing data. Given that it draws real values from the data, it is less likely to impute
implausible data, and the method usually works well (Kleinke 2017).

To assess the influence of the data imputation, we performed the same CRN model
keeping only complete cases, thus excluding any observation that contained missing data for at
least one variable. This yielded a smaller dataset made of 35570 offspring mass measurements
from 4710 breeding attempts. However, this also led to a quite strong reduction in the number
of breeding seasons with complete case observations, with this reduced dataset spanning only
27 breeding seasons (vs. 58 breeding seasons in the full dataset). Overall, we found broad
concordance between the results of the CRN model with full imputed dataset and reduced non-
imputed dataset. However, we want to point out that some specific parameter estimates
appeared to change between the two analyses (Figure S3; effect of population density and spring
precipitation on the brood size - offspring mass correlation). But given that these effects did not
involve any of the imputed variables, it is more likely that these changes stem from the loss of

more than half of the breeding seasons in the reduced dataset (58 vs 27 years).
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636  Figure S1: histogram of brood reduction across all broods analysed. This highlights the number
637  of broods analysed that went through a brood reduction, with values representing the difference
638  between observed clutch size and observed brood size at day 14. Brood reduction appears to be
639 infrequent or limited to a few offspring.
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647  Figure S2: Correlations among the predictor variables used in the model, highlighting low to
648 moderate collinearity among all variables.
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Figure S3: Estimated effects of standardized predictors on the phenotypic correlations between
offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and

recruitment (green), using the reduced, non-imputed dataset.
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Figure S4: Estimated effects of standardized predictors on primary traits: offspring mass (blue),

brood size (red), and recruitment (green), using the reduced, non-imputed dataset.
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676  (in blue; N(0,1)) normal distribution after transformation by a hyperbolic tangent function. This
677  highlights that the wider normal distribution puts higher density on extreme correlations, while
678  the narrower one puts less weight on extreme correlations.

679

680

681

682

683

684

685



686

687

688

689

690

691

692

693

Intercept

————
Population density
— !
1
:
1
! Submodel
i =o= offspring mass - brood size
Spring temperature
pring P X =8= offpsring mass - recruitment
. brood size - recruitment
1
1
1
1
1
|
1
Spring precipitation ———pQe——————
—a—

Beech mast index

20 15 10 05 00 0.5 1.0 15 2.0
Posterior

Figure S6: Estimated effects of standardized predictors on the phenotypic correlations between
offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and
recruitment (green), when using a model that did not include the year random effects on primary

traits.
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Figure S7: Estimated effects of standardized predictors on the phenotypic correlations between
offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and
recruitment (green), when using a model that did not include the year random effects on primary

traits, nor the environmental covariates on the primary traits.
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711 Figure S9: Estimated phenotypic correlations between offspring mass and brood size (top panels),
712  offspring mass and recruitment (middle panels), and brood size and recruitment (bottom panels),
713  asafunction of population density, beech mast index, and their interactive effects. This highlights
714  that the interaction between beech mast index and population density mostly has a weak or no

715  effect on the phenotypic correlations between reproductive traits.
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Figure S10: Associations estimated by the model between spring temperature, spring

precipitation, population density, beech mast index, breeding age, parental mass, and laying date

synchrony (panels from left to right) with offspring mass (top row), brood size (middle row), and

recruitment (bottom row). Posterior median effect sizes are represented by the darker lines, and

10% to 90% credible intervals are represented by the shaded bands. Each circle represents a data

point, and a small amount of jitter and transparency were added for display only to avoid

overlapping points.
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768  Figure S15: Estimated effects of standardized predictors on the among-mother variance in
769  offspring mass (blue), observation-level variance in brood size (red), and observation-level
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