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Abstract 23 

Lack’s seminal work on bird clutch sizes has spurred expansive research on reproductive trade-24 

offs, especially focusing on offspring quantity–quality trade-offs and the potential fitness 25 

consequences for the parents. The environment is a critical driver of the expression of individual 26 

reproductive traits, influencing them through plastic responses. However, the plasticity of 27 

reproductive trade-offs themselves across environments has seldom been studied, and these 28 

studies were often limited to experimental approaches and dichotomous environments. Using 29 

58 years of detailed data from a great tit population, we employ the recently developed 30 

‘covariance reaction norm’ (CRN) model to explore how continuous environmental variation 31 

influences the shape of reproductive trade-offs among individuals. Our analysis reveals that the 32 

offspring quantity–quality trade-off is predominantly stable across years, with minimal variation 33 

linked to ecological harshness during the breeding season. However, the CRN also demonstrated 34 

that the among-mother correlation between offspring mass and future offspring recruitment was 35 

positive, but only under harsh environmental conditions, suggesting that producing larger 36 

offspring provides fitness benefits when breeding conditions are suboptimal, which may reflect 37 

the importance of size for early-life competition. Altogether, this work highlights that there is 38 

temporal variation in some of the phenotypic correlations, mostly driven by environmental 39 

conditions, which shape the expression of offspring investment across breeding seasons. Our 40 

study shows the benefits of exploring old ecological questions in the light of new statistical 41 

methods, highlighting the importance of understanding how environmental variation shapes the 42 

expression of life history trade-offs and the evolution of plasticity in reproductive strategies. 43 

 44 



Introduction 45 

The offspring quantity–quality trade-off has been a central area of interest in life-history biology, 46 

with numerous studies exploring this long-standing topic, both theoretically (Williams, 1966; 47 

Smith & Fretwell, 1974; Fischer et al., 2011), as well as empirically in various species (Lack, 1954; 48 

Sinervo & Licht, 1991; Einum & Fleming, 2000) including humans (Lawson & Mulder, 2016). All 49 

else being equal, selection should favor females producing more offspring, but these females also 50 

require enough resources to allocate to each offspring to ensure their survival, as larger offspring 51 

usually have better survival prospects (Sogard, 1997; Einum & Fleming, 2000; Marshall et al., 52 

2003; Fischer et al., 2011). It was, therefore, initially proposed that each female has an inherent 53 

optimal brood size, such that it yields the highest possible recruitment, whereby any deviations 54 

from this brood size would lead to suboptimal offspring quality and thus lower overall 55 

recruitment (Lack, 1954). Overall, while some evidence agrees with Lack’s initial hypothesis 56 

(Smith & Fretwell, 1974), with manipulated increases or decreases in clutch size leading to 57 

changes in offspring condition and suboptimal recruitment as a consequence (Pettifor et al., 58 

1988, 2001), most studies found that any increase in clutch size does not necessarily decrease 59 

offspring quality, and can even lead to higher recruitment (Perrins & Moss, 1975; Boyce & Perrins, 60 

1987). Recent work has also shown how selection on offspring quality across breeding seasons 61 

can promote rather than constrain variability in females’ clutch size in response to seasonal 62 

fluctuations (Westneat et al., under review). 63 

This potential lack of brood size optimization can have several causes. First, the offspring 64 

quantity–quality trade-off does not happen in isolation from other traits: females do not 65 

necessarily optimize the size of a single brood for highest possible recruitment, but rather 66 



balance it with their own survival and thus future reproductive opportunities, maximizing their 67 

lifetime reproductive success (Williams, 1966; Gustafsson & Sutherland, 1988; Dijkstra et al., 68 

1990). Second, it ignores the role of mating and bi-parental care present in many avian species, 69 

and thus overlooks factors such as mate quality and sexual conflicts over provisioning which can 70 

influence reproductive trade-offs (Smith & Härdling, 2000; Ratikainen et al., 2018). Finally, 71 

models on optimal brood size have sometimes ignored the role played by the environment in 72 

mediating such reproductive trade-offs (Smith & Fretwell, 1974), as in many species, individuals 73 

adjust their offspring number and size via phenotypic plasticity (Fischer et al., 2011). 74 

The expression of trade-offs can change over time and and space due to phenotypic 75 

plasticity (Service & Rose, 1985; Björklund, 2004). These plastic changes in trait expression as a 76 

response to environmental variability can lead to changes in the variance and covariance 77 

between traits (de Jong, 1989; Martin, 2023), with the latter being determined by the relative 78 

amount of variance in resource acquisition vs. resource allocation between the given traits (van 79 

Noordwijk & de Jong, 1986). The environment influences the evolution of traits such as optimal 80 

offspring size, optimal clutch size, and their plasticity (Parker & Begon, 1986), which have since 81 

been widely studied (Braby, 1994; Fox & Czesak, 2000; Taborsky et al., 2007; Allen et al., 2008; 82 

Marshall et al., 2008; Leips et al., 2009). However, little is known about the influence of the 83 

environment on reproductive trade-offs themselves (i.e., on the correlation between traits) in 84 

wild populations, with most explorations limited to experimental approaches with discrete 85 

environments, or a dichotomization of the underlying continuous environmental variation 86 

(Messina & Slade, 1999; Czesak & Fox, 2003; Houslay et al., 2018; Mitchell & Houslay, 2021). 87 

Discretizing continuous processes is rarely justifiable (MacCallum et al., 2002; Beltran & 88 



Tarwater, 2024). Historically this was done largely for practical reasons when studying trade-offs, 89 

as no modeling approach was available to easily study the influence of continuous environmental 90 

variation on genetic or phenotypic covariances (i.e., trade-offs) (Martin, 2023). However, it is 91 

likely that reproductive trade-offs in wild populations are influenced by the continuous 92 

environmental variation experienced by reproductive females. We, therefore, aim to use a new 93 

multivariate statistical approach that allows us to explore the role of continuous variation in 94 

environmental harshness on such reproductive trade-offs. 95 

Here, we used one of the largest individual-based datasets of wild birds with the aim of 96 

applying a new statistical tool — the covariance reaction norm (CRN) model (Martin, 2023; Bliard 97 

et al., 2024) — to revisit longstanding questions related to reproductive trade-offs faced by 98 

reproductive individuals in wild populations. The CRN model provides a novel framework to 99 

examine how continuous environmental variation influences the covariance between traits, 100 

allowing us to test longstanding hypotheses about trade-offs in a more ecologically realistic 101 

context (Martin, 2023; Bliard et al., 2024). Here, we explored the dependence on key 102 

environmental variables of the among-individual (i.e., among-mother) correlations between 103 

three key traits: brood size, offspring mass, and offspring recruitment, with each trait viewed as 104 

a maternal character (i.e., analysed at the level of the brood). Overall, based on prior work, we 105 

hypothesized that we would find a trade-off (i.e., negative correlation) between brood size and 106 

offspring mass (Nur, 1984; Smith et al., 1989), and that this correlation would become more 107 

negative in years of harsh ecological conditions (i.e., high density, low precipitation, low 108 

temperature, low beech mast), as trade-offs have often been shown to be stronger in poor 109 

conditions (Cohen et al., 2020). We also hypothesized that the among-mother correlation 110 



between offspring mass and recruitment would be positive overall, as females producing larger 111 

offspring should have an improved recruitment, with more of these offspring surviving and 112 

reproducing in following years (Perrins & Moss, 1975; Nur, 1984). Importantly, we expected this 113 

correlation to be more positive under harsh ecological conditions, as in such conditions producing 114 

larger offspring might be key for their survival. When ecological conditions are milder or 115 

favorable (i.e., low density, high precipitation, high temperature, high beech mast), this 116 

correlation is expected to become null, as even smaller offspring might be as likely to survive in 117 

such conditions. Finally, we expected a slightly positive correlation between brood size and 118 

recruitment, as past studies have shown that mothers with the highest brood size had higher 119 

recruitment for this specific brood, even though it potentially leads to lower fitness across 120 

multiple broods (Boyce & Perrins, 1987). We also expected the correlation between brood size 121 

and recruitment to become more positive in breeding seasons with a low population density. 122 

 123 

Methods 124 

In this study, we explored whether the among-individual correlations between three main traits 125 

linked to reproduction depended on the environmental context. To this aim, we used 58 years of 126 

individual demographic and life-history data from the monitoring of a great tit population in 127 

Wytham Woods and applied a CRN model to brood size, offspring mass, and recruitment of 128 

offspring into the population in following years. In this model, we explored the role of ecological 129 

and environmental variables in governing the among-individual correlations between these 130 

traits. 131 

Study system 132 



The great tit is a common and widespread species across Eurasia, member of the Paridae family 133 

(Gosler et al., 2020), and is one of the most widely studied passerines, that has become a model 134 

species for the study of behavioral and evolutionary ecology. It dwells in woodland and wooded 135 

farmland, as well as urban areas (Gosler et al., 2020), and nests in tree cavities and artificial nest 136 

boxes. Great tits are annual breeders, forming pairs and breeding in the spring, usually producing 137 

a single clutch per year consisting of 5-12 eggs, even though second clutches later in the spring 138 

sometimes occur (Perrins, 1965). The study population is from Wytham Woods (Oxfordshire, 139 

United Kingdom, 51°77ʹN, 1°32ʹW), which has been monitored since 1947 (Perrins, 1965), and 140 

the monitoring has been standardized with a stable number of nest boxes since 1961 (Perrins, 141 

1965; Perrins & McCleery, 1989). The curated and standardized data used in this study were 142 

accessed through SPI-Birds: study name “Wytham Woods”, study ID “WYT”, version 1.1.0 on 143 

October 16th 2023 (Culina et al., 2021). As part of this long-term individual-based monitoring, 144 

individuals were fitted with unique metal rings to allow individual identification and followed 145 

throughout their lifespan (Lack, 1964). All breeding attempts were monitored until offspring 146 

fledged, and both parents and offspring were usually caught, identified, and individually 147 

measured (e.g., mass, tarsus length). 148 

 149 

Individual and environmental variables 150 

Using 58 years of individual-based monitoring data from 1961 to 2018, we analyzed three 151 

different traits. These were the response variables in our model (see “Data analysis” section) and 152 

include the size of the brood (number of nestlings), the mass of offspring (g), and the subsequent 153 

number of successful recruits from the brood. The mass of offspring was restricted to weight 154 



measurements of 14 days old offspring. Each brood size was recorded 14 days after hatching, 155 

and the fate of offspring from the brood was tracked, with recruitment defined as the number of 156 

offspring in a brood seen breeding within the population in subsequent years, a good measure 157 

of reproductive success that is often used as a proxy of parental fitness (McCleery & Clobert, 158 

1990; Both & Visser, 2000; Wilkin et al., 2006; but see Wolf & Wade, 2001 for a critical 159 

perspective). It is important to note that this measurement of offspring recruitment has often 160 

been used but is imperfect for many reasons, such as being confounded by natal dispersal. 161 

However, this bias is expected to be limited, as natal dispersal is limited in great tits, with many 162 

offspring dispersing short distances and therefore likely staying within the study population 163 

(Greenwood et al., 1979; Verhulst et al., 1997). In total, this yielded a final dataset encompassing 164 

7287 broods from 5032 females across 58 years, with individual measures of mass and 165 

recruitment in the population in following years for 53753 offspring. 166 

The explanatory variables in our model included both individual and environmental 167 

variables. The individual variables were the mass of the mother (g) of each brood, as well as the 168 

breeding age of the mother, which has an influence on reproductive success (Bouwhuis et al., 169 

2009). All breeding individuals were aged as first year breeders (1 year old) or older breeders (>1 170 

year old), and this categorisation was based on plumage characteristics during captures when 171 

the exact age was not known from the ring number (Crates et al., 2016; Simmonds et al., 2020). 172 

The environmental variables were spring temperature, spring precipitation, population 173 

density, beech mast index, and synchrony of laying dates with the caterpillar peak, which are all 174 

known to be important for great tit reproduction. These predictors were chosen because they 175 

directly influence resource availability, breeding timing, or parental effort in great tits. For 176 



instance, lower spring temperatures and precipitation may limit caterpillar abundance, a key 177 

food source, increasing the cost of brood provisioning, while population density may reflect 178 

competition for resources. Spring temperature and precipitation were obtained from the nearby 179 

Radcliffe Meteorological Station (Burt & Burt, 2019). Spring precipitation was defined as the sum 180 

of precipitation from April 1st to May 31st, the period when offspring are in the nest (Simmonds 181 

et al., 2020). Following Simmonds et al. (2020) analysis of climatic windows critical for great tits 182 

(Bailey & Pol, 2016; van de Pol et al., 2016; Simmonds et al., 2020), spring temperature was 183 

defined as the daily mean temperature from March 1st to May 9th. As usually estimated in this 184 

system, population density in a given year was calculated as the number of females hatching at 185 

least one egg (Simmonds et al., 2020). Beech mast index has been routinely collected in Wytham 186 

Woods and across Europe (Lack, 1964; Perdeck et al., 2000; Grøtan et al., 2009), and is scored as 187 

an ordinal variable of increasing beech mast ranging from 0 to 2. Years of high beech mast are 188 

expected to be beneficial for fledgling survival in the fall and over winter by providing abundant 189 

food resources, and is therefore an important factor for offspring recruitment. Finally, synchrony 190 

is an individual’s measure of phenological timing in relation to an annual, population-wide, 191 

measure of caterpillar abundance. More precisely, we calculated it as the difference between the 192 

half-fall date, which is the median date of capture of 5th instar caterpillars of the of winter moth 193 

Opheroptera brumata larvae, which indexes the timing of peak abundance of this species (Van 194 

Noordwijk et al., 1995; Hinks et al., 2015), and the female’s laying date. 195 

 196 

Missing data imputation 197 



The final datasets contained missing data for some variables. More specifically, out of a total of 198 

7287 broods, the mass of the mother was missing for 1147 observations (15.7%), while the 199 

breeding age was not known for 210 observations (2.9%). Regarding the environmental variables 200 

across the 58 years of monitoring, 14 years had an unknown half fall date (24.1%) and 5 years 201 

had a missing beech mast index (8.6%). We imputed these missing data points using predictive 202 

mean matching with the R package mice (Buuren & Groothuis-Oudshoorn, 2011; Buuren et al., 203 

2023). To account for imputation uncertainty, we generated 20 alternative imputed datasets 204 

using this method, and each of these datasets was then analyzed and subsequently combined, 205 

successfully propagating imputation uncertainty in the results throughout the analysis. 206 

 207 

Data analysis 208 

We aim to explore the ecological correlates of phenotypic correlations between maternal traits 209 

linked to reproduction in great tits, more precisely the phenotypic correlations between brood 210 

size and offspring quality (using mass as a proxy), and between offspring quality and offspring 211 

recruitment in the population in following years. To this aim, we used a multivariate Covariance 212 

Reaction Norm (CRN) model, which is a recently developed model (Martin, 2023) that we have 213 

previously tailored to routinely collected demographic data (Bliard et al., 2024), allowing 214 

phenotypic covariances to vary through time or space in response to environmental variation. 215 

We apply this method on the three traits of interest in this study: brood size, offspring mass, and 216 

offspring recruitment (all treated as maternal traits, analysed at the level of the brood). 217 

We first modeled offspring mass at day 14 with a Gaussian distribution (equation 1), as a 218 

function of X1 (a N x P matrix of N measurements of P predictors, including an intercept), with 219 



predictors being spring temperature, spring precipitation, population density, beech mast index, 220 

synchrony and its quadratic effect, the mass of the mother and the age of the mother. All the 221 

continuous variables were standardized. In addition, we included a year random effect δ1 and a 222 

nestbox random effect γ1. The year random effect accounts for inter-annual variability in 223 

environmental conditions, while the nestbox random effect controls for potential variation in 224 

territory quality or non-random selection of specific nestboxes by reproductive individuals. These 225 

random effects ensure that observed phenotypic correlations are not biased by unmeasured 226 

temporal or spatial factors. We also added a year-specific mother random effect 𝛼1(Y) structured 227 

across repeated measurements by W (a N x J matrix of J mothers), which as explained further 228 

below could vary in response to year-specific ecological conditions. Finally, 𝜎 is the residual 229 

variation describing the within-brood variance. 230 

 231 

As our second trait, brood size, is underdispersed relative to a Poisson distribution, we modeled 232 

it using an ordinal regression (also called cumulative logistic regression; equation 2), as a function 233 

of X2, with covariates being the same as in X1, but not containing an intercept and differing in the 234 

number of observations. Similarly, we also included a year random effect δ2 and a nestbox 235 

random effect γ2. In the absence of repeated measurement for each mother in a given year (a 236 

single brood per female in a breeding season), as indicated by the exclusion of W, we included a 237 

year-specific observation-level random effect o2(Y). Here, the cumulative probability of having at 238 

most i offspring is given as a function of the thresholds 𝜃!  and the matrix of covariates X2, as well 239 

as the random effects. 240 



 241 

We modeled the third trait, offspring recruitment, describing the number of offspring from a 242 

given brood found breeding in the population in following years, with a zero-inflated Poisson 243 

distribution (equation 3). Recruitment data were expected to be heavily zero-inflated because 244 

many broods produced no recruits, due to factors such as brood predation and low offspring 245 

survival. The zero-inflation term 𝜓 was included because posterior predictive checks with a 246 

simpler Poisson model without zero inflation highlighted an over-representation of zeros, causing 247 

the model to fit poorly to the data. The probability of observing a given number of offspring 248 

recruited into the population in following years was modeled as a function of X3, which is similar 249 

to X2 with the addition of an intercept. Year δ3 and nestbox γ3 random effects were included as 250 

well. Since offspring recruitment was analyzed at the level of the brood (one measure of 251 

recruitment per brood), we did not have repeated measurements in a given year for mothers, 252 

and therefore included a year-specific observation-level random effect o3(Y). 253 

 254 

We also tried an alternative modeling approach by using a binomial distribution to estimate the 255 

probability of offspring recruiting in the population, but unfortunately this model suffered from 256 

convergence issues that could not be resolved. 257 

To investigate context dependence of the phenotypic correlations between these three 258 

traits, the year-specific among-individual random effect 𝛼1(Y) and observation-level random 259 

effects o2(Y) and o3(Y) were drawn from a multivariate normal distribution governed by year-260 



specific covariance matrices P(Y) (equation 4). The year-specific covariance matrices can then be 261 

decomposed in their primary elements, i.e., the year-specific phenotypic correlations between 262 

the three traits (r12,r13,r23) and their variances (𝜎𝛼1
2, 𝜎o2

2, 𝜎o3
2), given that a covariance is just the 263 

product of the correlation between traits and the square roots of the variances. We then model 264 

the year-specific phenotypic correlations (r(Y)), as well as the year specific variances (𝜎2
(Y)), as a 265 

function of a subset of the environmental covariates contained in X4 (equation 4). The covariates 266 

are spring temperature, spring precipitation, population density, and beech mast index. 267 

 268 

Regarding the choice of priors, we used a standard flat prior for the zero-inflation coefficient 𝜓 269 

(equation 5), which is a default prior for this parameter in most statistical software. 270 

 271 

We specified regularizing priors for all the 𝛽 slope coefficients (equation 6) to reduce our risk of 272 

false positive and increase the robustness and generalizability of our findings (see Lemoine, 2019 273 

for discussion). Narrower priors were used for 𝛽4 to avoid putting to much weight on extreme 274 

correlations. 275 

 276 



For the year-specific among-individual 𝜎𝛼 and year-specific observation-level 𝜎o standard 277 

deviations, as well as for the within-brood variance 𝜎, we used exponential priors (equation 7). 278 

  279 

We specified the year random effects δ on the three traits studied by drawing them from 280 

univariate (i.e. non-correlated) normal distributions, also using exponential distributions for the 281 

variance terms λ (equation 8). 282 

 283 

Finally, since breeding individuals sample nest boxes non-randomly, the nextbox random effects 284 

γ were specified as multivariate, thus estimating the among-nestbox covariances, as not 285 

accounting for this correlation could potentially lead to biasing the estimation of the context-286 

dependent among-individual correlations we aimed to detect. We therefore drew the γ vectors 287 

from a multivariate normal distribution with covariance matrix Σ. The covariance matrix Σ is 288 

decomposed into its standard deviation matrix S, with exponential priors for each standard 289 

deviation parameter 𝜔, and its correlation matrix R, which is specified with a Lewandowski-290 

Kurowicka-Joe prior distribution (equation 9; see Martin 2023 for further details on the LKJ prior). 291 



 292 

Model implementation 293 

The multivariate CRN model (Martin, 2023; Bliard et al., 2024) described above was implemented 294 

in a Bayesian framework using the statistical programming language Stan (Carpenter et al., 2017), 295 

which uses an extended and cutting-edge Hamiltonian Monte Carlo algorithm (Hoffman & 296 

Gelman, 2014). We ran the model through R version 4.3 (R Core Team, 2023), using the R package 297 

CmdStanR version 0.8.1 (Gabry & Češnovar, 2020). As detailed in the previous methods section, 298 

weakly informative regularizing priors were used for all parameters. We performed 20 alternative 299 

models, one for each of the imputed dataset, to ensure that imputation uncertainty was 300 

propagated through the analysis. Each model ran on 3 chains with a warm-up period of 1000 301 

iterations, and sampled for 1000 iterations per chain, keeping all the iterations (Link & Eaton, 302 

2012), thus totalling 3000 saved posterior samples per alternative model. We ensured that 303 

convergence was reached for each model by obtaining R-hat values below 1.01 for all parameters 304 

(Gelman & Rubin, 1992), and by visually inspecting trace plots. We then merged the posterior 305 

distributions of all the 20 alternative models, thus obtaining a single posterior distribution made 306 

of 60000 posterior samples (3000 x 20) for the combined model accounting for imputation 307 

uncertainty. Throughout the results, we report the posterior median effect sizes, alongside 308 

credible intervals. We provide the Stan code on GitHub 309 



(https://github.com/lbiard/tradeoffs_parus_major) and will archive it on Zenodo upon 310 

acceptance of the manuscript. 311 

 312 

Results 313 

Our results reveal that the offspring quantity–quality trade-off remains expressed across all 314 

environmental contexts, with slight relaxation under favourable conditions. In contrast, the 315 

phenotypic correlation between offspring mass and recruitment is strongly context-dependent, 316 

becoming null under favourable conditions such as low density but persisting in harsher years. 317 

Contrary to our hypothesis, we found no correlation between brood size and recruitment. 318 

 We expected the offspring quantity–quality trade-off to be highly constrained, whereby 319 

mothers producing larger broods would also produce smaller offspring. The results of our model 320 

confirm this expectation, as the among-mother correlation between brood size and offspring 321 

mass was found to be negative across all environmental contexts (Figure 1). The negative 322 

correlation between brood size and offspring mass was slightly relaxed in years of high 323 

precipitation, and, to a lesser extent, in years of low population density, although these effects 324 

were small and are associated with high uncertainties (Figure 1). 325 

 The among-mother correlation between the mass of offspring produced and their 326 

recruitment in subsequent years tended to be positive overall (Figure 2), such that mothers 327 

producing larger offspring tend to have higher offspring recruitment. This follows expectations 328 

that larger offspring are more likely to survive, thus being more likely to be present as breeders 329 

in following years. However, we found rather strong effects of the environmental context on this 330 

correlation. Following our expectations, under favorable conditions such as low population 331 



density, high spring temperature, or high spring precipitation, this correlation tended to be null, 332 

such that the mass of offspring was not clearly associated with their recruitment (Figure 2). While 333 

we expected the same for beech mast index, we found the opposite result, with the correlation 334 

becoming null in years of low beech mast (Figure 2). 335 

 Contrary to our hypothesis, we found no correlation between brood size and recruitment, 336 

and this correlation was invariant across environmental contexts (Figure 3). We discuss below 337 

whether this null correlation could be the result of either biological or statistical constraints. 338 

 The among-nestbox correlations between brood size and offspring mass (median = 0.033 339 

[10-90% intervals = -0.519; 0.563]) and between brood size and recruitment (0.032 [-0.525; 340 

0.575]) were found to be close to zero. However, we found an overall positive correlation among 341 

nest boxes between offspring mass and recruitment (0.387 [-0.249; 0.776]), which could reflect 342 

some degree of spatial variation in nestbox or overall territory quality. 343 

Estimated effects of all the covariates on the three among-individual correlations 344 

highlight that the uncertainty around the median estimated effects is fairly large despite the high 345 

sample size used (Figure 4). Environmental covariates are also found to influence trait variances 346 

in various ways (Figure S3, S4, S5, S6). Overall, covariate effects on the primary traits (Figure S1, 347 

S2) align with previous studies: population density negatively affected reproductive traits, while 348 

beech mast index and maternal breeding age had positive effects across all traits. In addition, 349 

posterior predictive checks highlight a good fit of the model to the data (Figure S7). 350 

 351 

Discussion 352 



We used individual-based data from one of the longest individual-based monitoring of a great tit 353 

population, together with a newly developed hierarchical “covariance reaction norm” model 354 

(Martin, 2023) tailored for demographic data lacking repeated measurements within years for 355 

some traits (Bliard et al., 2024). Despite some uncertainty in the results, we found evidence that 356 

the phenotypic correlations between brood size and offspring mass, and especially between 357 

offspring mass and offspring recruitment, are temporally variable and dependent on the 358 

environmental conditions experienced during the breeding season. Overall, harsher conditions 359 

lead females who lay larger broods to have smaller offspring, and the propensity for these smaller 360 

offspring to recruit is lower. Interestingly, these relationships are weakened during favorable 361 

breeding seasons. Yet, regardless of the environment, the fitness outcome for mothers does not 362 

seem to be influenced by the size of their brood, as it is not ultimately associated with offspring 363 

recruitment, though offspring recruitment is not always a reliable fitness proxy for mothers (Wolf 364 

& Wade, 2001). We discuss these findings and potential limitations of our modeling approach 365 

that could blur some of the biological associations studied here. 366 

The trade-off between offspring quantity and offspring quality was found to be strong 367 

and highly constrained in this population of great tit. Regardless of the environmental conditions 368 

experienced during the breeding seasons, the among-females correlation between brood size 369 

and the size of their offspring was close to -1, thus highlighting a strong trade-off. We only found 370 

a weak influence of the environmental context, with the expression of the trade-off being slightly 371 

stronger under harsh conditions (e.g. high population density). Convincing evidence of context-372 

dependence between offspring number and size has been found in studies on human fertility, 373 

whereby such trade-off is absent in favorable socio-economic classes while being found under 374 



poorer socio-economic conditions (Gillespie et al., 2008; Meij et al., 2009; Lawson & Mulder, 375 

2016). Similarly, laboratory studies on invertebrates found phenotypic and genetic correlations 376 

between offspring number and size to depend on the degree of food availability (Messina & 377 

Slade, 1999; Czesak & Fox, 2003; Messina & Fry, 2003). However, we found that the trade-off is 378 

expressed across all environments in great tits, and a potential explanation could be that little 379 

variance in quality or resource acquisition remains among females once accounting for primary 380 

predictors such as mother’s mass and age. For instance, the study of Ebert (1993) on Daphnia 381 

has shown that the offspring number and size trade-off is initially found to be influenced by food 382 

availability, but the genetic correlations all became negative once accounting for mother’s 383 

condition. Similarly, negative phenotypic correlations between offspring quantity and quality 384 

were found after adjusting for maternal size in a meta-analysis across animal species (Lim et al., 385 

2014). Therefore, if our primary covariates accounted well for maternal heterogeneity in this 386 

great tit population, it could result in such a strongly negative correlation. 387 

We found that the correlation between offspring mass and recruitment is overall positive 388 

(Figure 2), such that larger offspring are better quality offspring, thus being more likely to recruit 389 

in the population in following years. This is in line with numerous other past results in great tits, 390 

wherein offspring mass or size are usually found to be associated with future outcomes, from 391 

survival to recruitment (Both et al., 1999; Monrós et al., 2002; Garant et al., 2004; Wilkin et al., 392 

2006; Bouwhuis et al., 2015; Rodríguez et al., 2016), while being independent of their laying date 393 

(Wilkin et al., 2006). However, our study also explores the dependence of this association on 394 

environmental conditions experienced during the breeding season. Interestingly, we found that 395 

this association was stronger under harsh conditions, whereby producing small offspring might 396 



be particularly detrimental as they would not fare well due to poor climatic conditions (e.g., dry 397 

and cold springs; Figure 2) or stronger competition from a higher population density (Both et al., 398 

1999). However, during favorable breeding seasons, the correlation between offspring mass and 399 

recruitment becomes null, with mild conditions and low competition allowing even frail offspring 400 

to survive and recruit in following seasons, thus highlighting that phenotypic selection for 401 

offspring body mass is likely variable and its temporal dynamics are potentially mediated by 402 

environmental conditions (Braby, 1994; Grant & Grant, 2002; Siepielski et al., 2009). This echoes 403 

findings from Bouwhuis et al. (2015), where broods with heavier offspring experienced a better 404 

recruitment probability, with this relationship being stronger during warmer springs. Such 405 

fluctuating selection is expected to promote the evolution of adaptive plasticity in reproductive 406 

behavior (de Jong, 1995). Despite most results following our expectations, the estimated effect 407 

for the beech mast index goes opposite to our predictions, with theoretically better years (i.e., 408 

higher beech mast index) associated with a stronger, more positive correlation. Although 409 

speculative, one possible explanation could be that females do an anticipatory adjustment of 410 

brood size based on future resource availability, whereby they would adjust brood size based on 411 

some external cues that correlate with beech seed production in the autumn following the 412 

breeding season. For instance, these anticipatory effects in relation to masting events have been 413 

found in red squirrels Tamiasciurus hudsonicus and Sciurus vulgaris (Boutin et al., 2006). In great 414 

tits, this might lead to increased brood size at the population level during years of high beech 415 

mast (Figure S1), which in turn is likely to increase nestling and fledgling abundance in the 416 

population. This increase in the abundance of great tits and potentially other bird species might 417 

lead to a decrease in individual perceived predation risk (e.g., through dilution effects), thus 418 



making it less detrimental for nestlings to put on weight (Gentle & Gosler, 2001; Macleod et al., 419 

2005). Though the estimated effect is rather modest in size and somewhat uncertain (Figure 4), 420 

warranting caution with biological interpretation, this highlights the need for further exploration 421 

of the indirect effects of environmental variables on reproductive trade-offs. 422 

Overall, we found a lack of correlation between brood size and subsequent successful 423 

recruitment, together with no evidence of a dependence on the environmental context. Several 424 

non-mutually exclusive reasons, both biological and statistical, could explain this invariant and 425 

null correlation. First, the lack of association could just reflect that after accounting for primary 426 

predictors on both traits, there is just no biological association between residual brood size and 427 

recruitment and no environmental effects, which would mean that regardless of environmental 428 

conditions, producing a small brood of big nestlings or a large brood of small nestlings is likely 429 

leading to the same fitness outcome for females. Second, brood size and recruitment are both 430 

non-repeated measures within a given year (i.e., context). Thus, even though we are interested 431 

in the among-individual correlation between the traits, by not having several measures per 432 

individual in a given year, within- and among-individual covariances cannot be properly 433 

disentangled. Such observation-level correlation reflects the among-individual correlation only if 434 

traits repeatabilities are high (Bliard et al., 2024). The repeatability of clutch size in great tit is 435 

usually medium to high (e.g., 0.51 in Perrins and Jones (1974)). However, if the repeatability of 436 

females’ offspring recruitment is low, our estimate may mostly reflect the within-individual 437 

correlation between both traits (Searle, 1961; Dingemanse & Dochtermann, 2013; Bliard et al., 438 

2024). Given that brood size is in part optimized following Lack’s principle (Williams, 1966), such 439 

that any large deviation is likely leading to reduced recruitment (Gustafsson & Sutherland, 1988; 440 



Pettifor et al., 1988; but see Westneat et al., under review), the within-individual correlation 441 

could be expected to be close to null, which might explain our results. Third, recruitment of 442 

offspring into the population in following years is an imperfect measure of fitness. As previously 443 

noted, because offspring effects on recruitment may be independent of maternal traits, it might 444 

thus be a poor proxy of females’ fitness per se (Wolf & Wade, 2001). It is necessarily an 445 

underestimate due to imperfect detection, being confounded with long distance (i.e., outside the 446 

study area) natal dispersal (Gimenez et al., 2008). Dispersal events could themselves be linked to 447 

the environmental context experienced by the nestlings (McCaslin et al., 2020). For instance, it 448 

had been argued that social dominance, which could hypothetically be related to the size of the 449 

brood an offspring was reared in, could in turn influence the natal dispersal distance of offspring 450 

(Nilsson & Smith, 1985; Smith & Nilsson, 1987; Smith et al., 1989). Such a limitation could 451 

potentially obscure any association between brood size and recruitment (Gimenez et al., 2008). 452 

Finally, it could also be possible that the lack of association and lack of environmental effects 453 

result from interaction effects between environmental variables that were not accounted for, 454 

even though we did not have specific biologically motivated interaction to include. 455 

Altogether, we found that, although the brood size – offspring mass trade-off was highly 456 

constrained, the among-individual correlation between offspring mass and recruitment was 457 

strongly dependent on changes in population density and harshness of the environment during 458 

the breeding season, with females producing larger offspring experiencing higher recruitment 459 

only during harsh breeding seasons. This study demonstrates that in this great tit population, 460 

among-individual covariances respond to continuous environmental change and temporal 461 

variation in population density, a phenomenon that has mostly been neglected up to now, which 462 



highlights that knowledge about life-history theory and trade-offs can be improved through the 463 

incorporation of context dependence. Future studies could extend this approach to other 464 

populations or species (Culina et al., 2021), to further understand how environmental variation 465 

shapes trade-offs and life-history evolution (Chantepie et al., 2024). Overall, such a framework 466 

allows us to revisit old ecological questions related to patterns of selection in fluctuating density-467 

dependent environments through the lens of new multivariate statistical methods, and therefore 468 

expand from an often univariate view on the topic to studying multivariate patterns of trait 469 

(co)expression (Wright et al., 2019; Martin, 2023). 470 
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Figures 507 

 508 

Figure 1: Estimated phenotypic correlations between offspring mass and brood size as a function 509 

of population size (top left panel), spring temperature (top right panel), spring precipitation 510 

(bottom left panel), and beech mast index (bottom right panel). Posterior median effect sizes are 511 

represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded 512 

bands. 513 

 514 

 515 

 516 

 517 



 518 

Figure 2: Estimated phenotypic correlations between offspring mass and recruitment as a 519 

function of population size (top left panel), spring temperature (top right panel), spring 520 

precipitation (bottom left panel), and beech mast index (bottom right panel). Posterior median 521 

effect sizes are represented by the darker lines, and 10% to 90% credible intervals are 522 

represented by the shaded bands. 523 

 524 

 525 

 526 

 527 



 528 

Figure 3: Estimated phenotypic correlations between brood size and recruitment as a function of 529 

population size (top left panel), spring temperature (top right panel), spring precipitation (bottom 530 

left panel), and beech mast index (bottom right panel). Posterior median effect sizes are 531 

represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded 532 

bands. 533 

 534 

 535 

 536 
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 538 

Figure 4: Estimated effects of standardized predictors on the phenotypic correlations between 539 

offspring mass and brood size (blue), offspring mass and recruitment (red), and brood size and 540 

recruitment (green). 541 

 542 

 543 

 544 

 545 



 546 

Figure S1: Associations estimated by the model between spring temperature, spring 547 

precipitation, population density, beech mast index, breeding age, parental mass, and laying date 548 

synchrony (panels from left to right) with offspring mass (top row), brood size (middle row), and 549 

recruitment (bottom row). Posterior median effect sizes are represented by the darker lines, and 550 

10% to 90% credible intervals are represented by the shaded bands. 551 

 552 
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 559 

Figure S2: Estimated effects of standardized predictors on primary traits: offspring mass (blue), 560 

brood size (red), and recruitment (green). 561 
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 567 

Figure S3: Estimated among-mother variance in offspring mass as a function of population size 568 

(top left panel), spring temperature (top right panel), spring precipitation (bottom left panel), 569 

and beech mast index (bottom right panel). Posterior median effect sizes are represented by the 570 

darker lines, and 10% to 90% credible intervals are represented by the shaded bands. 571 
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 577 

Figure S4: Estimated observation-level variance in brood size as a function of population size (top 578 

left panel), spring temperature (top right panel), spring precipitation (bottom left panel), and 579 

beech mast index (bottom right panel). Posterior median effect sizes are represented by the 580 

darker lines, and 10% to 90% credible intervals are represented by the shaded bands. 581 
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 587 

Figure S5: Estimated observation-level variance in offspring recruitment as a function of 588 

population size (top left panel), spring temperature (top right panel), spring precipitation (bottom 589 

left panel), and beech mast index (bottom right panel). Posterior median effect sizes are 590 

represented by the darker lines, and 10% to 90% credible intervals are represented by the shaded 591 

bands. 592 
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 597 

Figure S6: Estimated effects of standardized predictors on the among-mother variance in 598 

offspring mass (blue), observation-level variance in brood size (red), and observation-level 599 

variance in offspring recruitment (green). 600 
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 605 

Figure S7: Posterior predictive checks showing the concordance between the distribution of the 606 

data (y) and the distribution of data generated under the statistical model (yrep), for brood size 607 

(top panel), offspring mass (middle panel), and offspring recruitment (bottom panel). This 608 

highlights a decent fit of the models, but a small overestimation of zeros in recruitment. 609 
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