

1 **New approaches to meta-analyse differences in skewness, kurtosis, and correlation**

2 Pietro Pollo^{1,2*}, Szymon M. Drobniak^{1,3}, Hamed Haselimashhadi^{4#}, Małgorzata Lagisz^{1,5#}, Ayumi

3 Mizuno^{5#}, Laura A. B. Wilson^{6,7,8#}, Daniel W. A. Noble^{9‡}, Shinichi Nakagawa^{1,5‡*}

4

5 ¹ Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences,
6 University of New South Wales, Kensington, NSW, 2052, Australia

7 ² School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, 2308,
8 Australia

9 ³ Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków,
10 Poland

11 ⁴ European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK

12 ⁵ Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences
13 Building, Edmonton, AB T6G 2E9, Canada

14 ⁶ School of Archaeology and Anthropology, The Australian National University, Acton, ACT
15 2601, Australia

16 ⁷ School of Biological, Earth and Environmental Sciences, University of New South Wales,
17 Kensington, NSW 2052, Australia

18 ⁸ ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Research
19 School of Physics, The Australian National University, Acton, ACT 2601, Australia

20 ⁹ Division of Ecology and Evolution, Research School of Biology, The Australian National
21 University, Canberra, ACT, 2600, Australia

22

23 # These authors contributed equally and are listed alphabetically.

24 [‡] These authors share senior authorship.

25 * Corresponding authors: pietro_pollo@hotmail.com, snakagaw@ualberta.ca

26 **ORCID**

- 27 Pietro Pollo: <https://orcid.org/0000-0001-6555-5400>
- 28 Szymon M. Drobniak: <https://orcid.org/0000-0001-8101-6247>
- 29 Hamed Haselimashhadi: <https://orcid.org/0000-0001-7334-2421>
- 30 Małgorzata Lagisz: <https://orcid.org/0000-0002-3993-6127>
- 31 Ayumi Mizuno: <https://orcid.org/0000-0003-0822-5637>
- 32 Laura A. B. Wilson: <https://orcid.org/0000-0002-3779-8277>
- 33 Daniel W. A. Noble: <https://orcid.org/0000-0001-9460-8743>
- 34 Shinichi Nakagawa: <https://orcid.org/0000-0002-7765-5182>
- 35

36 **Abstract**

37 Biological differences between males and females are pervasive. Researchers often focus on sex
38 differences in the mean or, occasionally, in variation, albeit other measures can be useful for
39 biomedical and biological research. For instance, differences in skewness (asymmetry of a
40 distribution), kurtosis (heaviness of a distribution's tails), and correlation (relationship between
41 two variables) might be crucial to improve medical diagnosis and to understand natural processes.
42 Yet, there are currently no meta-analytic ways to measure differences in these metrics between
43 two groups. We propose three effect size statistics to fill this gap: Δsk , Δku , and ΔZr , which
44 measure differences in skewness, kurtosis, and correlation, respectively. Besides presenting the
45 rationale for the calculation of these effect size statistics, we conducted a simulation to explore
46 their properties and used a large dataset of mice traits to illustrate their potential. For example, in
47 our case study, we found that females show, on average, a greater correlation between fat mass
48 and heart weight than males. Although calculating Δsk , Δku , and ΔZr will require large sample
49 sizes of individual data, technological advancements in data collection create increase
50 opportunities to use these effect size statistics. Importantly, Δsk , Δku , and ΔZr can be used to
51 compare any two groups, allowing a new generation of meta-analyses that explore such differences
52 and potentially leading to new insights in multiple fields of study.

53

54 **Key-words:** covariance, individual participant meta-analysis, meta-regression, nonnormality,
55 normal distribution, sex characteristics

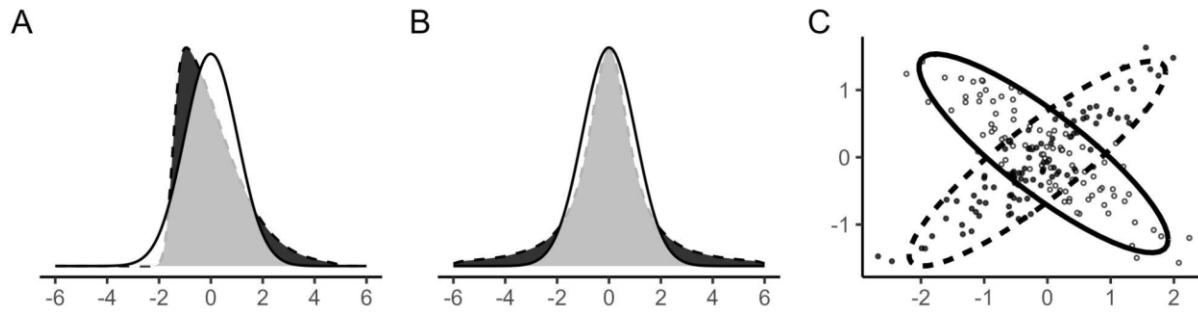
56 **Background**

57 Sex is a biological attribute that can strongly impact organisms' traits, with differences between
58 males and females being central to questions in the biological sciences (e.g., [1,2]). In contrast,
59 biomedical research has primarily focused on male subjects [3], posing a danger to female health
60 [4,5]. Aware of these issues, the US National Institutes of Health and other health agencies have
61 demanded using multiple sexes in animal studies when possible [6]. As a consequence, the number
62 of biological and biomedical studies using both female and male animals as research subjects has
63 increased in the last decade [7], leading to the accumulation of data that can be used to synthesise
64 and quantify sex differences across biological domains.

65 Realising the accumulation of sex-specific data, many perspective pieces have encouraged
66 researchers to investigate sex differences more carefully (e.g., [8–10]). Yet, some of these pieces,
67 and most of the biological literature, focus exclusively on mean differences between males and
68 females. A fixation on mean differences has been present for a long time in science because
69 researchers tend to focus on dimorphism in trait averages (e.g., [11]), lack sufficiently powerful
70 data, or have limited statistical tools available (or difficulty to use them). Yet, measures such as
71 variance, correlation, skewness, and kurtosis can be critical to understanding sex differences. For
72 example, certain traits in mice may exhibit no disparity in average values between sexes, but
73 substantial differences emerge in terms of variability [12,13]. These differences could be more
74 easily assessed because of an effect size statistic that measures differences in variability between
75 two groups (proposed by [14]), illustrating how novel statistical tools can expand possible research
76 questions and provide new scientific insights, such as identifying sex differences in trait selection
77 or canalisation.

78 Beyond variability, the relative shape of trait distributions to the normal distribution
79 (measured by skewness and kurtosis, i.e. asymmetry of a distribution and heaviness of a
80 distribution's tails, respectively; Fig. 1A-B) can also be crucial to understanding ecological and
81 evolutionary processes and patterns (e.g., [15–19]), as well as improving medical diagnostics (e.g.,
82 [20,21]). For instance, skewness can bias heritability estimates because evolutionary biologists
83 assume that phenotypic components (genetic and environmental) are normally distributed [18].
84 Furthermore, kurtosis can be used to understand community assembly processes (e.g., [16]).
85 Besides the shape of trait distributions, evolutionary biologists and quantitative geneticists can
86 quantify correlation matrices to understand trait plasticity and evolvability (e.g., [22–24]), which
87 could then be used for group comparisons (as in [25]; Fig. 1C). Although location-scale-shape
88 models (e.g., [26–28]) may be used to explore between-group differences (e.g., males and females)
89 in skewness, kurtosis, or within-group correlations, there are no effect size statistics that can easily
90 measure such differences (but see also [29]).

91



92
93 Figure 1. Simulated trait distributions for two groups with different shapes (A: distinct skewness,
94 B: distinct kurtosis), and different correlations between two traits for two groups (C). The data and
95 code needed to generate this Figure can be found in <https://zenodo.org/records/18386956>.

96

97 Here, we propose three new effect size statistics to evaluate between-group differences in
98 skewness (Δsk), kurtosis (Δku), and correlation (ΔZr), key moments of a distribution that are
99 usually unexplored. These effect size statistics will be valuable to explore sex differences but can
100 also be applied in other fields of study and used to compare differences between any two groups
101 of interest. Meta-analyses using these new effect sizes will create multiple avenues for novel
102 biological enquiries. The present moment is particularly conducive for analyses using these new
103 effect sizes because the individual-level data (e.g., individual participant data [30,31]) required for
104 their calculation are increasingly available from new technological advances that allow faster data
105 collection and sharing (e.g., automated phenotyping).

106

107 **Difference in skewness and kurtosis**

108 The mean and variance represent the first and second moments of a distribution, respectively.
109 However, the third and fourth moments of a distribution (i.e. skewness and kurtosis, respectively)
110 can also be valuable as they characterise the distribution's shape. More specifically, skewness
111 reflects the distribution's asymmetry around its mean. While positive skewness indicates an
112 elongated right tail with an excess of high values, negative skewness suggests an elongated left
113 tail with an excess of low values. This asymmetry can influence the interpretation of means and
114 variation, as the mean tends to be larger than the median in positively skewed distributions, while
115 the mean tends to be smaller than the median in negatively skewed distributions. Note that a
116 perfectly normal distribution is symmetric (i.e. skewness = 0), where the mean is equal to the
117 median. Sample skewness (sk) [32] can be expressed as:

$$118 \quad sk = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^3}{\left[\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \right]^{\frac{3}{2}}} \frac{\sqrt{n(n-1)}}{n-2} \quad (\text{eq. 1})$$

119 where x_i is a raw data value, \bar{x} is the sample mean, and n is the sample size. Skewness

120 sampling variance (s^2_{sk}) [32] can then be expressed as:

121
$$s^2_{sk} = \frac{6n(n-1)}{(n-2)(n+1)(n+3)} \text{ (eq. 2)}$$

122 On the other hand, kurtosis measures tail heaviness: high kurtosis distributions have

123 heavier tails (i.e., proportionally more extreme values than central values), whereas low kurtosis

124 distributions have lighter tails. For comparison, a normal distribution is expected to have kurtosis

125 = 3. Sample excess kurtosis (ku) [32] can be expressed as:

126
$$ku = \frac{n(n+1)(n-1)}{(n-2)(n-3)} \frac{\sum_{i=1}^n (x_i - \bar{x})^4}{[\sum_{i=1}^n (x_i - \bar{x})^2]^2} - \frac{3(n-1)^2}{(n-2)(n-3)} \text{ (eq. 3)}$$

127 with sampling variance (s^2_{ku}) [32] as:

128
$$s^2_{ku} = \frac{24n(n-1)^2}{(n-3)(n-2)(n+3)(n+5)} \text{ (eq. 4)}$$

129 Evaluating skewness and kurtosis provides valuable insights into a variable distribution,

130 which is crucial for interpreting means, assessing variability, and making informed decisions in

131 statistical analyses. Although meta-analyses can use skewness (eq. 1) and kurtosis (eq. 3) to

132 investigate single variables, effect size statistics that compare these metrics between two groups

133 are lacking. Thus, we propose the difference between two groups in skewness (Δsk), expressed as:

134
$$\Delta sk = sk_1 - sk_2 \text{ (eq. 5)}$$

135 and its sampling variance ($s^2_{\Delta sk}$) as:

136
$$s^2_{\Delta sk} = s^2_{sk_1} + s^2_{sk_2} - 2\rho_{sk} s_{sk_1} s_{sk_2} \text{ (eq. 6)}$$

137 Where ρ_{sk} represents the sampling correlation in skewness between the two groups (zero if

138 assumed to be independent). Similarly, we propose the difference between two groups in kurtosis

139 (Δku), expressed as:

140
$$\Delta ku = ku_1 - ku_2 \text{ (eq. 7)}$$

141 and its sampling variance ($s^2_{\Delta ku}$) as:

142
$$s^2_{\Delta ku} = s^2_{ku_1} + s^2_{ku_2} - 2\rho_{ku}s_{ku_1}s_{ku_2} \text{ (eq. 8)}$$

143 where ρ_{ku} represents the sampling correlation in kurtosis between the two groups (zero if

144 assumed to be independent).

145 However, we note that Equations 2 and 4 assume normality for sampling variances. When

146 the underlying distributions are skewed or heavy-tailed, sampling error variances for skewness and

147 kurtosis (Eqs. 2 and 4) and, by extension, for their between-group contrasts (Eqs. 5-8), can

148 misestimate uncertainty. To assess robustness and to provide distribution-free alternatives, we

149 complemented the analytic formulas with resampling-based estimators computed within each

150 group and summed for the difference (i.e., jackknife [33]; see our simulation study below).

151

152 **Difference in correlation**

153 Numerous meta-analyses estimate the correlation between two variables (e.g., [34,35]). To do so,

154 researchers use the effect size statistic Zr [36], which can be expressed as:

155
$$Zr = \frac{\ln\left(\frac{1+r}{1-r}\right)}{2} \text{ (eq. 9)}$$

156 and its sampling variance (s^2_{Zr}) [36] as:

157
$$s^2_{Zr} = \frac{1}{n-3} \text{ (eq. 10)}$$

158 where r is Pearson's correlation coefficient between two variables and n is the sample size.

159 Although Zr alone remains extremely useful to test correlational hypotheses, researchers

160 from all fields would benefit from being able to compare Zr values between two groups. Although

161 Cohen [37] proposed the difference between two groups in Zr as q , he did not provide an equation

162 to calculate its sampling variance. Consequently, this effect size statistic has not been used despite

163 its potential. We therefore propose the difference between two groups in Zr with a new name
164 (ΔZr) , as:

165
$$\Delta Zr = Zr_1 - Zr_2 \text{ (eq. 11)}$$

166 and its sampling variance ($s^2_{\Delta Zr}$) as:

167
$$s^2_{\Delta Zr} = s^2_{Zr_1} + s^2_{Zr_2} - 2\rho_{Zr} s_{Zr_1} s_{Zr_2} \text{ (eq. 12)}$$

168 where ρ_{Zr} represents the sampling correlation in Fisher's Zr between the two groups (zero
169 if assumed to be independent).

170

171 **Simulation study**

172 We conducted Monte-Carlo simulations to evaluate bias and variance estimation for our new effect
173 sizes Δsk , Δku and ΔZr . For Δsk and Δku , we simulated independent samples for two groups from
174 Pearson distributions with known moments using the *rpearson* function from the R package
175 *PearsonDS* v. 1.3.2 [38]. We conducted two simulations: 1) by changing skewness between groups
176 that involved moderate departures from normality in which group-specific skewness from $sk \in$
177 $\{-1, -0.5, 0, 0.5, 1\}$ and kurtosis was fixed at 3; 2) by holding skewness constant ($sk = 0$) while
178 manipulating kurtosis from $ku \in \{2.5, 3, 4, 5, 6\}$. In all cases, we simulated scenarios where: (i)
179 the variance between each group was the same ($\sigma^2_2 = \sigma^2_1 = 1$) or different ($2\sigma^2_2$ versus σ^2_1); (ii) the
180 mean between the two groups was the same ($u_2 = u_1 = 0$) or different ($u_2 = 5, u_1 = 0$). For simplicity,
181 we assumed equal sample sizes between groups with sample size varying from $n \in \{10, 20, \dots,$
182 $100, 150, 500\}$. We created all unique combinations of the above scenarios resulting in 1,200
183 independent scenarios (when considering each of the 100 scenarios at each sample size). We
184 estimated Δsk and Δku for each scenario using formulas for within-group sample skewness with
185 small-sample correction (Eq. 1) and excess kurtosis with small-sample correction (Eq. 3) to

186 estimate point estimates. To estimate associated sampling variance for Δsk and Δku we used the
187 analytical variance estimators derived here (Eqs. 2 and 4) and an associated re-sampling
188 (jackknife) approach to compute group sampling variances separately followed by pooling.
189 Importantly, our simulations assume no correlation between groups.

190 For ΔZr simulations, we simulated two groups each containing two variables with known
191 correlations within each group. For ΔZr we drew bivariate normal data with target within-group
192 correlations $r \in \{-0.8, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8\}$ using the *mvnorm* function from the package
193 *MASS* v. 7.3.61 [39]. Marginals were standard normal and group sizes varied from $n \in \{10, 20,$
194 $\dots, 100, 150, 500\}$. We created all unique combinations of scenarios resulting in 768 unique
195 scenarios. We estimated ΔZr using Fisher's Z transformation Zr and calculating ΔZr as the
196 difference of Zr across groups (Eqs. 9–11). Sampling variance for ΔZr used Eq. 10 and a jackknife
197 approach. Again, we assumed no correlation between our groups.

198 Note that our simulations did not explore differences in sample size between groups.
199 However, many groups being compared in meta-analyses have the same or very similar sample
200 size. Additionally, simulations often show relatively small impacts of unbalanced sample sizes
201 [40,41], which is why we originally did not vary sample size between groups in our simulations.

202 We resampled 2,500 times for each scenario across all simulations. Performance metrics
203 were (a) bias of the point estimator, (b) relative bias of the sampling-variance estimator, (c)
204 coverage (95%) and (d) Monte-Carlo standard errors (MCSEs). See supplementary material for
205 full formulas. We also evaluated the performance of these effects for meta-analysis (see details in
206 sections 8.4 and 9.4 of the supplementary material).

207

208 **Simulation results**

209 In all cases, we found the Monte Carlo Sampling Error (MCSEs) to be low for all our performance
210 metrics (range of MCSEs for Δsk : 0 to 0.01; Δku : 0 to 0.624; ΔZr : 0 to 0.004). Δsk , Δku , and ΔZr
211 point estimators exhibited small sample bias with less than 20-30 samples, except for Δku , which
212 showed this bias below $n < 50-60$, indicating effect sizes involving kurtosis are more challenging
213 to estimate (Fig. S1, Fig. S2). Differences in the mean and variance between groups did not
214 differentially affect bias (Fig. S3). Regardless, small sample biases were moderate, and there was
215 rarely a consistent over or under-estimation in point estimates across the scenarios evaluated (Fig.
216 S1). Bias-corrected jackknife estimates reduced the small-sample bias relative to analytical bias
217 corrected-moment estimators (mean square bias [MSB], jackknife and analytical, for Δsk : 1.109,
218 3.375; Δku 477.71, 891.659; ΔZr 0.029, 0.214).

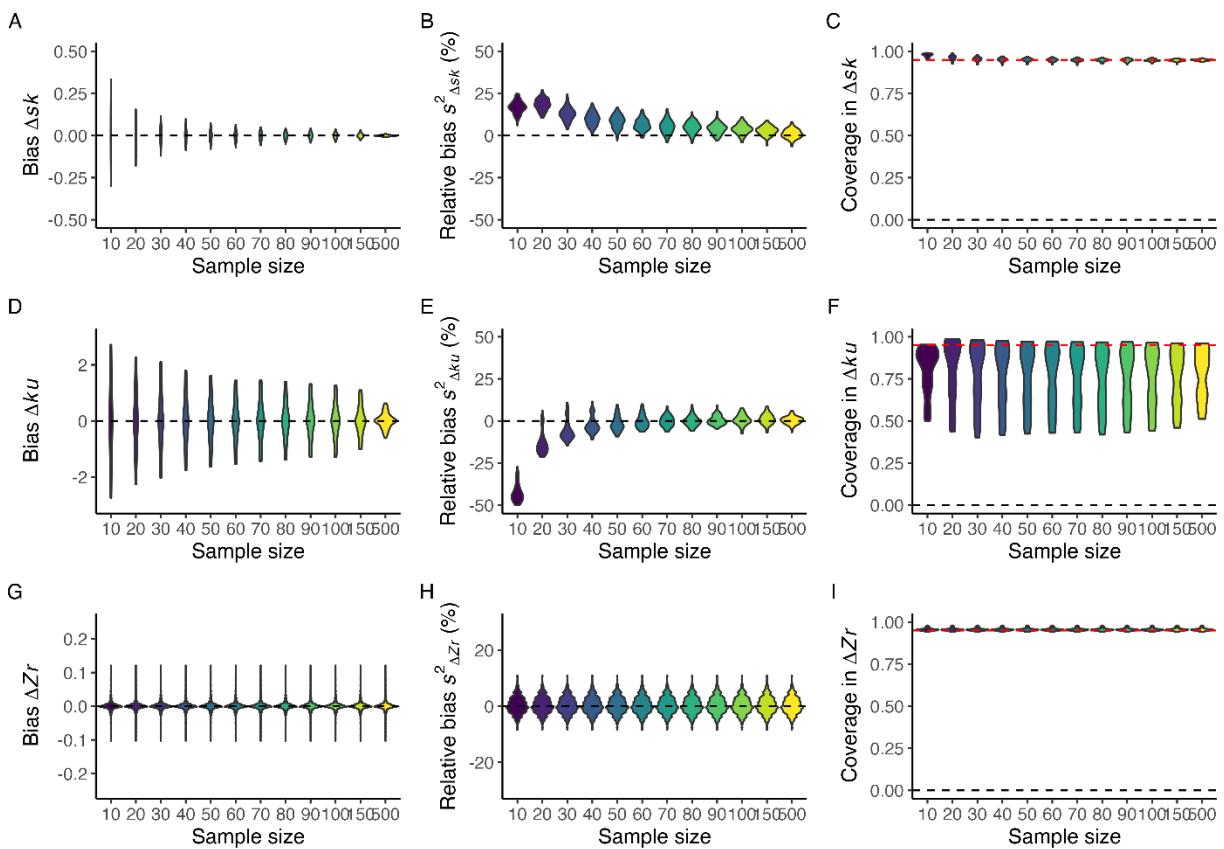
219 In contrast to point estimators, the effectiveness of sampling variance estimators for Δsk ,
220 Δku , and ΔZr varied. Analytical sampling variance formulas for Δsk and Δku were consistently
221 biased (Fig. S4). Jackknife resampling when combined with analytical point estimates (Fig. 2)
222 performed the best. Under these conditions, estimators performed well when $n > 50$. In contrast,
223 the performance of sampling variance estimators for ΔZr was best when using the analytical
224 formulas for both the point estimator and its associated sampling variance (Fig. 2).

225 Coverage was close to nominal (95%) for Δsk and ΔZr across sample sizes (Fig. 2C, I).
226 Coverage for Δku , however, was poor across many simulated scenarios (Fig. 2F). Increased sample
227 size did not improve coverage. Poor coverage was the result of skewed sampling distributions from
228 Jackknife approaches (Fig. S5, S6). At small sample sizes, Δku was estimated poorly when true
229 Δku was high, leading to non-skewed distributions with good coverage. In contrast, large sample
230 sizes improved point estimation of Δku when differences existed, but the sampling distribution

231 became highly skewed leading to poor coverage (Fig. S5, S6). These problems stem from the fact
 232 that the standard error formula for kurtosis assumes normality (see [42]).

233 Considering these simulation results, we suggest pairing the formula-based point
 234 estimators for skewness (Eq. 1) and kurtosis (Eq. 3) with jackknife standard errors for Δsk and
 235 Δku . For ΔZr , the standard analytic variance is recommended (Eqs. 9-12). This choice balances
 236 efficiency under normality with robustness to realistic deviations from it and aligns with our
 237 broader guidance to avoid very small group sizes for these statistics. Given the challenges in
 238 estimating Δku , and the poor properties of its sampling variance [42], we recommend weighted
 239 meta-analytic models using sample size instead of sampling variance (see supplementary material
 240 and [41]).

241



242

243 Figure 2. Bias in Δsk , Δku and ΔZr effect estimates (A, D, G), relative bias in their sampling
244 variance using jackknife-based approximation (B, E, H), and coverage of effect estimates (C, F, I)
245 across simulations where samples ranged in group sample sizes between $n \in \{10, 20, \dots, 100, 150,$
246 $500\}$. A total of 100 simulated scenarios were assessed for Δsk and Δku whereas 64 simulated
247 scenarios were assessed for ΔZr . We ran 2,500 simulations for each scenario. For simplicity, we
248 only present results from our recommended point estimators and sampling variance estimators
249 using jackknife. See supplementary material for full simulation results. The data and code needed
250 to generate this Figure can be found in <https://zenodo.org/records/18386956>.

251

252 **Worked examples: sex differences in mice**

253 To illustrate the application of our proposed effect size statistics, we used data compiled by the
254 International Mouse Phenotyping Consortium (IMPC, version 18.0; [43];
255 <http://www.mousephenotype.org/>). We examined differences between male and female mice in
256 two pairs of traits from distinct functional domains: morphology (fat mass and heart weight) and
257 physiology (glucose and total cholesterol). We selected these traits because they are widely
258 understood traits, even by non-specialists, and had a large sample size (more than 10,000
259 individuals measured). More specifically, we assessed differences between the sexes in mean
260 (using the natural logarithm of the response ratio [44], hereby $\ln RR$), variability (using the natural
261 logarithm of the variance ratio [14], hereby $\ln VR$), skewness (using Δsk), and kurtosis (using Δku)
262 for each trait, as well as in the difference in correlation for each trait pair (using ΔZr). The IMPC
263 dataset contains data from multiple phenotyping centres and mice strains, so we selected the ones
264 with the most data points for our analyses here, computing the aforementioned effect size statistics
265 separately for each one of them.

266 We performed a meta-analysis for each effect size statistic to obtain a mean effect size for
267 each trait (or pair of traits, in the case of ΔZr), using ‘effect size ID’, ‘phenotyping centre’, and
268 ‘mice strain’ as random factors in meta-analytical models (due to substantial heterogeneity, Table
269 1). In the case of Δku , we fitted a weighted meta-analytic model using sample size instead of
270 sampling variance (see previous sections and [41]). In all these analyses, positive effect sizes
271 denoted a greater estimate (mean, variability, skewness, kurtosis, or correlation) for males than
272 females. We conducted all statistical analyses in the software R 4.5.1 [45]. We used the functions
273 *moment_effects* and *cor_diff*, which have been incorporated into the package *orchard* v. 2.1.3
274 [46], to compute Δsk , Δku , and ΔZr . We fitted meta-analytical models using the *rma.mv* function
275 from the package *metafor* v. 4.8-0 [47]. All methodological details and additional information can
276 be found in our tutorial, at https://pietropollo.github.io/new_effect_size_statistics/.

277 We found that males, on average, had greater fat mass and heart weight than females
278 regardless of phenotyping centre and mice strain (Fig. 3A, B, F, G). The variability among
279 individuals regarding these traits was also greater for males than for females, except for fat mass
280 from one specific phenotyping centre and mice strain (Fig. 3C). By contrast, females had a similar
281 skewness in fat mass and heart weight compared with males (Fig. 3D, I). However, Δsk values for
282 fat mass and heart weight varied across phenotyping centres and mice strains, with negative and
283 positive values present (Fig. 3D, I). Sex differences in kurtosis for fat mass and heart weight
284 followed a very similar pattern to the one described for skewness: Δku values overlapping zero
285 with some variation across individual effect sizes (Fig. 3E, J). Moreover, the correlation between
286 fat mass and heart weight was, on average, greater for females than males (Fig. 4A, B). However,
287 this difference in correlation was absent for some phenotyping centres and mice strains (Fig. 4A,
288 B).

289 We also found that male and female mice were, on average, similar in terms of blood
290 glucose levels (Fig. 5A, B), although males had higher total cholesterol than females (Fig. 5F, G).
291 We observed the same pattern regarding the variability of these traits: on average, the sexes were
292 similarly variable in glucose (Fig 5C), but the variability of total cholesterol was greater in males
293 than in females (Fig. 5H). Contrasting with morphological traits, sex differences in skewness and
294 kurtosis were mostly absent (Fig. 5D, E, I, J). Lastly, males and females showed a similar
295 relationship between glucose and total cholesterol, albeit this relationship was stronger for males
296 than for females in some instances (Fig. 4C, D).

297 Our findings that females have, on average, lower (Fig. 3B, G), less variable (Fig. 3C, H),
298 but similar skewness (Fig. 3D, I) and extreme values (kurtosis; Fig. 3E, I) of fat mass and heart
299 weight compared with males may contribute to sex-related differences in the development of
300 diseases associated with these traits and their biomarkers (e.g., QTc interval length [48]).
301 Moreover, a stronger relationship between fat mass and heart weight in females than in males (Fig.
302 4B) may represent a greater risk of cardiohypertrophy arising from obesity in the former compared
303 with the latter [49]. Meanwhile, absent or less pronounced sex differences in glucose and total
304 cholesterol (Fig. 4) may suggest other sources of variation may contribute to sex differences in the
305 symptomology of diseases associated with these measurements (e.g., [50–52]). Characterising sex
306 differences in biological traits, as we have done here, can provide new perspectives on
307 evolutionary, ecological, and medical patterns, possibly improving healthcare and environmental
308 interventions.

309

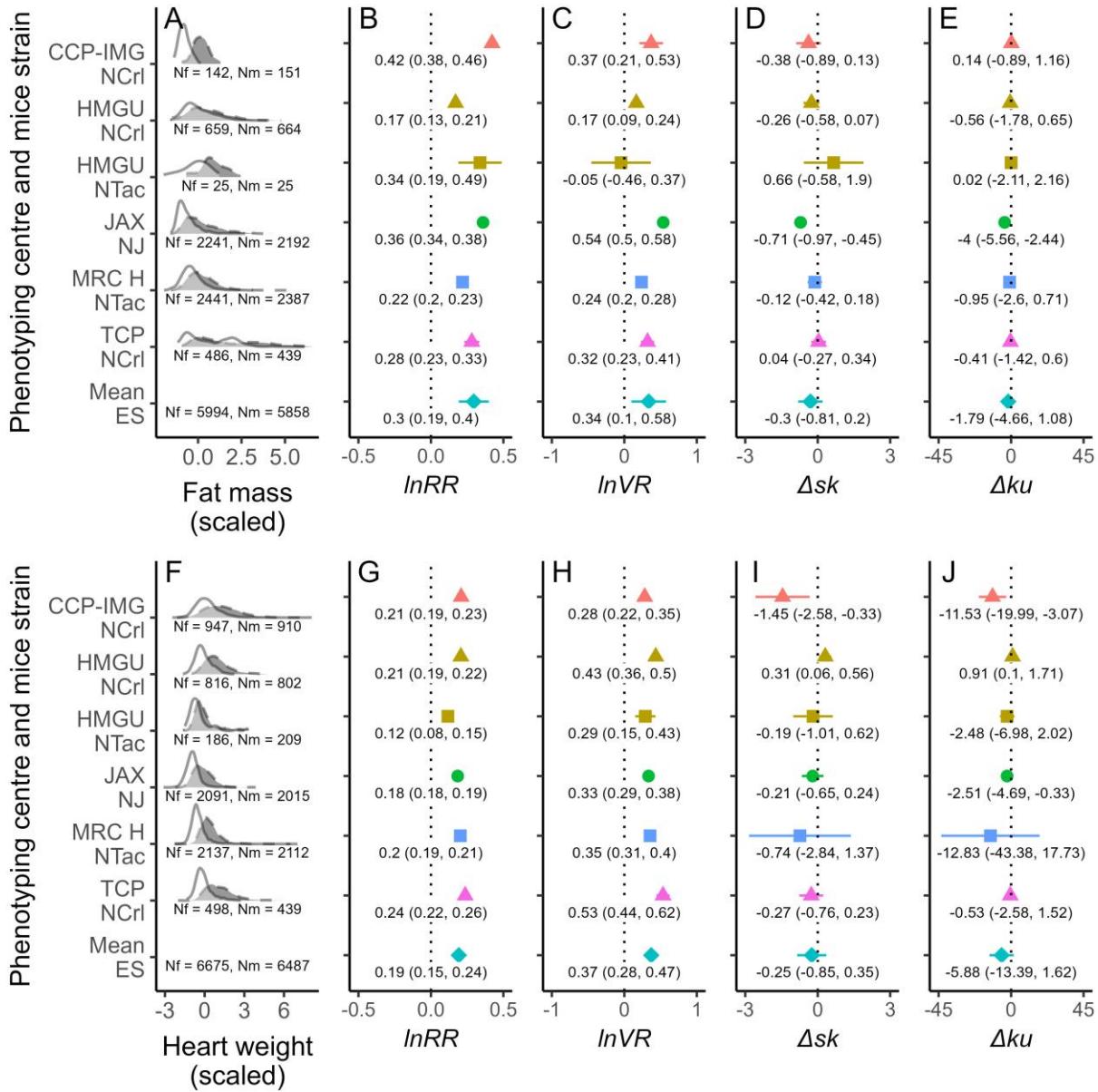
310 Table 1. Heterogeneity estimates (I^2) for each meta-analytical model fitted in our study.

Trait(s)	Effect size type	I^2_{total}	$I^2_{effect\ size\ ID}$	$I^2_{phenotyping\ center}$	I^2_{strain}
Fat mass	$lnRR$	97.69	97.69	< 0.01	< 0.01

Fat mass	$\ln VR$	95.71	< 0.01	33.60	62.11
Fat mass	Δsk	75.61	9.82	< 0.01	65.80
Fat mass	Δku	85.81	< 0.01	< 0.01	85.81
Heart weight	$\ln RR$	96.32	69.24	< 0.01	27.08
Heart weight	$\ln VR$	87.15	87.15	< 0.01	< 0.01
Heart weight	Δsk	68.48	38.29	30.19	< 0.01
Heart weight	Δku	97.90	< 0.01	84.60	13.30
Glucose	$\ln RR$	94.76	42.67	< 0.01	52.09
Glucose	$\ln VR$	70.08	< 0.01	70.08	< 0.01
Glucose	Δsk	11.76	< 0.01	11.76	< 0.01
Glucose	Δku	3.60	< 0.01	1.21	2.14
Total cholesterol	$\ln RR$	95.43	69.77	< 0.01	25.66
Total cholesterol	$\ln VR$	94.70	84.86	< 0.01	9.84
Total cholesterol	Δsk	< 0.01	< 0.01	< 0.01	< 0.01
Total cholesterol	Δku	68.94	< 0.01	68.63	0.31
Fat mass and heart weight	ΔZr	64.87	< 0.01	64.87	< 0.01
Glucose and total cholesterol	ΔZr	92.33	< 0.01	< 0.01	92.33

311

312

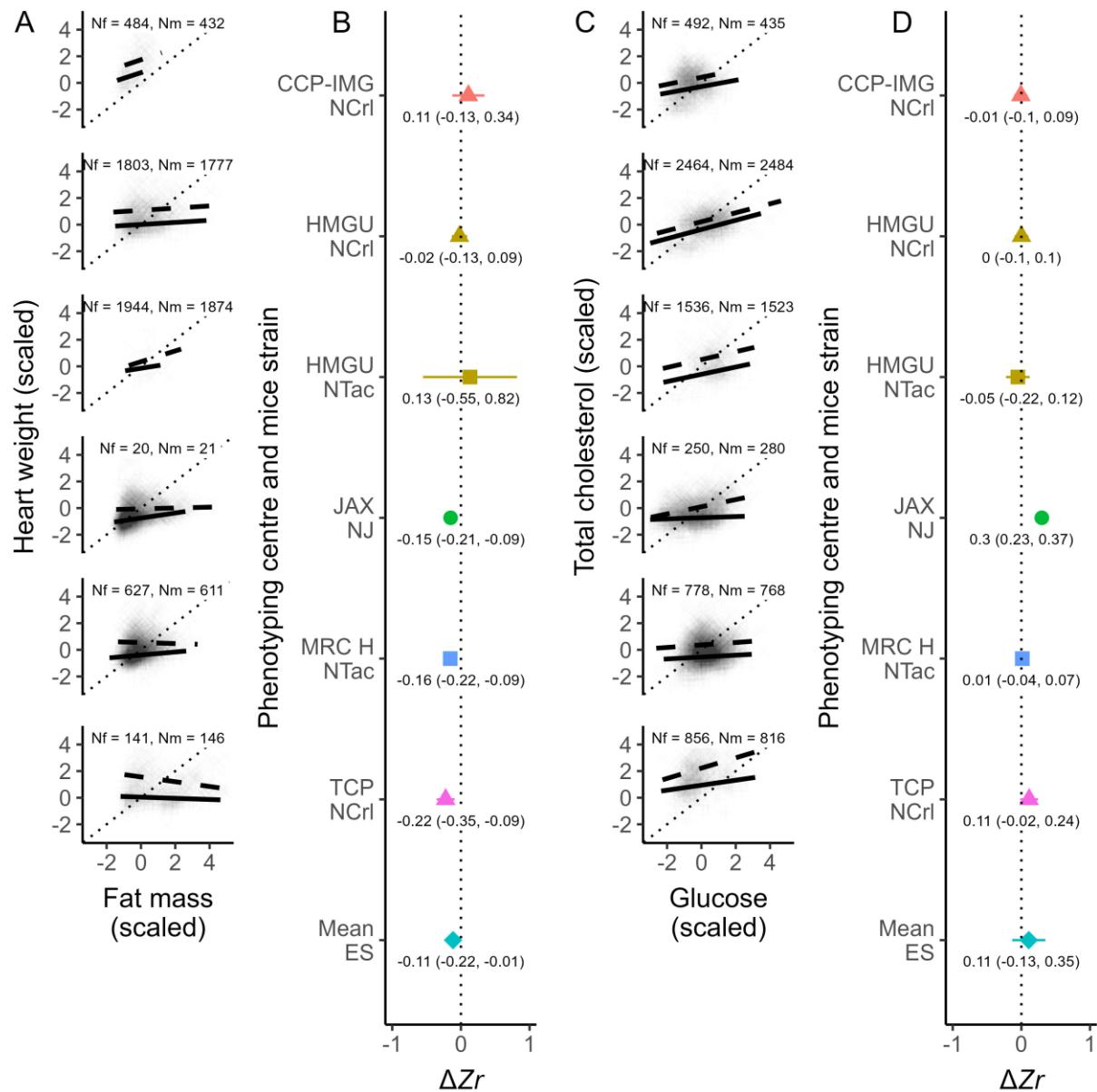


313

314 Figure 3. Examples of morphological sex differences in mice (fat mass, A-E; heart weight, F-J)
 315 for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains
 316 (each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and
 317 G-J (turquoise diamond) representing the mean effect size. A and F show distributions of these
 318 traits (scaled by subtracting the mean from each value and then dividing the result by the standard
 319 deviation) for males (black with dashed borders) and females (white with solid borders), with the

320 sample size of females and males shown as Nf and Nm, respectively. Panels B-E and G-J show
 321 effect sizes ($\ln RR$: natural logarithm of the response ratio; VR : variance ratio; Δsk : difference in
 322 skewness; Δku : difference in kurtosis), with their respective point estimate and 95% confidence
 323 interval stamped. The data and code needed to generate this Figure can be found in
 324 <https://zenodo.org/records/18386956>.

325

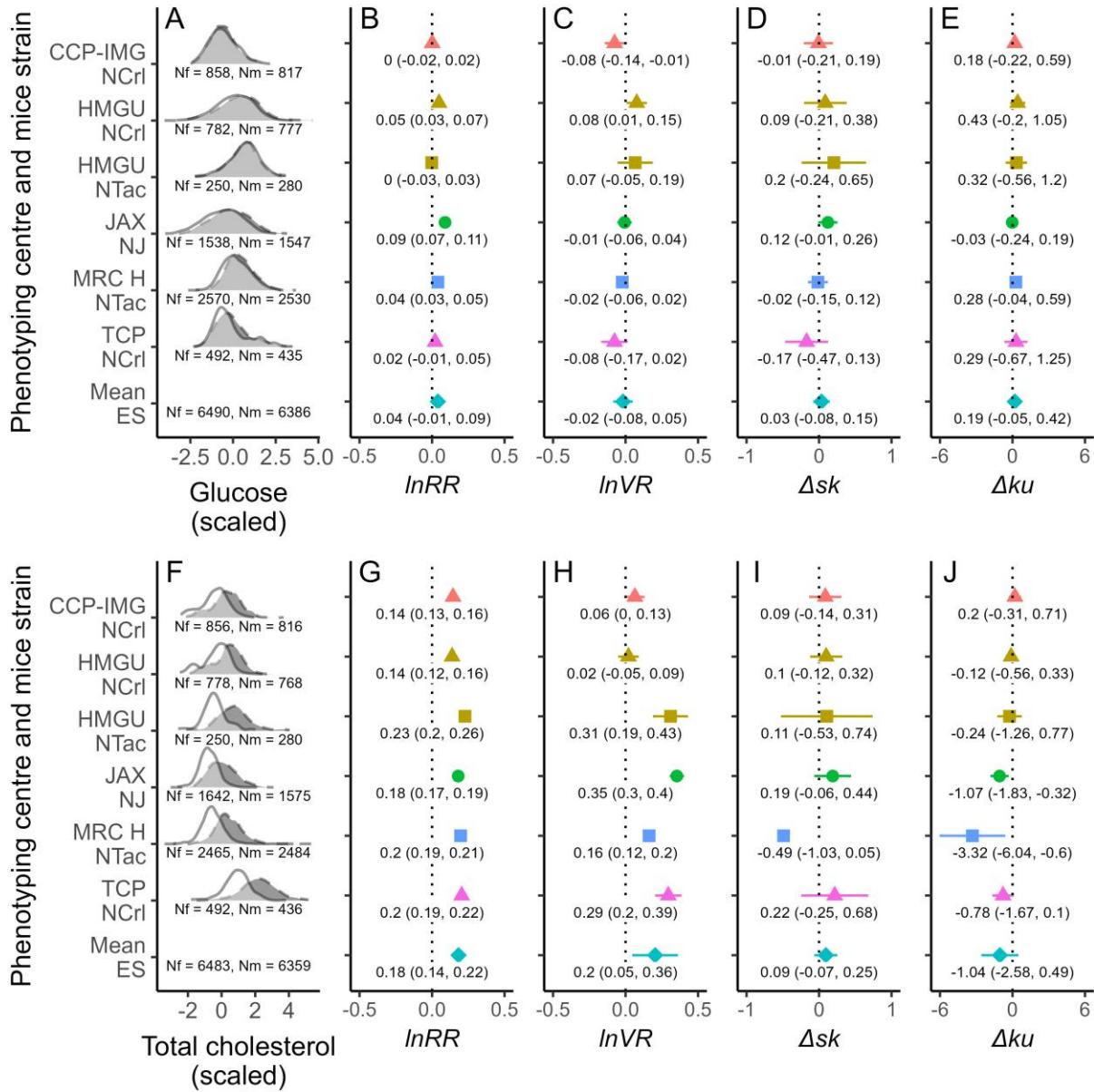


326

327

328 Figure 4. Relationship between fat mass and heart weight (A, B) and glucose and total cholesterol
329 (C, D) in mice. Panels A and C show these relationships (with variables scaled by subtracting the
330 mean from each value and then dividing the result by the standard deviation) separately for males
331 (dashed line) and females (solid line), each subpanel representing a different phenotyping centre
332 and/or mice strain, with the sample size of females and males shown as Nf and Nm, respectively.
333 Panels B and D then show differences in correlation (ΔZr) between males and females (point
334 estimate and 95% confidence interval stamped), where each colour represents a distinct phenotype
335 centre and each shape represents a distinct mice strain, with the bottom estimate in each panel
336 (turquoise diamond) representing the mean effect size. Note that panels A and C contain individual
337 data points, which may appear as background shading in cases with large sample sizes. The data
338 and code needed to generate this Figure can be found in <https://zenodo.org/records/18386956>.

339



340

341 Figure 5. Examples of physiological sex differences in mice (glucose, A-E; total cholesterol, F-J)
 342 for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains
 343 (each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and
 344 G-J (turquoise diamond) representing the mean effect size. A and F show distributions of these
 345 traits (scaled by subtracting the mean from each value and then dividing the result by the standard
 346 deviation) for males (black with dashed borders) and females (white with solid borders), with the

347 sample size of females and males shown as N_f and N_m , respectively. Panels B-E and G-J show
348 effect sizes ($\ln RR$: natural logarithm of the response ratio; VR : variance ratio; Δsk : difference in
349 skewness; Δku : difference in kurtosis), with their respective point estimate and 95% confidence
350 interval stamped. The data and code needed to generate this Figure can be found in
351 <https://zenodo.org/records/18386956>.

352

353 **Limitations**

354 Despite the enormous potential of the effect size statistics we proposed here, they are not free of
355 limitations. For instance, skewness and kurtosis (and therefore the difference in these estimates
356 between two groups; i.e., Δsk and Δku , respectively) are more likely to become extreme with small
357 sample sizes and with variables with few unique values, either because the variable is discrete or
358 because it is naturally constant (e.g., number of vertebrae in mice). We thus recommend that
359 researchers only compute Δsk and Δku for continuous variables with a minimum sample size of
360 50 for each group (as shown in our simulations). Importantly, we found that Δku variance estimates
361 can be biased in many situations, highlighting that exploring Δku should be a priority for future
362 work. Because of this issue, meta-analysing Δku requires sample size-based weights instead of the
363 standard sampling variance (see supplementary material and [41]). Lastly, although Δsk , Δku , and
364 ΔZr can be calculated, respectively, from reported skewness, kurtosis, or within-group correlations
365 for different samples, empirical studies rarely report these estimates. Therefore, calculating these
366 effect sizes will probably require raw data, which, fortunately, are now becoming more readily
367 available.

368

369 **Future opportunities**

370 The effect size statistics proposed in the present study can be useful across the life sciences, social
371 sciences, and medicine. This is because skewness and kurtosis, and consequently differences
372 between any two or more groups in these estimates (i.e., Δsk and Δku), may help researchers to
373 understand epidemiological trends [53], genetic patterns relevant to medical diagnosis [20,21],
374 disruptive selection on quantitative traits [54], body size patterns across individuals [55] and
375 species [56], reproductive patterns [57], regime shifts in ecosystems [58], heritability [18],
376 community assembly processes [16], and possibly many other topics. Meanwhile, comparisons
377 regarding correlations have been used to explore memory processing during sleep [59],
378 physiological patterns in patients with certain medical conditions [60], and selection patterns [22–
379 24], to name a few. Because ΔZr can be used in virtually any comparison between two groups of
380 correlational data, the opportunities for its use are endless. Most importantly, Δsk , Δku , and ΔZr
381 are unitless measures, so they can be meta-analysed to uncover patterns between two groups (e.g.,
382 males and females). Moreover, the growing availability of raw data and big data approaches,
383 facilitated by technological advances, makes these effect size statistics particularly valuable for
384 modern research.

385

386 **Acknowledgements**

387 We thank Yefeng Yang for his contribution in the early stage of this study.

388

389 **Data and code availability**

390 All data and code used in this study are available at
391 https://github.com/pietropollo/new_effect_size_statistics and
392 <https://zenodo.org/records/18386956>.

393

394 **Declaration of AI use**

395 The authors declare that they occasionally used GPT-4-turbo (OpenAI) to improve the clarity and
396 readability of this work. After using these tools, the authors reviewed and edited the content as
397 needed and took full responsibility for the content of the publication.

398

399 **Author contributions**

400 Conceptualisation: PP, SN; data curation: PP; formal analysis: PP, SMD, DWAN, SN; funding
401 acquisition: SN; methodology: PP, SN; project administration: PP, SN; software: PP, DWAN;
402 supervision: DWAN, SN; visualisation: PP, DWAN; writing – original draft: PP, SN; writing –
403 review & editing: all authors.

404

405 **Competing interests**

406 We declare no competing interests.

407

408 **Funding**

409 SMD was supported by a National Science Centre (Poland; <https://www.ncn.gov.pl/>) grant (UMO-
410 2020/39/B/NZ8/01274). ML was supported by an ARC (Australian Research Council;
411 <https://www.arc.gov.au/>) Discovery Project grant (DP230101248). LABW was supported by an

412 ARC Future Fellowship grant (FT200100822). DWAN was supported by an ARC Future
413 Fellowship (FT220100276). SN was supported by an ARC Discovery Project grant
414 (DP210100812) and the Canada Excellence Research Chair Program (CERC-2022-00074;
415 <https://www.cerc.gc.ca/>). The funders had no role in study design, data collection and analysis,
416 decision to publish, or preparation of the manuscript.

417

418 **Supporting information**

419 **S1 Supplementary information.** An HTML file containing all steps to reproduce simulations and
420 meta-analyses presented in our study, as well as supplementary figures. **Fig. S1.** Bias in Δsk ,
421 Δku , and ΔZr effect estimates across simulations where samples ranged in group sample sizes
422 between $n \in \{10, 20, \dots, 100, 150, 500\}$. A total of 100 simulated scenarios were assessed for Δsk
423 and Δku whereas 64 simulated scenarios were assessed for ΔZr . We ran 2,500 simulations for each
424 scenario. The data and code needed to generate this Figure can be found in
425 <https://zenodo.org/records/18386956>. **Fig. S2.** Bias of analytical point estimators in relation to the
426 absolute difference in skewness and kurtosis between groups. A) skewness and B) kurtosis. Colour
427 of points correspond to the sample size and each point is a single simulated scenario. The dotted
428 line is the zero bias line. The data and code needed to generate this Figure can be found in
429 <https://zenodo.org/records/18386956>. **Fig. S3.** Bias for Δsk and Δku for simulated scenarios was
430 not related to group means or variances being different. We ran 2,500 simulations for each
431 scenario. The data and code needed to generate this Figure can be found in
432 <https://zenodo.org/records/18386956>. **Fig. S4.** Relative bias in Δsk , Δku and ΔZr effect estimates
433 across simulations where samples ranged in group sample sizes between $n \in \{10, 20, \dots, 100, 150,$
434 $500\}$. A total of 100 simulated scenarios were assessed for Δsk and Δku whereas 64 simulated

435 scenarios were assessed for ΔZr . Note that for relative bias different combinations of point
436 estimates and sampling variance estimates were used in their calculation as indicated in their titles
437 which show the calculation. Notation is as follows ku and sk are the skewness and kurtosis
438 calculated using original formulas. sk_{-sv} and ku_{-sv} are the sampling variance estimates using the
439 original formulas. $jack_skew_sv$ and $jack_ku_sv$ are the sampling variance estimates for skewness
440 and kurtosis using jackknife. $jack_skew_bc$ and $jack_ku_bc$ are the bias corrected point estimates
441 from the jackknife. We ran 2,500 simulations for each scenario. **Fig. S5.** Coverage of 95%
442 confidence intervals for Δsk , Δku and ΔZr effect estimates across simulations where samples
443 ranged in group sample sizes between $n \in \{10, 20, \dots, 100, 150, 500\}$. A total of 100 simulated
444 scenarios were assessed for Δsk and Δku whereas 64 simulated scenarios were assessed for ΔZr .
445 We ran 2,500 simulations for each scenario. The data and code needed to generate this Figure can
446 be found in <https://zenodo.org/records/18386956>. **Fig. S6.** Example sampling distributions of three
447 different scenarios ($\Delta ku = 0, 1$, or 2.5) for $n = 10$ and $n = 500$ samples for each group. We ran
448 2,500 simulations for each scenario. The data and code needed to generate this Figure can be found
449 in <https://zenodo.org/records/18386956>. (HTML)

450

451 **References**

- 452 1. Maklakov AA, Lummaa V. Evolution of sex differences in lifespan and aging: causes and
453 constraints. *BioEssays*. 2013;35: 717–724. doi:10.1002/bies.201300021
- 454 2. Harrison LM, Noble DWA, Jennions MD. A meta-analysis of sex differences in animal
455 personality: no evidence for the greater male variability hypothesis. *Biol Rev*. 2022;97:
456 679–707. doi:10.1111/brv.12818

- 457 3. Zucker I, Beery AK. Males still dominate animal studies. *Nature*. 2010;465: 690.
458 doi:10.1038/465690a
- 459 4. Karp NA, Mason J, Beaudet AL, Benjamini Y, Bower L, Braun RE, et al. Prevalence of
460 sexual dimorphism in mammalian phenotypic traits. *Nat Commun*. 2017;8.
461 doi:10.1038/ncomms15475
- 462 5. Zucker I, Prendergast BJ, Beery AK. Pervasive neglect of sex differences in biomedical
463 research. *Cold Spring Harb Perspect Biol*. 2021;14: a039156.
464 doi:10.1101/cshperspect.a039156
- 465 6. Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. *Nature*.
466 2014;509: 282–283. doi:10.1038/509282a
- 467 7. Woitowich NC, Beery AK, Woodruff TK. A 10-year follow-up study of sex inclusion in
468 the biological sciences. *eLife*. 2020;9: 1–8. doi:10.7554/eLife.56344
- 469 8. Tannenbaum C, Ellis RP, Eyssel F, Zou J, Schiebinger L. Sex and gender analysis improves
470 science and engineering. *Nature*. 2019;575: 137–146. doi:10.1038/s41586-019-1657-6
- 471 9. Phillips B, Haschler TN, Karp NA. Statistical simulations show that scientists need not
472 increase overall sample size by default when including both sexes in in vivo studies. Munafò
473 M, editor. *PLoS Biol*. 2023;21: e3002129. doi:10.1371/journal.pbio.3002129
- 474 10. Drobniak SM, Lagisz M, Yang Y, Nakagawa S. Realism and robustness require increased
475 sample size when studying both sexes. *PLoS Biol*. 2024;22: e3002456.
476 doi:10.1371/journal.pbio.3002456
- 477 11. Fairbairn DJ, Blanckenhorn WU, Székely T. Sex, size and gender roles: evolutionary
478 studies of sexual size dimorphism. Oxford, UK: Oxford University Press; 2007.
479 doi:10.1093/acprof:oso/9780199208784.001.0001

- 480 12. Zajitschek SRK, Zajitschek F, Bonduriansky R, Brooks RC, Cornwell W, Falster DS, et al.
481 Sexual dimorphism in trait variability and its eco-evolutionary and statistical implications.
482 eLife. 2020;9: 1–17. doi:10.7554/eLife.63170
- 483 13. Wilson LAB, Zajitschek SRK, Lagisz M, Mason J, Haselimashhadi H, Nakagawa S. Sex
484 differences in allometry for phenotypic traits in mice indicate that females are not scaled
485 males. Nat Commun. 2022;13: 7502. doi:10.1038/s41467-022-35266-6
- 486 14. Nakagawa S, Poulin R, Mengersen K, Reinhold K, Engqvist L, Lagisz M, et al. Meta-
487 analysis of variation: ecological and evolutionary applications and beyond. Methods Ecol
488 Evol. 2015;6: 143–152. doi:10.1111/2041-210X.12309
- 489 15. McGuigan K, Van Homrigh A, Blows MW. Genetic analysis of female preference functions
490 as function-valued traits. Am Nat. 2008;172: 194–202. doi:10.1086/588075
- 491 16. Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions
492 across an environmental gradient in coastal California. Ecol Monogr. 2009;79: 109–126.
493 doi:10.1890/07-1134.1
- 494 17. Reid JM, Arcese P, Nietlisbach P, Wolak ME, Muff S, Dickel L, et al. Immigration counter-
495 acts local micro-evolution of a major fitness component: migration-selection balance in
496 free-living song sparrows. Evol Lett. 2021;5: 48–60. doi:10.1002/evl3.214
- 497 18. Pick JL, Lemon HE, Thomson CE, Hadfield JD. Decomposing phenotypic skew and its
498 effects on the predicted response to strong selection. Nat Ecol Evol. 2022;6: 774–785.
499 doi:10.1038/s41559-022-01694-2
- 500 19. Stemkovski M, Dickson RG, Griffin SR, Inouye BD, Inouye DW, Pardee GL, et al.
501 Skewness in bee and flower phenological distributions. Ecology. 2023;104: 1–9.
502 doi:10.1002/ecy.3890

- 503 20. Church B V., Williams HT, Mar JC. Investigating skewness to understand gene expression
504 heterogeneity in large patient cohorts. *BMC Bioinformatics.* 2019;20: 1–14.
505 doi:10.1186/s12859-019-3252-0
- 506 21. Kulminski AM, Philipp I, Loika Y, He L, Culminskaya I. Haplotype architecture of the
507 Alzheimer's risk in the APOE region via co-skewness. *Alzheimer's Dement Diagnosis,*
508 *Assess Dis Monit.* 2020;12: 1–10. doi:10.1002/dad2.12129
- 509 22. Rausher MD. The measurement of selection on quantitative traits: biases due to
510 environmental covariances between traits and fitness. *Evolution.* 1992;46: 616–626.
511 doi:10.1111/j.1558-5646.1992.tb02070.x
- 512 23. Blows MW. Complexity for complexity's sake? *J Evol Biol.* 2007;20: 39–44.
513 doi:10.1111/j.1420-9101.2006.01241.x
- 514 24. Hansen TF, Houle D. Measuring and comparing evolvability and constraint in multivariate
515 characters. *J Evol Biol.* 2008;21: 1201–1219. doi:10.1111/j.1420-9101.2008.01573.x
- 516 25. Noble DWA, Radersma R, Uller T. Plastic responses to novel environments are biased
517 towards phenotype dimensions with high additive genetic variation. *Proc Natl Acad Sci U*
518 *S A.* 2019;116: 13452–13461. doi:10.1073/pnas.1821066116
- 519 26. Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. *J*
520 *R Stat Soc Ser C Appl Stat.* 2005;54: 507–554. doi:10.1111/j.1467-9876.2005.00510.x
- 521 27. Stasinopoulos DM, Rigby RA. Generalized additive models for location scale and shape
522 (GAMLSS) in R. *J Stat Softw.* 2007;23. doi:10.18637/jss.v023.i07
- 523 28. Umlauf N, Klein N, Zeileis A. BAMLSS: Bayesian additive models for location, scale, and
524 shape (and beyond). *J Comput Graph Stat.* 2018;27: 612–627.
525 doi:10.1080/10618600.2017.1407325

- 526 29. Malgady RG. How skewed are psychological data? A standardized index of effect size. *J*
527 *Gen Psychol.* 2007;134: 355–359. doi:10.3200/GENP.134.3.355-360
- 528 30. Riley RD, Tierney JF, Stewart LA. Individual participant data meta-analysis: a handbook
529 for healthcare research. Hoboken, NJ: John Wiley & Sons; 2021.
- 530 31. Tierney JF, Stewart LA, Clarke M. Individual participant data. In: Higgins JPT, Thomas J,
531 Chandler J, Cumpston M, Li T, Page MJ, et al., editors. *Cochrane handbook for systematic*
532 *reviews of interventions.* Hoboken, NJ: John Wiley & Sons; 2024. pp. 643–658.
- 533 32. Joanes DN, Gill CA. Comparing measures of sample skewness and kurtosis. *J R Stat Soc*
534 *Ser D (The Statistician).* 1998;47: 183–189. doi:10.1111/1467-9884.00122
- 535 33. Efron B. The jackknife, the bootstrap and other resampling plans. Philadelphia, PA: Society
536 for Industrial and Applied Mathematics; 1982. doi:10.1137/1.9781611970319
- 537 34. Pollo P, Lagisz M, Macedo-Rego R, Mizuno A, Yang Y, Nakagawa S. Synthesis of nature’s
538 extravaganza: an augmented meta-meta-analysis on (putative) sexual signals. *Ecol Lett.*
539 2025;28: e70215.
- 540 35. Machado G, Macedo-Rego RC. Benefits and costs of female and male care in amphibians:
541 a meta-analytical approach. *Proc R Soc B Biol Sci.* 2023;290: 1–12.
542 doi:10.1098/rspb.2023.1759
- 543 36. Hedges L V., Olkin I. *Statistical methods for meta-analysis.* Amsterdam, Netherlands:
544 Elsevier; 1985. doi:10.1016/C2009-0-03396-0
- 545 37. Cohen J. *Statistical power analysis for the behavioral sciences.* Hillsdale, NJ: Lawrence
546 Erlbaum Associates; 1988.
- 547 38. Becker M, Klößner S. PearsonDS: Pearson distribution system. 2025. Available:
548 <https://cran.r-project.org/package=PearsonDS>

- 549 39. Venables WN, Ripley BD. Modern applied statistics with S. New York, NY: Springer New
550 York; 2002. doi:10.1007/978-0-387-21706-2
- 551 40. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput
552 discovery of novel developmental phenotypes. *Nature*. 2016;537: 508–514.
553 doi:10.1038/nature19356
- 554 41. Lajeunesse MJ. Bias and correction for the log response ratio in ecological meta-analysis.
555 *Ecology*. 2015;96: 2056–2063. doi:10.1890/14-2402.1
- 556 42. Nakagawa S, Noble DWA, Lagisz M, Spake R, Viechtbauer W, Senior AM. A robust and
557 readily implementable method for the meta-analysis of response ratios with and without
558 missing standard deviations. *Ecol Lett*. 2023;26: 232–244. doi:10.1111/ele.14144
- 559 43. Wright DB, Herrington JA. Problematic standard errors and confidence intervals for
560 skewness and kurtosis. *Behav Res Methods*. 2011;43: 8–17. doi:10.3758/s13428-010-0044-
561 x
- 562 44. Hedges L V., Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental
563 ecology. *Ecology*. 1999;80: 1150–1156. doi:10.1890/0012-
564 9658(1999)080[1150:TMAORR]2.0.CO;2
- 565 45. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R
566 foundation for statistical computing; 2025. Available: <https://www.r-project.org/>
- 567 46. Nakagawa S, Lagisz M, O'Dea RE, Pottier P, Rutkowska J, Senior AM, et al. orchaRd 2.0:
568 an R package for visualising meta-analyses with orchard plots. *Methods Ecol Evol*.
569 2023;2023: 1–21. doi:10.1111/2041-210X.14152
- 570 47. Viechtbauer W. Conducting meta-analyses in R with the metafor. *J Stat Softw*. 2010;36: 1–
571 48. doi:10.18637/jss.v036.i03

- 572 48. Yazdanpanah MH, Bahramali E, Naghizadeh MM, Farjam M, Mobasher M, Dadvand S.
573 Different body parts' fat mass and corrected QT interval on the electrocardiogram: the Fasa
574 PERSIAN Cohort Study. *BMC Cardiovasc Disord.* 2021;21: 1–11. doi:10.1186/s12872-
575 021-02095-2
- 576 49. Cuspidi C, Rescaldani M, Sala C, Grassi G. Left-ventricular hypertrophy and obesity. *J
577 Hypertens.* 2014;32: 16–25. doi:10.1097/HJH.0b013e328364fb58
- 578 50. Regitz-Zagrosek V. Sex and gender differences in health. *EMBO Rep.* 2012;13: 596–603.
579 doi:10.1038/embor.2012.87
- 580 51. Regitz-Zagrosek V, Gebhard C. Gender medicine: effects of sex and gender on
581 cardiovascular disease manifestation and outcomes. *Nat Rev Cardiol.* 2023;20: 236–247.
582 doi:10.1038/s41569-022-00797-4
- 583 52. Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. *Diabetologia.*
584 2023;66: 986–1002. doi:10.1007/s00125-023-05891-x
- 585 53. Guharay S. A data-driven approach to study temporal characteristics of COVID-19
586 infection and death Time Series for twelve countries across six continents. *BMC Med Res
587 Methodol.* 2025;25: 1. doi:10.1186/s12874-024-02423-y
- 588 54. Débarre F, Yeaman S, Guillaume F. Evolution of quantitative traits under a migration-
589 selection balance: when does skew matter? *Am Nat.* 2015;186: S37–S47.
590 doi:10.1086/681717
- 591 55. Poulin R, Morand S. Parasite body size distributions: interpreting patterns of skewness. *Int
592 J Parasitol.* 1997;27: 959–964. doi:10.1016/S0020-7519(97)00055-6
- 593 56. Kozłowski J, Gawelczyk AT. Why are species' body size distributions usually skewed to
594 the right? *Funct Ecol.* 2002;16: 419–432. doi:10.1046/j.1365-2435.2002.00646.x

- 595 57. Olivier LA, Higginson AD. Tests of reproductive skew theory: a review and prospectus.
596 Evol Ecol. 2023;37: 871–892. doi:10.1007/s10682-023-10263-3
- 597 58. Guttal V, Jayaprakash C. Changing skewness: an early warning signal of regime shifts in
598 ecosystems. Ecol Lett. 2008;11: 450–460. doi:10.1111/j.1461-0248.2008.01160.x
- 599 59. Verma K, Pandey K, Kashyap N. Relation between sleep spindles and semantically induced
600 false memory. Sleep Breath. 2025;29: 26. doi:10.1007/s11325-024-03186-y
- 601 60. Fedulovs A, Janevica J, Kruzmane L, Sokolovska J. Glucose control and variability
602 assessed by continuous glucose monitoring in patients with type 1 diabetes and diabetic
603 kidney disease. Biomed Rep. 2024;22: 23. doi:10.3892/br.2024.1901
- 604