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Abstract 15 

 16 

Bats harbor approximately a third of known mammal viruses, including the recent 17 

coronaviruses SARS-CoV1 and SARS-CoV2 that likely spilled over in Asia. As spillover risk 18 

increases due to habitat loss and fragmentation, we identified potential zoonotic spillover and 19 

pandemic risk hotspots by combining landscape characteristics with the diversity of competent 20 

hosts, with horseshoe bats (genus Rhinolophus) used as proxies for zoonotic pathogen reservoir 21 

hosts. We estimated the risk of coronavirus emergence in South and Southeast Asia by 22 

integrating Rhinolophid species distributions, forest fragmentation, and human population 23 

density data. Two scenarios were considered: one using baseline forest cover data, and another 24 

incorporating new regional infrastructure which drives further fragmentation. Results showed 25 

that under both scenarios, spillover risk hotspots are concentrated in Indochina and southern 26 

China, where species richness and fragmentation are high, and where coronaviruses were 27 

previously detected in bat populations. Simulation of pandemic spread from the spillover risk 28 

hotspots using network models revealed risk hotspots clustered in Bangladesh and northeast 29 

India. These results highlight the vulnerability of human population centers and heightened 30 

risks from habitat fragmentation in Asia, especially given its history of recent coronavirus 31 

spillovers that became pandemics. Identifying hotspots emphasizes the need for a 32 

multidisciplinary approach to protect ecosystem integrity for public health, paving the way for 33 

improved predictive capabilities and targeted disease surveillance in at-risk regions.  34 

Keywords 35 

zoonoses, emerging infectious diseases (EID), spillover risk, One Health, habitat 36 

fragmentation, ecological modeling, horseshoe bats 37 

 38 

 39 

mailto:alice.c.hughes@unimelb.edu.au


2 

 

Introduction 40 

 41 

An estimated 60-75% of emerging infectious diseases for humans originate from zoonotic 42 

pathogens coming from wildlife (Jones et al., 2008; Taylor et al., 2001). Various taxa may be 43 

particularly likely to host zoonotic pathogens, with rodents, bats, and to some extent, carnivores 44 

well known for their capacity to host and transmit pathogens (Han et al., 2016; Olival et al., 2017; 45 

Z. Wu et al., 2021; Zhou et al., 2021). Effective zoonotic disease vectors are species that have high 46 

biological compatibility with pathogens, serving as reservoirs while also frequently interacting with 47 

target hosts either through their behaviors or due to habitat disturbances, thus facilitating 48 

transmission (Marquardt, 2004). The probability of spillover relates to two interconnected factors: 49 

firstly, changes in the interface between different animals, which alters the potential for wildlife to 50 

contract or spread pathogens, and secondly, stressors which may alter the vulnerability of animals 51 

to become sick or alter the rate of viral shedding (Keesing & Ostfeld, 2021; Plowright et al., 2015). 52 

Habitat loss and fragmentation do both by increasing potential interfaces for spillover, as well as 53 

increasing stress and likely rate of shedding. With increasing habitat loss and degradation, climate 54 

change, and exposure to various chemicals, zoonotic spillovers from wildlife may increase in the 55 

future, yet these patterns and risks depend on the hosts (Carlson et al., 2022; Rulli et al., 2017; 56 

Wilkinson et al., 2018). Habitat degradation resulting from activities such as deforestation, 57 

agricultural expansion, and urbanization can increase pathogen spillover risk by creating edges 58 

which increase interspecies contact and the transmission of zoonotic pathogens (Faust et al., 2018; 59 

Wilkinson et al., 2018). These edge regions serve as transition zones where wildlife, domestic 60 

animals, and humans come into closer contact, heightening the risk of spillover (Hassell et al., 61 

2017). Increasing the interfaces creates more opportunities for potential competent hosts to come 62 

into contact and potentially exchange pathogens, while also elevating stress levels, and forcing 63 

them to travel further (and expend more energy to forage effectively) thus increasing the 64 

susceptibility to infection (Glidden et al., 2021). Understanding the potential for spillover requires 65 

knowing the interfaces where wildlife interacts with humans, livestock, and domestic animals, 66 

including how these connect to human population centers. Competent hosts are frequently 67 

commensal with humans, thus as areas are destroyed and degraded the probability of wild species 68 

harboring and spreading pathogens increases (Gibb et al., 2020; Kane et al., 2024; Keesing & 69 

Ostfeld, 2024). 70 

 71 

Bats represent a prominent group of competent hosts which harbor a significantly higher percentage 72 

of zoonotic viruses compared to other mammals (Olival et al., 2017). This ability to host diverse 73 
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viruses, often without showing symptoms, is likely due to the high metabolic costs (and associated 74 

ecophysiological pressures) associated with flight (Gorbunova et al., 2020; Irving et al., 2021; 75 

O’Shea et al., 2014). Spillover may occur either via direct human contact with bats (bat bites or 76 

consumption) or through exposure to intermediate hosts or food contaminated with bat saliva, urine 77 

and feces. A number of pathogens with reservoirs in bats have the potential to spill over into humans 78 

(Eby et al., 2023; Plowright et al., 2015; Wang & Anderson, 2019). These include viruses hosted 79 

by fruit bats (Pteropodidae), such as Hendra, Nipah, Marburg and possibly Ebola, which are 80 

associated with high human fatality rates. Understanding the ecology, and risks of pathogen 81 

spillover must reflect the distribution and ecophysiology of competent hosts, as these factors likely 82 

determine the patterns and risks of spillover. Thus, whilst Pteropids carry an array of pathogens, 83 

their ability to cover large distances and disperse across diverse environments will produce a very 84 

different pattern of risks to pathogens spread by species poorer at dispersing, or more limited to 85 

cluttered environments.  86 

 87 

Different viruses have different hosts, and horseshoe (Rhinolophid) bats provide reservoirs of 88 

betacoronaviruses (Becker et al., 2022; W. Li et al., 2005) including SARS-CoV1 in 2003, SARS-89 

CoV2 in the COVID-19 pandemic in 2019, and the MERS-CoV outbreak in the Middle East in 90 

2012 (Letko et al., 2020; Zhou et al., 2020). There are a total of 118 described horseshoe bat species 91 

within the genus Rhinolophus, and are all distributed throughout the Old World (Csorba et al., 92 

2003; Simmons & Cirranello, 2025). Rhinolophids are generally photophobic (restricted to dark 93 

conditions) and dependent on densely cluttered environments (typically forests), poor at dispersing 94 

due to their short, broad wing design, and use echolocation calls adapted for short-range prey 95 

detection among clutter (Wilson & Mittermeier, 2019). These characteristics indicate that 96 

fragmentation of forested habitats may have a disproportionate impact on Rhinolophids. The 97 

implications of fragmentation, such as heightened exposure to pesticides on fragment edges 98 

resulting from agriculture, may restrict movement, thus reducing resources and increasing 99 

ecophysiological stress, with photophobia further limiting the ability to move between patches 100 

(Kingston, 2013; Torquetti et al., 2021). Habitat alteration and fragmentation were found to be 101 

highly associated with increased ecophysiological stress and reduced the immunity of foliage-102 

roosting bats, such as in Rhinolophus trifoliatus and R, sedulus (Seltmann et al., 2017). Forest edges 103 

interface with areas used by humans (especially for livestock) and likely represent hotspots for 104 

potential spillover, especially during times of natural ecophysiological stress such as during 105 

pregnancy (Montecino-Latorre et al., 2020; Rulli et al., 2021), yet how these risks vary over space 106 

and time requires further work.  107 
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 108 

Thus, understanding how landscape structure interfaces with species distributions, especially those 109 

of competent hosts for any given pathogen, may provide insights into where and even when the 110 

probability of spillover may occur. In previous outbreaks, the viruses are thought to have spilled 111 

over from bats to an intermediate host (e.g. horses for Hendra, pigs for Nipah, palm civets for 112 

SARS) that are closely associated with humans (Plowright et al., 2015). For example, in the case 113 

of Hendra, the loss of habitat due to deforestation coupled with periods of winter drought forced 114 

Pteropus alecto into horse pastures to forage, and this increase in stress in conjunction with 115 

increased interface with horses is specifically associated with spillover events (Eby et al., 2023). In 116 

South and Southeast Asia, higher spillover risk of Nipah virus from Pteropus fruit bats was 117 

predicted in areas with greater human footprint (Walsh, 2015), specifically in regions with higher 118 

human settlements and livestock or food sources for the bats (Chaiyes et al., 2022). Recent work 119 

on the origins of the betacoronaviruses SARS-CoV1 and SARS-CoV2 suggests these viruses have 120 

been circulating in Rhinolophus bat populations in China and Southeast Asia for thousands of years 121 

(Pekar et al., 2025) before emerging as a zoonotic disease. Currently, there are no well-documented 122 

cases of direct bat-to-human spillover infections of coronaviruses, and intermediate hosts are likely 123 

key to transmission to humans, thus understanding where they are at risk is the first potential step 124 

in the transmission chain (Ruiz-Aravena et al., 2022). In addition, human-mediated transport of 125 

wild and farmed animal trade likely accelerated the movement of viral lineages through 126 

intermediate hosts (Pekar et al., 2025; Zhao et al., 2024). Yet our understanding of these interacting 127 

elements of risk are limited, despite the critical role of bats as sources of a diverse variety of 128 

zoonoses.  129 

 130 

A OneHealth approach emphasizes the interconnectedness of human, animal, and environmental 131 

health (Cunningham et al., 2017; Zinsstag et al., 2011). The use of this approach in detecting 132 

potential spillover risk in connection to ecological changes arising from human impacts on the 133 

environment has been increasing in recent decades (Eby et al., 2023; Jones et al., 2008; Rulli et al., 134 

2017, 2021; Wilkinson et al., 2018). Regions such as Southeast and South Asia may be at particular 135 

risk due to the high rates of habitat loss coupled with high host diversity, and high human population 136 

densities (Allen et al., 2017; Jones et al., 2008; Morse et al., 2012; Olival et al., 2017; Rulli et al., 137 

2021). Given the distribution of previous betacoronavirus pandemic outbreaks, it is a key region 138 

for further work to understand the risk of potential future spillover events. Furthermore, whilst 139 

studies have attempted to explore the risk of spillover from Southeast Asia, limited data on both 140 

habitat quality and species diversity may hamper the accuracy of such approaches (Sánchez et al., 141 
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2022). Planned infrastructure that may negatively impact wildlife in sensitive habitats are either 142 

being considered or already being constructed (Alamgir, Sloan, et al., 2019; Sloan et al., 2019), and 143 

these could create new interfaces for zoonotic spillover through further habitat fragmentation. 144 

Investigating locations of potential hotspots in Asia provides insights into the dynamics of virus 145 

emergence, allowing targeted action to counteract those risks.  146 

 147 

Thus in this study, we assess the potential risk of betacoronavirus spillover arising from their most 148 

frequent reservoir host, the horseshoe bats (Rhinolophus), in South and Southeast Asia using a 149 

OneHealth approach. We explore potential pandemic spread scenarios incorporating planned 150 

infrastructure in the region. By understanding the landscape level risks of spillover, targeted 151 

approaches (i.e. conserving and reconnecting key habitats) can be applied in areas where risk is 152 

high, and activities such as mining and road-building be reduced, especially during time periods 153 

which may already be sensitive, such as during reproduction or climatic extremes. 154 

 155 

 156 

Materials and Methods 157 

 158 

To locate areas with high potential for novel disease emergence arising from horseshoe bat richness 159 

and habitat fragmentation, we first generated maps that display both using the following methods. 160 

These approaches were based on Wilkinson et al. (2018) but adapted for the context of the South 161 

and Southeast Asian region, and for a more specific approach to coronaviruses. 162 

 163 

Assessment of habitat fragmentation in Asia through analysis of remote sensing products 164 

 165 

Land-cover maps that exist typically overestimate the amount of forest in the region due to their 166 

overreliance on canopy cover as the sole metric to identify forest vs non-forest (e.g. Y. Liu et al., 167 

2024; Sexton et al., 2013). This is especially obvious in Southeast Asia, where there is a significant 168 

coverage of rubber and palm oil plantations yet are not identified as separate land-cover classes in 169 

existing products (e.g. GLAD Land Cover) due to the challenge of distinguishing types of tree-170 

cover using basic mapping approaches (Hughes, 2017). In addition, in drier climates in the region, 171 

natural forests may be both shorter and sparser (Murphy & Lugo, 1986), thus to accurately map 172 

forests and distinguish them from plantations, different thresholds must be set based on 173 

precipitation (Sexton et al., 2016). We therefore mapped remaining forest areas in tropical East 174 

Asia, which we defined as the region with tropical and subtropical climates spanning India in the 175 

northwest down to Papua New Guinea in the southeast (66° to 156° E longitude, -16° S to 36° N 176 
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latitude; Figure S1) (Corlett, 2013, 2019). Using a combination of remotely sensed canopy height 177 

and modeled precipitation data following an approach used in B. V. Li et al. (2016) to accurately 178 

map forests across the same region. First, we obtained canopy height data from ETH Global 179 

Sentinel-2 10m Canopy Height data for 2020 covering the entire region. Data was downloaded 180 

through Google Earth Engine, after resampling from 10 m to 1 km (download date: 8 Aug 2023). 181 

We chose 1 km as the resolution as it corresponds closest to the highest available resolution for 182 

climate data (30”, which is approx. 1 km at the equator). Annual precipitation data was obtained 183 

from CHELSA ver. 2.1 (download date: 6 Sep 2022).  184 

 185 

Given the dependence of Rhinolophid bats on intact forest regions (Wilson & Mittermeier, 2019), 186 

we needed to delineate forest from non-forest in the region so that fragmentation could be assessed. 187 

Owing to the precipitation differences between dry deciduous and wetter forests, we separated the 188 

region between these two climate regions based on biomes delineated in the Ecoregions 2017 map 189 

(Dinerstein et al., 2017), and precipitation thresholds used in B. V. Li et al. (2016). We then applied 190 

the following criteria to classify forest pixels from the canopy height map: 191 

1. Tropical areas with precipitation values ≥ 1800 mm/year and with canopy height ≥ 20 m 192 

were classified as forest; 193 

2. Tropical areas with precipitation values < 1800 mm/year and with canopy height ≥ 25 m 194 

were classified as forest; 195 

3. Temperate areas with precipitation values ≥ 600 mm/year and with canopy height ≥ 20 m 196 

were classified as forest 197 

In order to mask out plantation areas that fall under the canopy height limits we set for each region, 198 

we used plantation map data obtained from the following sources. First, we primarily utilized data 199 

from the Spatial Database of Planted Trees (version 1.0, 2019) compiled by Global Forest Watch, 200 

which gathered and harmonized available land cover data (ca. 2003-2017) from relevant national 201 

government mapping agencies, non-governmental organizations, and independent researchers to 202 

categorize plantations of native or introduced species worldwide using supervised classification or 203 

manual delineation of satellite imagery (Harris et al., 2019, downloaded on 15 Aug 2023). We then 204 

supplemented this by generating a land-cover mask of all cropland and plantation areas in Thailand 205 

classified in Sritongchuay et al. (2019), and a study which classified rubber plantations in Yunnan 206 

Province in China for 2016 (Lapuz et al., 2021). All geoprocessing was performed in R version 207 

4.0.5 using the raster ver.3.6.20 package. 208 

 209 
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Lastly, we conducted an area-adjusted pixel-based accuracy assessment on the forest map generated 210 

by creating a confusion matrix. From this matrix, we calculated the overall, user’s, and producer’s 211 

accuracy metrics for the forest and non-forest classes. To derive this, we randomly sampled points 212 

from the forest and non-forest classes on the map product. Each point was then visually assessed 213 

for its classification accuracy by comparing it with high-resolution (15 m) imagery obtained from 214 

ESRI World Imagery Wayback (version date: 2020-06-10) using ArcMap 10.4. The results were 215 

then compiled into a confusion matrix to quantify the classification performance. To assess the 216 

uncertainty associated with each estimation, we computed error-adjusted area estimations and 217 

confidence intervals for each class (Olofsson et al., 2013). The resulting forest map demonstrated 218 

an overall accuracy of 96.1%, with producer’s accuracy for the classes ranging from 86.3 to 100%, 219 

and user’s accuracy ranging from 78.0 to 98.0% (Table S1).  220 

 221 

Mapping Rhinolophid species richness in Asia 222 

 223 

We used Rhinolophid species richness as a metric for potential interactions between competent 224 

hosts in the forest fragments. We computed species richness by overlapping the suitable habitats 225 

for Rhinolophid bats, which were predicted using Maxent (Phillips et al., 2006), a widely used 226 

algorithm in modeling species distributions due to its generally good capability of predicting 227 

suitable habitats given a minimum number of species records (Pearson et al., 2006). Accurate maps 228 

based on recent data are essential for such work as alternate data sources (i.e. IUCN) are highly 229 

inaccurate (Hughes et al., 2021). 230 

 231 

Species points sources and processing 232 

Species occurrence points for bats from the Rhinolophidae family within the study region were 233 

obtained from the dataset used in Pekar et al. (2025), which is a combination of data from the 234 

Global Biodiversity Information Facility (GBIF.org, 2022, 2023), the DarkCideS database 235 

(Tanalgo et al., 2022), and field sampling. We also compiled additional points for Indonesia from 236 

multiple published datasets (see Supplementary S3). Taxonomic names were then updated using 237 

the Bats of the World database (batnames.org, accessed on 1 Oct 2023). A total of 7,885 data points 238 

across 59 Rhinolophid bat species were compiled.   239 

 240 

To avoid spatial autocorrelation, a spatial thinning algorithm that retains one occurrence point per 241 

species for each grid cell at 30” resolution (0.008333°) was applied. Potentially invalid coordinates 242 

were also identified and removed using the clean_coordinates() function of the CoordinateCleaner 243 
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package ver. 2.0.20 in R. Invalid points include those that might be outliers, within country capitals 244 

or country centroids, within research institutions and botanical gardens, or outside land masses. 245 

Outliers were identified using a quantile-based method, and were defined as points exceeding five 246 

times the interquartile range, ensuring that only the most extreme deviations were flagged. After 247 

cleaning, we retained species with more than 15 points for modeling, leaving the final number of 248 

species at 42. 249 

 250 

Environmental predictors 251 

To predict the suitable habitat for each species, a combination of climatic, topographic, and biotic 252 

predictors important to bat ecology was selected based on previous regional bat distribution 253 

modeling studies (Hughes, 2017; Hughes et al., 2012; Pekar et al., 2025). For climate, we obtained 254 

bioclimatic variables from CHELSA version 2.1 (Karger et al., 2017), and a Global Aridity Index 255 

from the Global Aridity Index and Potential Evapo-Transpiration (ET0) Database v3 (Zomer et al., 256 

2022). Rhinolophids are typically cave roosters (Wilson & Mittermeier, 2019), however, there is a 257 

lack of high-resolution global karst maps. We represented karst habitats by using a Depth to 258 

bedrock (R horizon) layer obtained from SoilGrids 2.0 (Hengl et al., 2017) similar to methods by 259 

Pekar et al. (2025), with the assumption that karst areas are in regions with shallow bedrock depths 260 

indicating possible exposed rock outcrops.  261 

 262 

To represent vegetation cover, we used two layers. First, we obtained the ETH Global Canopy 263 

Height 2020 product, which estimated vegetation heights globally from remote sensing data (Lang 264 

et al., 2023). This is useful to differentiate between areas where vegetation is present, as 265 

Rhinolophids forage in areas with denser vegetation (Wilson & Mittermeier, 2019). Second, we 266 

used a Normalized Difference Vegetation Index (NDVI) layer obtained from the MOD13A2 V6.1 267 

Terra product set released by MODIS (Didan, 2021) to represent vegetation productivity, which is 268 

a useful metric as it highlights resources available in the ecosystem (Hughes, 2017). Since this 269 

image satellite product is released every 16 days, we computed the mean NDVI for the year 2020 270 

using all available imagery for that year. Both these vegetation layers were hosted, processed, and 271 

downloaded through Google Earth Engine Data Catalog (downloaded on 20 Sep 2023).  272 

 273 

Foraging can take place above water and dense riparian vegetation can provide foraging areas for 274 

many species and is often maintained near waterways (Wilson & Mittermeier, 2019). We therefore 275 

produced a “distance from water bodies” layer, in which each grid cell’s distance to the nearest 276 

freshwater body was calculated using a freshwater bodies layer obtained from the MERIT Hydro 277 
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Global Hydrography dataset (Yamazaki et al., 2019, downloaded on 30 Aug 2023). We first 278 

processed the available freshwater bodies layer into binary (i.e. water body vs land), then computed 279 

the Euclidean distance of each land grid cell to the nearest water body cell. Processing for this was 280 

performed in ArcMap version 10.4.  281 

 282 

All environmental predictors were then resampled to 30” resolution, stacked together, and checked 283 

for multicollinearity using Spearman’s rank correlation test. Predictors with Spearman’s r > 0.7 284 

were removed from the model, and the following predictors were retained: mean annual 285 

temperature (Bio1), temperature annual range (Bio7), precipitation of wettest month (Bio13), 286 

precipitation seasonality (Bio15), aridity index, depth to bedrock, distance to water bodies, and 287 

vegetation height.  288 

 289 

Maxent modeling 290 

Maxent was used to model suitable habitats of the Rhinolophid bat species. Prior to each species 291 

run, 10,000 background points were randomly generated from within a 500-km buffer region of the 292 

species’ occurrence points. The ENMEVal package ver. 2.0.4 was then used to test different 293 

combinations of feature classes (linear, quadratic, and hinge) and regularization multipliers (1 to 294 

5), and the model with the lowest delta AIC score was selected as the most optimal and predicted 295 

to space to visualize suitable habitats (Kass et al., 2021). Model accuracy tests utilized the Area 296 

Under the Curve (AUC) and the True Skill Statistic (TSS; Allouche et al., 2006). All species models 297 

yielded good scores, with mean AUC score at 0.861, ranging from 0.780 to 0.951, while TSS scores 298 

were generally fair to good, with a mean of 0.534 and ranging from 0.278 to 0.875 (Table S3). 299 

 300 

Each continuous species suitability map was then converted into a binary presence-and-absence 301 

map using the 10-percentile training threshold score for each species (Hughes et al., 2012). This 302 

threshold was chosen as it provides a more conservative and thus more targeted criterion during 303 

binary map conversion for species richness mapping (Radosavljevic & Anderson, 2014). As species 304 

distribution models only predict the distribution of the fundamental niche (i.e. the environmental 305 

space a species could occupy), other factors need to be encompassed in biogeographically complex 306 

regions, where the fundamental and realized niche may differ. In regions with complex geography 307 

and islands in particular, contemporary range will reflect not only current requirements, but also 308 

the barriers to species previous dispersal. Thus, after species ranges have been reclassified, masking 309 

was required to exclude biogeographic regions where the species does not occur.  310 

 311 
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To better reflect species biogeography, a biogeographic filter was created for each species. To 312 

create this filter, we split South and Southeast Asia into 19 biogeographic regions based on 313 

boundaries introduced in Corlett (2019), the Ecoregions 2017 map (Dinerstein et al., 2017), and 314 

major island groups (see Figure S1 for the map and list of regions). The continental region was 315 

separated on the basis of climate (i.e. subtropical vs. tropical vs. temperate) using the Ecoregions 316 

map, as well as known zoogeographic divisions, such as the Isthmus of Kra and the Kangar-Pattani 317 

Line (Hughes et al., 2011). Islands were also grouped on the basis of classic zoogeographic 318 

divisions, such as the Wallace’s, Lydekker’s, and Huxley’s lines (Corlett, 2019), and island 319 

endemicity of our bat species obtained from Wilson & Mittermeier (2019). We then cross-320 

referenced these regions with the IUCN mapped ranges of each species (IUCN, 2022) and the 321 

distribution points used for modeling. For each species, we listed all biogeographic regions with at 322 

least 30% of points, or 5 points (when total point number was below 20). For species with hundreds 323 

of points, we also looked at where remaining points fell to ensure no parts of the range were 324 

incorrectly excluded. The listed regions were then used to remove zones where the species was 325 

known not to be present (see Table S3 for the biogeographic zones listed for each species). Clipping 326 

was performed individually for each species binary map using ArcMap 10.4 to remove potentially 327 

suitable habitat (fundamental niche) outside the biogeographic range of the species. Lastly, the 328 

clipped rasters were summed to obtain species richness scores. All processing was performed using 329 

R ver. 4.0.5 unless otherwise specified.  330 

 331 

Mapping potential spillover risk hotspots  332 

 333 

To determine potential disease risk hotspots from the Rhinolophid bat populations in remaining 334 

habitat fragments, we used an approach from Wilkinson et al. (2018) called the estimated risk of 335 

infectious disease emergence, or eRIDE, index (Wilkinson et al., 2018). In this model, the potential 336 

disease risk is estimated based on the diversity of disease-causing species within a habitat patch. It 337 

directly correlates species diversity within habitat patches with exposure to human populations, 338 

quantified using the edges of the habitat fragments. The model assumes that the number of potential 339 

zoonotic agents within the habitat has a direct, linear relationship with fragment diversity, such that 340 

the total risk from novel pathogens is proportional to competent host diversity (i.e. host and 341 

pathogens) within each patch. In this case, we represented diversity using the viral populations 342 

hosted by the Rhinolophids in each patch. The model also assumes that the area where human 343 

populations come into contact with the habitat is represented by the perimeter of the patches. Thus, 344 

the more habitat fragment edges there are, the higher the risk becomes. 345 
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 346 

To compute eRIDE, we first identified the edge pixels of each fragment, then the focal sum of edge 347 

pixels within a 20 x 20 moving window was computed for each grid cell following Wilkinson et 348 

al. (2018). The eRIDE index of each cell was then computed as the product of its focal sum of edge 349 

pixels and bat species richness score. To identify which populations are at most risk from potential 350 

emerging infectious diseases, an estimated population at risk (PAR) index was computed as the 351 

product of each cell’s eRIDE index and population density. The relative eRIDE and PAR percent 352 

scores for each country/territory were then computed as the sum of eRIDE or PAR for each 353 

country/territory divided by the total eRIDE or PAR value across the entire modeling region. To 354 

assess the categorical risk percentages for each location, the eRIDE and PAR (log) values were 355 

reclassified into five categories to represent the different levels of risk (low, moderately low, high, 356 

moderately high, highest risk). The thresholds were drawn from the respective geometric 357 

progression interval limits of the eRIDE and PAR (log) values across the whole region. 358 

Unconstrained individual population density data for 2020 for all Asian countries within our 359 

mapping domain was obtained from WorldPop 360 

(https://hub.worldpop.org/project/categories?id=18, downloaded on 11 July 2023).  361 

 362 

Pandemic risk mapping 363 

 364 

Potential pandemic hotspots were then identified using a network model of pandemic spread based 365 

on human density and connectivity (Wilkinson et al., 2018). First the PAR raster was aggregated 366 

from 1-km to 10-km resolution, then the pixel grid was converted into a network using 4-367 

connectivity, with each grid cell representing nodes. Pandemic spread was assumed to likely travel 368 

faster between more densely populated places, thus the edge weights between adjacent pixels were 369 

computed as the inverse of the product of the population densities of each pixel.  370 

 371 

The likelihood for pandemic spread between corresponding pixels x and y was then assessed by 372 

first determining the shortest distance s(x, y) on the graph between the two nodes, which was 373 

computed using Djikstra’s algorithm. The relative chance of pandemic spread ps for any pixel y 374 

was then computed as  375 

𝑝𝑠(𝑦) =  ∑ PAR(𝑥)𝑠(𝑥, 𝑦)

𝑥

 376 

where the sum from all potential source pixels x is obtained. The relative pandemic risk percent 377 

score and categorical risk percentages for each country/territory were then computed by applying 378 

https://hub.worldpop.org/project/categories?id=18
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the same formulae used to obtain relative and categorical eRIDE and PAR. The R packages raster 379 

ver. 3.6.20, tidygraph ver. 1.2.1 , and igraph ver. 1.2.6 were used for these analyses.  380 

 381 

 382 

Increased fragmentation from existing and planned infrastructure scenario  383 

 384 

Existing and planned infrastructure are known to introduce further fragmentation to natural habitats 385 

(Laurance et al., 2009). To investigate the possible effect of adding infrastructure to spillover risk, 386 

the models were also run under a second scenario wherein existing and planned infrastructure are 387 

applied to mask the existing forest cover map. Existing infrastructure data (e.g. road and rail 388 

networks) for the entire region were obtained from OpenStreetMaps (downloaded on 29 March 389 

2024). Planned infrastructure data were also downloaded from various sources for China, 390 

Indonesia, Malaysia, India, and Papua New Guinea (see Supplementary for complete list of 391 

sources). After processing these into rasters, the infrastructure layers were masked from the existing 392 

forest cover map using raster calculator. The models for eRIDE, PAR and pandemic spread were 393 

then run using the fragmented forest cover map. Changes in mean eRIDE, PAR index, and 394 

pandemic spread scores between baseline and new infrastructure scenarios within each country 395 

were tested for significance with Wilcoxon signed-rank tests using the stats package in R ver. 4.0.5 396 

(R Core Team, 2021). 397 

 398 

Fragmentation statistics for each country were computed for the two scenarios (baseline + new 399 

infrastructure) to determine fragment numbers and areas, as well as their respective geometric 400 

complexities, physical connectedness, and edge densities. The statistics measured include the: 401 

number of fragments, mean patch area, largest patch index, mean patch shape ratio, patch cohesion 402 

index, and edge density. These were all quantified using the landscapemetrics package ver. 1.5.4 403 

in R. 404 

 405 

 406 

Results  407 

 408 

Mapping potential spillover risk hotspots  409 

 410 

Based on relative estimated risk of disease emergence (eRIDE) indices computed across the whole 411 

region, the majority of the potential spillover risk hotspots are concentrated in China and Indochina 412 

(Myanmar, Laos, Vietnam, Cambodia and Thailand), which collectively account for almost three-413 
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quarters (74.1%) of the total relative eRIDE (Figures 1a and 2a; Table S4). The highest risk areas 414 

are in the montane and forested regions of the countries of Indochina. Concerning individual 415 

country risks, Laos and Vietnam have over half of their land areas categorized as the highest eRIDE 416 

risk, at 56.5% and 51.3%, respectively (Figure 3; Table S5). For China, 12.0% of its modeled area 417 

is classified as the highest eRIDE risk, with most found in its southern areas adjacent to Indochina. 418 

India has 7.4% of its area classified as the highest eRIDE risk, and 42.5% of its land area is at 419 

moderately high eRIDE risk, particularly in its northeast region and the Western Ghats. In 420 

Bangladesh, 7.4% of its area is at highest eRIDE risk, while 70.9% of its land area is classified as 421 

moderately high risk. In the insular region, Indonesia has 10.8% of its land area categorized as 422 

moderately high eRIDE risk, concentrated in Sumatra and Kalimantan (Borneo), followed by 423 

Sulawesi and Papua (Figure 3; Table S5). 424 

 425 

The spatial distribution of population-at-risk (PAR) indices resembles that of eRIDE, suggesting 426 

that the populations at risk are near the spillover risk hotspots (Figure 1). These hotspots are 427 

spatially concentrated in Nepal, northeast India, western Myanmar, Vietnam, and southern China 428 

(Figure 1b). Countries with the highest relative PAR scores (computed for across the entire region) 429 

are those with the largest populations. China registered the highest relative PAR score (29.6%), 430 

followed by India (21.2%), and Indonesia (13.5%) (Figure 2b; Table S4). Concerning individual 431 

country risks, Singapore recorded 86.1% of its population at the highest risk, followed by Sri Lanka 432 

(82.2%), Vietnam (76.0%), and Bangladesh (75.1%) (Figure 3; Table S6). Notably, India and China 433 

registered 46.5% and 36.5% of their large populations at the highest risk, respectively. 434 

 435 
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 436 

Figure 1. Zoonotic Risk Hotspots in Rhinolophid Bats of Tropical East Asia. Maps of tropical 437 

East Asia showing risk hotspots from zoonotic agents in Rhinolophid bats of tropical East Asia. 438 

Depicted here are (A) eRIDE and (B) Population at risk (PAR, log values displayed for clarity) 439 

scores.  For both maps, discrete color bands follow a geometric scale. 440 

 441 
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 442 

Figure 2. Index rankings per country under baseline (blue) and new infrastructure (orange) 443 

scenarios. Numbers displayed are the sums of all (A) eRIDE index and (B) PAR values within 444 

each country’s boundaries as shown in Figure 1. Decreases are due to losses of small fragments 445 

due to the resolution of analysis. 446 
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 447 

 448 

 449 

 450 
Figure 3. Country Risk Class Distributions: Baseline vs. New Infrastructure Scenarios. Stacked bar plots illustrating the distribution of risk classes 451 

per country in tropical East Asia, categorized by eRIDE and Population at Risk scores for baseline (A, C) and new infrastructure (B, D) scenarios. The 452 

color scheme denotes varying risk levels, with red indicating the highest risk category and black representing the lowest risk category. 453 
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Pandemic risk mapping 454 

 455 

Pandemic spread modeling showed that the countries with highest pandemic risk are China, Bangladesh, 456 

and India (Figure 4). Specific areas in South Asia where pandemic risk is highest are in Bangladesh, India’s 457 

north, northeast, and southern regions, and eastern Pakistan (Figure 4a). India and China have the highest 458 

relative pandemic risk scores, respectively garnering 47% and 30% out of a total possible 100% computed 459 

for the entire region (Figure 4b; Table S4). They are followed to a lesser extent by Bangladesh (5.5%) and 460 

Pakistan (5.4%), although they are notably smaller in terms of size than the previous two countries. In 461 

China, the surrounding coastal areas of the large Chinese cities of the Greater Bay Area (Guangzhou, 462 

Shenzhen, Hong Kong and Macau) and Shanghai are the highest pandemic risk areas. Pockets of high-risk 463 

areas also exist in cities in Myanmar, Thailand, Indonesia, Vietnam, Malaysia, and the Philippines.  464 

 465 

Among all countries, Bangladesh recorded the largest percentages of highest (0.2%), moderately high 466 

(30.4%), and moderate (26.1%) at-risk areas for pandemic spread (Table S7). India follows, with 7.5% of 467 

its land area classified at moderate or moderately high risk for pandemic spread. Pakistan and China are 468 

next with 3.0% of their respective country areas recorded to be at high risk of pandemic spread. These 469 

results highlight that countries with higher population densities and are closest to high eRIDE and PAR 470 

areas are at most risk of a possible pandemic. 471 
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 472 

Figure 4. Simulated Pandemic Risk from Zoonotic Agents in Rhinolophid Bats of Tropical East Asia. 473 

Depicted here are the (A) map of pandemic risk areas under baseline scenario (discrete color bands in the 474 

legend follow an exponential scale), and (B) index rankings per country under baseline (blue) and new 475 

infrastructure (orange) scenarios, derived from the sum of pandemic risk scores within each country’s 476 

borders. 477 

 478 

 479 

 480 
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Increased fragmentation from existing and planned infrastructure scenario  481 

 482 

Introducing road networks over the habitat increased fragmentation generally across all countries when 483 

compared to baseline scenario values (Table S2). All countries/territories experienced a decrease in mean 484 

patch area and patch cohesion index values compared to baseline values, and all except Bangladesh had a 485 

decline in their largest patch index values. China ranked first in terms of highest habitat fragmentation 486 

across first (baseline) and second (baseline + new infrastructure) scenarios. The most dramatic change is 487 

from Papua New Guinea, which experienced a +335.1% increase in number of patches concurrently with a 488 

-83.1% decrease in mean patch area and a -48.9% decline in its largest patch index value.  489 

 490 

The relative eRIDE index rankings in the second scenario remain mostly unchanged when compared to the 491 

baseline scenario, with only minor redistributions in values between countries (Figure 2a). However, there 492 

were significant (p<0.005) increases in mean eRIDE scores observed for Bhutan, Cambodia, Indonesia, and 493 

Papua New Guinea (Table S8). Hotspots in specific regions were further revealed by risk categorization 494 

and grid-wise spatial comparisons between the first and second scenarios (Figure 5; Table 1). In mainland 495 

Asia, the largest increases in combined high-risk areas were observed in Bhutan (+21.2%), followed by 496 

northeast India (+3.1%), western Myanmar (+1.8%) and Vietnam (+0.8%). In insular Asia, Taiwan 497 

observed a +11.4% increase in moderate risk areas, while Indonesia had a +5.8% increase in combined 498 

high-risk areas distributed among its islands of Kalimantan (Borneo), Sumatra, and Sulawesi. In Papua 499 

New Guinea, a +6.6% increase was observed. These hotspots occur in forest areas where existing and 500 

planned road networks are located (Figure 6).  501 
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 502 

Figure 5. Changes in eRIDE and PAR Scores in Tropical East Asia Under New Infrastructure 503 

Scenario. Maps depicting increases in (A) eRIDE and (B) PAR (log) scores under the new infrastructure 504 

(NI) scenario. Change maps were computed by subtracting the values of the NI scenario from the baseline. 505 

Colors transition from black to red to indicate stronger increases.  506 
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 507 

Figure 6. Changes in eRIDE in Borneo Island. Enlarged map of Borneo Island depicting changes in 508 

eRIDE values under the new infrastructure scenario. Increased eRIDE values are depicted here in yellows 509 

and reds, particularly along road networks (black and neon green lines), illustrating the potential impacts 510 

of infrastructure on tropical regions with intact forest habitats. 511 

 512 

China, India, and Indonesia still maintained the highest relative PAR scores under the second scenario 513 

(Table S4). The relative PAR scores for Vietnam (+0.6%), Myanmar (+1.6%), Thailand (+0.7%), Nepal 514 

(+0.2%), Laos (+0.4%), Bhutan (+0.3%), Bangladesh (+0.1%), and Papua New Guinea (+0.1%) also 515 

increased under the second scenario, although these changes barely affected the rankings (Figure 2b; Table 516 

S4). Risk categorization and spatial comparison between the scenarios revealed strong increases in high 517 

PAR areas for Sri Lanka (+11.1%), Taiwan (+8.1%) and Bhutan (+5.1%). The hotspots observed in the 518 

spatial comparisons were supported by the risk categorization (Table 1), particularly along northeast India 519 

(+2.6%), western Myanmar (+1.1%), central China (+3.6%), and Indonesia (+2.2%) (Figure 5b). Central 520 

Vietnam (+0.3%), peninsular Malaysia (+2.7%), Papua New Guinea (+2.3%), and southern Philippines 521 

(+4.5%) also registered moderate upward shifts.  522 
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 523 

The changes in PAR distributions intensified the relative pandemic risk values for the South Asian countries 524 

of India, Bangladesh, and Pakistan, as these countries registered significant (p<0.005) increases in their 525 

mean and relative pandemic risk scores (Figure 4; Table S4; Table S8). India had a dramatic increase of 526 

+15%. China remained the second highest country at risk due to its huge land area. Spatially, the risk 527 

patterns in the map are similar to the baseline simulation, with the majority of the highest risk areas still 528 

concentrated in the north-northeast India-Bangladesh corridor, as well as in the greater Guangzhou and 529 

Shanghai areas of China (Supplementary Figure S3). Relative to their respective land areas, Bangladesh 530 

registered the highest increase in pandemic risk areas (+9.8%), followed by (+1.8%), Pakistan (+1.3%), and 531 

Nepal (+0.2%) (Table 3). 532 

 533 

 534 

Discussion  535 

 536 

A OneHealth approach to spillover surveillance 537 

 538 

There is a growing realization of the importance of integrating OneHealth perspectives into landscape 539 

management (Meyer et al., 2024; Muylaert et al., 2023). New approaches which combine landscape 540 

parameters with the distribution of competent hosts can predict patterns of spillover risk. Here we 541 

demonstrate the use of a OneHealth approach to predict potential spillover and pandemic risk hotspots in 542 

tropical East Asia. Using the estimated risk of infectious disease emergence (eRIDE) and population-at-543 

risk (PAR) indices, which are models that utilize the relationships between species richness, habitat 544 

fragmentation metrics and human population density in determining spillover hotspots, we found that 545 

Indochina and southern China are of highest risk for spillover in Asia due to their high Rhinolophid species 546 

richness alongside dense human populations. A subsequent pandemic spread network model we applied 547 

also revealed that South Asia, specifically Bangladesh and northeast India, has the highest risk for a 548 

pandemic once spillover occurs in the hotspots, or if infected wildlife is potentially transported to urban 549 

centers. 550 

 551 

Using an approach that incorporates the biological, environmental, and human aspects of health is useful in 552 

establishing baseline knowledge on spillover potential hotspots, including distribution of competent hosts 553 

and natural interfaces for spillover without initially needing immunological or viral data. Spillovers into 554 

human populations require a virus to spill into humans (often via an intermediate host) and then spread 555 

from human-to-human, which is not only rare, but also is more likely to happen in areas where human 556 

populations have not acquired immunity (Epstein et al., 2020). Rates of SARS-related coronaviruses from 557 
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Southeast Asian bats have been previously examined, but such studies may not accurately capture species 558 

ranges or the landscape dynamics that should be considered (Sánchez et al., 2022). Localized spillovers 559 

potentially remain underreported due to factors such as the lack of human-to-human transmission, the 560 

presence of acquired immunity preventing case mortalities, or inadequate reporting and identification in 561 

rural areas (Wang & Anderson, 2019). This suggests that whilst existing studies on viral surveillance 562 

provide valuable insights, they may overlook potential spillover hotspots, as the bias in the data in these 563 

studies may not adequately represent where spillover events are likely to occur in the landscape. Thus, 564 

integrating species ecology and limitations into analysis is essential, as the ecology of vectors has profound 565 

implications for transmission pathways, or understanding how to manage and mitigate risk.    566 

 567 

Direct use of competent hosts in modeling risk 568 

 569 

Understanding potential spillover locations in the landscape requires identifying interfaces between humans 570 

and competent hosts. Competent hosts such as rodents and birds act as reservoirs for pathogenic viruses 571 

and bacteria (Bordes et al., 2017; Kane et al., 2024; Neves et al., 2018). By focusing on the distribution of 572 

these competent hosts, we can pinpoint natural interfaces for spillover events. Rhinolophid bats, which are 573 

known reservoirs of coronaviruses related to SARS and COVID-19 (W. Li et al., 2005; Pekar et al., 2025; 574 

Zhou et al., 2021), were directly studied to look at their potential for zoonoses. Utilizing the eRIDE and 575 

PAR models, which are most effective in systems with defined edges such as forests (Wilkinson et al., 576 

2018), we identified spillover hotspots where bat movement between forest fragments could lead to 577 

pathogen transmission to humans and other hosts.  578 

 579 

The eRIDE (potential pathogen emergence) hotspots identified coincided with forested regions of high 580 

Rhinolophid species richness (Supplementary Figure S2) but also in areas with high fragmentation, aligning 581 

with previous studies mapping potential coronavirus host bat species in Southeast Asia (Muylaert et al., 582 

2022; Sánchez et al., 2022), particularly in Southern China, eastern Myanmar, and northern Laos. Recent 583 

investigations have uncovered the presence of SARS-CoV-like coronaviruses in bats in these regions 584 

despite limited sampling (Sánchez et al., 2022; Zhou et al., 2020, 2021). The diverse Rhinolophid bat 585 

communities in these regions can facilitate interactions between species, potentially leading to the mixing 586 

of potential zoonotic viruses.  Given that individual bats can host multiple viruses concurrently and tend to 587 

roost in densely populated fragmented habitats (Latinne et al., 2024; Zhou et al., 2021), the risk of pathogen 588 

spillover to humans in these habitat edges are higher. However, further work is needed to better describe 589 

Rhinolophid species and their interactions across the region (Chornelia et al., 2022) to facilitate a clearer 590 

understanding of viral dynamics, especially in how they vary across space and time. 591 
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 592 

Impact of population density in pandemic risk 593 

 594 

The high similarity between the high eRIDE and PAR hotspots demonstrates that populations in Asia are 595 

at proximity to high spillover risk exposure areas. This is in contrast with the original application of these 596 

models in Africa, which found that potential risk transmission areas (i.e. high eRIDE risk) are sparsely 597 

populated and distant from the high PAR areas, and thus highlighted the role of population centers in disease 598 

emergence and transmission (Wilkinson et al., 2018). Our use of the models in Asia provides a more 599 

localized context wherein the proximity of nearby population centers could mean that zoonotic diseases 600 

from Rhinolophids could possibly be transmitted from animal to people more rapidly. In Asia, there is 601 

steadily increasing population density in peri-urban areas where there are potential interactions between 602 

wildlife and domesticated animals and humans, therefore higher proximity between zoonotic systems 603 

(Alirol et al., 2011; Hassell et al., 2017; Vanwambeke et al., 2019). Migration of human populations or 604 

changing patterns of tourism can increase exposure of naïve human populations to pathogens, thus 605 

increasing chances for outbreak when spillover happens (Cascio et al., 2011; T. Wu et al., 2017). 606 

Furthermore, migrating human populations may drive wildlife trade, wildlife farming, and their associated 607 

risks of spillover (Goldstein et al., 2022; Zhu & Zhu, 2020).  608 

 609 

In terms of pandemic spread post-spillover event, our network model results showed that the high-risk areas 610 

were aggregated around dense population centers, notably in eastern India and Bangladesh as well as the 611 

megacities in eastern (Shanghai) and southern (Guangdong) China. These further demonstrate the effect of 612 

population density and land transport networks in moving potentially zoonotic viruses from their sources 613 

as evidenced in the PAR hotspots, and akin to what has been observed in previous cases of zoonoses, such 614 

as for Marburg and Ebola in the African continent (Mbonye et al., 2012; Rulli et al., 2017; Wilkinson et al., 615 

2018). For instance, the index case for the 2013 Ebola epidemic in West Africa was traced to a Guinean 616 

village already heavily modified by human activity, in contrast to earlier cases where initial spillover likely 617 

occurred in villages closer to core forest areas (Marí Saéz et al., 2015; Rulli et al., 2017). Similarly, the 618 

index case for a Marburg virus outbreak in 2012 in Uganda was attributed to a traveler who got infected 619 

upon returning from his hometown (Mbonye et al., 2012). eRIDE predictions are consistent with risk 620 

emergence hotspots with high spatial resolution for Ebolavirus in Africa, a region where spillover data for 621 

Ebola virus disease is more widely tracked (Wilkinson et al., 2018). This approach therefore provides a 622 

non-invasive and cost-efficient strategy to localize potential risk areas without resorting to lethal methods 623 

for pathogen detection in bats, a practice documented in previous studies (e.g. Dzikwi et al., 2010; Sasaki 624 

et al., 2012), and can be cross validated by field surveys, such as the use of tarpaulins to collect urine for 625 
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testing in saves. The outcomes derived from our models can provide guidance for governmental 626 

organizations in the designated high-risk regions to formulate contingency measures in anticipation of 627 

potential recurrence of a coronavirus spillover event. 628 

 629 

Fragmentation increases spillover risk in Asia 630 

 631 

Increasing habitat fragmentation resulting from the development of road networks may increase spillover 632 

risks, as increased eRIDE and PAR scores were observed in forested areas of western Myanmar, Bhutan, 633 

Borneo, and New Guinea. High PAR scores in the northern portions of South Asia have particularly led to 634 

the high pandemic spread risk score of Bangladesh and India, given especially the high population density 635 

and connectivity of this area to both South and mainland Southeast Asia, where eRIDE hotspots are 636 

concentrated. Additionally, planned infrastructure in Bornean landscapes will fragment important 637 

landscapes and drive biodiversity declines (Alamgir, Campbell, et al., 2019; Sloan et al., 2019). The same 638 

patterns of decline are likely to be observed in Indonesian New Guinea, as development along the Trans-639 

Papuan highway has already led to significant loss in forest areas, and subsequently, this region’s 640 

remarkable biodiversity (Gaveau et al., 2021). Similar projections of loss were also found for Papua New 641 

Guinea stemming from the government’s “Connect PNG 2020-2040” project, whose planned road networks 642 

traverse multiple critical biodiversity habitats and open up forests for rapid expansion of logging, mining, 643 

and plantation activities (Alamgir, Sloan, et al., 2019).  644 

 645 

The loss of biodiversity from habitat fragmentation increases spillover risk, as decreasing habitat quality 646 

reduces species diversity and abundance, reversing the "dilution effect" that normally helps lower pathogen 647 

prevalence due to a higher number of susceptible host species (Keesing et al., 2006; Keesing & Ostfeld, 648 

2021). This was demonstrated in a study on CoV prevalence in bat communities in Ghana, where higher 649 

CoV prevalence and infection likelihood were observed in communities with lower bat diversity resulting 650 

from disturbances in habitat structure, thus leading to increased exposure to diseases by humans or greater 651 

interface with potential generalist intermediate hosts (Meyer et al., 2024). This highlights the buffering 652 

effect of biodiversity, and proactive strategies to enhance habitat connectivity and extent must be 653 

implemented to maintain healthy wildlife populations and reduce the interfaces where spillover is most 654 

probable. 655 

 656 

Pathogen spillover increases during land conversion, particularly at intermediate levels of habitat loss where 657 

there is a large population of competent hosts still present in core habitats alongside susceptible hosts in 658 

human-modified landscapes (Faust et al., 2018; Gibb et al., 2020). Intermediately fragmented areas contain 659 
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higher numbers of competent hosts in the core habitats, leaving naïve populations exposed in the 660 

surrounding matrix (Goldberg et al., 2008; Walsh, 2013; Wilk-da-Silva et al., 2023). This scenario is 661 

evident in cases such as in Henipavirus outbreaks in Bangladesh and rabies incidences in cattle associated 662 

with deforestation and habitat fragmentation (Andrade et al., 2016; Epstein et al., 2020). This may be linked 663 

to high stress to wildlife populations as well as large interfaces between wildlife and humans, livestock or 664 

domestic animals. Therefore, addressing habitat fragmentation is crucial in regions like southwest China, 665 

known for high rates of coronavirus transmission risk and being a major habitat for bats identified as 666 

betacoronavirus reservoirs (Fan et al., 2019; Pekar et al., 2025), but where fragmentation of natural habitats 667 

is also high (Lapuz et al., 2021; J. Liu et al., 2019).  668 

 669 

Maintaining the core of habitats is essential for reducing habitat perimeters and minimizing contact zones 670 

where disease transmissions can occur (Wilkinson et al., 2018). The growth of infrastructure and increasing 671 

edge density in these habitats will make these areas higher-risk zones for pandemic spread in neighboring 672 

regions. Preventing further fragmentation is crucial, as there are already observed shifts in global bat 673 

diversity due to climate change (Beyer et al., 2021), which could exacerbate viral transmission risk between 674 

species (Carlson et al., 2022). Furthermore, spillover risk is not static over time. Factors such as increasing 675 

extreme climate events, interacting with habitat loss and agricultural expansion, play a direct role in driving 676 

spillover events, like those seen in the case of Hendra (Becker et al., 2023) and Nipah viruses (Cimaroli, 677 

2024; Martin et al., 2018). Recognizing and understanding these interconnected threats can facilitate actions 678 

to break the transmission chains (Eby et al., 2020). Maintaining intact habitats, especially in the face of 679 

multiple other stressors is clearly critical not only for maintaining biodiversity, but also to reduce the risk 680 

of spillover, and thus should be seen as a component of maintaining ecological security. 681 

 682 

Summary, limitations, and next steps 683 

 684 

Our work demonstrates an application of the OneHealth paradigm in addressing the threat of zoonotic 685 

spillover events from Rhinolophid bats in Asia, a region identified as the epicenter of recent epidemics and 686 

pandemics, including the devastating global COVID-19 pandemic which has already claimed over 7 million 687 

lives worldwide (World Health Organization, 2025). By identifying hotspots and advocating for urgent 688 

implementation of mitigation measures, we emphasize the importance of a multidisciplinary and 689 

collaborative approach in safeguarding public health and ecosystem integrity. Our results suggest that there 690 

are high spillover risk hotspots concentrated in Indochina and Southern China, which could then propagate 691 

across the region, particularly affecting the densely populated areas of northern India and Bangladesh. 692 

 693 
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Given that Rhinolophid bats prefer to roost in forest habitats, the eRIDE model, which assumes linear, 694 

uniform contact occurs at the edge of habitats, is appropriate. However, further research would help add 695 

nuance into how this relationship changes across space and time. The eRIDE model also presents limitations 696 

as it does not incorporate abundance. However, some elements, such as estimating abundance are not 697 

possible without additional data. Whilst Maxent probabilistic layers are sometimes used as a proxy for 698 

population, there are various assumptions involved, so it is likely that given limited dispersal capacity and 699 

habitat requirements of many Rhinolophids, there is a correlation between diversity and population. 700 

However, too little data exists to explicitly include population in this work (which may also change over 701 

time), but future studies can benefit from including abundance data when available. 702 

 703 

Whilst model validation is challenging due to the underreporting of coronavirus spillover events in Asia 704 

(Wang & Anderson, 2019) and the probable high levels of immunity in rural human populations, 705 

understanding the potential for spillover provides the means for targeting actions to stem the potential for 706 

spillover risk. Our findings can offer guidance for targeted resource allocation in epidemiological 707 

surveillance of identified high-risk areas, presenting a collaborative approach to result validation and 708 

mitigation of impacts on bat populations and viral disease transmission risks. Furthermore, frameworks like 709 

these can reflect the diverse species ecophysiology across different taxa, exemplified here by the 710 

Rhinolophids, and can also evaluate seasonal fluctuations (Eby et al., 2023). This proactive and cost-711 

effective strategy can address potential sources of the issue preemptively, rather than reactively responding 712 

to spillover events.   713 

 714 

The methods presented in our study can be further enhanced by including seasonality factors, especially 715 

when linked to seasonal biological phenomena such as pregnancy and hibernation, as well as land use and 716 

anthropogenic climate change dynamics in the models. While we ensured the temporal alignment of the 717 

data used in modeling as much as possible, more work will be needed to explore changes over time (e.g.  718 

seasonal changes). Additionally, the inclusion of wildlife farm locations, particularly those housing known 719 

competent hosts like small carnivores, can enhance the model’s effectiveness. Wildlife farming for fur or 720 

consumption presents a major risk for potential zoonotic spillovers (Peacock & Barclay, 2023; Zhao et al., 721 

2024). These activities may be linked to the trade and trafficking of wildlife, as evidenced by instances 722 

where raccoon dogs in Chinese markets are sometimes native (possibly wild-caught) rather than farmed 723 

species (Crits-Christoph et al., 2024). Future models of spillover risk that can incorporate these farms, and 724 

potential transmission chains would enhance planning and implementation of rigorous biosecurity 725 

monitoring measures. Given calls for further exploration of viruses with zoonotic potential, further work is 726 
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clearly needed to understand the mechanistic basis of spillover, and how it varies over space and time 727 

(Carlson et al., 2025). 728 

 729 

With regards to the pandemic spread network model, previous work using the same model captured the 730 

distribution of Ebola outbreaks in West Africa, highlighting the international nature of disease spread and 731 

mitigation (Wilkinson et al. 2018). In Asia, this might be most applicable to continental regions, given 732 

countries share adjacent borders and have higher cross-border traffic. The model’s direct distance-based 733 

nature could be the reason why more high-risk hotspots for pandemic spread were observed in the mainland, 734 

and less so in the islands. Whilst transport links are not explicitly included in the spread model, their 735 

presence are captured by human population density data to some degree, as presence of humans implies the 736 

presence of transport networks. It is also important to note that naïve populations may also be susceptible, 737 

and thus insular regions may have higher susceptibility when infections arrive, and air and seaports have 738 

their own associated risks. Future work can more directly incorporate transport networks (especially air and 739 

seaports) in modeling disease spread from spillover risk hotspots to improve realism and better reflect the 740 

heterogenous nature of connectivity across borders. 741 

 742 

Nevertheless, our work lays a foundation for future research that explores the integration of additional 743 

factors for enhanced predictive capabilities and tailored surveillance efforts in vulnerable regions. 744 

Furthermore, we highlight the vulnerability of human population centers across the region and the 745 

heightened risk accompanying infrastructural growth. Notably, SARS-CoV2 is only one of several 746 

betacoronaviruses which has emerged from Southeast Asia, with Rhinolophid bats as a probable source. 747 

Preventing future epidemics necessitates interventions to mitigate this risk, integrate OneHealth approaches 748 

into planning, and reduce interactions between stressed wildlife and potential intermediate species of bat-749 

borne pathogens. 750 

 751 

 752 
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