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 20 

Abstract 21 

 22 

Bats harbor approximately a third of known mammal viruses, including recent 23 

coronaviruses that caused pandemics. As spillover risk increases due to habitat loss and 24 

fragmentation, utilizing a OneHealth approach, we identified potential zoonotic spillover 25 

and pandemic risk hotspots in South and Southeast Asia. We used a model that estimates 26 

the risk of infectious disease emergence by incorporating Rhinolophid bat species 27 

distribution, forest fragmentation, and human population density data. Results showed that 28 

spillover risk hotspots are concentrated in Indochina and southern China, where species 29 

richness and fragmentation are high, and where coronaviruses were previously detected in 30 

bat populations. Simulation of pandemic spread from the spillover risk hotspots using 31 

network models revealed risk hotspots clustered in Bangladesh and northeast India. These 32 

results highlight the regional vulnerability of human population centers and heightened 33 

risks from habitat fragmentation. Our work emphasizes a multidisciplinary approach to 34 

safeguard public health and ecosystems by identifying hotspots, advocating for mitigation 35 

measures, and enhancing surveillance in vulnerable regions.  36 

 37 

Teaser 38 

Bats in Asia pose pandemic risks due to hosting coronaviruses. We used a OneHealth 39 

approach to map risk hotspots for emerging diseases. 40 

 41 
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MAIN TEXT 47 

 48 

Introduction 49 

 50 

An estimated 60-75% of emerging infectious diseases for humans originate from zoonotic 51 

pathogens coming from wildlife (1, 2). Various taxa may be particularly likely to host zoonotic 52 

pathogens, with rodents, bats, and to some extent, carnivores well known for their capacity to host 53 

and transmit pathogens (3–6). With increasing habitat loss and degradation, climate change, and 54 

exposure to various chemicals, zoonotic spillovers from wildlife may increase into the future, yet 55 

these patterns and risks depend on the hosts (7–9). The probability of spillover relates to changes 56 

in two interrelated factors: firstly, changes in the interface between different animals, which alters 57 

the potential for wildlife to contract or spread pathogens, and secondly, stressors which may alter 58 

the vulnerability of animals to become sick or alter the rate of viral shedding (10, 11). Habitat loss 59 

and fragmentation do both, as they increase potential interfaces for spillover, as increasing these 60 

interfaces both surge the opportunity for potential competent hosts to meet (and exchange 61 

pathogens) and increases the stress level of wild animals, which may increase susceptibility to 62 

infection (12). Understanding the potential for spillover requires knowing the interfaces where 63 

wildlife interacts with humans, livestock, and domestic animals, including how these connect to 64 

human population centers. Competent hosts are frequently commensal with humans, thus as areas 65 

are destroyed and degraded the probability of wild species harboring and spreading pathogens 66 

increases (13–15). 67 

 68 

Bats represent a prominent group of competent hosts, which harbor a significantly higher 69 

percentage of zoonotic viruses compared to other mammals (4). This ability to host diverse viruses, 70 

often without showing symptoms, is likely due to the high metabolic costs (and associated 71 

ecophysiological pressures) associated with flight (16–18). Consequently, several pathogens which 72 

infect bats originally continue to impact human populations in recent decades (11, 19, 20). Fruit 73 

bats (Pteropodidae) are reservoirs of Hendra virus (Australia, 1994), Nipah virus (Malaysia, 1998-74 

99), Marburg virus (Central Africa), and possibly Ebola virus (Central-Western Africa). Yet 75 

different viruses have different hosts, and horseshoe (Rhinolophidae) bats provide reservoirs of 76 

beta-coronaviruses (21, 22) including SARS-CoV1 in 2003, SARS-CoV2 in the COVID-19 77 

pandemic in 2019, and the MERS-CoV outbreak in the Middle East in 2012 (23, 24). Rhinolophid 78 

species richness peaks in tropical east Asia (25), and given the distribution of previous 79 

betacoronavirus pandemic outbreaks, it is a key region for further work to understand the risk of 80 

potential future spillover events. In previous outbreaks, the viruses are thought to have spilled over 81 
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from bats to an intermediate host (e.g. horses for Hendra, pigs for Nipah, palm civets for SARS) 82 

that is closely associated with humans (11). Thus, understanding how landscape structure interfaces 83 

with species distributions, especially those of competent hosts for any given pathogen, may provide 84 

insights into where and even when the probability of spillover may occur. For example, in the case 85 

of Hendra, the loss of habitat due to deforestation coupled with periods of winter drought forced 86 

Pteropus alecto into horse pastures to forage, and this increase in stress in conjunction with 87 

increased interface with horses is specifically associated with spillover events (19). In South and 88 

Southeast Asia, higher spillover risk of Nipah virus from Pteropus fruit bats was predicted in areas 89 

with greater human footprint (26), specifically in regions with higher human settlements and 90 

livestock or food sources for the bats (27). Yet our understanding of these interacting elements of 91 

risk are limited to a few examples, despite the critical role of bats as sources of a diverse variety of 92 

zoonoses.  93 

 94 

A OneHealth approach emphasizes the interconnectedness of human, animal, and environmental 95 

health (28, 29). The use of this approach in detecting potential spillover risk in connection to 96 

ecological imbalances arising from human impacts on the environment has been increasing in the 97 

past decade (1, 8, 9, 19, 30). Regions such as Southeast and South Asia may be at particular risk 98 

due to the high rates of habitat loss coupled with high diversity, and high human population 99 

densities (1, 4, 30–32). Furthermore, whilst studies have attempted to explore the risk of spillover 100 

from Southeast Asia, limited data on both habitat quality and species diversity may hamper the 101 

accuracy of such approaches (33).  102 

 103 

In this study, we assess the potential risk of betacoronavirus spillover arising from their most 104 

frequent reservoir host, the horseshoe bats (Rhinolophus), in tropical east Asia using a OneHealth 105 

approach. We also explored potential pandemic spread scenarios given planned infrastructure in 106 

the region. This is crucial since a developing region with planned infrastructure may negatively 107 

impact wildlife in sensitive habitats (34) and create new interfaces for zoonotic spillover. 108 

Investigating locations of potential hotspots in Asia provides insights into the dynamics of virus 109 

emergence, allowing targeted action to counteract those risks. 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 
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Results  118 

 119 

Mapping potential spillover risk hotspots  120 

 121 

Based on relative estimated risk of disease emergence (eRIDE) indices computed across the whole 122 

region, the majority of the potential spillover risk hotspots are concentrated in China and Indochina 123 

(Myanmar, Laos, Vietnam, Cambodia and Thailand), which collectively account for almost three-124 

quarters (74.1%) of the total relative eRIDE (Figures 1a and 2a; Table S4). The highest risk areas 125 

are in the montane and forested regions of the countries of Indochina. Concerning individual 126 

country risks, Laos and Vietnam have over half of their land areas categorized as the highest eRIDE 127 

risk, at 56.5% and 51.3%, respectively (Figure 3; Table S5). For China, 12.0% of its area is 128 

classified as the highest eRIDE risk, with most found in its southern areas adjacent to Indochina. 129 

India has 7.4% of its area classified as the highest eRIDE risk, and 42.5% of its land area is at 130 

moderately high eRIDE risk, particularly in its northeast region and the Western Ghats. In 131 

Bangladesh, 7.4% of its area is at highest eRIDE risk, while 70.9% of its land area is classified as 132 

moderately high risk. In the insular region, Indonesia has 10.8% of its land area categorized as 133 

moderately high eRIDE risk, concentrated in Sumatra and Kalimantan (Borneo), followed by 134 

Sulawesi and Papua (Figure 3; Table S5). 135 

 136 

The spatial distribution of population-at-risk (PAR) indices resembles that of eRIDE, suggesting 137 

that the populations at risk are near the spillover risk hotspots (Figure 1). These hotspots are 138 

spatially concentrated in Nepal, northeast India, western Myanmar, Vietnam, and southern China 139 

(Figure 1b). Countries with the highest relative PAR scores (computed for across the entire region) 140 

are those with the largest populations. China registered the highest relative PAR score (29.6%), 141 

followed by India (21.2%), and Indonesia (13.5%) (Figure 2b; Table S4). Concerning individual 142 

country risks, Singapore recorded 86.1% of its population at the highest risk, followed by Sri Lanka 143 

(82.2%), Vietnam (76.0%), and Bangladesh (75.1%) (Figure 3; Table S6). Notably, India and China 144 

registered 46.5% and 36.5% of their large populations at the highest risk, respectively. 145 

 146 
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 147 

Figure 1. Zoonotic Risk Hotspots in Rhinolophid Bats of Tropical East Asia. Maps of tropical 148 

East Asia showing risk hotspots from zoonotic agents in Rhinolophid bats of tropical East Asia. 149 

Depicted here are (A) eRIDE and (B) Population at risk (PAR, log values displayed for clarity) 150 

scores.  For both maps, discrete color bands follow a geometric scale. 151 

 152 
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 153 

Figure 2. Index rankings per country under baseline (blue) and new infrastructure (orange) 154 

scenarios. Numbers displayed are the sums of all (A) eRIDE index and (B) PAR values within 155 

each country’s boundaries as shown in Figure 1. Decreases are due to losses of small fragments 156 

due to the resolution of analysis. 157 
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 158 

 159 

 160 

 161 
Figure 3. Country Risk Class Distributions: Baseline vs. New Infrastructure Scenarios. Stacked bar plots illustrating the distribution of risk classes 162 

per country in tropical East Asia, categorized by eRIDE and Population at Risk scores for baseline (A, C) and new infrastructure (B, D) scenarios. The 163 

color scheme denotes varying risk levels, with yellow indicating the highest risk category and black representing the lowest risk category. 164 
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Pandemic risk mapping 165 

 166 

Pandemic spread modeling showed that the countries with highest pandemic risk are China, 167 

Bangladesh, and India (Figure 4). Specific areas in South Asia where pandemic risk is highest are 168 

in the majority of Bangladesh, India’s north, northeast, and southern regions, and eastern Pakistan 169 

(Figure 4a). India and China have the highest relative pandemic risk scores, respectively garnering 170 

47% and 30% out of a total possible 100% computed for the entire region (Figure 4b; Table S4). 171 

They are followed to a lesser extent by Bangladesh (5.5%) and Pakistan (5.4%), although they are 172 

notably smaller in terms of size than the previous two countries. In China, the surrounding coastal 173 

areas of the large Chinese cities of the Greater Bay Area (Guangzhou, Shenzhen, Hong Kong and 174 

Macau) and Shanghai are the highest pandemic risk areas. Pockets of high-risk areas also exist in 175 

cities in Myanmar, Thailand, Indonesia, Vietnam, Malaysia, and the Philippines.  176 

 177 

Among all countries, Bangladesh recorded the largest percentages of highest (0.2%), moderately 178 

high (30.4%), and moderate (26.1%) at-risk areas for pandemic spread (Table S7). India follows, 179 

with 7.5% of its land area classified at moderate or moderately high risk for pandemic spread. 180 

Pakistan and China are next with 3.0% of their respective country areas recorded to be at high risk 181 

of pandemic spread. These results highlight that countries with higher population densities and are 182 

closest to high eRIDE and PAR areas are at most risk of a possible pandemic. 183 
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 184 

Figure 4. Simulated Pandemic Risk from Zoonotic Agents in Rhinolophid Bats of Tropical 185 

East Asia. Depicted here are the (A) map of pandemic risk areas under baseline scenario (discrete 186 

color bands in the legend follow an exponential scale), and (B) index rankings per country under 187 

baseline (blue) and new infrastructure (orange) scenarios, derived from the sum of pandemic risk 188 

scores within each country’s border. 189 

 190 

 191 
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Increased fragmentation from existing and planned infrastructure scenario  192 

 193 

Introducing road networks over the habitat increased fragmentation generally across all countries 194 

when compared to baseline scenario values (Table S2). All countries/territories experienced a 195 

decrease in mean patch area and patch cohesion index values compared to baseline values, and all 196 

except Bangladesh had a decline in their largest patch index values. China ranked first in terms of 197 

highest habitat fragmentation across first (baseline) and second (baseline + new infrastructure) 198 

scenarios. The most dramatic change is from Papua New Guinea, which experienced a +335.1% 199 

increase in number of patches concurrently with a -83.1% decrease in mean patch area and a -200 

48.9% decline in its largest patch index value.  201 

 202 

The relative eRIDE index rankings in the second scenario remain mostly unchanged when 203 

compared to the baseline scenario, with only minor redistributions in values between countries 204 

(Figure 2a). However, hotspots in specific regions were revealed by risk categorization and grid-205 

wise spatial comparisons between the first and second scenarios (Figure 5; Table 1). In mainland 206 

Asia, the largest increases in combined high-risk areas were observed in Bhutan (+21.2%), 207 

followed by northeast India (+3.1%), western Myanmar (+1.8%) and Vietnam (+0.8%). In insular 208 

Asia, Taiwan observed a +11.4% increase in moderate risk areas, while Indonesia had a +5.8% 209 

increase in combined high-risk areas distributed among its islands of Kalimantan (Borneo), 210 

Sumatra, and Sulawesi. In Papua New Guinea, a +6.6% increase was observed. These hotspots 211 

occur in forest areas where existing and planned road networks are located (Figure 6).  212 



11 

 

 213 

Figure 5. Changes in eRIDE and PAR Scores in Tropical East Asia Under New Infrastructure 214 

Scenario. Maps depicting increases in (A) eRIDE and (B) PAR (log) scores under the new 215 

infrastructure (NI) scenario. Change maps were computed by subtracting the values of the NI 216 

scenario from the baseline. Colors transition from black to yellow to indicate stronger increases.  217 
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218 

Figure 6. Changes in eRIDE in Borneo Island. Enlarged map of Borneo Island depicting changes 219 

in eRIDE values under the new infrastructure scenario. Increased eRIDE values are depicted here 220 

in yellows and reds, particularly along road networks (black and neon green lines), illustrating the 221 

potential impacts of infrastructure on tropical regions with intact forest habitats. 222 

 223 

For PAR, China, India, and Indonesia still had the highest relative PAR scores under the second 224 

scenario (Table S4). The relative PAR scores for Vietnam (+0.6%), Myanmar (+1.6%), Thailand 225 

(+0.7%), Nepal (+0.2%), Laos (+0.4%), Bhutan (+0.3%), Bangladesh (+0.1%), and Papua New 226 

Guinea (+0.1%) also increased under the second scenario, although these changes barely affected 227 

the rankings (Figure 2b; Table S4). Risk categorization and spatial comparison between the 228 

scenarios revealed strong increases in high PAR areas for Sri Lanka (+11.1%), Taiwan (+8.1%) 229 

and Bhutan (+5.1%). The hotspots observed in the spatial comparisons were supported by the risk 230 

categorization (Table 1), particularly along northeast India (+2.6%), western Myanmar (+1.1%), 231 

central China (+3.6%), and Indonesia (+2.2%) (Figure 5b). Central Vietnam (+0.3%), peninsular 232 

Malaysia (+2.7%), Papua New Guinea (+2.3%), and southern Philippines (+4.5%) also registered 233 

moderate upward shifts.  234 

 235 
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The changes in PAR distributions intensified the relative pandemic risk values for the South Asian 236 

countries of India, Bangladesh, and Pakistan, as these countries registered increases in their 237 

pandemic risk scores (Figure 4; Table S4). India had a dramatic increase of +15%. China remained 238 

the second-highest country at risk due to its huge land area. Spatially, the risk patterns in the map 239 

are similar to the baseline simulation, with the majority of the highest risk areas still concentrated 240 

in the north-northeast India-Bangladesh corridor, as well as in the greater Guangzhou and Shanghai 241 

areas of China (Supplementary Figure S2). Relative to their respective land areas, Bangladesh 242 

registered the highest increase in pandemic risk areas (+9.8%), followed by (+1.8%), Pakistan 243 

(+1.3%), and Nepal (+0.2%) (Table 3). 244 

 245 

 246 

Discussion  247 

 248 

A OneHealth approach to spillover surveillance 249 

 250 

There is a growing realization of the importance of integrating OneHealth perspectives into 251 

landscape management (35, 36). New approaches which combine landscape parameters with the 252 

distribution of competent hosts can predict patterns of spillover risk. Here we demonstrate the use 253 

of a OneHealth approach to predict potential spillover and pandemic risk hotspots in tropical East 254 

Asia. Using the estimated risk of infectious disease emergence (eRIDE) and population-at-risk 255 

(PAR) indices, which are models that utilize the relationships between species richness, habitat 256 

fragmentation metrics and human population density in determining spillover hotspots, we found 257 

that Indochina and southern China are of highest risk for spillover in Asia due to their high 258 

Rhinolophid species richness alongside dense human populations. A subsequent pandemic spread 259 

network model we applied also revealed that South Asia, specifically Bangladesh and northeast 260 

India, has the highest risk for a pandemic once spillover occurs in the hotspots, or if infected 261 

wildlife is potentially transported to urban centers. 262 

 263 

Using an approach that incorporates the biological, environmental, and human aspects of health is 264 

useful in establishing baseline knowledge on spillover potential hotspots, including distribution of 265 

competent hosts and natural interfaces for spillover without initially needing immunological or 266 

viral data. Spillovers into human populations require a virus to spill into humans (often via an 267 

intermediate host) and then spread from human-to-human, which is not only rare, but also is more 268 

likely to happen in areas where human populations have not acquired immunity (37). Rates of 269 

SARS-related coronaviruses from Southeast Asian bats have been previously examined, but such 270 



14 

 

studies may not accurately capture species ranges or the landscape dynamics that should be 271 

considered (33). Localized spillovers potentially remain underreported due to factors such as the 272 

lack of human-to-human transmission, the presence of acquired immunity preventing case 273 

mortalities, or inadequate reporting and identification in rural areas (20). This suggests that whilst 274 

existing studies on viral surveillance provide valuable insights, they may overlook potential 275 

spillover hotspots, as the bias in the data in these studies may not adequately represent where 276 

spillover events are likely to occur in the landscape. Thus, integrating species ecology and 277 

limitations into analysis is essential, as the ecology of vectors has profound implications for 278 

transmission pathways, or understanding how to manage and mitigate risk.    279 

 280 

Direct use of competent hosts in modeling risk 281 

 282 

Understanding potential spillover locations in the landscape requires identifying interfaces between 283 

humans and competent hosts. Competent hosts such as rodents and birds act as reservoirs for 284 

pathogenic viruses and bacteria (14, 38, 39). By focusing on the distribution of these competent 285 

hosts, we can pinpoint natural interfaces for spillover events. Rhinolophid bats, which are known 286 

reservoirs of coronaviruses related to SARS and COVID-19 (6, 22), were directly studied to look 287 

at their potential for zoonoses. Utilizing the eRIDE and PAR models, which are most effective in 288 

systems with defined edges such as forests (9), we identified spillover hotspots where bat 289 

movement between forest fragments could lead to pathogen transmission to humans and other 290 

hosts.  291 

 292 

The eRIDE (potential pathogen emergence) hotspots identified coincided with forested regions of 293 

high Rhinolophid species richness (Supplementary Figure S1) but also in areas with high 294 

fragmentation, aligning with previous studies mapping potential coronavirus host bat species in 295 

Southeast Asia (33, 40), particularly in Southern China, eastern Myanmar, and northern Laos. 296 

Recent investigations have uncovered the presence of SARS-CoV-like coronaviruses in bats in 297 

these regions despite limited sampling (6, 24, 33). The diverse Rhinolophid bat communities in 298 

these regions can facilitate interactions between species, potentially leading to the mixing of 299 

potential zoonotic viruses. Given that individual bats can host multiple viruses concurrently and 300 

tend to roost in densely populated fragmented habitats (6, 41), the risk of pathogen spillover to 301 

humans in these habitat edges are higher. However, further work is needed to better describe 302 

Rhinolophid species and their interactions across the region (42) to facilitate a clearer 303 

understanding of viral dynamics, especially in how they vary across space and time. 304 
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Impact of population density in pandemic risk 305 

 306 

The high similarity between the high eRIDE and PAR hotspots demonstrates that populations in 307 

Asia are at proximity to high spillover risk exposure areas. This is in contrast with the original 308 

application of these models in Africa, which found that potential risk transmission areas (i.e. high 309 

eRIDE risk) are sparsely populated and distant from the high PAR areas, and thus highlighted the 310 

role of population centers in disease emergence and transmission (9). Our use of the models in Asia 311 

provides a more localized context wherein the proximity of nearby population centers could mean 312 

that zoonotic diseases from Rhinolophids could possibly be transmitted from animal to people more 313 

rapidly. In Asia, there is steadily increasing population density in peri-urban areas where there are 314 

potential interactions between wildlife and domesticated animals and humans, therefore higher 315 

proximity between zoonotic systems (43–45). Migration of human populations or changing patterns 316 

of tourism can increase exposure of naïve human populations to pathogens, thus increasing chances 317 

for outbreak when spillover happens (46, 47). Furthermore, migrating human populations may 318 

drive wildlife trade, wildlife farming, and their associated risks of spillover (48, 49). Wildlife 319 

farming for fur and culinary consumption provide a major risk for potential zoonotic spillovers (50, 320 

51). These activities may be linked to the trade and illegal trafficking of wildlife, as evidenced by 321 

instances where raccoon dogs in Chinese markets are frequently native (possibly wild-caught) 322 

rather than farmed species (52). It is therefore crucial to understand the placement of these farms 323 

to implement rigorous biosecurity monitoring measures. 324 

 325 

In terms of pandemic spread post-spillover event, our network model results showed that the high-326 

risk areas were aggregated around dense population centers, notably in eastern India and 327 

Bangladesh as well as the megacities in eastern (Shanghai) and southern (Guangdong) China. These 328 

further demonstrate the effect of population density and land transport networks in moving 329 

potentially zoonotic viruses from their sources as evidenced in the PAR hotspots, and akin to what 330 

has been observed in previous cases of zoonoses, such as for Marburg and Ebola in the African 331 

continent. For instance, the index case for the 2013 Ebola epidemic in West Africa was traced to a 332 

Guinean village already heavily modified by human activity, in contrast to earlier cases where 333 

initial spillover likely occurred in villages closer to core forest areas (8, 53). Similarly, the index 334 

case for a Marburg virus outbreak in 2012 in Uganda was attributed to a traveler who got infected 335 

upon returning from his hometown (54). eRIDE predictions are consistent with risk emergence 336 

hotspots with high spatial resolution for Ebolavirus in Africa, a region where spillover data for 337 

Ebola virus disease is more widely tracked (9). This approach provides a non-invasive and cost-338 
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efficient strategy to localize potential risk areas without resorting to lethal methods for pathogen 339 

detection in bats, a practice documented in previous studies (e.g. 55, 56), and can be cross validated 340 

by field surveys, such as the use of tarpaulins to collect urine for testing in saves. The outcomes 341 

derived from our models can provide guidance for governmental organizations in the designated 342 

high-risk regions to formulate contingency measures in anticipation of potential recurrence of a 343 

coronavirus spillover event. 344 

 345 

Fragmentation increases spillover risk in Asia 346 

 347 

Increasing habitat fragmentation resulting from the development of road networks may increase 348 

spillover risks, as increased eRIDE and PAR scores were observed in forested areas of western 349 

Myanmar, Bhutan, Borneo, and New Guinea. High PAR scores in the northern portions of South 350 

Asia have particularly led to the high pandemic spread risk score of Bangladesh and India, given 351 

especially the high population density and connectivity of this area to both South and mainland 352 

Southeast Asia, where eRIDE hotspots are concentrated. Additionally, planned infrastructure in 353 

Bornean landscapes will fragment important landscapes and drive biodiversity declines (34, 57). 354 

The same patterns of decline are likely to be observed in New Guinea, as development along the 355 

Trans-Papuan highway has already led to significant loss in forest areas, and subsequently, this 356 

region’s remarkable biodiversity (58).  357 

 358 

Habitat degradation resulting from activities such as deforestation, agricultural expansion, and 359 

urbanization leads to greater pathogen spillover by creating edge effects that increase interspecies 360 

contact and the transmission of zoonotic pathogens (9, 59). These edge effects serve as transition 361 

zones where wildlife, domestic animals, and humans come into closer contact, heightening the risk 362 

of spillover events (44). The loss of biodiversity from habitat fragmentation increases the risk of 363 

spillovers, as decreasing habitat quality reduces species diversity and abundance, reversing the 364 

"dilution effect" that normally helps lower pathogen prevalence due to a higher number of 365 

susceptible host species (10, 60). This was demonstrated in a study on CoV prevalence in bat 366 

communities in Ghana, where higher CoV prevalence and infection likelihood were observed in 367 

communities with lower bat diversity resulting from disturbances in habitat structure, thus leading 368 

to increased exposure to diseases by humans or greater interface with potential generalist 369 

intermediate hosts (35). This highlights the buffering effect of biodiversity, and proactive strategies 370 

to enhance habitat connectivity and extent must be implemented to maintain healthy wildlife 371 

populations and reduce the interfaces where spillover is most probable. 372 
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 373 

Pathogen spillover increases during land conversion, particularly at intermediate levels of habitat 374 

loss where there is a large population of competent hosts still present in core habitats alongside 375 

susceptible hosts in human-modified landscapes (13, 59). Intermediately fragmented areas contain 376 

higher numbers of competent hosts in the core habitats, leaving naïve populations exposed in the 377 

surrounding matrix (61–63). This scenario is evident in cases such as in Henipavirus outbreaks in 378 

Bangladesh and rabies incidences in cattle associated with deforestation and habitat fragmentation 379 

(37, 64). This may be linked to high stress to wildlife populations as well as large interfaces between 380 

wildlife and humans, livestock or domestic animals. Therefore, addressing habitat fragmentation is 381 

crucial in regions like southwest China, known for high rates of coronavirus transmission risk and 382 

being a major habitat for bats identified as betacoronavirus reservoirs (65), but where fragmentation 383 

of natural habitats is also high (66, 67).  384 

 385 

Maintaining the core of habitats is essential for reducing habitat perimeters and minimizing contact 386 

zones where disease transmissions can occur (9). The growth of infrastructure and increasing edge 387 

density in these habitats will make these areas higher-risk zones for pandemic spread in neighboring 388 

regions. Preventing further fragmentation is crucial, as there are already observed shifts in global 389 

bat diversity due to climate change (68), which could exacerbate viral transmission risk between 390 

species (7). Furthermore, spillover risk is not static over time. Factors such as increasing extreme 391 

climate events, interacting with habitat loss and agricultural expansion, play a direct role in driving 392 

spillover events, like those seen in the case of Hendra (69) and Nipah viruses (70, 71). Recognizing 393 

and understanding these interconnected threats can facilitate actions to break the transmission 394 

chains (72). Maintaining intact habitats, especially in the face of multiple other stressors is clearly 395 

critical not only for maintaining biodiversity, but also to reduce the risk of spillover, and thus should 396 

be seen as a component of maintaining ecological security. 397 

 398 

Summary and next steps 399 

 400 

Our work demonstrates an application of the OneHealth paradigm in addressing the threat of 401 

zoonotic spillover events from Rhinolophid bats in Asia, a region identified as the epicenter of 402 

recent epidemics, including the devastating global COVID-19 pandemic which has already claimed 403 

over 7 million lives worldwide. By identifying hotspots and advocating for urgent implementation 404 

of mitigation measures, we emphasize the importance of a multidisciplinary and collaborative 405 

approach in safeguarding public health and ecosystem integrity. Our results suggest that there are 406 
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high spillover risk hotspots concentrated in Indochina and Southern China, which could then 407 

propagate across the region, particularly affecting the densely populated areas of northern India 408 

and Bangladesh. 409 

 410 

Whilst model validation is challenging due to the underreporting of coronavirus spillover events in 411 

Asia (20) and the probable high levels of immunity in rural human populations, understanding the 412 

potential for spillover provides the means for targeting actions to stem the potential for spillover 413 

risk. Our findings can offer guidance for targeted resource allocation in epidemiological 414 

surveillance of identified high-risk areas, presenting a collaborative approach to result validation 415 

and mitigation of impacts on bat populations and viral disease transmission risks. Furthermore, 416 

frameworks like these can reflect the diverse species ecophysiology across different taxa, 417 

exemplified here by the Rhinolophids (known for their photophobic behavior and preference for 418 

high-density habitats), and can also evaluate seasonal fluctuations (19). This proactive and cost-419 

effective strategy can address potential sources of the issue preemptively, rather than reactively 420 

responding to spillover events.   421 

 422 

The methods presented in our study can be further enhanced by including seasonality factors, 423 

especially when linked to seasonal biological phenomena such as pregnancy and hibernation, as 424 

well as land use and anthropogenic climate change dynamics in the models. The pandemic spread 425 

network model can be further refined by including transport links between hubs for a more accurate 426 

simulation of disease spread. Additionally, the inclusion of wildlife farm locations, particularly 427 

those housing known competent hosts like small carnivores, can enhance the model’s effectiveness. 428 

These improvements can prove essential in potential applications when determining zoonoses for 429 

different taxonomic groups and regions, given calls for further explorations of viruses with zoonotic 430 

potential outside the public health priorities of Sub-Saharan Africa and Southeast Asia, where 431 

pandemics have more recently emerged (73). 432 

 433 

Our work lays a foundation for future research that explores the integration of additional factors 434 

for enhanced predictive capabilities and tailored surveillance efforts in vulnerable regions. 435 

Furthermore, we highlight the vulnerability of human population centers across the region and the 436 

heightened risk accompanying infrastructural growth. Notably, SARS-CoV2 is only one of several 437 

betacoronaviruses which has emerged from Southeast Asia, with Rhinolophid bats as a probable 438 

source. Preventing future epidemics necessitates interventions to mitigate this risk, integrate 439 
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OneHealth approaches into planning, and reduce interactions between stressed wildlife and 440 

potential intermediate species of bat-borne pathogens. 441 

 442 

Materials and Methods 443 

 444 

To locate areas with high potential for novel disease emergence arising from horseshoe bat richness 445 

and habitat fragmentation, we first generated maps that display both using the following methods. 446 

These approaches were based on Wilkinson et al. (2018) but adapted for the context of the South 447 

and Southeast Asian region, and for a more specific approach to coronaviruses. 448 

 449 

Assessment of habitat fragmentation in Asia through analysis of remote sensing products 450 

 451 

Land-cover maps that exist typically overestimate the amount of forest in the region due to their 452 

overreliance on canopy cover as the sole metric to identify forest vs non-forest (74, 75). This is 453 

especially obvious in Southeast Asia, where there is a significant coverage of rubber and palm oil 454 

plantations yet are not identified as separate land-cover classes in existing products (e.g. GLAD 455 

Land Cover) due to the challenge of distinguishing types of tree-cover using basic mapping 456 

approaches. In addition, in drier climates in the region, natural forests may be both shorter and 457 

sparse (76), thus to accurately map forests and distinguish them from plantations, different 458 

thresholds must be set based on precipitation. We therefore mapped remaining forest areas in 459 

tropical East Asia using a combination of remotely sensed canopy height and modeled precipitation 460 

data following an approach used in B. V. Li et al. (2016) to accurately map forests across the same 461 

region. First, we obtained canopy height data from ETH Global Sentinel-2 10m Canopy Height 462 

data for 2020 covering the entire region (66° to 156° E longitude, -16° S to 36° N latitude). Data 463 

was downloaded through Google Earth Engine, after resampling from 10 m to 1 km (download 464 

date: 8 Aug 2023). We chose 1 km as the resolution as it corresponds closest to the highest available 465 

resolution for climate data (30”, which is approx. 1 km at the equator). Annual precipitation data 466 

was obtained from CHELSA ver. 2.1 (download date: 6 Sep 2022).  467 

 468 

Given the dependence of Rhinolophid bats on intact forest regions, we needed to delineate forest 469 

from non-forest in the region so that fragmentation could be assessed. Owing to the precipitation 470 

differences between dry-deciduous and wetter forests, we separated the region between these two 471 

climate regions based on biomes delineated in the Ecoregions 2017 map (78), and precipitation 472 

thresholds used in (77). We then applied the following criteria to classify forest pixels from the 473 

canopy height map: 474 
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1. Tropical areas with precipitation values ≥ 1800 mm/year and with canopy height ≥ 20 m were 475 

classified as forest; 476 

2. Tropical areas with precipitation values < 1800 mm/year and with canopy height ≥ 25 m were 477 

classified as forest; 478 

3. Temperate areas with precipitation values ≥ 600 mm/year and with canopy height ≥ 20 m were 479 

classified as forest 480 

 481 

In order to mask out plantation areas that fall under the canopy height limits we set for each region, 482 

we used plantation map data obtained from multiple sources. First, we downloaded the Spatial 483 

Database of Planted Trees (SDPT) version 1.0 compiled by Global Forest Watch (GFW), which 484 

categorizes plantations of native or introduced species worldwide based on supervised 485 

classification or manual delineation of satellite imagery (79, downloaded on 15 Aug 2023). We 486 

then supplemented this by generating a land-cover mask of all cropland and plantation areas 487 

obtained from the Thai government (80) and a study which classified rubber plantations in Yunnan 488 

Province in China for 2016 (66). All geoprocessing was performed in R version 4.0.5 using the 489 

raster package. 490 

 491 

Lastly, we conducted an area-adjusted pixel-based accuracy assessment on the forest map generated 492 

by creating a confusion matrix. From this matrix, we calculated the overall, user’s, and producer’s 493 

accuracy metrics for the forest and non-forest classes. To derive this, we randomly sampled points 494 

from the forest and non-forest classes on the map product. Each point was then visually assessed 495 

for its classification accuracy by comparing it with high-resolution imagery from ESRI using 496 

ArcMap 10.4. The results were then compiled into a confusion matrix to quantify the classification 497 

performance. To assess the uncertainty associated with each estimation, we computed error-498 

adjusted area estimations and confidence intervals for each class (81). The resulting forest map 499 

demonstrated an overall accuracy of 96.1%, with producer’s accuracy for the classes ranging from 500 

86.3 to 100%, and user’s accuracy ranging from 78.0 to 98.0% (Table S1).  501 

 502 

Mapping Rhinolophid species richness in Asia 503 

 504 

We used Rhinolophid species richness as a metric for potential interactions between competent 505 

hosts in the forest fragments. We computed species richness by overlapping the suitable habitats 506 

for Rhinolophid bats, which were predicted using Maxent (82), a widely used algorithm in 507 
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modeling species distributions due to its generally good capability of predicting suitable habitats 508 

given a minimum number of species records (83).  509 

 510 

Species points sources and processing 511 

Species occurrence points for bats from the Rhinolophidae family within the study region were 512 

obtained from the dataset used in (84), which is a combination of data from the Global Biodiversity 513 

Information Facility (85, 86), the DarkCideS database (87), and field sampling. We also compiled 514 

additional points for Indonesia from multiple published datasets (see Supplementary S3). 515 

Taxonomic names were then updated using the Bats of the World database (batnames.org, accessed 516 

on 1 Oct 2023).  A total of 7,885 data points across 59 Rhinolophidae bat species were compiled.   517 

 518 

To avoid spatial autocorrelation, a spatial thinning algorithm that retains one occurrence point per 519 

species for each grid cell at 30” resolution (0.008333°) was applied. Potentially invalid coordinates 520 

were also identified and removed using the clean_coordinates() function of the CoordinateCleaner 521 

package in R. Invalid points include those that might be outliers, within country capitals or country 522 

centroids, within research institutions and botanical gardens, or outside land masses. After cleaning, 523 

we retained species with more than 15 points for modeling, leaving the final number of species at 524 

44. 525 

 526 

Environmental predictors 527 

To predict the bats’ suitable habitat, a suite of environmental predictors important to bat ecology 528 

was selected. For climate, we obtained bioclimatic variables from CHELSA version 2.1 (88), and 529 

a Global Aridity Index from the Global Aridity Index and Potential Evapo-Transpiration (ET0) 530 

Database v3 (89). Due to the lack of high-resolution global karst maps essential to locate caves 531 

which bats inhabit, we represented karst habitats by using a Depth to bedrock (R horizon) layer 532 

obtained from SoilGrids 2.0 (90), with the assumption that karst areas are in regions with shallow 533 

bedrock depths owing to the thin soils in these formations.  534 

 535 

To represent vegetation cover, we used two layers. First, we obtained the ETH Global Canopy 536 

Height 2020 product, which estimated vegetation heights globally from remote sensing data (91). 537 

This is useful to differentiate between natural and cultivated vegetation types in which the bats 538 

inhabit. Second, we used a Normalized Difference Vegetation Index (NDVI) layer obtained from 539 

the MOD13A2 V6.1 Terra product set released by MODIS (92) to represent vegetation 540 

productivity. Since this image satellite product is released every 16 days, we computed the mean 541 
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NDVI for the year 2020 using all available imagery for that year. Both these vegetation layers were 542 

hosted, processed, and downloaded through Google Earth Engine Data Catalog (downloaded on 20 543 

Sep 2023).  544 

 545 

We produced a “distance from water bodies” layer, in which each grid cell’s distance to the nearest 546 

freshwater body was calculated using a freshwater bodies layer obtained from the MERIT Hydro 547 

Global Hydrography dataset (93, downloaded on 30 Aug 2023). We first processed the available 548 

freshwater bodies layer into binary (i.e. water body vs land), then computed the Euclidean distance 549 

of each land grid cell to the nearest water body cell. Processing for this was performed in ArcMap 550 

version 10.4.  551 

 552 

All environmental predictors were then resampled to 30” resolution, stacked together, and checked 553 

for multicollinearity using Spearman’s rank correlation test. Predictors with Spearman’s r > 0.7 554 

were removed from the model, and the following predictors were retained: mean annual 555 

temperature (Bio1), temperature annual range (Bio7), precipitation of wettest month (Bio13), 556 

precipitation seasonality (Bio15), aridity index, depth to bedrock, distance to water bodies, and 557 

vegetation height.  558 

 559 

Maxent modeling 560 

Maxent was used to model suitable habitats of the Rhinolophid bat species. Prior to each species 561 

run, 10,000 background points were randomly generated from within a 500-km buffer region of the 562 

species’ occurrence points. The ENMEVal package was then used to test different combinations of 563 

feature classes (linear, quadratic, and hinge) and regularization multipliers (1 to 5), and the model 564 

with the lowest delta AIC score was selected as the most optimal and predicted to space to visualize 565 

suitable habitats (94). Model accuracy tests utilized the Area Under the Curve (AUC) and the True 566 

Skill Statistic (TSS; 95). All species models yielded good scores, with mean AUC score at 0.861, 567 

ranging from 0.780 to 0.951, while TSS scores were generally fair to good, with a mean of 0.534 568 

and ranging from 0.278 to 0.875 (Table S3). 569 

Each continuous species suitability map was then converted into a binary presence-and-absence 570 

map using the 10-percentile training threshold score for each species. To avoid overpredicting the 571 

suitable habitats of the bats, the binary maps were clipped according to the biogeographic regions 572 

each species has been recorded in, the native ranges based on the distribution of point records, and 573 

species range maps published by IUCN (96). Lastly, the clipped rasters were summed to obtain 574 
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species richness scores. All processing was performed using R ver. 4.0.5 unless otherwise 575 

specified.  576 

 577 

Mapping potential spillover risk hotspots  578 

 579 

To determine potential disease risk hotspots from the Rhinolophid bat populations in remaining 580 

habitat fragments, we used an approach from Wilkinson et al. (2018) called the estimated risk of 581 

infectious disease emergence, or eRIDE, index (9). In this model, the potential disease risk is 582 

estimated based on the diversity of disease-causing species within a habitat patch. It directly 583 

correlates species diversity within habitat patches with exposure to human populations, quantified 584 

using the edges of the habitat fragments. The model assumes that the number of potential zoonotic 585 

agents within the habitat has a direct, linear relationship with fragment diversity, such that the total 586 

hazard from novel pathogens is proportional to patch biodiversity. In this case, we represented 587 

diversity using the viral populations hosted by the Rhinolophids in each patch. The model also 588 

assumes that the area where human populations comes into contact with the habitat is represented 589 

by the perimeter of the patches. Thus, the more habitat fragment edges there are, the higher the risk 590 

becomes. 591 

 592 

To compute eRIDE, we first identified the edge pixels of each fragment, then the focal sum of edge 593 

pixels within a 20 x 20 moving window was computed for each grid cell following Wilkinson et 594 

al. (2018). The eRIDE index of each cell was then computed as the product of its focal sum of edge 595 

pixels and bat species richness score. To identify which populations are at most risk from potential 596 

emerging infectious diseases, an estimated population at risk (PAR) index was computed as the 597 

product of each cell’s eRIDE index and population density. The relative eRIDE and PAR percent 598 

scores for each country/territory were then computed as the sum of eRIDE or PAR for each 599 

country/territory divided by the total eRIDE or PAR value across the entire modeling region. To 600 

assess the categorical risk for each location, the eRIDE and PAR (log) values was reclassified into 601 

five categories (low, moderately low, high, moderately high, highest risk) to represent the different 602 

levels of risk using the respective geometric progression intervals of the eRIDE and PAR (log) 603 

values across the whole region. Unconstrained individual population density data for 2020 for all 604 

Asian countries within our mapping domain was obtained from WorldPop 605 

(https://hub.worldpop.org/project/categories?id=18, downloaded on 11 July 2023).  606 

 607 

 608 

https://hub.worldpop.org/project/categories?id=18
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Pandemic risk mapping 609 

 610 

Potential pandemic hotspots were then identified using a network model of pandemic spread based 611 

on human density and connectivity (9). First the raster was aggregated from 1-km to 10-km 612 

resolution, then the pixel grid was converted into a network using 4-connectivity, with each grid 613 

cell representing nodes. Pandemic spread was assumed to likely travel faster between more densely 614 

populated places, thus the edge weights between adjacent pixels were computed as the inverse of 615 

the product of the population densities of each pixel.  616 

 617 

The likelihood for pandemic spread between corresponding pixels x and y was then assessed by 618 

first determining the shortest distance s(x, y) on the graph between the two nodes, which was 619 

computed using Djikstra’s algorithm. The relative chance of pandemic spread ps for any pixel y 620 

was then computed as  621 

𝑝𝑠(𝑦) =  ∑ PAR(𝑥)𝑠(𝑥, 𝑦)

𝑥

 622 

where the sum from all potential source pixels x is obtained. The relative pandemic risk percent 623 

score for each country/territory was then computed as the sum of the pandemic risk score for each 624 

country/territory divided by the total pandemic risk score across the entire modeling extent. To 625 

assess the categorical risk for each country, the pandemic spread risk scores were reclassified into 626 

five categories (low, moderately low, high, moderately high, highest risk) to represent different 627 

levels of risk using the geometric progression intervals of the pandemic risk scores across the whole 628 

region. The R packages raster, tidygraph, and igraph were used for these analyses.  629 

 630 

Increased fragmentation from existing and planned infrastructure scenario  631 

 632 

Existing and planned infrastructure are known to introduce further fragmentation to natural habitats 633 

(97). To investigate the possible effect of adding infrastructure to spillover risk, the models were 634 

also run under a second scenario wherein existing and planned infrastructure are applied to mask 635 

the existing forest cover map. Existing infrastructure data (e.g. road and rail networks) for the entire 636 

region were obtained from OpenStreetMaps (downloaded on 29 March 2024). Planned 637 

infrastructure data were also downloaded from various sources for China, Indonesia, Malaysia, 638 

India, and Papua New Guinea (see Supplementary for complete list of sources). After processing 639 

these into rasters, the infrastructure layers were masked from the existing forest cover map using 640 
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raster calculator. The models for eRIDE, PAR and pandemic spread were then run using the 641 

fragmented forest cover map. 642 

 643 

Fragmentation statistics for each country were also computed from the two scenarios (baseline + 644 

new infrastructure). The number of fragments, fragment size (as mean patch area and largest patch 645 

index), geometric complexity (as mean patch shape ratio), physical connectedness (patch cohesion 646 

index), and edge density were all quantified using the landscapemetrics package in R. 647 

 648 

 649 
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Supplementary Text 

 

Fragmentation results 

 

Analyses of fragmentation in the baseline forest cover map revealed differences for each 

country/territory (Supplementary Table S2). Bhutan and Papua New Guinea had the most intact 

forests, as indicated by having the fewest forest patches, but with the highest forest patch index 

and mean patch area values and high patch cohesion indices, signifying the presence of a large, 

continuous forest with high connectivity. Taiwan, Brunei, and Nepal followed suit. In contrast, 

China had the most forest patches and the highest edge length values, indicating extensive forest 

edge exposure. Relative to its land area, it also had low mean patch area and high patch index 

values. These collectively suggest that China has the most fragmented forest in our study region. 

Indonesia had high mean patch area and LPI values due to the intact forest cover in Borneo and 

Sulawesi, but also had the second highest number of forest patches, implying that a lot of 

fragmentation has occurred in the other major islands of Sumatra and Java.  

 

Introducing road networks over the habitat increased fragmentation generally across all countries 

(Supplementary Table S2). All countries/territories experienced a decrease in mean patch area 

and patch cohesion index values, and all except Bangladesh had a decline in their largest patch 

index values. The most dramatic change is from Papua New Guinea, which experienced a 

+335.1% increase in number of patches concurrently with a -83.1% decrease in mean patch area 

and a -48.9% decline in its largest patch index value. 

 

 

Forest cover and species distribution modeling results 

 

The resulting forest cover map showed that in mainland Asia, most of the forest cover retained 

are on the mountainous areas, from the Himalayas in the Indian subcontinent, extending 

eastward to the mountains over Myanmar and western China, and down to the mountains of 

Indochina and peninsular southeast Asia. Forest cover across southern China exhibited a patchier 

appearance. In the islands, New Guinea, Borneo, and Sulawesi are mostly still covered by large 
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swaths of forest, while Sumatra, Java, and the Philippines are only forested in their montane 

regions.  

 

Upon combining the predicted maps, we found that the Rhinolophid bat habitats were 

concentrated in the Indochina region, with the highest species richness numbers seen in 

Thailand, Laos, Cambodia, and Vietnam, while also extending slightly northwards to Yunnan 

and Guangxi provinces in southwest China (Figure S1).  Northern Myanmar, eastern Himalaya, 

peninsular Malaysia, and the rest of southern China had moderate species richness numbers, 

while Borneo, Sumatra and Philippines were seen to have low Rhinolophid bat species richness. 

Finally, most of the Indian subcontinent and New Guinea had the lowest richness.  

 

All species distribution models yielded good scores. Mean AUC score was at 0.861, ranging 

0.780 to 0.951, while TSS scores had a mean of 0.534 and ranging from 0.278 to 0.875 (see 

Table S3), allowing all models to be predicted to space and used for further analyses. With 

regards to the percent contribution of the predictors, temperature annual range (Bio7) and mean 

canopy height registered as the highest-ranking predictors across most of the bat SDMs, while 

precipitation seasonality (Bio15) and mean annual temperature (Bio1) mostly ranked second 

(Supp Table 2). These suggest that climatic variables and vegetation cover mostly dictate the 

spaces which the Rhinolophid bats find to be most suitable. 
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Table S1. Accuracy metrics for forest cover map 

 

        Land cover 

class 

Area (km²) Area 

uncertainty 

(km²±) 

PA  PA± UA  UA± OA  OA± 

Non forest 2,184,034.7 51,503.22 97.3 0.74 98 2.25 96.06 1.98 

Tropical moist 

forest 

293,553.35 42,548.39 90.15 12.27 89.33 4.96     

Tropical dry forest 13,668.14 784.64 100 0 88.67 5.09   
 

Temperate forest 105,579.04 29,379.43 86.31 23.18 78 6.65     

Legend: PA – Producer’s Accuracy; UA – User’s Accuracy; OA – Overall Accuracy 
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Data S1. List of sources of infrastructure shapefiles used for analyses 

 

 

1. OpenStreetMap (https://download.geofabrik.de/; downloaded on 23 March 2024) 

2. Data from: Trans-National Conservation and Infrastructure Development in The Heart of 

Borneo.  Published Nov 26, 2019 on Dryad. https://doi.org/10.5061/dryad.s4m5q53.  

3. Data from: Infrastructure expansion challenges sustainable development in Papua New Guinea. Published 

Jul 30, 2019 on Dryad. https://doi.org/10.5061/dryad.3p84s7s 

4. Data from: Satellite images and road-reference data for AI-based road mapping in Equatorial Asia. 

Published Sep 18, 2023; Updated Apr 04, 2024 on Dryad. https://doi.org/10.5061/dryad.bvq83bkg7 

5. Emerging challenges for sustainable development and forest conservation in Sarawak, Borneo. Published 

Aug 16, 2020 on Dryad. https://doi.org/10.5061/dryad.547d7wm4v  

6. Indonesian road network: https://www.indonesia-geospasial.com/2020/12/download-shp-jaringan-

jalan.html.html  

7. Indian map of proposed highways: 

https://www.google.com/maps/d/u/0/viewer?msa=0&mid=1tUXlNp9QD1PE9pjDzbQMJaY9cvE&ll=23.1

99425243350444%2C79.36049818164062&z=6 

8. Man, Chun Yin; Palmer, David Alexander (2022). Geo-mapping databases of the Belt and Road Initiative. 

figshare. Collection. https://doi.org/10.6084/m9.figshare.c.6076193  

9. Griffiths, Richard & Hughes, Alice. (2021). In the Way of the Road. The Ecological Consequences of 

Infrastructure. Publisher: International Institute for Asian Studies. 

 

https://download.geofabrik.de/
https://doi.org/10.5061/dryad.s4m5q53
https://doi.org/10.5061/dryad.3p84s7s
https://doi.org/10.5061/dryad.bvq83bkg7
https://doi.org/10.5061/dryad.547d7wm4v
https://www.indonesia-geospasial.com/2020/12/download-shp-jaringan-jalan.html.html
https://www.indonesia-geospasial.com/2020/12/download-shp-jaringan-jalan.html.html
https://www.google.com/maps/d/u/0/viewer?msa=0&mid=1tUXlNp9QD1PE9pjDzbQMJaY9cvE&ll=23.199425243350444%2C79.36049818164062&z=6
https://www.google.com/maps/d/u/0/viewer?msa=0&mid=1tUXlNp9QD1PE9pjDzbQMJaY9cvE&ll=23.199425243350444%2C79.36049818164062&z=6
https://doi.org/10.6084/m9.figshare.c.6076193
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Table S2. Fragmentation metrics for two scenarios for each country 

Country/Territory Number of Patches Mean Patch Area (ha) Largest Patch Index (%) 
 

BL BL + NI % 

Change 

BL BL + NI % Change BL BL + NI % Change 

Afghanistan 214 183 -14.5 1865.89 1977.60 6.0 0.45 0.40 -11.7 

Bangladesh 556 485 -12.8 1062.95 1156.49 8.8 0.60 0.61 1.3 

Bhutan 113 89 -21.2 34470.80 33753.93 -2.1 76.78 58.69 -23.6 

Brunei 32 40 25.0 14259.38 10152.50 -28.8 56.79 51.00 -10.2 

Cambodia 679 619 -8.8 6961.12 7495.80 7.7 8.49 7.48 -11.8 

China 29981 32541 8.5 3207.39 2188.37 -31.8 4.57 0.22 -95.1 

East Timor 241 247 2.5 1793.78 1548.18 -13.7 13.92 9.78 -29.8 

India 7565 8498 12.3 4823.94 3225.72 -33.1 4.73 1.97 -58.4 

Indonesia 10522 11930 13.4 10418.19 7638.63 -26.7 18.30 12.80 -30.0 

Laos 1815 1916 5.6 7373.28 6749.53 -8.5 38.72 9.05 -76.6 

Malaysia 2033 1805 -11.2 9697.88 9298.56 -4.1 38.75 23.98 -38.1 

Myanmar 3268 3482 6.5 10727.42 9637.62 -10.2 20.78 17.16 -17.4 

Nepal 1169 1250 6.9 7240.72 5506.40 -24.0 42.17 9.81 -76.7 

Pakistan 1171 979 -16.4 2083.69 2042.19 -2.0 1.29 0.62 -52.0 

Papua New Guinea 649 2824 335.1 63042.53 10675.96 -83.1 74.69 38.19 -48.9 

Philippines 2409 2844 18.1 5212.20 3229.22 -38.0 9.71 2.82 -70.9 

Singapore 16 7 -56.3 700.00 428.57 -38.8 14.29 2.66 -81.4 

Sri Lanka 322 463 43.8 2022.98 905.40 -55.2 7.89 0.95 -87.9 

Taiwan 117 272 132.5 21194.87 7771.32 -63.3 53.74 37.28 -30.6 

Thailand 2221 2318 4.4 5389.10 4532.70 -15.9 5.25 2.56 -51.2 

Vietnam 2393 2720 13.7 4277.31 3297.50 -22.9 5.44 1.43 -73.7 

 

Note: BL – Baseline; BL + NI – Baseline + New Infrastructure 
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Table S2 (con’t) 
Country/Territory Mean Shape Index Total Edge Length (m) 

 
BL BL + NI % Change BL BL + NI % Change 

Afghanistan 1.33 1.36 2.0 4.77E+06 4.35E+06 -8.6 

Bangladesh 1.24 1.26 0.9 8.89E+06 8.14E+06 -8.5 

Bhutan 1.18 1.41 19.9 8.53E+06 1.14E+07 33.9 

Brunei 1.40 1.37 -1.8 1.53E+06 1.63E+06 6.3 

Cambodia 1.25 1.30 4.0 2.31E+07 2.25E+07 -2.8 

China 1.31 1.36 4.1 8.90E+08 7.71E+08 -13.4 

East Timor 1.33 1.35 1.0 5.75E+06 5.28E+06 -8.1 

India 1.25 1.33 6.1 2.40E+08 2.32E+08 -3.2 

Indonesia 1.26 1.30 2.8 3.72E+08 4.22E+08 13.5 

Laos 1.28 1.34 4.8 7.98E+07 7.95E+07 -0.4 

Malaysia 1.25 1.33 6.1 6.99E+07 6.70E+07 -4.1 

Myanmar 1.28 1.35 5.7 1.61E+08 1.68E+08 3.8 

Nepal 1.23 1.42 15.2 6.55E+07 6.02E+07 -8.1 

Pakistan 1.26 1.31 4.0 2.58E+07 2.23E+07 -13.7 

Papua New Guinea 1.25 1.31 5.2 7.55E+07 1.28E+08 70.2 

Philippines 1.31 1.27 -2.3 8.22E+07 6.63E+07 -19.4 

Singapore 1.27 1.16 -9.1 1.98E+05 6.40E+04 -67.7 

Sri Lanka 1.26 1.26 0.2 7.94E+06 6.59E+06 -17.0 

Taiwan 1.35 1.31 -2.7 7.88E+06 9.06E+06 14.9 

Thailand 1.30 1.36 4.7 7.76E+07 7.48E+07 -3.6 

Vietnam 1.30 1.34 2.7 7.56E+07 7.26E+07 -3.9 

 

Note: BL – Baseline; BL + NI – Baseline + New Infrastructure 
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Table S2 (con’t) 
Country/Territory Edge density (m/ha) Patch cohesion index (%) 
 

BL BL + NI % Change BL BL + NI % 

Change 

Afghanistan 0.16 0.15 -3.3 93.76 93.33 -0.5 

Bangladesh 0.55 0.53 -4.0 92.47 92.08 -0.4 

Bhutan 1.69 2.39 41.4 99.89 99.76 -0.1 

Brunei 2.70 2.97 10.0 98.65 98.24 -0.4 

Cambodia 1.22 1.20 -1.0 98.84 98.37 -0.5 

China 1.40 1.25 -11.1 99.26 94.57 -4.7 

East Timor 3.75 3.60 -3.9 96.27 93.91 -2.4 

India 0.64 0.63 -1.0 99.49 98.05 -1.4 

Indonesia 1.99 2.32 16.6 99.66 99.52 -0.1 

Laos 3.14 3.15 0.2 99.66 98.57 -1.1 

Malaysia 2.13 2.08 -2.5 99.66 99.22 -0.4 

Myanmar 2.12 2.22 5.1 99.60 99.26 -0.3 

Nepal 3.46 3.34 -3.6 99.80 98.65 -1.2 

Pakistan 0.29 0.26 -10.4 97.93 96.42 -1.5 

Papua New Guinea 1.61 2.81 74.7 99.94 99.66 -0.3 

Philippines 2.71 2.32 -14.5 98.74 96.28 -2.5 

Singapore 4.10 1.42 -65.4 81.99 61.54 -24.9 

Sri Lanka 1.19 1.02 -14.4 98.20 87.43 -11.0 

Taiwan 1.84 2.16 17.4 99.63 98.82 -0.8 

Thailand 1.40 1.38 -1.7 98.78 96.89 -1.9 

Vietnam 2.10 2.05 -2.3 98.46 95.69 -2.8 

 

Note: BL – Baseline scenario; BL + NI – Baseline + New Infrastructure scenario 
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Table S3. Parameters used and accuracy metrics for Maxent species models 

Species TPT FC RM Training 

AUC 

TSS 

Rhinolophus acuminatus 0.1752 LQH 3 0.873 0.500 

Rhinolophus affinis 0.3038 LQH 1 0.839 0.517 

Rhinolophus arcuatus 0.1221 LQ 1 0.866 0.480 

Rhinolophus beddomei 0.3021 LQ 1 0.960 0.786 

Rhinolophus borneensis 0.2698 LQ 1 0.803 0.420 

Rhinolophus celebensis 0.0747 LQ 1 0.870 0.366 

Rhinolophus chaseni 0.2692 LQ 1 0.905 0.686 

Rhinolophus coelophyllus 0.3131 LQH 5 0.836 0.492 

Rhinolophus cornutus 0.1923 LQ 1 0.840 0.376 

Rhinolophus euryotis 0.4897 LQH 2 0.793 0.412 

Rhinolophus ferrumequinum 0.2319 LQ 1 0.896 0.627 

Rhinolophus formosae 0.3471 LQ 1 0.949 0.788 

Rhinolophus indorouxii 0.3965 LQ 3 0.964 0.775 

Rhinolophus inops 0.2549 LQ 4 0.780 0.278 

Rhinolophus lepidus 0.1465 LQH 3 0.891 0.568 

Rhinolophus luctus 0.3039 LQH 3 0.825 0.455 

Rhinolophus macrotis 0.3633 LQ 1 0.812 0.487 

Rhinolophus malayanus 0.346 H 3 0.817 0.453 

Rhinolophus marshalli 0.2884 LQ 1 0.830 0.425 

Rhinolophus megaphyllus 0.1049 LQ 1 0.885 0.411 

Rhinolophus microglobosus 0.2553 LQ 1 0.848 0.517 

Rhinolophus monoceros 0.4048 H 5 0.951 0.875 

Rhinolophus pearsonii 0.3028 H 2 0.876 0.577 

Rhinolophus philippinensis 0.3864 LQH 4 0.841 0.509 

Rhinolophus pusillus 0.3673 LQH 2 0.820 0.504 

Rhinolophus refulgens 0.4239 LQ 2 0.882 0.552 

Rhinolophus rex 0.334 LQ 1 0.786 0.384 

Rhinolophus robinsoni 0.1898 LQ 2 0.908 0.669 

Rhinolophus rouxii 0.2701 LQH 1 0.876 0.604 

Rhinolophus rufus 0.6113 LQH 5 0.825 0.500 

Rhinolophus sedulus 0.2673 LQH 3 0.917 0.737 

Rhinolophus shameli 0.2848 LQH 4 0.876 0.592 

Rhinolophus siamensis 0.4087 LQH 1 0.800 0.430 

Rhinolophus sinicus 0.4028 LQH 3 0.867 0.605 

Rhinolophus stheno 0.2165 LQH 3 0.860 0.514 

Rhinolophus subbadius 0.4034 LQH 4 0.956 0.736 

Rhinolophus subrufus 0.3611 L 5 0.780 0.399 

Rhinolophus tatar 0.112 LQH 4 0.956 0.652 

Rhinolophus thomasi 0.2929 H 5 0.833 0.374 

Rhinolophus trifoliatus 0.2196 LQH 3 0.896 0.622 
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Rhinolophus virgo 0.2258 LQ 1 0.814 0.381 

Rhinolophus yunanensis 0.4731 LQH 3 0.777 0.400 
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Figure S1. Map of tropical east Asia showing Rhinolophid species richness based on species distribution 

models 
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Data S2. List of additional species occurrence points sources 
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• Patterson, G., Martin, T. E., Adams, N., Cropper, O., Mustari, A. H., & Tosh, D. G. (2017). Lowland 

rainforest bat communities of Buton Island, Southeast Sulawesi, including new regional records. 

Raffles Bulletin of Zoology, 65. 
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Table S4. Relative eRIDE, Relative Population at Risk, and Relative Pandemic Risk scores for each country 

COUNTRY ISO3 

CODE 

eRIDE INDEX POPULATION AT RISK 

(PAR) SCORE 

Pandemic Risk 

 
  BL BL+NI Change BL BL+NI Change BL BL+NI Change 

Afghanistan AFG 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 

Bangladesh BGD 0.3 0.3 0.0 0.6 0.7 0.1 5.5 8.0 2.5 

Bhutan BTN 0.7 1.0 0.3 0.5 0.7 0.3 0.2 0.2 0.0 

Brunei BRN 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cambodia KHM 2.9 3.1 0.2 0.4 0.6 0.2 0.7 0.2 -0.5 

China CHN 24.8 22.0 -2.8 29.6 27.8 -1.8 30.0 16.7 -13.3 

East Timor TLS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

India IND 9.9 9.9 0.0 21.2 20.9 -0.3 47.0 62.0 15.0 

Indonesia IDN 10.0 11.1 1.1 13.5 14.1 0.6 0.7 0.5 -0.2 

Laos LAO 10.7 11.1 0.4 2.3 2.7 0.4 0.9 0.2 -0.7 

Malaysia MYS 3.3 3.5 0.2 2.0 1.6 -0.4 0.6 0.2 -0.4 

Myanmar MMR 16.5 17.5 0.9 5.3 6.9 1.6 2.7 2.2 -0.5 

Nepal NPL 2.3 2.1 -0.2 6.1 6.3 0.2 0.8 0.8 0.0 

Pakistan PAK 0.4 0.3 -0.1 2.7 2.5 -0.1 5.4 6.3 0.9 

Papua New 

Guinea 
PNG 1.1 1.2 0.1 0.5 0.6 0.1 0.0 0.0 0.0 

Philippines PHL 2.2 2.2 0.0 3.0 2.9 -0.1 0.3 0.1 -0.2 

Singapore SGP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sri Lanka LKA 0.1 0.1 0.0 0.7 0.3 -0.3 0.0 0.0 0.0 

Taiwan TWN 0.2 0.2 0.0 0.5 0.2 -0.3 0.0 0.0 0.0 

Thailand THA 7.1 7.2 0.1 3.0 3.7 0.6 2.3 0.8 -1.5 

Vietnam VNM 7.3 7.0 -0.3 6.3 7.0 0.6 1.8 0.7 -1.0 

Note: BL – Baseline scenario; BL + NI – Baseline + New Infrastructure scenario 
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Table S5. Percentage of eRIDE risk areas categorized by eRIDE values for each country under baseline (BL) and new infrastructure (NI) 

scenarios. Risk level categories are determined by the geometric intervals of the eRIDE values. Cells are color-coded to represent the percentage 

of coverage for each risk category, indicating the respective country’s risk level in each scenario. 

 Risk Level Category Percentages 

Country Low 

Moderately 

Low High Moderately High Highest 

 
BL NI BL NI BL NI BL NI BL NI 

Afghanistan 10.2 10.0 68.4 68.7 21.5 21.2 0.0 0.0 0.0 0.0 

Bangladesh 2.5 2.4 4.4 3.7 16.0 17.9 70.9 69.8 6.2 6.1 

Bhutan 3.9 1.8 24.2 15.3 47.0 36.6 24.3 41.3 0.7 4.9 

Brunei Darussalam 8.4 9.0 23.4 17.3 52.6 52.8 15.6 20.9 0.0 0.0 

Cambodia 0.7 0.7 3.4 3.4 12.6 12.2 47.7 45.5 35.6 38.2 

China 5.8 3.9 33.5 35.3 22.9 23.3 25.9 27.2 12.0 10.3 

India 3.3 3.1 17.9 17.1 28.9 26.9 42.5 45.0 7.4 8.0 

Indonesia 21.6 15.8 39.2 41.5 28.4 31.4 10.8 11.3 0.0 0.0 

Laos 0.2 0.2 1.1 1.0 5.0 4.4 37.1 36.5 56.5 57.8 

Malaysia 12.6 10.2 18.8 19.2 37.1 38.7 30.4 30.8 1.0 1.0 

Myanmar 1.7 1.6 8.0 7.4 16.4 15.2 52.5 54.4 21.4 21.4 

Nepal 0.9 1.0 23.6 24.7 33.9 35.4 34.0 32.7 7.6 6.1 

Pakistan 4.9 5.6 35.0 37.0 47.2 48.0 13.0 9.4 0.0 0.0 

Papua New Guinea 43.2 36.7 55.1 61.1 1.7 2.2 0.0 0.0 0.0 0.0 

Philippines 2.8 1.8 12.0 10.8 58.0 60.8 27.2 26.6 0.0 0.0 

Singapore 44.7 100.0 55.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sri Lanka 3.1 5.8 16.9 22.3 79.9 71.8 0.2 0.0 0.0 0.0 

Taiwan 5.5 2.9 49.9 41.2 44.6 56.0 0.0 0.0 0.0 0.0 

Thailand 0.4 0.4 1.7 1.8 7.0 6.8 52.5 53.1 38.3 37.9 

Timor-Leste 6.7 8.1 80.3 80.3 13.0 11.7 0.0 0.0 0.0 0.0 

Viet Nam 0.2 0.2 0.9 0.9 4.9 4.2 42.7 42.8 51.3 52.0 
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Table S6.  Percentage of population-at-risk (PAR) areas categorized by PAR values for each country under baseline (BL) and new infrastructure 

(NI) scenarios. Risk level categories are determined by the geometric intervals of the PAR values. Cells are color-coded to represent the 

percentage of coverage for each risk category, indicating the respective country’s risk level in each scenario. 

 Risk Level Category Percentages 

Country Low Moderately Low High Moderately High Highest 

 
BL NI BL NI BL NI BL NI BL NI 

Afghanistan 0.0 0.0 0.6 0.6 2.8 2.9 95.0 94.9 1.7 1.6 

Bangladesh 0.0 0.0 0.0 0.0 0.0 0.0 24.9 26.5 75.1 73.4 

Bhutan 0.3 0.3 8.5 7.0 17.1 14.1 61.0 60.3 13.2 18.3 

Brunei Darussalam 20.3 18.5 35.9 38.8 14.4 16.4 21.0 21.9 8.4 4.3 

Cambodia 0.2 0.2 10.3 10.0 12.6 12.5 68.0 68.4 8.9 9.0 

China 0.1 0.1 4.0 3.4 7.7 7.9 51.8 55.2 36.5 33.4 

India 0.7 0.7 5.2 4.9 6.5 6.5 41.0 43.6 46.5 44.2 

Indonesia 1.3 1.1 19.8 19.1 19.1 19.5 48.4 50.1 11.5 10.1 

Laos 0.3 0.3 4.9 4.5 10.2 10.4 68.1 69.7 16.5 15.1 

Malaysia 3.5 2.6 20.6 22.3 16.4 16.8 52.3 53.0 7.2 5.3 

Myanmar 0.4 0.4 7.2 6.9 7.7 7.8 64.0 65.2 20.7 19.8 

Nepal 0.0 0.0 1.2 1.3 3.6 3.9 40.4 43.4 54.8 51.4 

Pakistan 0.0 0.0 0.3 0.3 1.2 1.4 32.7 35.3 65.8 63.0 

Papua New Guinea 1.3 1.2 41.5 39.8 30.3 30.2 26.1 28.3 0.8 0.6 

Philippines 0.0 0.0 4.1 3.4 8.2 8.2 61.1 65.6 26.6 22.8 

Singapore 0.0 0.0 0.0 0.0 0.0 6.7 13.9 53.3 86.1 40.0 

Sri Lanka 0.1 0.1 0.4 0.8 1.3 1.9 16.0 27.1 82.2 70.1 

Taiwan 0.1 0.1 19.6 16.1 31.3 37.2 39.9 42.2 9.1 4.4 

Thailand 0.0 0.0 0.4 0.5 1.7 1.8 54.5 56.2 43.3 41.6 

Timor-Leste 0.0 0.0 0.5 0.7 17.5 20.2 74.3 74.1 7.7 5.0 

Viet Nam 0.0 0.0 0.0 0.0 0.3 0.2 23.6 23.4 76.0 76.4 
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Table S7. Percentage of pandemic spread risk areas categorized by pandemic spread risk values for each country under baseline (BL) and new 

infrastructure (NI) scenarios. Risk level categories are determined by the geometric intervals of the pandemic spread risk values. Cells are color-

coded to represent the percentage of coverage for each risk category, indicating the respective country’s risk level in each scenario. 

 Risk Level Category Percentages 

Country Low Moderately Low High Moderately High Highest 

 
BL NI BL NI BL NI BL NI BL NI 

Afghanistan 99.90 99.90 0.03 0.03 0.03 0.00 0.03 0.07 0.00 0.00 

Bangladesh 38.31 34.51 5.10 4.42 26.06 20.77 30.35 40.17 0.19 0.12 

Bhutan 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Brunei Darussalam 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cambodia 99.89 100.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

China 97.32 99.38 1.45 0.22 0.98 0.25 0.25 0.15 0.01 0.01 

India 88.94 85.63 3.51 4.04 5.54 7.13 1.98 3.16 0.03 0.04 

Indonesia 99.88 99.92 0.01 0.01 0.06 0.04 0.05 0.03 0.00 0.00 

Laos 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Malaysia 99.82 99.85 0.00 0.00 0.09 0.06 0.09 0.09 0.00 0.00 

Myanmar 99.95 99.96 0.01 0.00 0.03 0.00 0.01 0.04 0.00 0.00 

Nepal 99.58 99.42 0.00 0.05 0.21 0.27 0.16 0.27 0.05 0.00 

Pakistan 97.01 95.72 1.43 1.48 1.28 2.44 0.25 0.32 0.03 0.03 

Papua New Guinea 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Philippines 99.84 99.87 0.00 0.03 0.10 0.07 0.06 0.03 0.00 0.00 

Singapore 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sri Lanka 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Taiwan 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thailand 99.58 99.74 0.09 0.02 0.13 0.07 0.18 0.16 0.02 0.00 

Timor-Leste 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Viet Nam 98.76 99.55 0.65 0.20 0.37 0.11 0.20 0.11 0.03 0.03 
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Figure S2. Map of pandemic spread risk in tropical east Asia under baseline + new infrastructure scenario 
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Figure S3. Map of tropical east Asia depicting eRIDE hotspots using the species-area relationship to estimate 

biodiversity values within each forest patch.
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Table S8. Percentage of risk areas for each country categorized using eRIDE values under baseline (BL) and new infrastructure scenarios (BL + 

NI), with scenario comparison 

 
Country Low Risk Moderately Low Risk High Risk Moderately High Risk Highest Risk 

 
BL BL+NI Change BL BL+NI Change BL BL+NI Change BL BL+NI Change BL BL+NI Change 

Afghanistan 10.2 10.0 0.1 68.4 68.7 0.4 21.5 21.2 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Bangladesh 2.5 2.4 0.1 4.4 3.7 -0.7 16.0 17.9 2.0 70.9 69.8 -1.1 6.2 6.1 -0.1 

Bhutan 3.9 1.8 2.1 24.2 15.3 -8.8 47.0 36.6 -10.3 24.3 41.3 17.0 0.7 4.9 4.2 

Brunei Darussalam 8.4 9.0 -0.6 23.4 17.3 -6.0 52.6 52.8 0.2 15.6 20.9 5.2 0.0 0.0 0.0 

Cambodia 0.7 0.7 0.0 3.4 3.4 0.0 12.6 12.2 -0.4 47.7 45.5 -2.2 35.6 38.2 2.6 

China 5.8 3.9 1.9 33.5 35.3 1.8 22.9 23.3 0.4 25.9 27.2 1.4 12.0 10.3 -1.7 

India 3.3 3.1 0.2 17.9 17.1 -0.9 28.9 26.9 -2.0 42.5 45.0 2.5 7.4 8.0 0.6 

Indonesia 21.6 15.8 5.8 39.2 41.5 2.3 28.4 31.4 3.0 10.8 11.3 0.5 0.0 0.0 0.0 

Laos 0.2 0.2 0.0 1.1 1.0 -0.1 5.0 4.4 -0.6 37.1 36.5 -0.6 56.5 57.8 1.3 

Malaysia 12.6 10.2 2.4 18.8 19.2 0.4 37.1 38.7 1.6 30.4 30.8 0.4 1.0 1.0 0.0 

Myanmar 1.7 1.6 0.1 8.0 7.4 -0.5 16.4 15.2 -1.2 52.5 54.4 1.8 21.4 21.4 0.0 

Nepal 0.9 1.0 0.0 23.6 24.7 1.2 33.9 35.4 1.5 34.0 32.7 -1.2 7.6 6.1 -1.5 

Pakistan 4.9 5.6 -0.8 35.0 37.0 2.0 47.2 48.0 0.8 13.0 9.4 -3.6 0.0 0.0 0.0 

Papua New Guinea 43.2 36.7 6.5 55.1 61.1 6.0 1.7 2.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 

Philippines 2.8 1.8 1.0 12.0 10.8 -1.2 58.0 60.8 2.8 27.2 26.6 -0.6 0.0 0.0 0.0 

Sri Lanka 3.1 5.8 -2.8 16.9 22.3 5.5 79.9 71.8 -8.1 0.2 0.0 -0.2 0.0 0.0 0.0 

Taiwan 5.5 2.9 2.7 49.9 41.2 -8.7 44.6 56.0 11.4 0.0 0.0 0.0 0.0 0.0 0.0 

Thailand 0.4 0.4 0.0 1.7 1.8 0.1 7.0 6.8 -0.2 52.5 53.1 0.6 38.3 37.9 -0.4 

Timor-Leste 6.7 8.1 -1.4 80.3 80.3 0.0 13.0 11.7 -1.4 0.0 0.0 0.0 0.0 0.0 0.0 

Viet Nam 0.2 0.2 0.0 0.9 0.9 0.0 4.9 4.2 -0.8 42.7 42.8 0.1 51.3 52.0 0.7 
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Table S9. Percentage of risk areas for each country categorized using PAR values under baseline (BL) and new infrastructure scenarios (BL + NI), 

with scenario comparison 
Country Low Risk Moderately Low Risk High Risk Moderately High Risk Highest Risk 

 
BL BL+NI Change BL BL+NI Change BL BL+NI Change BL BL+NI Change BL BL+NI Change 

Afghanistan 0.0 0.0 0.0 0.6 0.6 0.0 2.8 2.9 0.1 95.0 94.9 0.0 1.7 1.6 -0.1 

Bangladesh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.9 26.5 1.7 75.1 73.4 -1.7 

Bhutan 0.3 0.3 0.0 8.5 7.0 -1.5 17.1 14.1 -3.0 61.0 60.3 -0.7 13.2 18.3 5.1 

Brunei Darussalam 20.3 18.5 -1.8 35.9 38.8 2.9 14.4 16.4 2.0 21.0 21.9 0.9 8.4 4.3 -4.0 

Cambodia 0.2 0.2 0.0 10.3 10.0 -0.3 12.6 12.5 -0.2 68.0 68.4 0.4 8.9 9.0 0.1 

China 0.1 0.1 0.0 4.0 3.4 -0.6 7.7 7.9 0.2 51.8 55.2 3.4 36.5 33.4 -3.0 

India 0.7 0.7 0.0 5.2 4.9 -0.3 6.5 6.5 0.0 41.0 43.6 2.6 46.5 44.2 -2.3 

Indonesia 1.3 1.1 -0.2 19.8 19.1 -0.7 19.1 19.5 0.4 48.4 50.1 1.8 11.5 10.1 -1.3 

Laos 0.3 0.3 0.0 4.9 4.5 -0.4 10.2 10.4 0.1 68.1 69.7 1.6 16.5 15.1 -1.4 

Malaysia 3.5 2.6 -0.8 20.6 22.3 1.7 16.4 16.8 0.4 52.3 53.0 0.6 7.2 5.3 -1.9 

Myanmar 0.4 0.4 0.0 7.2 6.9 -0.3 7.7 7.8 0.1 64.0 65.2 1.1 20.7 19.8 -0.9 

Nepal 0.0 0.0 0.0 1.2 1.3 0.1 3.6 3.9 0.3 40.4 43.4 2.9 54.8 51.4 -3.3 

Pakistan 0.0 0.0 0.0 0.3 0.3 0.0 1.2 1.4 0.2 32.7 35.3 2.6 65.8 63.0 -2.8 

Papua New Guinea 1.3 1.2 -0.1 41.5 39.8 -1.7 30.3 30.2 -0.2 26.1 28.3 2.3 0.8 0.6 -0.2 

Philippines 0.0 0.0 0.0 4.1 3.4 -0.7 8.2 8.2 0.0 61.1 65.6 4.5 26.6 22.8 -3.8 

Sri Lanka 0.1 0.1 0.0 0.4 0.8 0.3 1.3 1.9 0.6 16.0 27.1 11.1 82.2 70.1 -12.0 

Taiwan 0.1 0.1 0.0 19.6 16.1 -3.5 31.3 37.2 5.8 39.9 42.2 2.3 9.1 4.4 -4.6 

Thailand 0.0 0.0 0.0 0.4 0.5 0.0 1.7 1.8 0.0 54.5 56.2 1.7 43.3 41.6 -1.7 

Timor-Leste 0.0 0.0 0.0 0.5 0.7 0.1 17.5 20.2 2.7 74.3 74.1 -0.2 7.7 5.0 -2.7 

Viet Nam 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 -0.1 23.6 23.4 -0.2 76.0 76.4 0.3 
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Table S10. Percentage of risk areas for each country categorized using pandemic spread risk values under baseline (BL) and new infrastructure 

scenarios (BL + NI), with scenario comparison 
Country Low Risk Moderately Low Risk High Risk Moderately High Risk Highest Risk 

 
BL BL+NI Change BL BL+

NI 

Chang

e 

BL BL+N

I 

Chang

e 

BL BL+N

I 

Chang

e 

BL BL+

NI 

Change 

Afghanistan 99.90 99.90 0.00 0.03 0.03 0.00 0.03 0.00 -0.03 0.03 0.07 0.03 0.00 0.00 0.00 

Bangladesh 38.31 34.51 -3.79 5.10 4.42 -0.68 26.0

6 

20.77 -5.29 30.3

5 

40.17 9.83 0.19 0.12 -0.06 

Bhutan 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Brunei 

Darussalam 

100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cambodia 99.89 100.00 0.11 0.11 0.00 -0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

China 97.32 99.38 2.06 1.45 0.22 -1.22 0.98 0.25 -0.73 0.25 0.15 -0.10 0.01 0.01 -0.01 

India 88.94 85.63 -3.31 3.51 4.04 0.53 5.54 7.13 1.59 1.98 3.16 1.17 0.03 0.04 0.01 

Indonesia 99.88 99.92 0.04 0.01 0.01 0.01 0.06 0.04 -0.02 0.05 0.03 -0.02 0.00 0.00 0.00 

Laos 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Malaysia 99.82 99.85 0.03 0.00 0.00 0.00 0.09 0.06 -0.03 0.09 0.09 0.00 0.00 0.00 0.00 

Myanmar 99.95 99.96 0.01 0.01 0.00 -0.01 0.03 0.00 -0.03 0.01 0.04 0.03 0.00 0.00 0.00 

Nepal 99.58 99.42 -0.16 0.00 0.05 0.05 0.21 0.27 0.05 0.16 0.27 0.11 0.05 0.00 -0.05 

Pakistan 97.01 95.72 -1.29 1.43 1.48 0.06 1.28 2.44 1.16 0.25 0.32 0.07 0.03 0.03 0.00 

Papua New 

Guinea 

100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Philippines 99.84 99.87 0.03 0.00 0.03 0.03 0.10 0.07 -0.03 0.06 0.03 -0.03 0.00 0.00 0.00 

Sri Lanka 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Taiwan 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thailand 99.58 99.74 0.16 0.09 0.02 -0.07 0.13 0.07 -0.05 0.18 0.16 -0.02 0.02 0.00 -0.02 

Timor-Leste 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Viet Nam 98.76 99.55 0.79 0.65 0.20 -0.45 0.37 0.11 -0.25 0.20 0.11 -0.08 0.03 0.03 0.00 

 

 
 


