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Abstract 36 

Biological differences between males and females are pervasive. Researchers often focus on sex 37 

differences in the mean or, occasionally, in variation, albeit other measures can be useful for 38 

biomedical and biological research. For instance, differences in skewness (asymmetry of a 39 

distribution), kurtosis (heaviness of a distribution’s tails), and correlation (relationship between 40 

two variables) might be crucial to improve medical diagnosis and to understand natural processes. 41 

Yet, there are currently no meta-analytic ways to measure differences in these metrics between 42 

two groups. We propose three effect size statistics to fill this gap: Δsk, Δku, and ΔZr, which 43 

measure differences in skewness, kurtosis, and correlation, respectively. Besides presenting the 44 

rationale for the calculation of these effect size statistics, we conducted a simulation to explore 45 

their properties and used a large dataset of mice traits to illustrate their potential. For example, in 46 

our case study, we found that females show, on average, a greater correlation between fat mass 47 

and heart weight than males. Although calculating Δsk, Δku, and ΔZr will require large sample 48 

sizes of individual data, technological advancements in data collection create increase 49 

opportunities to use these effect size statistics. Importantly, Δsk, Δku, and ΔZr can be used to 50 

compare any two groups, allowing a new generation of meta-analyses that explore such differences 51 

and potentially leading to new insights in multiple fields of study. 52 
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Background 56 

Sex is a biological attribute that can strongly impact organisms’ traits, with differences between 57 

males and females being central to questions in the biological sciences (e.g., [1,2]). In contrast, 58 

biomedical research has primarily focused on male subjects [3], posing a danger to female health 59 

[4,5]. Aware of these issues, the US National Institutes of Health and other health agencies have 60 

demanded using multiple sexes in animal studies when possible [6]. As a consequence, the number 61 

of biological and biomedical studies using both female and male animals as research subjects has 62 

increased in the last decade [7], leading to the accumulation of data that can be used to synthesise 63 

and quantify sex differences across biological domains. 64 

Realising the accumulation of sex-specific data, many perspective pieces have encouraged 65 

researchers to investigate sex differences more carefully (e.g., [8–10]). Yet, some of these pieces, 66 

and most of the biological literature, focus exclusively on mean differences between males and 67 

females. A fixation on mean differences has been present for a long time in science because 68 

researchers tend to focus on dimorphism in trait averages (e.g., [11]), lack sufficiently powerful 69 

data, or have limited statistical tools available (or difficulty to use them). Yet, measures such as 70 

variance, correlation, skewness, and kurtosis can be critical to understanding sex differences. For 71 

example, certain traits in mice may exhibit no disparity in average values between sexes, but 72 

substantial differences emerge in terms of variability [12,13]. These differences could be more 73 

easily assessed because of an effect size statistic that measures differences in variability between 74 

two groups (proposed by [14]), illustrating how novel statistical tools can expand possible research 75 

questions and provide new scientific insights, such as identifying sex differences in trait selection 76 

or canalisation.  77 



Beyond variability, the relative shape of trait distributions to the normal distribution 78 

(measured by skewness and kurtosis, i.e. asymmetry of a distribution and heaviness of a 79 

distribution’s tails, respectively; Fig. 1A-B) can also be crucial to understanding ecological and 80 

evolutionary processes and patterns (e.g., [15–19]), as well as improving medical diagnostics (e.g., 81 

[20,21]). For instance, skewness can bias heritability estimates because evolutionary biologists 82 

assume that phenotypic components (genetic and environmental) are normally distributed [18]. 83 

Furthermore, kurtosis can be used to understand community assembly processes (e.g., [16]). 84 

Besides the shape of trait distributions, evolutionary biologists and quantitative geneticists can 85 

quantify correlation matrices to understand trait plasticity and evolvability (e.g., [22–24]), which 86 

could then be used for group comparisons (as in [25]; Fig. 1C). Although location-scale-shape 87 

models (e.g., [26–28]) may be used to explore between-group differences (e.g., males and females) 88 

in skewness, kurtosis, or within-group correlations, there are no effect size statistics that can easily 89 

measure such differences (but see also [29]).  90 

 91 

92 

Figure 1. Simulated trait distributions for two groups with different shapes (A: distinct skewness, 93 

B: distinct kurtosis), and different correlations between two traits for two groups (C). The data and 94 

code needed to generate this Figure can be found in https://zenodo.org/records/18386956. 95 

 96 



Here, we propose three new effect size statistics to evaluate between-group differences in 97 

skewness (Δsk), kurtosis (Δku), and correlation (ΔZr), key moments of a distribution that are 98 

usually unexplored. These effect size statistics will be valuable to explore sex differences but can 99 

also be applied in other fields of study and used to compare differences between any two groups 100 

of interest. Meta-analyses using these new effect sizes will create multiple avenues for novel 101 

biological enquiries. The present moment is particularly conducive for analyses using these new 102 

effect sizes because the individual-level data (e.g., individual participant data [30,31]) required for 103 

their calculation are increasingly available from new technological advances that allow faster data 104 

collection and sharing (e.g., automated phenotyping). 105 

 106 

Difference in skewness and kurtosis 107 

The mean and variance represent the first and second moments of a distribution, respectively. 108 

However, the third and fourth moments of a distribution (i.e. skewness and kurtosis, respectively) 109 

can also be valuable as they characterise the distribution’s shape. More specifically, skewness 110 

reflects the distribution's asymmetry around its mean. While positive skewness indicates an 111 

elongated right tail with an excess of high values, negative skewness suggests an elongated left 112 

tail with an excess of low values. This asymmetry can influence the interpretation of means and 113 

variation, as the mean tends to be larger than the median in positively skewed distributions, while 114 

the mean tends to be smaller than the median in negatively skewed distributions. Note that a 115 

perfectly normal distribution is symmetric (i.e. skewness = 0), where the mean is equal to the 116 

median. Sample skewness (sk) [32] can be expressed as: 117 
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where xi is a raw data value, x̄ is the sample mean, and n is the sample size. Skewness 119 

sampling variance (s2
sk) [32] can then be expressed as: 120 

𝑠𝑠𝑘
2 =

6𝑛(𝑛−1)

(𝑛−2)(𝑛+1)(𝑛+3)
 (eq. 2) 121 

On the other hand, kurtosis measures tail heaviness: high kurtosis distributions have 122 

heavier tails (i.e., proportionally more extreme values than central values), whereas low kurtosis 123 

distributions have lighter tails. For comparison, a normal distribution is expected to have kurtosis 124 

= 3. Sample excess kurtosis (ku) [32] can be expressed as: 125 
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 (eq. 3) 126 

with sampling variance (s2
ku) [32] as: 127 

𝑠𝑘𝑢
2 =

24𝑛(𝑛−1)2

(𝑛−3)(𝑛−2)(𝑛+3)(𝑛+5)
 (eq. 4) 128 

Evaluating skewness and kurtosis provides valuable insights into a variable distribution, 129 

which is crucial for interpreting means, assessing variability, and making informed decisions in 130 

statistical analyses. Although meta-analyses can use skewness (eq. 1) and kurtosis (eq. 3) to 131 

investigate single variables, effect size statistics that compare these metrics between two groups 132 

are lacking. Thus, we propose the difference between two groups in skewness (Δsk), expressed as: 133 

Δ𝑠𝑘 = 𝑠𝑘1 − 𝑠𝑘2 (eq. 5) 134 

 and its sampling variance (s2
Δsk) as: 135 

𝑠Δ𝑠𝑘
2 = 𝑠𝑠𝑘1

2 + 𝑠𝑠𝑘2
2 − 2ρ𝑠𝑘𝑠𝑠𝑘1𝑠𝑠𝑘2 (eq. 6) 136 

   Where ρsk represents the sampling correlation in skewness between the two groups (zero if 137 

assumed to be independent). Similarly, we propose the difference between two groups in kurtosis 138 

(Δku), expressed as: 139 

Δ𝑘𝑢 = 𝑘𝑢1 − 𝑘𝑢2 (eq. 7) 140 



and its sampling variance (s2
Δku) as: 141 

𝑠Δ𝑘𝑢
2 = 𝑠𝑘𝑢1

2 + 𝑠𝑘𝑢2
2 − 2ρ𝑘𝑢𝑠𝑘𝑢1𝑠𝑘𝑢2 (eq. 8) 142 

 where ρku represents the sampling correlation in kurtosis between the two groups (zero if 143 

assumed to be independent). 144 

However, we note that Equations 2 and 4 assume normality for sampling variances. When 145 

the underlying distributions are skewed or heavy-tailed, sampling error variances for skewness and 146 

kurtosis (Eqs. 2 and 4) and, by extension, for their between-group contrasts (Eqs. 5-8), can 147 

misestimate uncertainty. To assess robustness and to provide distribution-free alternatives, we 148 

complemented the analytic formulas with resampling-based estimators computed within each 149 

group and summed for the difference (i.e., jackknife [33]; see our simulation study below). 150 

  151 

Difference in correlation 152 

Numerous meta-analyses estimate the correlation between two variables (e.g., [34,35]). To do so, 153 

researchers use the effect size statistic Zr [36], which can be expressed as: 154 

𝑍𝑟 =
𝑙𝑛(

1+𝑟

1−𝑟
)

2
 (eq. 9) 155 

and its sampling variance (s2
Zr) [36] as: 156 

𝑠𝑍𝑟
2 =

1

𝑛−3
 (eq. 10) 157 

where r is Pearson's correlation coefficient between two variables and n is the sample size. 158 

 Although Zr alone remains extremely useful to test correlational hypotheses, researchers 159 

from all fields would benefit from being able to compare Zr values between two groups. Although 160 

Cohen [37] proposed the difference between two groups in Zr as q, he did not provide an equation 161 

to calculate its sampling variance. Consequently, this effect size statistic has not been used despite 162 



its potential. We therefore propose the difference between two groups in Zr with a new name 163 

(ΔZr), as: 164 

Δ𝑍𝑟 = 𝑍𝑟1 − 𝑍𝑟2 (eq. 11) 165 

 and its sampling variance (s2
ΔZr) as: 166 

𝑠Δ𝑍𝑟
2 = 𝑠𝑍𝑟1

2 + 𝑠𝑍𝑟2
2 − 2ρ𝑍𝑟𝑠𝑍𝑟1𝑠𝑍𝑟2 (eq. 12) 167 

 where ρZr represents the sampling correlation in Fisher’s Zr between the two groups (zero 168 

if assumed to be independent). 169 

 170 

Simulation study 171 

We conducted Monte-Carlo simulations to evaluate bias and variance estimation for our new effect 172 

sizes Δsk, Δku and ΔZr. For Δsk and Δku, we simulated independent samples for two groups from 173 

Pearson distributions with known moments using the rpearson function from the R package 174 

PearsonDS v. 1.3.2 [38]. We conducted two simulations: 1) by changing skewness between groups 175 

that involved moderate departures from normality in which group-specific skewness from sk ∈ 176 

{−1, −0.5, 0, 0.5, 1} and kurtosis was fixed at 3; 2) by holding skewness constant (sk = 0) while 177 

manipulating kurtosis from ku ∈ {2.5, 3, 4, 5, 6}. In all cases, we simulated scenarios where: (i) 178 

the variance between each group was the same (σ²₂ = σ²₁ = 1) or different (2σ²₂ versus σ²₁); (ii) the 179 

mean between the two groups was the same (u₂ = u₁ = 0) or different (u₂ = 5, u₁ = 0). For simplicity, 180 

we assumed equal sample sizes between groups with sample size varying from n ∈ {10, 20, …, 181 

100, 150, 500}. We created all unique combinations of the above scenarios resulting in 1,200 182 

independent scenarios (when considering each of the 100 scenarios at each sample size). We 183 

estimated Δsk and Δku for each scenario using formulas for within-group sample skewness with 184 

small-sample correction (Eq. 1) and excess kurtosis with small-sample correction (Eq. 3) to 185 



estimate point estimates. To estimate associated sampling variance for Δsk and Δku we used the 186 

analytical variance estimators derived here (Eqs. 2 and 4) and an associated re-sampling 187 

(jackknife) approach to compute group sampling variances separately followed by pooling. 188 

Importantly, our simulations assume no correlation between groups. 189 

For ΔZr simulations, we simulated two groups each containing two variables with known 190 

correlations within each group. For ΔZr we drew bivariate normal data with target within-group 191 

correlations r ∈ {−0.8, −0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8} using the mvnorm function from the package 192 

MASS v. 7.3.61 [39]. Marginals were standard normal and group sizes varied from n ∈ {10, 20, 193 

…, 100, 150, 500}. We created all unique combinations of scenarios resulting in 768 unique 194 

scenarios. We estimated ΔZr using Fisher’s Z transformation Zr and calculating ΔZr as the 195 

difference of Zr across groups (Eqs. 9–11). Sampling variance for ΔZr used Eq. 10 and a jackknife 196 

approach. Again, we assumed no correlation between our groups. 197 

Note that our simulations did not explore differences in sample size between groups. 198 

However, many groups being compared in meta-analyses have the same or very similar sample 199 

size. Additionally, simulations often show relatively small impacts of unbalanced sample sizes 200 

[40,41], which is why we originally did not vary sample size between groups in our simulations. 201 

We resampled 2,500 times for each scenario across all simulations. Performance metrics 202 

were (a) bias of the point estimator, (b) relative bias of the sampling-variance estimator, (c) 203 

coverage (95%) and (d) Monte-Carlo standard errors (MCSEs). See supplementary material for 204 

full formulas. We also evaluated the performance of these effects for meta-analysis (see details in 205 

sections 8.4 and 9.4 of the supplementary material ). 206 

 207 

Simulation results 208 



In all cases, we found the Monte Carlo Sampling Error (MCSEs) to be low for all our performance 209 

metrics (range of MCSEs for Δsk: 0 to 0.01; Δku: 0 to 0.624; ΔZr: 0 to 0.004). Δsk, Δku, and ΔZr 210 

point estimators exhibited small sample bias with less than 20-30 samples, except for Δku, which 211 

showed this bias below n < 50-60, indicating effect sizes involving kurtosis are more challenging 212 

to estimate (Fig. S1, Fig. S2). Differences in the mean and variance between groups did not 213 

differentially affect bias (Fig. S3). Regardless, small sample biases were moderate, and there was 214 

rarely a consistent over or under-estimation in point estimates across the scenarios evaluated (Fig. 215 

S1). Bias-corrected jackknife estimates reduced the small-sample bias relative to analytical bias 216 

corrected-moment estimators (mean square bias [MSB], jackknife and analytical, for Δsk: 1.109, 217 

3.375; Δku 477.71, 891.659; ΔZr 0.029, 0.214). 218 

In contrast to point estimators, the effectiveness of sampling variance estimators for Δsk, 219 

Δku, and ΔZr varied. Analytical sampling variance formulas for Δsk and Δku were consistently 220 

biased (Fig. S4). Jackknife resampling when combined with analytical point estimates (Fig. 2) 221 

performed the best. Under these conditions, estimators performed well when n > 50. In contrast, 222 

the performance of sampling variance estimators for ΔZr was best when using the analytical 223 

formulas for both the point estimator and its associated sampling variance (Fig. 2). 224 

Coverage was close to nominal (95%) for Δsk and ΔZr across sample sizes (Fig. 2C, I). 225 

Coverage for Δku, however, was poor across many simulated scenarios (Fig. 2F). Increased sample 226 

size did not improve coverage. Poor coverage was the result of skewed sampling distributions from 227 

Jackknife approaches (Fig. S5, S6). At small sample sizes, Δku was estimated poorly when true 228 

Δku was high, leading to non-skewed distributions with good coverage. In contrast, large sample 229 

sizes improved point estimation of Δku when differences existed, but the sampling distribution 230 



became highly skewed leading to poor coverage (Fig. S5, S6). These problems stem from the fact 231 

that the standard error formula for kurtosis assumes normality (see [42]). 232 

Considering these simulation results, we suggest pairing the formula-based point 233 

estimators for skewness (Eq. 1) and kurtosis (Eq. 3) with jackknife standard errors for Δsk and 234 

Δku. For ΔZr, the standard analytic variance is recommended (Eqs. 9-12). This choice balances 235 

efficiency under normality with robustness to realistic deviations from it and aligns with our 236 

broader guidance to avoid very small group sizes for these statistics. Given the challenges in 237 

estimating Δku, and the poor properties of its sampling variance [42], we recommend weighted 238 

meta-analytic models using sample size instead of sampling variance (see supplementary material 239 

and [41]). 240 

 241 

 242 



Figure 2. Bias in Δsk, Δku and ΔZr effect estimates (A, D, G), relative bias in their sampling 243 

variance using jackknife-based approximation (B, E, H), and coverage of effect estimates (C, F, I) 244 

across simulations where samples ranged in group sample sizes between n ∈ {10, 20, ..., 100, 150, 245 

500}. A total of 100 simulated scenarios were assessed for Δsk and Δku whereas 64 simulated 246 

scenarios were assessed for ΔZr. We ran 2,500 simulations for each scenario. For simplicity, we 247 

only present results from our recommended point estimators and sampling variance estimators 248 

using jackknife. See supplementary material for full simulation results. The data and code needed 249 

to generate this Figure can be found in https://zenodo.org/records/18386956. 250 

 251 

Worked examples: sex differences in mice 252 

To illustrate the application of our proposed effect size statistics, we used data compiled by the 253 

International Mouse Phenotyping Consortium (IMPC, version 18.0; [43]; 254 

http://www.mousephenotype.org/). We examined differences between male and female mice in 255 

two pairs of traits from distinct functional domains: morphology (fat mass and heart weight) and 256 

physiology (glucose and total cholesterol). We selected these traits because they are widely 257 

understood traits, even by non-specialists, and had a large sample size (more than 10,000 258 

individuals measured). More specifically, we assessed differences between the sexes in mean 259 

(using the natural logarithm of the response ratio [44], hereby lnRR), variability (using the natural 260 

logarithm of the variance ratio [14], hereby lnVR), skewness (using Δsk), and kurtosis (using Δku) 261 

for each trait, as well as in the difference in correlation for each trait pair (using ΔZr). The IMPC 262 

dataset contains data from multiple phenotyping centres and mice strains, so we selected the ones 263 

with the most data points for our analyses here, computing the aforementioned effect size statistics 264 

separately for each one of them.  265 



We performed a meta-analysis for each effect size statistic to obtain a mean effect size for 266 

each trait (or pair of traits, in the case of ΔZr), using ‘effect size ID’, ‘phenotyping centre’, and 267 

‘mice strain’ as random factors in meta-analytical models (due to substantial heterogeneity, Table 268 

1). In the case of Δku, we fitted a weighted meta-analytic model using sample size instead of 269 

sampling variance (see previous sections and [41]). In all these analyses, positive effect sizes 270 

denoted a greater estimate (mean, variability, skewness, kurtosis, or correlation) for males than 271 

females. We conducted all statistical analyses in the software R 4.5.1 [45]. We used the functions 272 

moment_effects and cor_diff, which have been incorporated into the package orchaRd v. 2.1.3 273 

[46], to compute Δsk, Δku, and ΔZr. We fitted meta-analytical models using the rma.mv function 274 

from the package metafor v. 4.8-0 [47]. All methodological details and additional information can 275 

be found in our tutorial, athttps://pietropollo.github.io/new_effect_size_statistics/. 276 

 We found that males, on average, had greater fat mass and heart weight than females 277 

regardless of phenotyping centre and mice strain (Fig. 3A, B, F, G). The variability among 278 

individuals regarding these traits was also greater for males than for females, except for fat mass 279 

from one specific phenotyping centre and mice strain (Fig. 3C). By contrast, females had a similar 280 

skewness in fat mass and heart weight compared with males (Fig. 3D, I). However, Δsk values for 281 

fat mass and heart weight varied across phenotyping centres and mice strains, with negative and 282 

positive values present (Fig. 3D, I). Sex differences in kurtosis for fat mass and heart weight 283 

followed a very similar pattern to the one described for skewness: Δku values overlapping zero 284 

with some variation across individual effect sizes (Fig. 3E, J). Moreover, the correlation between 285 

fat mass and heart weight was, on average, greater for females than males (Fig. 4A, B). However, 286 

this difference in correlation was absent for some phenotyping centres and mice strains (Fig. 4A, 287 

B). 288 



We also found that male and female mice were, on average, similar in terms of blood 289 

glucose levels (Fig. 5A, B), although males had higher total cholesterol than females (Fig. 5F, G). 290 

We observed the same pattern regarding the variability of these traits: on average, the sexes were 291 

similarly variable in glucose (Fig 5C), but the variability of total cholesterol was greater in males 292 

than in females (Fig. 5H). Contrasting with morphological traits, sex differences in skewness and 293 

kurtosis were mostly absent (Fig. 5D, E, I, J). Lastly, males and females showed a similar 294 

relationship between glucose and total cholesterol, albeit this relationship was stronger for males 295 

than for females in some instances (Fig. 4C, D). 296 

 Our findings that females have, on average, lower (Fig. 3B, G), less variable (Fig. 3C, H), 297 

but similar skewness (Fig. 3D, I) and extreme values (kurtosis; Fig. 3E, I) of fat mass and heart 298 

weight compared with males may contribute to sex-related differences in the development of 299 

diseases associated with these traits and their biomarkers (e.g., QTc interval length [48]). 300 

Moreover, a stronger relationship between fat mass and heart weight in females than in males (Fig. 301 

4B) may represent a greater risk of cardiohypertrophy arising from obesity in the former compared 302 

with the latter [49]. Meanwhile, absent or less pronounced sex differences in glucose and total 303 

cholesterol (Fig. 4) may suggest other sources of variation may contribute to sex differences in the 304 

symptomology of diseases associated with these measurements (e.g., [50–52]). Characterising sex 305 

differences in biological traits, as we have done here, can provide new perspectives on 306 

evolutionary, ecological, and medical patterns, possibly improving healthcare and environmental 307 

interventions. 308 

 309 

Table 1. Heterogeneity estimates (I2) for each meta-analytical model fitted in our study. 310 

Trait(s) Effect size type I2
total I2

effect size ID I2
phenotyping center I2

strain 

Fat mass lnRR 97.69 97.69 < 0.01 < 0.01 



Fat mass lnVR 95.71 < 0.01 33.60 62.11 

Fat mass Δsk 75.61 9.82 < 0.01 65.80 

Fat mass Δku 85.81 < 0.01 < 0.01 85.81 

Heart weight lnRR 96.32 69.24 < 0.01 27.08 

Heart weight lnVR 87.15 87.15 < 0.01 < 0.01 

Heart weight Δsk 68.48 38.29 30.19 < 0.01 

Heart weight Δku 97.90 < 0.01 84.60 13.30 

Glucose lnRR 94.76 42.67 < 0.01 52.09 

Glucose lnVR 70.08 < 0.01 70.08 < 0.01 

Glucose Δsk 11.76 < 0.01 11.76 < 0.01 

Glucose Δku 3.60 < 0.01 1.21 2.14 

Total cholesterol lnRR 95.43 69.77 < 0.01 25.66 

Total cholesterol lnVR 94.70 84.86 < 0.01 9.84 

Total cholesterol Δsk < 0.01 < 0.01 < 0.01 < 0.01 

Total cholesterol Δku 68.94 < 0.01 68.63 0.31 

Fat mass and heart 

weight 
ΔZr 64.87 < 0.01 64.87 < 0.01 

Glucose and total 

cholesterol 
ΔZr 92.33 < 0.01 < 0.01 92.33 

 311 

 312 



 313 

Figure 3. Examples of morphological sex differences in mice (fat mass, A-E; heart weight, F-J) 314 

for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains 315 

(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and 316 

G-J (turquoise diamond) representing the mean effect size. A and F show distributions of these 317 

traits (scaled by subtracting the mean from each value and then dividing the result by the standard 318 

deviation) for males (black with dashed borders) and females (white with solid borders), with the 319 



sample size of females and males shown as Nf and Nm, respectively. Panels B-E and G-J show 320 

effect sizes (lnRR: natural logarithm of the response ratio; VR: variance ratio; Δsk: difference in 321 

skewness; Δku: difference in kurtosis), with their respective point estimate and 95% confidence 322 

interval stamped. The data and code needed to generate this Figure can be found in 323 

https://zenodo.org/records/18386956. 324 

 325 

 326 



 327 

Figure 4. Relationship between fat mass and heart weight (A, B) and glucose and total cholesterol 328 

(C, D) in mice. Panels A and C show these relationships (with variables scaled by subtracting the 329 

mean from each value and then dividing the result by the standard deviation) separately for males 330 

(dashed line) and females (solid line), each subpanel representing a different phenotyping centre 331 

and/or mice strain, with the sample size of females and males shown as Nf and Nm, respectively. 332 

Panels B and D then show differences in correlation (ΔZr) between males and females (point 333 

estimate and 95% confidence interval stamped), where each colour represents a distinct phenotype 334 

centre and each shape represents a distinct mice strain, with the bottom estimate in each panel 335 

(turquoise diamond) representing the mean effect size. Note that panels A and C contain individual 336 

data points, which may appear as background shading in cases with large sample sizes. The data 337 

and code needed to generate this Figure can be found in https://zenodo.org/records/18386956. 338 

 339 



 340 

Figure 5. Examples of physiological sex differences in mice (glucose, A-E; total cholesterol, F-J) 341 

for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains 342 

(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and 343 

G-J (turquoise diamond) representing the mean effect size. A and F show distributions of these 344 

traits (scaled by subtracting the mean from each value and then dividing the result by the standard 345 

deviation) for males (black with dashed borders) and females (white with solid borders), with the 346 



sample size of females and males shown as Nf and Nm, respectively. Panels B-E and G-J show 347 

effect sizes (lnRR: natural logarithm of the response ratio; VR: variance ratio; Δsk: difference in 348 

skewness; Δku: difference in kurtosis), with their respective point estimate and 95% confidence 349 

interval stamped. The data and code needed to generate this Figure can be found in 350 

https://zenodo.org/records/18386956. 351 

 352 

Limitations 353 

Despite the enormous potential of the effect size statistics we proposed here, they are not free of 354 

limitations. For instance, skewness and kurtosis (and therefore the difference in these estimates 355 

between two groups; i.e., Δsk and Δku, respectively) are more likely to become extreme with small 356 

sample sizes and with variables with few unique values, either because the variable is discrete or 357 

because it is naturally constant (e.g., number of vertebrae in mice). We thus recommend that 358 

researchers only compute Δsk and Δku for continuous variables with a minimum sample size of 359 

50 for each group (as shown in our simulations). Importantly, we found that Δku variance estimates 360 

can be biased in many situations, highlighting that exploring Δku should be a priority for future 361 

work. Because of this issue, meta-analysing Δku requires sample size-based weights instead of the 362 

standard sampling variance (see supplementary material and [41]). Lastly, although Δsk, Δku, and 363 

ΔZr can be calculated, respectively, from reported skewness, kurtosis, or within-group correlations 364 

for different samples, empirical studies rarely report these estimates. Therefore, calculating these 365 

effect sizes will probably require raw data, which, fortunately, are now becoming more readily 366 

available. 367 

 368 



Future opportunities 369 

The effect size statistics proposed in the present study can be useful across the life sciences, social 370 

sciences, and medicine. This is because skewness and kurtosis, and consequently differences 371 

between any two or more groups in these estimates (i.e., Δsk and Δku), may help researchers to 372 

understand epidemiological trends [53], genetic patterns relevant to medical diagnosis [20,21], 373 

disruptive selection on quantitative traits [54], body size patterns across individuals [55] and 374 

species [56], reproductive patterns [57], regime shifts in ecosystems [58], heritability [18], 375 

community assembly processes [16], and possibly many other topics. Meanwhile, comparisons 376 

regarding correlations have been used to explore memory processing during sleep [59], 377 

physiological patterns in patients with certain medical conditions [60], and selection patterns [22–378 

24], to name a few. Because ΔZr can be used in virtually any comparison between two groups of 379 

correlational data, the opportunities for its use are endless. Most importantly, Δsk, Δku, and ΔZr 380 

are unitless measures, so they can be meta-analysed to uncover patterns between two groups (e.g., 381 

males and females). Moreover, the growing availability of raw data and big data approaches, 382 

facilitated by technological advances, makes these effect size statistics particularly valuable for 383 

modern research. 384 
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confidence intervals for Δsk, Δku and ΔZr effect estimates across simulations where samples 442 

ranged in group sample sizes between n ∈ {10, 20, …, 100, 150, 500}. A total of 100 simulated 443 

scenarios were assessed for Δsk and Δku whereas 64 simulated scenarios were assessed for ΔZr. 444 

We ran 2,500 simulations for each scenario. The data and code needed to generate this Figure can 445 

be found in https://zenodo.org/records/18386956. Fig. S6. Example sampling distributions of three 446 
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in https://zenodo.org/records/18386956. (HTML) 449 
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