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Abstract

Biological differences between males and females are pervasive. Researchers often focus on sex
differences in the mean or, occasionally, in variation, albeit other measures can be useful for
biomedical and biological research. For instance, differences in skewness (asymmetry of a
distribution), kurtosis (heaviness of a distribution’s tails), and correlation (relationship between
two variables) might be crucial to improve medical diagnosis and to understand natural processes.
Yet, there are currently no meta-analytic ways to measure differences in these metrics between
two groups. We propose three effect size statistics to fill this gap: Ask, Aku, and AZr, which
measure differences in skewness, kurtosis, and correlation, respectively. Besides presenting the
rationale for the calculation of these effect size statistics, we conducted a simulation to explore
their properties and used a large dataset of mice traits to illustrate their potential. For example, in
our case study, we found that females show, on average, a greater correlation between fat mass
and heart weight than males. Although calculating Ask, Aku, and AZr will require large sample
sizes of individual data, technological advancements in data collection create increase
opportunities to use these effect size statistics. Importantly, Ask, Aku, and AZr can be used to
compare any two groups, allowing a new generation of meta-analyses that explore such differences

and potentially leading to new insights in multiple fields of study.

Key-words: covariance, individual participant meta-analysis, meta-regression, nonnormality,

normal distribution, sex characteristics
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Background

Sex is a biological attribute that can strongly impact organisms’ traits, with differences between
males and females being central to questions in the biological sciences (e.g., [1,2]). In contrast,
biomedical research has primarily focused on male subjects [3], posing a danger to female health
[4,5]. Aware of these issues, the US National Institutes of Health and other health agencies have
demanded using multiple sexes in animal studies when possible [6]. As a consequence, the number
of biological and biomedical studies using both female and male animals as research subjects has
increased in the last decade [7], leading to the accumulation of data that can be used to synthesise
and quantify sex differences across biological domains.

Realising the accumulation of sex-specific data, many perspective pieces have encouraged
researchers to investigate sex differences more carefully (e.g., [§—10]). Yet, some of these pieces,
and most of the biological literature, focus exclusively on mean differences between males and
females. A fixation on mean differences has been present for a long time in science because
researchers tend to focus on dimorphism in trait averages (e.g., [11]), lack sufficiently powerful
data, or have limited statistical tools available (or difficulty to use them). Yet, measures such as
variance, correlation, skewness, and kurtosis can be critical to understanding sex differences. For
example, certain traits in mice may exhibit no disparity in average values between sexes, but
substantial differences emerge in terms of variability [12,13]. These differences could be more
easily assessed because of an effect size statistic that measures differences in variability between
two groups (proposed by [14]), illustrating how novel statistical tools can expand possible research
questions and provide new scientific insights, such as identifying sex differences in trait selection

or canalisation.
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Beyond variability, the relative shape of trait distributions to the normal distribution
(measured by skewness and kurtosis, i.e. asymmetry of a distribution and heaviness of a
distribution’s tails, respectively; Fig. 1A-B) can also be crucial to understanding ecological and
evolutionary processes and patterns (e.g., [15-19]), as well as improving medical diagnostics (e.g.,
[20,21]). For instance, skewness can bias heritability estimates because evolutionary biologists
assume that phenotypic components (genetic and environmental) are normally distributed [18].
Furthermore, kurtosis can be used to understand community assembly processes (e.g., [16]).
Besides the shape of trait distributions, evolutionary biologists and quantitative geneticists can
quantify correlation matrices to understand trait plasticity and evolvability (e.g., [22—-24]), which
could then be used for group comparisons (as in [25]; Fig. 1C). Although location-scale-shape
models (e.g., [26—28]) may be used to explore between-group differences (e.g., males and females)
in skewness, kurtosis, or within-group correlations, there are no effect size statistics that can easily

measure such differences (but see also [29]).

Figure 1. Simulated trait distributions for two groups with different shapes (A: distinct skewness,
B: distinct kurtosis), and different correlations between two traits for two groups (C). The data and

code needed to generate this Figure can be found in https://zenodo.org/records/18386956.
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Here, we propose three new effect size statistics to evaluate between-group differences in
skewness (Ask), kurtosis (Aku), and correlation (AZr), key moments of a distribution that are
usually unexplored. These effect size statistics will be valuable to explore sex differences but can
also be applied in other fields of study and used to compare differences between any two groups
of interest. Meta-analyses using these new effect sizes will create multiple avenues for novel
biological enquiries. The present moment is particularly conducive for analyses using these new
effect sizes because the individual-level data (e.g., individual participant data [30,31]) required for
their calculation are increasingly available from new technological advances that allow faster data

collection and sharing (e.g., automated phenotyping).

Difference in skewness and kurtosis

The mean and variance represent the first and second moments of a distribution, respectively.
However, the third and fourth moments of a distribution (i.e. skewness and kurtosis, respectively)
can also be valuable as they characterise the distribution’s shape. More specifically, skewness
reflects the distribution's asymmetry around its mean. While positive skewness indicates an
elongated right tail with an excess of high values, negative skewness suggests an elongated left
tail with an excess of low values. This asymmetry can influence the interpretation of means and
variation, as the mean tends to be larger than the median in positively skewed distributions, while
the mean tends to be smaller than the median in negatively skewed distributions. Note that a
perfectly normal distribution is symmetric (i.e. skewness = 0), where the mean is equal to the

median. Sample skewness (sk) [32] can be expressed as:

Iyn % -%3 [mm-D
sk = nZizi(i79 n:_lzl) (eq. 1)

3
[§ 2= aGe-7]?
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where x; is a raw data value, x is the sample mean, and » is the sample size. Skewness

sampling variance (s’#) [32] can then be expressed as:

2 6n(n—1)
Ssk = (n—2)(n+1)(n+3) (eq. 2)

On the other hand, kurtosis measures tail heaviness: high kurtosis distributions have
heavier tails (i.e., proportionally more extreme values than central values), whereas low kurtosis
distributions have lighter tails. For comparison, a normal distribution is expected to have kurtosis

= 3. Sample excess kurtosis (ku) [32] can be expressed as:

_ nn+D)(n-1) T (x-%)* _ 3(n—1)2
T -2)(-3) [gh, (-2 (n-2)(n-3)

ku (eq. 3)

with sampling variance (s’ [32] as:

2 24n(n-1)2
Sku = sy m—mrnmes (44

Evaluating skewness and kurtosis provides valuable insights into a variable distribution,
which is crucial for interpreting means, assessing variability, and making informed decisions in
statistical analyses. Although meta-analyses can use skewness (eq. 1) and kurtosis (eq. 3) to
investigate single variables, effect size statistics that compare these metrics between two groups
are lacking. Thus, we propose the difference between two groups in skewness (Ask), expressed as:

Ask = sk, — sk, (eq. 5)

and its sampling variance (s°ask) as:

Sisk = Sk, + Sk, = 2PskSsk,Ssk, (€q. 6)

Where ps« represents the sampling correlation in skewness between the two groups (zero if
assumed to be independent). Similarly, we propose the difference between two groups in kurtosis
(Aku), expressed as:

Aku = kuy — ku, (eq. 7)
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and its sampling variance (s°ax) as:

SRk = Skuy + Sku, — 2PkuSku, Sku, (€9. 8)

where pi represents the sampling correlation in kurtosis between the two groups (zero if
assumed to be independent).

However, we note that Equations 2 and 4 assume normality for sampling variances. When
the underlying distributions are skewed or heavy-tailed, sampling error variances for skewness and
kurtosis (Egs. 2 and 4) and, by extension, for their between-group contrasts (Eqgs. 5-8), can
misestimate uncertainty. To assess robustness and to provide distribution-free alternatives, we
complemented the analytic formulas with resampling-based estimators computed within each

group and summed for the difference (i.e., jackknife [33]; see our simulation study below).

Difference in correlation
Numerous meta-analyses estimate the correlation between two variables (e.g., [34,35]). To do so,

researchers use the effect size statistic Zr [36], which can be expressed as:

(LT
Zr = @ (eq.9)
and its sampling variance (s°z/) [36] as:

s3r = —(eq. 10)
where 7 is Pearson's correlation coefficient between two variables and # is the sample size.
Although Zr alone remains extremely useful to test correlational hypotheses, researchers
from all fields would benefit from being able to compare Zr values between two groups. Although
Cohen [37] proposed the difference between two groups in Zr as ¢, he did not provide an equation

to calculate its sampling variance. Consequently, this effect size statistic has not been used despite
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its potential. We therefore propose the difference between two groups in Zr with a new name
(AZr), as:
AZr = Zry — Zry (eq. 11)
and its sampling variance (s°Az-) as:
SKZr = S%rl + Sgrz — 2p2rSzr,Szr, (€q. 12)
where pz- represents the sampling correlation in Fisher’s Zr between the two groups (zero

if assumed to be independent).

Simulation study

We conducted Monte-Carlo simulations to evaluate bias and variance estimation for our new effect
sizes Ask, Aku and AZr. For Ask and Aku, we simulated independent samples for two groups from
Pearson distributions with known moments using the rpearson function from the R package
PearsonDSv.1.3.2[38]. We conducted two simulations: 1) by changing skewness between groups
that involved moderate departures from normality in which group-specific skewness from sk €
{—1,-0.5, 0, 0.5, 1} and kurtosis was fixed at 3; 2) by holding skewness constant (sk = 0) while
manipulating kurtosis from ku € {2.5, 3, 4, 5, 6}. In all cases, we simulated scenarios where: (i)
the variance between each group was the same (6% = 6% = 1) or different (26% versus 6%); (ii) the
mean between the two groups was the same (u2 = w1 = 0) or different (u2 =5, u1 = 0). For simplicity,
we assumed equal sample sizes between groups with sample size varying from n € {10, 20, ...,
100, 150, 500}. We created all unique combinations of the above scenarios resulting in 1,200
independent scenarios (when considering each of the 100 scenarios at each sample size). We
estimated Ask and Aku for each scenario using formulas for within-group sample skewness with

small-sample correction (Eq. 1) and excess kurtosis with small-sample correction (Eq. 3) to
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estimate point estimates. To estimate associated sampling variance for Ask and Aku we used the
analytical variance estimators derived here (Egs. 2 and 4) and an associated re-sampling
(jackknife) approach to compute group sampling variances separately followed by pooling.
Importantly, our simulations assume no correlation between groups.

For AZr simulations, we simulated two groups each containing two variables with known
correlations within each group. For AZr we drew bivariate normal data with target within-group
correlationsr € {—0.8,—0.4,-0.2,0,0.2,0.4, 0.6, 0.8} using the mvnorm function from the package
MASS v. 7.3.61 [39]. Marginals were standard normal and group sizes varied from n € {10, 20,
..., 100, 150, 500}. We created all unique combinations of scenarios resulting in 768 unique
scenarios. We estimated AZr using Fisher’s Z transformation Zr and calculating AZr as the
difference of Zr across groups (Egs. 9—11). Sampling variance for AZr used Eq. 10 and a jackknife
approach. Again, we assumed no correlation between our groups.

Note that our simulations did not explore differences in sample size between groups.
However, many groups being compared in meta-analyses have the same or very similar sample
size. Additionally, simulations often show relatively small impacts of unbalanced sample sizes
[40,41], which is why we originally did not vary sample size between groups in our simulations.

We resampled 2,500 times for each scenario across all simulations. Performance metrics
were (a) bias of the point estimator, (b) relative bias of the sampling-variance estimator, (c)
coverage (95%) and (d) Monte-Carlo standard errors (MCSEs). See supplementary material for
full formulas. We also evaluated the performance of these effects for meta-analysis (see details in

sections 8.4 and 9.4 of the supplementary material ).

Simulation results
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In all cases, we found the Monte Carlo Sampling Error (MCSEs) to be low for all our performance
metrics (range of MCSEs for Ask: 0 to 0.01; Aku: 0 to 0.624; AZr: 0 to 0.004). Ask, Aku, and AZr
point estimators exhibited small sample bias with less than 20-30 samples, except for Aku, which
showed this bias below n < 50-60, indicating effect sizes involving kurtosis are more challenging
to estimate (Fig. S1, Fig. S2). Differences in the mean and variance between groups did not
differentially affect bias (Fig. S3). Regardless, small sample biases were moderate, and there was
rarely a consistent over or under-estimation in point estimates across the scenarios evaluated (Fig.
S1). Bias-corrected jackknife estimates reduced the small-sample bias relative to analytical bias
corrected-moment estimators (mean square bias [MSB], jackknife and analytical, for Ask: 1.109,
3.375; Aku 477.71, 891.659; AZr 0.029, 0.214).

In contrast to point estimators, the effectiveness of sampling variance estimators for Ask,
Aku, and AZr varied. Analytical sampling variance formulas for Ask and Aku were consistently
biased (Fig. S4). Jackknife resampling when combined with analytical point estimates (Fig. 2)
performed the best. Under these conditions, estimators performed well when n > 50. In contrast,
the performance of sampling variance estimators for AZr was best when using the analytical
formulas for both the point estimator and its associated sampling variance (Fig. 2).

Coverage was close to nominal (95%) for Ask and AZr across sample sizes (Fig. 2C, I).
Coverage for Aku, however, was poor across many simulated scenarios (Fig. 2F). Increased sample
size did not improve coverage. Poor coverage was the result of skewed sampling distributions from
Jackknife approaches (Fig. S5, S6). At small sample sizes, Aku was estimated poorly when true
Aku was high, leading to non-skewed distributions with good coverage. In contrast, large sample

sizes improved point estimation of Aku when differences existed, but the sampling distribution
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became highly skewed leading to poor coverage (Fig. S5, S6). These problems stem from the fact

that the standard error formula for kurtosis assumes normality (see [42]).

Considering these simulation results, we suggest pairing the formula-based point

estimators for skewness (Eq. 1) and kurtosis (Eq. 3) with jackknife standard errors for Ask and

Aku. For AZr, the standard analytic variance is recommended (Eqgs. 9-12). This choice balances

efficiency under normality with robustness to realistic deviations from it and aligns with our

broader guidance to avoid very small group sizes for these statistics. Given the challenges in

estimating Aku, and the poor properties of its sampling variance [42], we recommend weighted

meta-analytic models using sample size instead of sampling variance (see supplementary material

and [41]).
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Figure 2. Bias in Ask, Aku and AZr effect estimates (A, D, G), relative bias in their sampling
variance using jackknife-based approximation (B, E, H), and coverage of effect estimates (C, F, I)
across simulations where samples ranged in group sample sizes between n € {10, 20, ..., 100, 150,
500}. A total of 100 simulated scenarios were assessed for Ask and Aku whereas 64 simulated
scenarios were assessed for AZr. We ran 2,500 simulations for each scenario. For simplicity, we
only present results from our recommended point estimators and sampling variance estimators
using jackknife. See supplementary material for full simulation results. The data and code needed

to generate this Figure can be found in https://zenodo.org/records/18386956.

Worked examples: sex differences in mice

To illustrate the application of our proposed effect size statistics, we used data compiled by the
International ~ Mouse  Phenotyping  Consortium  (IMPC, version 18.0;  [43];
http://www.mousephenotype.org/). We examined differences between male and female mice in
two pairs of traits from distinct functional domains: morphology (fat mass and heart weight) and
physiology (glucose and total cholesterol). We selected these traits because they are widely
understood traits, even by non-specialists, and had a large sample size (more than 10,000
individuals measured). More specifically, we assessed differences between the sexes in mean
(using the natural logarithm of the response ratio [44], hereby /nRR), variability (using the natural
logarithm of the variance ratio [14], hereby [nVR), skewness (using Ask), and kurtosis (using Aku)
for each trait, as well as in the difference in correlation for each trait pair (using AZr). The IMPC
dataset contains data from multiple phenotyping centres and mice strains, so we selected the ones
with the most data points for our analyses here, computing the aforementioned effect size statistics

separately for each one of them.
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We performed a meta-analysis for each effect size statistic to obtain a mean effect size for
each trait (or pair of traits, in the case of AZr), using ‘effect size ID’, ‘phenotyping centre’, and
‘mice strain’ as random factors in meta-analytical models (due to substantial heterogeneity, Table
1). In the case of Aku, we fitted a weighted meta-analytic model using sample size instead of
sampling variance (see previous sections and [41]). In all these analyses, positive effect sizes
denoted a greater estimate (mean, variability, skewness, kurtosis, or correlation) for males than
females. We conducted all statistical analyses in the software R 4.5.1 [45]. We used the functions
moment_effects and cor_diff, which have been incorporated into the package orchaRd v. 2.1.3
[46], to compute Ask, Aku, and AZr. We fitted meta-analytical models using the rma.mv function
from the package metafor v. 4.8-0 [47]. All methodological details and additional information can
be found in our tutorial, athttps://pietropollo.github.io/new_effect size statistics/.

We found that males, on average, had greater fat mass and heart weight than females
regardless of phenotyping centre and mice strain (Fig. 3A, B, F, G). The variability among
individuals regarding these traits was also greater for males than for females, except for fat mass
from one specific phenotyping centre and mice strain (Fig. 3C). By contrast, females had a similar
skewness in fat mass and heart weight compared with males (Fig. 3D, I). However, Ask values for
fat mass and heart weight varied across phenotyping centres and mice strains, with negative and
positive values present (Fig. 3D, I). Sex differences in kurtosis for fat mass and heart weight
followed a very similar pattern to the one described for skewness: Aku values overlapping zero
with some variation across individual effect sizes (Fig. 3E, J). Moreover, the correlation between
fat mass and heart weight was, on average, greater for females than males (Fig. 4A, B). However,
this difference in correlation was absent for some phenotyping centres and mice strains (Fig. 4A,

B).
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We also found that male and female mice were, on average, similar in terms of blood
glucose levels (Fig. 5A, B), although males had higher total cholesterol than females (Fig. SF, G).
We observed the same pattern regarding the variability of these traits: on average, the sexes were
similarly variable in glucose (Fig 5C), but the variability of total cholesterol was greater in males
than in females (Fig. SH). Contrasting with morphological traits, sex differences in skewness and
kurtosis were mostly absent (Fig. 5D, E, I, J). Lastly, males and females showed a similar
relationship between glucose and total cholesterol, albeit this relationship was stronger for males
than for females in some instances (Fig. 4C, D).

Our findings that females have, on average, lower (Fig. 3B, G), less variable (Fig. 3C, H),
but similar skewness (Fig. 3D, I) and extreme values (kurtosis; Fig. 3E, I) of fat mass and heart
weight compared with males may contribute to sex-related differences in the development of
diseases associated with these traits and their biomarkers (e.g., QTc interval length [48]).
Moreover, a stronger relationship between fat mass and heart weight in females than in males (Fig.
4B) may represent a greater risk of cardiohypertrophy arising from obesity in the former compared
with the latter [49]. Meanwhile, absent or less pronounced sex differences in glucose and total
cholesterol (Fig. 4) may suggest other sources of variation may contribute to sex differences in the
symptomology of diseases associated with these measurements (e.g., [S0-52]). Characterising sex
differences in biological traits, as we have done here, can provide new perspectives on
evolutionary, ecological, and medical patterns, possibly improving healthcare and environmental

Interventions.

Table 1. Heterogeneity estimates (/°) for each meta-analytical model fitted in our study.

Trait(s) Effect size type I Ztotal I Zeffect size ID I thenmyping center 1 zstrain
Fat mass InRR 97.69 97.69 <0.01 <0.01
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Fat mass InVR 95.71 <0.01 33.60 62.11
Fat mass Ask 75.61 9.82 <0.01 65.80
Fat mass Aku 85.81 <0.01 <0.01 85.81
Heart weight InRR 96.32 69.24 <0.01 27.08
Heart weight InVR 87.15 87.15 <0.01 <0.01
Heart weight Ask 68.48 38.29 30.19 <0.01
Heart weight Aku 97.90 <0.01 84.60 13.30
Glucose InRR 94.76 42.67 <0.01 52.09
Glucose InVR 70.08 <0.01 70.08 <0.01
Glucose Ask 11.76 <0.01 11.76 <0.01
Glucose Aku 3.60 <0.01 1.21 2.14
Total cholesterol ~ /nRR 95.43 69.77 <0.01 25.66
Total cholesterol  [nVR 94.70 84.86 <0.01 9.84
Total cholesterol  Ask <0.01 <0.01 <0.01 <0.01
Total cholesterol  Aku 68.94 <0.01 68.63 0.31
Fatmass and heart /. 6487 <001 64.87 <0.01
weight

Glucose and total . 9233 <00l <0.01 92.33
cholesterol
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Figure 3. Examples of morphological sex differences in mice (fat mass, A-E; heart weight, F-J)
for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains
(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and
G-J (turquoise diamond) representing the mean effect size. A and F show distributions of these
traits (scaled by subtracting the mean from each value and then dividing the result by the standard

deviation) for males (black with dashed borders) and females (white with solid borders), with the
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sample size of females and males shown as Nf and Nm, respectively. Panels B-E and G-J show
effect sizes (/nRR: natural logarithm of the response ratio; VR: variance ratio; Ask: difference in
skewness; Aku: difference in kurtosis), with their respective point estimate and 95% confidence

interval stamped. The data and code needed to generate this Figure can be found in

https://zenodo.org/records/18386956.
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Figure 4. Relationship between fat mass and heart weight (A, B) and glucose and total cholesterol
(C, D) in mice. Panels A and C show these relationships (with variables scaled by subtracting the
mean from each value and then dividing the result by the standard deviation) separately for males
(dashed line) and females (solid line), each subpanel representing a different phenotyping centre
and/or mice strain, with the sample size of females and males shown as Nf and Nm, respectively.
Panels B and D then show differences in correlation (AZr) between males and females (point
estimate and 95% confidence interval stamped), where each colour represents a distinct phenotype
centre and each shape represents a distinct mice strain, with the bottom estimate in each panel
(turquoise diamond) representing the mean effect size. Note that panels A and C contain individual
data points, which may appear as background shading in cases with large sample sizes. The data

and code needed to generate this Figure can be found in https://zenodo.org/records/18386956.



340

341

342

343

344

345

346

£ A B G D H E H
@© 4 A 4 A 4 i
5 CCP-IMG | 0(-0.02, 0.02) -0.08 (-0.14, -0.01) -0.01 (-0.21, 0.19) 0.18 (-0.22, 0.59)
(] NCrl Nf = 858, Nm = 817 . : . .
8 Hmeu . : “ . i . A A
= Nerl 1 7= 762, Nm =777 0.05(0.03,0.07) 0.08 0.01,0.15) 0.09 (021, 0.38) 0.43(:0:2,1.05)
T HMGU : ® 1 - 1 —— =
= NTac] NfSZ50, Nm =280 0(-0.03,0.03) 0.07 (:0.05, 0.19) 0.2(:0.24, 0.65) 0.32(-0.56,1.2)
2 IAX ]| 4 . ‘e | o | ‘e é
S NJ | NF= 1538, Nm = 7547 0.09 (0.07, 0.11) -0.01(-0.06, 0.04) 0.12(-0.01,0.26) -0.03 (-0.24,0.19)
o MRCH| _/ . o ; 8 ! & i
= NTac | Nf=2570, Nm =2530 0.04 (0.03, 0.05) -0.02 (-0.06, 0.02) -0.02 (-0.15,0.12) 0.28 (-0.04, 0.59)
S TCP | ] A | = 1 al i
° NCrl | Nf=492 Nm =435 0.02 (-0.01, 0.05) -0.08 (-0.17, 0.02) -0.17 (-0.47, 0.13) 0.29 (-0.67, 1.25)
c : i i 5
(0] Mean
- L » E % E & ®
& ES | Nf=6490, Nm = 6386 0.04 (-0.01, 0.09) -0.02 (-0.08, 0.05) 0.03 (-0.08, 0.15) 0.19 (-0.05, 0.42)
-250.0 2.5 5.0 -05 0.0 0.5 -0.5 0.0 05 -1 0 1 -6 0
Glucose InRR InVR Ask Aku
(scaled)
= F G @ H | ; J
© 4 A p A p A A
& CCP-IMG | ’/\ 0.14 (0.13, 0.16) 0.06 (0, 0.13) 0.09 (-0.14, 0.31) 0.2 (-0.31, 0.71)
w NCrl Nf = 856, Nm = 816 : ¥ : E
q’ . . . .
L HMGU 1 - i - i 5 -
£ NG ] N/f‘{;}m— - 0.14(012,0.16) 0.02 (-0.05, 0.09) 0.1(012,032) 012 (0.56,033)
B HMGU | _/\\_ . A | . S —— I
S NTac ] N7=250, Nm =780 0.23(02,0.26) 0.31(0.19,0.43) 0.1 (:0.53,0.74) 0.24(-1.26, 0.77)
£ JAX ] A. . e . L e S o
g NJ | 7= 1642, Nm = 1575 0.18 (0.17,0.19) 0.35 (0.3,0.4) 0.19 (-0.06, 0.44) -1.07 (-1.83,-0.32)
% MRCH | __/ \ . T m L ‘m R " N
= NTac | Nf= 2465, Nm = 2484 0.2(0.19, 0.21) 0.16 (0.12, 0.2) -0.49 (-1.03, 0.05) -3.32 (-6.04, -0.6)
a : : : :
= TeP| /& | A | . A A &
[e) NCr| | Nf=492 Nm =436 0.2(0.19, 0.22) 0.29 (0.2, 0.39) 0.22 (-0.25, 0.68) -0.78 (-1.67, 0.1)
c . : ) )
[0) Mean : : :
' ' R . —— »> o
i ES | Nf=6483, Nm = 6359 0.18 (0.14, 0.22) 0.2 (0.05, 0.36) 0.09 (-0.07, 0.25) -1.04 (-2.58, 0.49)
2 0 2 4 -0.5 0.0 0.5 -0.5 0.0 05 -1 0 1 -6 0 6
Total cholesterol InRR InVR Ask Aku
(scaled)

Figure 5. Examples of physiological sex differences in mice (glucose, A-E; total cholesterol, F-J)
for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains
(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and
G-J (turquoise diamond) representing the mean effect size. A and F show distributions of these
traits (scaled by subtracting the mean from each value and then dividing the result by the standard

deviation) for males (black with dashed borders) and females (white with solid borders), with the
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sample size of females and males shown as Nf and Nm, respectively. Panels B-E and G-J show
effect sizes (InRR: natural logarithm of the response ratio; VR: variance ratio; Ask: difference in
skewness; Aku: difference in kurtosis), with their respective point estimate and 95% confidence
interval stamped. The data and code needed to generate this Figure can be found in

https://zenodo.org/records/18386956.

Limitations

Despite the enormous potential of the effect size statistics we proposed here, they are not free of
limitations. For instance, skewness and kurtosis (and therefore the difference in these estimates
between two groups; i.e., Ask and Aku, respectively) are more likely to become extreme with small
sample sizes and with variables with few unique values, either because the variable is discrete or
because it is naturally constant (e.g., number of vertebrae in mice). We thus recommend that
researchers only compute Ask and Aku for continuous variables with a minimum sample size of
50 for each group (as shown in our simulations). Importantly, we found that Aku variance estimates
can be biased in many situations, highlighting that exploring 4ku should be a priority for future
work. Because of this issue, meta-analysing Aku requires sample size-based weights instead of the
standard sampling variance (see supplementary material and [41]). Lastly, although Ask, Aku, and
AZr can be calculated, respectively, from reported skewness, kurtosis, or within-group correlations
for different samples, empirical studies rarely report these estimates. Therefore, calculating these
effect sizes will probably require raw data, which, fortunately, are now becoming more readily

available.
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Future opportunities

The effect size statistics proposed in the present study can be useful across the life sciences, social
sciences, and medicine. This is because skewness and kurtosis, and consequently differences
between any two or more groups in these estimates (i.e., Ask and Aku), may help researchers to
understand epidemiological trends [53], genetic patterns relevant to medical diagnosis [20,21],
disruptive selection on quantitative traits [54], body size patterns across individuals [55] and
species [56], reproductive patterns [57], regime shifts in ecosystems [58], heritability [18],
community assembly processes [16], and possibly many other topics. Meanwhile, comparisons
regarding correlations have been used to explore memory processing during sleep [59],
physiological patterns in patients with certain medical conditions [60], and selection patterns [22—
24], to name a few. Because AZr can be used in virtually any comparison between two groups of
correlational data, the opportunities for its use are endless. Most importantly, Ask, Aku, and AZr
are unitless measures, so they can be meta-analysed to uncover patterns between two groups (e.g.,
males and females). Moreover, the growing availability of raw data and big data approaches,
facilitated by technological advances, makes these effect size statistics particularly valuable for

modern research.
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S1 Supplementary information. An HTML file containing all steps to reproduce simulations and
meta-analyses presented in our study, as well as supplementary figures. Fig. S1. Bias in Ask,
Aku, and AZr effect estimates across simulations where samples ranged in group sample sizes
between n € {10, 20, ..., 100, 150, 500}. A total of 100 simulated scenarios were assessed for Ask
and Aku whereas 64 simulated scenarios were assessed for AZr. We ran 2,500 simulations for each
scenario. The data and code needed to generate this Figure can be found in
https://zenodo.org/records/18386956. Fig. S2. Bias of analytical point estimators in relation to the
absolute difference in skewness and kurtosis between groups. A) skewness and B) kurtosis. Colour
of points correspond to the sample size and each point is a single simulated scenario. The dotted
line is the zero bias line. The data and code needed to generate this Figure can be found in
https://zenodo.org/records/18386956. Fig. S3. Bias for Ask and Aku for simulated scenarios was
not related to group means or variances being different. We ran 2,500 simulations for each
scenario. The data and code needed to generate this Figure can be found in
https://zenodo.org/records/18386956. Fig. S4. Relative bias in Ask, Aku and AZr effect estimates
across simulations where samples ranged in group sample sizes between n € {10, 20, ..., 100, 150,

500}. A total of 100 simulated scenarios were assessed for Ask and Aku whereas 64 simulated
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scenarios were assessed for AZr. Note that for relative bias different combinations of point
estimates and sampling variance estimates were used in their calculation as indicated in their titles
which show the calculation. Notation is as follows ku and sk are the skewness and kurtosis
calculated using original formulas. sk _sv and ku_sv are the sampling variance estimates using the
original formulas. jack skew svand jack ku sv are the sampling variance estimates for skewness
and kurtosis using jackknife. jack skew bc and jack ku bc are the bias corrected point estimates
from the jackknife. We ran 2,500 simulations for each scenario. Fig. S5. Coverage of 95%
confidence intervals for Ask, Aku and AZr effect estimates across simulations where samples
ranged in group sample sizes between n € {10, 20, ..., 100, 150, 500}. A total of 100 simulated
scenarios were assessed for Ask and Aku whereas 64 simulated scenarios were assessed for AZr.
We ran 2,500 simulations for each scenario. The data and code needed to generate this Figure can
be found in https://zenodo.org/records/18386956. Fig. S6. Example sampling distributions of three
different scenarios (Aku = 0, 1, or 2.5) for n = 10 and n = 500 samples for each group. We ran
2,500 simulations for each scenario. The data and code needed to generate this Figure can be found

in https://zenodo.org/records/18386956. (HTML)
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