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1. Introduction  

In many disciplines such as Ecology, Evolutionary Biology and Medicine, there are often 

multiple individual studies addressing each research question. These are referred to as ‘primary 

research’ and are usually observational or experimental studies that directly investigate a 

question or phenomenon, by observing connections between causes and effects or actively 

manipulating systems to bring about certain effects. However, primary studies usually differ in 

a number of ways, for example, whether they are observational or experimental, whether the 

experiment is in a laboratory or in the field, which variables are being measured, the population 

and the size of the population being studied, and so on, so replicating the results of a study is 

rare (Hardwicke et al., 2020; Koricheva et al., 2013; Marsden et al., 2018; Mueller-Langer et 

al., 2019). Moreover, these differences often make comparing the results of the primary studies 

difficult. Scientists are increasingly using the ‘evidence synthesis toolkit’, which primarily 

consists of systematic review and meta-analysis to integrate and synthesise results from 

individual studies, so as to provide general answers to the original research questions, as well 

as information about their generality (Gurevitch et al. 2018, Koricheva et al. 2014, Stegenga 

2011).  

There has been an explosion of evidence synthesis in the literature, with many disciplines 

seeing an exponential increase in systematic review and meta-analysis papers between the 

1990s and the 2010s (see for example Cadotte et al., 2012; Chen & Jhanji, 2012; Fontelo & 

Liu, 2018; Taylor & Munafò, 2016). Perhaps unsurprisingly, the reception of evidence 

synthesis has progressed along the typical trajectory of novel methodologies, with an initial 

period of hype, followed by a wave of skepticism about its role and usefulness in the greater 

context of scientific practice. Following some savage critiques of particularly problematic 

instances of meta-analysis (Ioannidis, 2005, 2016), the excitement surrounding the 

methodology dampened. Established scholars in various fields began to take on evidence 

synthesis, warning scholars not to rely on these methods as they would not only fail at their 

intended goals (e.g. of minimizing bias and helping to overcome the replication crisis) but 

could actively lower the overall quality of research in a field. The two main critiques are that 

evidence synthesis perpetuates existing biases and introduces new types of bias, and that  

(Ioannidis, 2005, 2016; Romero, 2016; Stegenga, 2011; Watkins et al., 2021), and that evidence 

synthesis is often misleading due to the heterogeneity of primary research, i.e. that primary 

studies are too diverse to allow for meaningful comparisons or synthesis, so any synthesis will 

necessarily be flawed (Carpenter, 2020; Ioannidis et al., 2007; Spake et al., 2022; Whittaker, 

2010).  
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Until recently, philosophers have remained largely absent from the furore surrounding 

evidence synthesis, with a few notable exceptions (Berchialla et al., 2020; Bruner & Holman, 

2019; Fletcher, 2022; Holman, 2019; Jukola, 2017; Kovaka, 2022; Maziarz, 2022; Stegenga, 

2011). Moreover, this philosophical coverage is quite patchy, as most papers focus only on one 

aspect of evidence synthesis (meta-analysis) and only within the context of medicine 

(Berchialla et al., 2020; Bruner & Holman, 2019; Fletcher, 2022; Holman, 2019; Jukola, 2017, 

2017; Maziarz, 2022). In addition, philosophical accounts tend to side with the skeptics, 

emphasizing the misuses of meta-analysis rather than its potential value (Jukola, 2017; 

Maziarz, 2022; Romero, 2016; Stegenga, 2011). Finally, there have been no thorough 

philosophical examinations of the issue of heterogeneity in evidence synthesis, which take into 

account evidence synthesis in biology as well as medicine and the social sciences.  

The aim of this paper is to re-examine the issue of heterogeneity in evidence synthesis. 

While the original critiques of heterogeneity highlight some valid points, I will argue that these 

points are most relevant when the main goal is to generate causal confidence, which usually 

occurs in the field of medicine. However, evidence synthesis can be used for different purposes, 

such as arbitrating between contradictory results and exploring the scope of generalisations, 

as is often the case in evolutionary biology, ecology and conservation. In cases like these, 

heterogeneity is less problematic than it has hitherto been portrayed, and can actually be 

positive, in the sense that it can provide useful information and even, on occasion, yield novel 

insights. I begin by providing a short overview of the process of evidence synthesis, as a context 

for understanding where heterogeneity comes in and how it is treated (section 2.1) followed by 

an outline of the critiques against heterogeneity in evidence synthesis (section 2.2). I then show 

that evidence synthesis is used for different purposes, which usually align with different 

disciplines (e.g. medicine vs biology) (section 3). In section 4, I explain when and why 

heterogeneity is genuinely problematic, and in section 5 contrast these cases with some where 

heterogeneity is not detrimental, and even, on occasion valuable. Section 6 provides some 

concluding remarks.   

 

2. Heterogeneity and its Measurement 

The worry with heterogeneity in evidence synthesis is that too many differences between 

primary studies renders them not comparable to each other (Carpenter, 2020; Ioannidis et al., 

2007; Spake et al., 2022; Whittaker, 2010). Primary studies differ in many ways, in terms of 

their inputs (such as experimental setup, type of intervention, length of treatment, 

phenomenon/species/taxon being studied) and outputs (such as effect size, magnitude/direction 
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of effect, how the effect is measured/presented). If studies are too different, then attempts at 

synthesis can be difficult, misleading or even completely meaningless. Before we can delve 

into the argument itself, however, it is important to understand the process of evidence 

synthesis, and when, how, and where heterogeneity manifests in this process.  

 

2.1. Heterogeneity in context 

The evidence synthesis toolkit consists of two main tools: systematic review and meta-

analysis. These tools are not entirely independent from each other, in the sense that meta-

analyses include the steps that constitute systematic reviews, yet systematic reviews are a 

legitimate stand-alone tool for evidence synthesis (see Table 1). A systematic review has three 

main components: the formulation of the research question, the search of the literature for 

original research on the topic and the decision of which of the available literature is relevant 

for the research question and will be included in the review (Foo et al., 2021). We can think of 

these components as steps, though in practice, they do not proceed iteratively, as each step is 

revised and refined multiple times throughout the review (Booth et al., 2012). 

Important/challenging issues in these steps are:  

(i) Ensuring that the literature search is as broad as possible, by including multiple 
search engines 

(ii) Ensuring that the literature search is efficient and transparent, by documenting the 
exact search terms used and 

(iii) Making (documented) decisions about whether or not/and to what extent to include 
additional literature (e.g. grey literature, literature in other languages etc.).  

 

All these decisions will affect the overall amount of heterogeneity in the sample of papers. 

The larger the basic pool of papers is, the more heterogeneous they are likely to be, as a larger 

pool of papers increases the likelihood that there will be differences between inputs 

(experimental setup, species studied, dosage etc). Any differences in inputs are likely to result 

in differences of outputs (effect size, magnitude/direction of effect etc.).   

At this point, researchers can write up their findings in the form of a systematic review, 

where they discuss the papers that have not been discarded, or continue to conduct a full-blown 

meta-analysis. The term ‘meta-analysis’ was coined in 1976 to describe research in the medical 

and social sciences that combined data from multiple studies to determine an ‘overall effect’ 

(Nakagawa et al., 2017). First, researchers extract the data from the primary studies and 

calculate each study’s effect size, i.e. a statistical parameter that can be used to compare the 

results of different studies in which a common effect of interest has been measured (Koricheva 

et al., 2013). In other words, the standardized effect size is a way to transform the data on the 
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results of each study into a standardized parameter, which can be analysed through statistical 

models. For example, the effect of herbivores on plant invasions can be measured in terms of 

the difference in total biomass of plants with and without herbivores. The larger the difference, 

the larger the effect size. Studies that have non-significant results will have small effect sizes, 

while those that have negative results will have negative effect sizes. For example, a study 

which found that the total biomass of plants increased with the introduction of herbivores 

would have a negative effect size. 

Heterogeneity becomes relevant again in the next steps, when researchers assign a weight 

to each study, based on its quality, and estimate the overall effect size of all the primary studies 

taken together. Cases with low heterogeneity, i.e. with little variation between primary studies, 

are deemed ‘simple’. Here, any differences in the observed effects between primary studies is 

assumed to be due to sampling error. Accordingly, the weight of the study is based on its sample 

size: the larger the sample size the higher the quality of the study and consequently, the more 

weight it is assigned (Dettori et al., 2022; Nakagawa et al., 2022). In statistical terms, this 

amounts to the inverse of the overall error variance.  

In more ‘complicated’ cases, i.e. those with high heterogeneity between primary studies or 

non-independent1 data sets, researchers use random effects or multi-level statistical models 

(Nakagawa & Santos, 2012). In these cases, the level of heterogeneity or non-independence 

affects the weighting of the primary studies: rather using the inverse of error variance, 

researchers use the inverse of the error variance plus the ‘variance in true effects’. This, in 

essence, dampens the effect of the weighting, so the higher the amount of heterogeneity, the 

smaller the effect of the weighting. The reason for doing this is that in cases of high 

heterogeneity or non-independence, a higher sample size only protects against some types of 

bias, but not all, so our confidence in the overall effect size should not be inflated just because 

high sample sizes.  

The amount of heterogeneity in the study pool is also reflected in the final stage of a meta-

analysis, where researchers qualify the overall effect size by an ‘index of precision’, i.e. 

variance, standard error or confidence interval. In medicine, this is usually achieved through a 

‘Risk of Bias Assessment’ which amounts to a set of statistical tests which are aimed to identify 

what, if any, biases can be identified in the literature as a whole and the meta-analysis in 

 
1 Non-independence refers to a situation where the data within or between primary studies is somehow related 
(and thus can lead to double counting, or at least artificially magnifying the effect of some variables/relationships). 
In biology, this usually occurs when (i) multiple proxies are used to measure a certain trait (e.g. mating success, 
breeding success and survival as a proxy for fitness) or when (ii) in studies that span multiple species there is 
phylogenetic relatedness between a subset of these species.  
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particular (Dettori et al., 2022; Konno et al., 2024). Biologists are currently developing a risk 

of bias framework adapted for the particularities of meta-analysis in ecology and evolution (i.e. 

where the levels of heterogeneity and non-independence are much higher than those in 

medicine, see section 4.3 for details) (Konno et al., 2024). The statistical tests offer a 

standardised method to interpret the results of the meta-analysis, in the sense that they can help 

researchers determine the confidence they should attach to the overall effect size of the meta-

analysis. For example, a widely used measure of heterogeneity is I2, which refers to the 

percentage of variance between effect sizes that cannot be accounted for by sampling error 

(Higgins & Thompson, 2002). Moreover, the widespread use of I2 has allowed for the adoption 

of benchmarks, with 25%, 50%, and 75% respectively referring to small, medium, and high, 

heterogeneity (Senior et al., 2016). 

 

Table 1. Summary of Evidence Synthesis  

Step Action Type of 
Synthesis Description 

1 Formulate 
Question 

Systematic 
Review & 

Meta-
Analysis 

- Formulate a research question, documenting and justifying 
decisions (e.g. on scope of the question, when and why it was 
revised) 

2 Search 
Literature 

- Use more than one platform (Web of Science, Scopus, 
Google Scholar) 
- Aim for effective search string, conduct backward and 

forward search and determine use of grey literature  

3 Determine 
relevancy 

- Define inclusion/exclusion criteria.  
- Depends on (sub)discipline, but types of papers that are 

typically discarded: 
- Review papers, papers on different questions, papers that do 

not meet certain quality thresholds (e.g. papers with 
insufficient/obscure data, papers with errors) 

4 Calculate 
effect size 

Meta-
Analysis 

- Calculate effect size from available data. 
- Convert to common effect size metric   

5 Assign 
Weight 

- For a fixed effect statistical model, this is based on sample 
size (the larger the better) 
- For random effects & multilevel effects statistical models, 

sample size matters, but its overall importance depends on 
amount of heterogeneity in primary research.   

6 Test for bias 

- Test for publication bias 
- Sensitivity analyses (test for explanation of heterogeneity, 

i.e. how much of the heterogeneity is explained by known 
factors?) 

 

How much heterogeneity is typical? The answer depends on the discipline. In medicine, 

heterogeneity is relatively low, with 30-55% of studies having an I2 value of 0 (that is, in 30-

55% of studies there are differences in effect sizes that cannot be explained by sampling error) 

(Higgins & Thompson, 2002; Senior et al., 2016). This is because studies tend to focus on one 
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species (humans), a single type of intervention (e.g. a particular drug) and similar protocols. 

Any heterogeneity is due to differences in the population samples (e.g. age group, geographical 

region, gender) or intervention procedures (e.g. different dosages).  In biology, heterogeneity 

is typically much higher (Nakagawa & Santos, 2012; Whittaker, 2010). More specifically, 

Senior et al. (2016) show that ecologists should expect an I2 of around 90%, with only 4.65% 

of studies having an I2 value of 0. This is not surprising, as primary research in biology can 

vary in many more ways, including the very species being studied, and the method used to 

collect data. For example, when estimating primary productivity, the methods employed for 

measurement are radically different, depending on the types of vegetation being studied. Thus, 

in grasslands, it is usual to measure the ratio of above to below ground biomass, whereas in 

forests, measurements focus on above-ground biomass (the uprooting of entire trees being 

rather inefficient and not always ethical) (Whittaker, 2010).  

 

2.2. The problem of heterogeneity  

In very simple terms, the problem with heterogeneity is that it can make comparisons 

between primary studies difficult, even meaningless, effectively undermining the whole point 

of evidence synthesis (Stegenga, 2011). For example, if one study tests the effect of drug A on 

lowering blood pressure, but another tests the effect of the same drug on the rate of heart 

attacks, then the effect is different and so there is no way to calculate effect size. More 

specifically, heterogeneity between primary studies can create artificial differences between 

effect sizes, thus obscuring the true effect of the intervention. For example, if studies of the 

same drug differ in terms of dose or in terms of the time the dose is administered, then the 

overall effect size could be lower, thus suggesting that the drug is less effective than it actually 

is. Perhaps more worryingly, if only the larger dose was actually effective, but also created side 

effects in the patients, then pooling the studies could conceal the problem, by obscuring the 

percentage of patients experiencing adverse effects. 

Similar arguments can be made for heterogeneity in biology, where heterogeneity is much 

larger (typically above 90%) (Senior et al., 2016). One of the most vociferous critiques of 

heterogeneity in biology is Whittaker’s (2010) argument against meta-analyses of the Species-

Richness-Productivity Relationship (SRPR), which, he believes, amount to ‘mega-mistakes’. 

A meta-analysis of SRPR typically aims to determine whether higher levels of species richness 

contribute to higher levels of productivity. As stated in section 2.1, primary productivity can be 

measured in two different ways (total biomass, vs ratio of above to below ground biomass). 

The reason for this difference is both legitimate and unlikely to change, as the former does not 
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require the uprooting of the entire individual – something with cannot realistically be 

performed on trees, only working in the context of grasses. Nonetheless, when a meta-analysis 

finds a difference between the productivity of grasslands and forests, is that a real difference 

between the two biomes or is it merely an artefact of the different methods used to measure 

productivity?  

Whittaker argues that we cannot be sure and concludes that meta-analyses in ecology are 

therefore meaningless. In contrast, if we keep variation in primary studies to a minimum, then 

any variation in the results of primary studies will be due to real causal factors (i.e. differences 

in the relationship between species richness and productivity). Thus, for example, a meta-

analysis where all these factors are kept constant could reveal that high levels of species 

richness matter more for productivity in forests than it does for grasslands. Whittaker concedes 

that these constraints are quite high, yet he believes that they are essential for a good meta-

analysis. Moreover, he uses the stringency of the constraints as an argument against the use of 

meta-analysis, as he believes we simply do not have the right kind of data to conduct meta-

analyses of sufficiently high quality.   

Admittedly, Whittaker’s paper is, by now, fifteen years old, and the rhetoric feels somewhat 

dated. Evidence synthesis in biology has come a long way since 2010, in the sense that it is 

more widespread but also more scrutinized (Gurevitch et al., 2018; Koricheva & Gurevitch, 

2014; Nakagawa et al., 2017; Nakagawa & Santos, 2012). Biologists currently have more 

sophisticated statistical tools at their disposal (Nakagawa et al., 2022; Nakagawa & Santos, 

2012), and more collective experience in conducting meta-analyses and overcoming various 

problems that arise (Nakagawa & Cuthill, 2007; Sánchez-Tójar et al., 2018; Sánchez‐Tójar et 

al., 2020). Still, the high levels of heterogeneity worry even the staunch advocates of meta-

analysis in biology.  

There are two additional worries expressed in the literature. The first is that heterogeneity 

is not adequately reported in biological meta-analyses (Nakagawa & Santos, 2012; O’Connor 

et al., 2017; Schielzeth & Nakagawa, 2022; Spake et al., 2022). This is problematic because it 

gives a false sense of security to meta-analytic results. Consider the following example 

(adapted from Spake et al., 2022): if a meta-analysis investigating the effect of land use change 

on biodiversity found an overall effect size of zero, this could be interpreted as evidence that 

land use change does not have an effect on biodiversity. However, this interpretation would 

only be correct if there was low heterogeneity between the studies, i.e. that all studies showed 

no (or at least non-significant) effects. If, on the other hand, there was high heterogeneity 

between studies, this would mean that some primary studies showed significant effects while 
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others showed low or negative effects. In this case, we could not assume that the overall effect 

was representative of all cases. At the very least, we would need to conduct further 

investigations to determine what accounts for the heterogeneity and whether or not it could be 

reduced.  

The second worry is that meta-analytic results with high heterogeneity might not support 

generalisations (Nakagawa & Cuthill, 2007; Spake et al., 2022). For example, Nakagawa & 

Cuthill (2007), despite advocating for the adoption of ‘meta-analytic thinking’ in biology, claim 

that “care should be taken with meta-analytic reviews in biology. Biological research can deal 

with a variety of species in different contexts, whereas in social and medical sciences research 

is centred around humans and a narrow range of model organisms, often in controlled settings. 

While meta-analysis of a set of similar experiments on a single species has a clear 

interpretation, generalization from meta-analysis across species and contexts may be 

questionable.” (pp. 594-5). The worry seems to be that when all the primary studies in a meta-

analysis focus on the same type of experiment or species, claims about that experiment or 

species are straightforward and legitimate. In contrast, when the meta-analysis includes data 

from multiple species, experimental setups etc., the overall effect size might not be equally 

representative of/applicable to each and every species or experimental setup. Thus, for 

example, a meta-analysis on the effects of fire on biodiversity that included primary research 

on different species, might be more representative of some communities than others, so that 

the overall effect (e.g. fire has no effect on biodiversity) is true of some communities (where 

key species have adapted to fire regimes) but not others, where there is no adaptation to fire.  

 

3. Different goals of Evidence Synthesis 

Evidence synthesis is often described as a quantitative method for amalgamating and 

synthesizing results from individual studies, so as to provide accurate and useful answers to 

the original research questions (Gurevitch et al. 2018, Koricheva et al. 2014, Stegenga 2011). 

Yet if we look a bit deeper it becomes clear that syntheses can be used for different purposes. 

In this section I will distinguish between three such goals and explain their main differences.  

 

3.1. Generating Causal Confidence  

The most well-known goal of evidence synthesis is to generate or increase causal 

confidence. This goal pertains primarily to meta-analysis in the biomedical sciences, especially 

in the context of evidence-based medicine. The underlying motivation for these meta-analyses 

is that most primary research in medicine, e.g. randomised control trials, are necessarily limited 
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in terms of sample size. This can be for a number of reasons, including testing of rare 

conditions, difficulty acquiring subjects, availability of drugs, cost of conducting the trial and 

so on. The problem is that with such small sample sizes, it is difficult or even impossible to 

definitively conclude whether or not an intervention has an effect (Egger et al., 2002; Stegenga, 

2011). This is where meta-analysis comes in. It is often the case that a particular intervention 

is or has been tested multiple times, at different laboratories around the world. If we assume 

that these studies are replicates of each other, we can pool their results and generate a greater 

sample size, so any effect will be more likely to be statistically significant (Berlin & Golub, 

2014; Carpenter, 2020; Egger et al., 2002).  

For example, consider a meta-analysis that includes a number of studies on the effects of 

a drug on depression. A large effect size of drug A is meant to show that it is an effective way 

to tread depression. If each individual study shows a small (often not statistically significant) 

result, amalgamating data could provide more robust evidence of the effectiveness of the 

treatment. In other words, each individual study alone provides evidence of a correlation 

between the intervention and the effect, but together the studies are taken to indicate a true 

causal relationship. In addition, a meta-analysis could be used to compare the relative 

effectiveness of different drugs. For example, if a meta-analysis of drug A yields a larger effect 

size than a meta-analysis of drug B, then drug A is more effective for the treatment of 

depression.  

In other words, this aim of meta-analyses is to improve on the quality of primary research, 

by increasing our confidence that the results of clinical trials have indeed established causal 

links between certain interventions and certain outcomes. A popular depiction of the quality of 

various types of research in evidence-based medicine is the so-called ‘pyramid of evidence’ 

(figure 1). At the very bottom are background information and expert opinion which are meant 

to provide merely anecdotal evidence. As we go up the pyramid, the quality of the studies and 

their results is meant to increase, while the volume of information decreases. The next three 

levels are observational studies, where there is no control of confounding factors. These include 

case series, which are detailed observations and descriptions of individual patients, case-

controlled studies, i.e. retrospective studies where researchers compare existing observations 

of a number of patients, and cohort studies, where patients are followed and observed over a 

period of time. At the top of the primary research section (which in medicine is often referred 

to as unfiltered information) are randomised control trials (RCTs), where patients are 

randomized and placed in the treatment or control groups, the latter of which receive a placebo 

rather than the treatment. RCTs aim to control for confounding variables and identify genuine 
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causal links between the intervention and the outcome. Given the position of RCTs in the 

pyramid they often referred to as the ‘gold standard’ of evidence (Stegenga, 2011). For 

advocates of the pyramid, systematic reviews and meta-analyses are the pinnacle of the 

pyramid as they filter the information provided by RCTs, along with eliminating or at least 

minimizing their deficits, thus constituting the ‘platinum standard of evidence’ (see discussion 

in Stegenga, 2011).  

 
Figure 1. Pyramid of evidence  

 
A typical evidence pyramid in evidence-based medicine. As we go up the pyramid, the 
volume of information decreases, and the quality of evidence increases. Unfiltered 
information refers to primary studies and filtered information refers to meta-level research, 
i.e. systematic reviews and meta-analyses. From (Tannenbaum & Sebastian, 2022).   

 

3.2. Arbitrating between Contradictory Results 
 

It is often the case that primary research on a certain topic differs. In clinical trials, for 

example, one study might find that a certain intervention has a significant effect, while another 

trial might find a non-significant effect. Sometimes results can be downright contradictory, 

with some studies finding a positive relationship between two variables and others finding a 

negative relationship between the same variables. Meta-analyses can be used to help 

researchers determine how to deal with varying or contradictory results by providing an overall 

assessment of the effect. One way to achieve this is through the process of weighting (see 

section 2.1). For example, a meta-analysis could reveal that the studies showing no effects of 

drug A, have small sample sizes and should be weighted less heavily. In other words, by 

providing a judgement on the relative quality of various studies, a meta-analysis can show that 

some apparent contradictions between primary studies can easily be resolved.  
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This process of weighting the primary studies is considered to be a significant advance for 

evidence synthesis, and one of the main reasons to prefer meta-analysis to its predecessors, 

especially ‘vote counting’ (Koricheva et al., 2013; Nakagawa & Poulin, 2012). This involves 

sorting primary research into three categories (significant results in favour of hypothesis, 

significant results against hypothesis and non-significant results),  determining which category 

has the highest number of studies, and declaring that category the ‘winner’ (Koricheva & 

Gurevitch, 2013). A major problem with vote counting that it cannot take into account the 

quality of the primary studies, giving equal weight to high and low-quality studies i.e., those 

with low sample sizes. This leads to biased and misleading results at the meta-research level, 

which has been extensively documented (Koricheva & Gurevitch, 2013; Nakagawa et al., 2017; 

Nakagawa & Poulin, 2012).  

Meta-analyses can also reveal how different measurements of a certain phenomenon can 

lead to different conclusions, while also providing information about how to deal with the 

resulting contradictory conclusions. Consider the case of biodiversity trends, i.e. whether 

biodiversity is increasing or decreasing in the last decades. While many studies have concluded 

that biodiversity is decreasing, there have been some studies which demonstrate an increase in 

biodiversity. This is interesting but also potentially problematic as it can have an effect on 

conservation policy and funding allocation, as it can be used as ‘evidence’ for decreasing the 

funding allocated to conservation efforts (Fieseler, 2021; Pyron, 2017). In a meta-analysis of 

biodiversity trends in Europe, Pilotto et al., (2020) found that many of the studies which found 

no changes or increases in biodiversity were measuring species turnover rather than species 

richness or abundance. These are instances where the overall number of species might be 

increasing, but this is due to biological invasions, i.e. the native species are actually being 

replaced by alien species. Thus, the meta-analysis showed that if we are interested in 

conservation of native species in Europe, we can discount the studies that measure species 

turnover.   

 
3.3. Exploring the Scope of Generalisations 

Perhaps the least well-known, but in my opinion, the most useful goal of meta-analysis is 

a tool for testing the scope of generalisations. At first glance, it seems similar to the goal 

outlined in the previous section, as it also is a way to deal with differing or contradictory 

primary results. However, there is a subtle but important difference between the two goals. 

Here, a meta-analysis is not used to determine which side of the primary research ‘wins’, rather 
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it is used to determine when or where a causal connection between two variables holds and 

when or where it breaks down.  

Consider, for example, the case of the ‘enemy release hypothesis’ in invasion biology. The 

basic idea is quite simple: alien species do not encounter their traditional enemies in new 

territories, so they can thrive. The situation becomes trickier when scientists tried to determine 

how exactly enemy release manifests in each case, and what conclusions can be drawn from it 

(Heger & Jeschke, 2014). For example, while there have been documented cases where alien 

plants or their seeds are not consumed by native predators, there are also number of cases where 

alien plants actually attracted native herbivores, and that these herbivores have a significant 

negative effect on seed production and plant survival (both of which seem to be quite important 

for a successful invasion) (Maron & Vilà, 2001). Studies at different scales also tend to yield 

contradictory results, as larger-scale biogeographical analyses primarily show a reduction in 

the diversity of enemies in the introduced range compared with the native range, while smaller-

scale community studies often show that alien species are no less affected by enemies than 

native species in the invaded community (Colautti et al., 2004).  

A meta-analysis conducted in 2006 revealed some interesting insights regarding these 

contradictory results. Parker et al., (2006) analysed 63 manipulative field studies of plant 

invasions which included the effect of herbivores on the outcome of the invasion (i.e. they 

included primary studies where herbivores facilitated and where they hindered the plant 

invasion). At first glance, it seemed that there was stronger evidence against the enemy release 

hypothesis, as there were cases where native herbivores decreased the abundance of alien 

plants, i.e. plants encountered new enemies, and cases where alien herbivores i.e. their existing 

enemies increased the abundance of alien plants. However, they also found that the negative 

effect of native herbivores on the alien plants was weaker than the positive effect of alien 

herbivores on them (28% reduction in the former vs 65% increase in the latter). Probing deeper, 

they realised that some studies focused on invertebrate herbivores while others focused on 

vertebrates. It turns out that native vertebrate herbivores had a three to five-fold larger negative 

impact on alien plant survival than native invertebrate herbivores.  

What accounts for this difference in the strength of the effect across studies? A closer look 

at the primary research revealed that the native invertebrate herbivores were specialists (i.e. 

they prey on specific plant species) while the alien vertebrate herbivores were generalists (i.e. 

they prey indiscriminately on many different plant species). This is the final piece of the puzzle, 

which explains the apparent contradictions by showing the limits of the enemy release 

hypothesis. In other words, the enemy release mechanisms function normally in cases the 
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native herbivores are specialists and there are no alien herbivores; here the alien plants are 

released from their old enemies but are not affected by the native specialists, who continue to 

focus on their preferred native plants. However, the enemy release effect is counteracted (or at 

least overshadowed) by the existence of alien generalist predators, who consume both native 

and alien plants. In fact, these generalist alien predators might, in some cases, prefer the native 

plants, thus further facilitating the spread of the alien plant invaders.  

 I believe that this is an extremely useful way to utilize evidence synthesis. One of the 

main problems in ecology is the difficulty of constructing generalisations that can support 

explanations and predictions (Beckage et al., 2011; Houlahan et al., 2017; Kaunisto et al., 2016; 

Lawton, 1999; Mitchell, 2002; Raerinne, 2014; Turchin, 2001). More specifically, while 

ecologists are able to identify patterns in the phenomena they study, these patterns often break 

down (Elliott-Graves 2024; Doak et al., 2008). This means that ecological generalisations are 

often limited in scope (Elliott-Graves 2024; Mitchell, 2000). This creates problems for 

ecological research, as generalisations form the basis for some types of explanations and most 

predictions; a generalisation breaking down translates into knowledge not being transferrable 

across systems or across time periods (Catford et al., 2022; Spake et al., 2023). While ecologists 

generally aware of these issues, they are nonetheless extremely challenging, especially in 

applied contexts, when ecologists only have a little time and few options to intervene on a 

system (Catford et al., 2022; Doak et al., 2008; Mouquet et al., 2015). Thus, any information 

on the scope and limits of a generalisation can be incredibly useful; it can make the difference 

between a successful and unsuccessful intervention. In the case of enemy release, for example, 

knowing that the enemy release effect is overshadowed by generalist herbivores can have 

important effects on policy. Thus, scientists aiming to save a native plant from extinction should 

not merely focus on predation from local insects, rather they should focus predominantly on 

shielding the plant from non-native herbivores.   

The discussion in this section was intended to foreshadow the idea that the effects of 

heterogeneity are not uniform but can differ depending on the goal of the synthesis in question. 

In the next section, I will examine the cases where heterogeneity is problematic. 

 

4. When is Heterogeneity a genuine problem? 

Most cases where heterogeneity is genuinely problematic occur when our expectations of 

heterogeneity do not match reality, that is, when there is (much) more heterogeneity than we 

expected. This can occur when heterogeneity is unreported, which happens when a synthesis 

contains no (or insufficient) information about the heterogeneity of primary studies included 
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in the synthesis. The problem is that unreported heterogeneity implies that there is no 

significant heterogeneity in the studies, so any overall effect sizes are taken at face value. If, 

however, there is significant heterogeneity in the effect size, then the issues outlined in section 

2, hold, that is, we cannot be sure that the overall effect size accurately represents the pool of 

primary studies (Nakagawa et al., 2017; Spake et al., 2022). Moreover, lack of information 

about heterogeneity can also hamper subsequent efforts to correct or further investigate the 

possible effects of heterogeneity as novel statistical tools are developed (Ioannidis et al., 2007; 

Senior et al., 2016).   

A particularly pernicious set of cases where heterogeneity does not match expectations, 

occurs when the synthesis in question is used for the goal outlined in section 3.1., namely 

‘generating causal confidence’. Recall that this use of meta-analysis involves pooling results 

from different studies in the hope of generating a larger overall effect size, thus demonstrating 

a stronger link between the intervention and the effect. Here, researchers treat the primary 

studies as though they were replicates of each other, i.e., they assume that there is a high level 

of homogeneity between the studies, so that any differences between control and experimental 

groups can be safely attributed to the intervention itself. However, if it turns out that 

heterogeneity between primary studies is high, then we cannot be sure that the variation is 

attributable to the intervention and the very premise of the meta-analysis is undermined.  

The issue is that heterogeneity between primary studies can create artificial differences 

between effect sizes. Consider again the example outlined in section 2, where the meta-analysis 

is aiming to show a significant effect size for a certain drug. However, primary studies differ 

in terms of the dosage administered. In this example, only the higher dose of the drug is actually 

effective yet also creates side effects in a subset of the patients. Assuming homogeneity and 

pooling the results obscures both these important issues. First, it fails to show that different 

dosages have different effects but implies that a median dosage has a sufficient effect. Second, 

it obscures the connection between the higher dosage and the side effects. In other words, 

assuming homogeneity and pooling the results, dilutes the variation between primary studies 

and obscures issues that ought to be highlighted.  

 

5. Can Heterogeneity be valuable? 

While it is undeniable that heterogeneity is problematic in the contexts described in the 

previous section, I believe that there are other contexts where it is much less detrimental, and 

even cases where it can be useful. What I mean when I say that heterogeneity is often less 

detrimental than we expect, is that there are numerous statistical tools for accounting for and 
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addressing heterogeneity. A number of scholars explicitly state that heterogeneity is not 

problematic per se, but only becomes problematic if it is unexpected, un(der)reported or 

un(der)investigated (Higgins, 2008; Higgins & Thompson, 2002; Nakagawa et al., 2017; 

Schielzeth & Nakagawa, 2022; Senior et al., 2016 see also discussion in section 4). When 

heterogeneity is expected and adequately reported, then researchers have access to numerous 

methods for further investigating the causes of heterogeneity along with its effects (Senior et 

al., 2016). For instance, it is becoming standard practice in biological meta-analyses to use 

random effects models or mixed effects models, which help researchers analyse heterogeneity 

rather than fixed effects models, which assume low levels of heterogeneity (Senior et al., 2016). 

Mixed effects models allow heterogeneity to be partitioned, so that it is possible to distinguish 

between possible causes of heterogeneity, such as phylogenetic heritability in multi-species 

studies (Senior et al., 2016). Of course, many of these tests are time-consuming and require 

some statistical knowledge, yet they are usually readily available and free.2  

But how exactly can analysing heterogeneity be useful? Unlike the context of generating 

causal confidence, when we are using meta-analyses to arbitrate between contradictory results 

(3.2), or examine the scope of generalisations (3.3), heterogeneity can provide us with valuable 

information. Starting with the case of contradictory results, heterogeneity is useful when groups 

of primary studies emerge which display intra-group homogeneity and inter-group 

heterogeneity, in other words, when heterogeneity clusters in interesting ways. For example, in 

the meta-analysis of biodiversity trends in Europe, Pilotto et al. (2020) found that the primary 

studies clustered in terms of how biodiversity was measured: the studies which showed 

decreases in biodiversity were those that measured richness or abundance whereas those that 

showed no changes or increases in biodiversity were those that measured species turnover. 

These heterogeneous clusters are thus quite informative when we are trying to make sense of 

contradictory results. In this case, they show us that biodiversity of native species is decreasing 

in Europe and that any increases in biodiversity are due to invasive species. This means that, 

rather than being reassured from any results that show increases in biodiversity, we should 

expand our conservation strategies to include management of invasive species. In other words, 

the clustering shows us that any contradiction between results is, at least from a conservation 

standpoint, illusory.  

 
2 Most of these tests can be easily implemented by running existing software packages in R. In my experience, 
many of the biologists who have developed/adapted these packages for biological data are also extremely helpful, 
willing to answer questions and troubleshoot the implementation of the software.  
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Clusters of heterogeneity can also be informative in the sense that they can uncover biases 

in certain experimental setups, measurements or species. In the case of medicine, for example, 

if results cluster by geographical region or dosage then this is an indication that there is 

something about how the experiment was conducted in certain contexts which could account 

for the different results. In the case of biology, if the clusters correlate to particular species, for 

example, this could indicate that there is something problematic with the measurement of the 

effect in that species. Of course, it could indicate that there is a real difference in effect in that 

species – I will discuss this point in the next paragraph. The point is that heterogeneous clusters, 

if adequately investigated, can account for contradictory results, and can even provide 

additional information which explains the underlying causes of the contradiction.   

The case for preserving and analysing heterogeneity is even stronger in the context of 

exploring the scope of generalisations, as it is the existence of heterogeneity itself that predicts 

the limits of a generalisation and in some cases can even help in explaining the limits of the 

generalisation in question. I will return to the case of the enemy release hypothesis, outlined in 

section 3.3. Here, the scientists were able to explain the reason why primary studies examining 

the enemy release hypothesis yielded contradictory results, as they realised that the enemy 

release mechanism is sometimes overshadowed by other mechanisms (those generated by 

generalist herbivores). Thus, the heterogeneity in the primary studies provided important 

information about scope of the enemy release hypothesis, i.e. where then mechanism of enemy 

release was effective and where it was not. In fact, in this case, if the researchers were to reduce 

the heterogeneity of their sample in the traditionally approved way, i.e. by excluding the studies 

on one type of herbivore (i.e. insects or vertebrates), they would have missed two important 

insights.  

First, they would not have realised that the key difference regarding enemy release was in 

terms of whether the herbivores were specialists or generalists (which happened to coincide 

with the categories of insect and vertebrate). If they had excluded one group by default, they 

would not have realised the limit in scope of the enemy release mechanism, i.e. when it was 

overshadowed by other mechanisms. Second, failing to reach this conclusion would also have 

prevented the scientists from another insight into biological invasions, namely that this explains 

another perplexing phenomenon, namely why it is much more common for European plants to 

invade areas outside Europe, rather than vice versa. The answer is that generalist herbivores 

from Europe, such as pigs, horses and cattle, are more widespread than generalist herbivores 

from other continents and contribute more often to the success of exotic plants with which they 

have co-evolved.  
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In short, ‘correcting’ for heterogeneity, i.e. leaving out the primary studies that increase the 

heterogeneity of the overall effect size can create more problems than it solves. Here, 

heterogeneity is a feature rather than bug, and though all heterogeneity should be investigated, 

it should not automatically be met with suspicion. Indeed, some researchers argue that in 

disciplines with expectations of high heterogeneity, such as biology, it is instances of low 

heterogeneity that should be treated with suspicion or at least subjected to similar amounts of 

scrutiny as cases of high heterogeneity (Senior et al., 2016).  

 Most of this discussion pertains to disciplines, such as biology, where high 

heterogeneity is expected. Moreover, in section 4, I argued that heterogeneity is indeed 

problematic when it is higher than expected, which is usually the case in medicine. But are 

there contexts in which high heterogeneity can also be useful in medicine? I believe that with 

some conceptual and methodological modifications to medical meta-analyses, heterogeneity 

could also be informative here. Thus, if medical meta-analysts adopted goals 2 or 3 rather than 

1, along with the appropriate statistical methods for analysing heterogeneity, then it could 

potentially be as useful as it is in biology. More specifically, if a meta-analysis was intended to 

explore the limits of a causal claim, rather than aiming to generate causal confidence, then the 

statistical tools could be used to reveal clusters that could potentially be informative. For 

example, if the results cluster in terms of age group, sex, additional health issues etc., this could 

show that the particular drug only works on say, men between the ages of 18-60, that a 

particular dosage has serious side effects on post-menopausal women and so on.3 The important 

point, yet again, is not whether heterogeneity exists or not, but how it is approached and how 

it is analysed. 

 

6. Conclusion 

Even though exploring the limits of a hypothesis is primarily associated with evidence 

synthesis biology, it can also be used in other disciplines, including medicine. Thus, for 

example, researchers could (re)analyse primary data on different sexes, age groups etc., and 

identify limitations in scope for medications, or even identify consistent bias in diagnoses. The 

point is that what determines whether heterogeneity is a problem depends on our attitude 

 
3 I should note that here, as we are dealing with a single species, it is still possible to ‘pool’ results at the same 
time as investigating heterogeneity clusters. That is, if meta-analysists have information on sex, age, additional 
health issues etc., from the primary studies (something which is increasingly the case) then they can pool the 
subgroups from different studies to test whether the population as a whole, clusters in interesting ways. The 
beauty of these statistical tools is that once all the data is put into the program, rearranging it in different clusters 
is a matter of seconds. 
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towards heterogeneity. If we assume that it is non-existent, when it does exist, then our 

synthesis will suffer. If, on the other hand, we expect some heterogeneity to exist and explicitly 

analyse it, then we can end up with a lot more information than we would from an entirely 

homogeneous set of primary research (Higgins & Thompson, 2002; Spake et al., 2022). To sum 

up, heterogeneity is here to stay, but this does not seem to be the insurmountable problem that 

early critics claimed it was. The availability of new and easily implementable statistical 

packages, make exploring heterogeneity and integral but also useful dimension of evidence 

synthesis.  
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