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Abstract 37 

Biological differences between males and females are pervasive. Researchers often focus on sex 38 

differences in the mean or, occasionally, in variation, albeit other measures can be useful for 39 

biomedical and biological research. For instance, differences in skewness (asymmetry of a 40 

distribution), kurtosis (heaviness of a distribution’s tails), and correlation (relationship between 41 

two variables) might be crucial to improve medical diagnosis and to understand natural processes. 42 

Yet, there are currently no meta-analytic ways to measure differences in these metrics between 43 

two groups. We propose three effect size statistics to fill this gap: Δsk, Δku, and ΔZr, which 44 

measure differences in skewness, kurtosis, and correlation, respectively. Besides presenting the 45 

rationale for the calculation of these effect size statistics, we conducted a simulation to explore 46 

their properties and used a large dataset of mice traits to illustrate their potential. For example, in 47 

our case study, we found that females show, on average, greater skewness and kurtosis than males 48 

in both fat mass and heart weight. Although calculating Δsk, Δku, and ΔZr will require large 49 

sample sizes of individual data, technological advancements in data collection create increase 50 

opportunities to use these effect size statistics. Importantly, Δsk, Δku, and ΔZr can be used to 51 

compare any two groups, allowing a new generation of meta-analyses that explore such differences 52 

and potentially leading to new insights in multiple fields of study. 53 

 54 
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Background 57 

Sex is a biological attribute that can strongly impact organisms’ traits, with differences between 58 

males and females being central to questions in the biological sciences (e.g., [1,2]). In contrast, 59 

biomedical research has primarily focused on male subjects [3], posing a danger to female health 60 

[4,5]. Aware of these issues, the US National Institutes of Health and other health agencies have 61 

demanded using multiple sexes in animal studies when possible [6]. As a consequence, the number 62 

of biological and biomedical studies using both female and male animals as research subjects has 63 

increased in the last decade [7], leading to the accumulation of data that can be used to synthesise 64 

and quantify sex differences across biological domains. 65 

Realising the accumulation of sex-specific data, many perspective pieces have encouraged 66 

researchers to investigate sex differences more carefully (e.g., [8–10]). Yet, some of these pieces, 67 

and most of the biological literature, focus exclusively on mean differences between males and 68 

females. A fixation on mean differences has been present for a long time in science because of an 69 

obsession with dimorphism in trait averages (e.g., [11]), a lack of sufficiently powerful data, or 70 

limited (or difficult to use) statistical tools available to researchers. Yet, measures such as variance, 71 

correlation, skewness, and kurtosis can be critical to understanding sex differences. For example, 72 

certain traits in mice may exhibit no disparity in average values between sexes, but substantial 73 

differences emerge in terms of variability [12,13]. These differences could be more easily assessed 74 

because of an effect size statistic that measures differences in variability between two groups 75 

(proposed by [14]), illustrating how novel statistical tools can expand possible research questions 76 

and provide new scientific insights, such as identifying sex differences in trait selection or 77 

canalisation.  78 



 

Beyond variability, the relative shape of trait distributions to the normal distribution 79 

(measured by skewness and kurtosis, i.e. asymmetry of a distribution and heaviness of a 80 

distribution’s tails, respectively; Fig. 1A-B) can also be crucial to understanding ecological and 81 

evolutionary processes and patterns (e.g., [15–19]), as well as improving medical diagnostics (e.g., 82 

[20,21]). For instance, skewness can bias heritability estimates because evolutionary biologists 83 

assume that phenotypic components (genetic and environmental) are normally distributed [18]. 84 

Furthermore, kurtosis can be used to understand community assembly processes (e.g., [16]). 85 

Besides the shape of trait distributions, evolutionary biologists and quantitative geneticists can 86 

quantify correlation matrices to understand trait plasticity and evolvability (e.g., [22–24]), which 87 

could then be used for group comparisons (as in [25]; Fig. 1C). Although location-scale-shape 88 

models (e.g., [26–28]) may be used to explore between-group differences (e.g., males and females) 89 

in skewness, kurtosis, or within-group correlations, there are no effect size statistics that can easily 90 

measure such differences (but see also [29]).  91 

 92 

93 

Figure 1. Simulated trait distributions for two groups with different shapes (A: distinct skewness, 94 

B: distinct kurtosis), and different correlations between two traits for two groups (C). 95 

 96 



 

Here, we propose three new effect size statistics to evaluate between-group differences in 97 

skewness (Δsk), kurtosis (Δku), and correlation (ΔZr), key moments of a distribution that are 98 

usually unexplored. These effect size statistics will be valuable to explore sex differences but can 99 

also be applied in other fields of study and used to compare differences between any two groups 100 

of interest. Meta-analyses using these new effect sizes will create multiple avenues for novel 101 

biological enquiries. The present moment is particularly conducive for analyses using these new 102 

effect sizes because the individual-level data (e.g., individual participant data [30,31]) required for 103 

their calculation are increasingly available from new technological advances that allow faster data 104 

collection and sharing (e.g., automated phenotyping). 105 

 106 

Difference in skewness and kurtosis 107 

The mean and variance represent the first and second moments of a distribution, respectively. 108 

However, the third and fourth moments of a distribution (i.e. skewness and kurtosis, respectively) 109 

can also be valuable as they characterise the distribution’s shape. More specifically, skewness 110 

reflects the distribution's asymmetry around its mean. While positive skewness indicates an 111 

elongated right tail with an excess of high values, negative skewness suggests an elongated left 112 

tail with an excess of low values. This asymmetry can influence the interpretation of means and 113 

variation, as the mean tends to be larger than the median in positively skewed distributions, while 114 

the mean tends to be smaller than the median in negatively skewed distributions. Note that a 115 

perfectly normal distribution is symmetric (i.e. skewness = 0), where the mean is equal to the 116 

median. Sample skewness (sk) [32] can be expressed as: 117 

sk  =  
1
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where xi is a raw data value, x̄ is the sample mean, and n is the sample size. Skewness 119 

sampling variance (s2
sk) [32] can then be expressed as: 120 

𝑠𝑠𝑘
2 =

6𝑛(𝑛−1)

(𝑛−2)(𝑛+1)(𝑛+3)
 (eq. 2) 121 

On the other hand, kurtosis measures tail heaviness: high kurtosis distributions have 122 

heavier tails (i.e., proportionally more extreme values than central values), whereas low kurtosis 123 

distributions have lighter tails. For comparison, a normal distribution is expected to have kurtosis 124 

= 3. Sample excess kurtosis (ku) [32] can be expressed as: 125 
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 (eq. 3) 126 

with sampling variance (s2
ku) [32] as: 127 

𝑠𝑘𝑢
2 =

24𝑛(𝑛−1)2

(𝑛−3)(𝑛−2)(𝑛+3)(𝑛+5)
 (eq. 4) 128 

Evaluating skewness and kurtosis provides valuable insights into a variable distribution, 129 

which is crucial for interpreting means, assessing variability, and making informed decisions in 130 

statistical analyses. Although meta-analyses can use skewness (eq. 1) and kurtosis (eq. 3) to 131 

investigate single variables, effect size statistics that compare these metrics between two groups 132 

are lacking. Thus, we propose the difference between two groups in skewness (Δsk), expressed as: 133 

Δ𝑠𝑘 = 𝑠𝑘1 − 𝑠𝑘2 (eq. 5) 134 

 and its sampling variance (s2
Δsk) as: 135 

𝑠Δ𝑠𝑘
2 = 𝑠𝑠𝑘1

2 + 𝑠𝑠𝑘2
2 − 2ρ𝑠𝑘𝑠𝑠𝑘1𝑠𝑠𝑘2 (eq. 6) 136 

   Where ρsk represents the sampling correlation in skewness between the two groups (zero if 137 

assumed to be independent). Similarly, we propose the difference between two groups in kurtosis 138 

(Δku), expressed as: 139 

Δ𝑘𝑢 = 𝑘𝑢1 − 𝑘𝑢2 (eq. 7) 140 



 

and its sampling variance (s2
Δku) as: 141 

𝑠Δ𝑘𝑢
2 = 𝑠𝑘𝑢1

2 + 𝑠𝑘𝑢2
2 − 2ρ𝑘𝑢𝑠𝑘𝑢1𝑠𝑘𝑢2 (eq. 8) 142 

 where ρku represents the sampling correlation in kurtosis between the two groups (zero if 143 

assumed to be independent). 144 

However, we note that Equations 2 and 4 assume normality for sampling variances. When 145 

the underlying distributions are skewed or heavy-tailed, sampling error variances for skewness and 146 

kurtosis (Eqs. 2 and 4) and, by extension, for their between-group contrasts (Eqs. 5-8), can 147 

misestimate uncertainty. To assess robustness and to provide distribution-free alternatives, we 148 

complemented the analytic formulas with resampling-based estimators computed within each 149 

group and summed for the difference (i.e., jackknife [33]; see our simulation study below). 150 

  151 

Difference in correlation 152 

Numerous meta-analyses estimate the correlation between two variables (e.g., [34,35]). To do so, 153 

researchers use the effect size statistic Zr [36], which can be expressed as: 154 

𝑍𝑟 =
𝑙𝑛(

1+𝑟

1−𝑟
)

2
 (eq. 9) 155 

and its sampling variance (s2
Zr) [36] as: 156 

𝑠𝑍𝑟
2 =

1

𝑛−3
 (eq. 10) 157 

where r is Pearson's correlation coefficient between two variables and n is the sample size. 158 

 Although Zr alone remains extremely useful to test correlational hypotheses, researchers 159 

from all fields would benefit from being able to compare Zr values between two groups. Although 160 

Cohen [37] proposed the difference between two groups in Zr as q, he did not provide an equation 161 

to calculate its sampling variance. Consequently, this effect size statistic has not been used despite 162 



 

its potential. We therefore propose the difference between two groups in Zr with a new name 163 

(ΔZr), as: 164 

Δ𝑍𝑟 = 𝑍𝑟1 − 𝑍𝑟2 (eq. 11) 165 

 and its sampling variance (s2
ΔZr) as: 166 

𝑠Δ𝑍𝑟
2 = 𝑠𝑍𝑟1

2 + 𝑠𝑍𝑟2
2 − 2ρ𝑍𝑟𝑠𝑍𝑟1𝑠𝑍𝑟2 (eq. 12) 167 

 where ρZr represents the sampling correlation in Fisher’s Zr between the two groups (zero 168 

if assumed to be independent). 169 

 170 

Simulation study 171 

We conducted Monte-Carlo simulations to evaluate bias and variance estimation for our new effect 172 

sizes Δsk, Δku and ΔZr. For Δsk and Δku, we simulated independent samples for two groups from 173 

Pearson distributions with known moments using the rpearson function from the R package 174 

PearsonDS v. 1.3.2 [38]. We conducted two simulations: 1) by changing skewness between groups 175 

that involved moderate departures from normality in which group-specific skewness from sk ∈ 176 

{−1, −0.5, 0, 0.5, 1} and kurtosis was fixed at 3; 2) by holding skewness constant (sk = 0) while 177 

manipulating kurtosis from ku ∈ {2.5, 3, 4, 5, 6}. In all cases, we simulated scenarios where: (i) 178 

the variance between each group was the same (σ²₂ = σ²₁ = 1) or different (2σ²₂ versus σ²₁); (ii) the 179 

mean between the two groups was the same (u₂ = u₁ = 0) or different (u₂ = 5, u₁ = 0). For simplicity, 180 

we assumed equal sample sizes between groups with sample size varying from n ∈ {10, 20, …, 181 

100, 150, 500}. We created all unique combinations of the above scenarios resulting in 1,200 182 

independent scenarios (when considering each of the 100 scenarios at each sample size). We 183 

estimated Δsk and Δku for each scenario using formulas for within-group sample skewness with 184 

small-sample correction (Eq. 1) and excess kurtosis with small-sample correction (Eq. 3) to 185 



 

estimate point estimates. To estimate associated sampling variance for Δsk and Δku we used the 186 

analytical variance estimators derived here (Eqs. 2 and 4) and an associated re-sampling 187 

(jackknife) approach to compute group sampling variances separately followed by pooling. 188 

Importantly, our simulations assume no correlation between groups. 189 

For ΔZr simulations, we simulated two groups each containing two variables with known 190 

correlations within each group. For ΔZr we drew bivariate normal data with target within-group 191 

correlations r ∈ {−0.8, −0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8} using the mvnorm function from the package 192 

MASS v. 7.3.61 [39]. Marginals were standard normal and group sizes varied from n ∈ {10, 20, 193 

…, 100, 150, 500}. We created all unique combinations of scenarios resulting in 768 unique 194 

scenarios. We estimated ΔZr using Fisher’s Z transformation Zr and calculating ΔZr as the 195 

difference of Zr across groups (Eqs. 9–11). Sampling variance for ΔZr used Eq. 10 and a jackknife 196 

approach. Again, we assumed no correlation between our groups. 197 

 Across all simulations we resampled 2,500 times for each scenario. Performance metrics 198 

were (a) bias of the point estimator, (b) relative bias of the sampling-variance estimator, and (c) 199 

Monte-Carlo standard errors (MCSEs). See supplementary material for full formulas. 200 

 201 

Simulation results 202 

In all cases, we found the Monte Carlo Sampling Error (MCSEs) to be low for all our performance 203 

metrics (range of MCSEs for Δsk: 0 to 0.01; Δku: 0 to 0.624; ΔZr: 0 to 0.004). Δsk, Δku, and ΔZr 204 

point estimators exhibited small sample bias with less than 20-30 samples, except for Δku, which 205 

showed this bias below n < 50-60, indicating effect sizes involving kurtosis are more challenging 206 

to estimate (Fig. S1, Fig. S2). Regardless, small sample biases were moderate, and there was rarely 207 

a consistent over or under-estimation in point estimates across the scenarios evaluated (Fig. S1 and 208 



 

Fig. 2A, C, E). Bias-corrected jackknife estimates reduced the small-sample bias relative to 209 

analytical bias corrected-moment estimators (mean square bias [MSB], jackknife and analytical, 210 

for Δsk: 1.109, 3.375; Δku 477.71, 891.659; ΔZr 0.029, 0.214). 211 

In contrast to point estimators, the effectiveness of sampling variance estimators for Δsk, 212 

Δku and ΔZr varied. Analytical sampling variance formulas for Δsk and Δku were consistently 213 

biased (Fig S3). Jackknife resampling when combined with analytical point estimates (Fig. 2) 214 

performed the best. Under these conditions, estimators performed well when n > 50. In contrast, 215 

the performance of sampling variance estimators for ΔZr was best when using the analytical 216 

formulas for both the point estimator and its associated sampling variance (Fig. 2). 217 

Considering these simulation results, we suggest pairing the formula-based point 218 

estimators for skewness (Eq. 1) and kurtosis (Eq. 3) with jackknife standard errors for Δsk and 219 

Δku. For ΔZr, the standard analytic variance is recommended (Eqs. 9-12). This choice balances 220 

efficiency under normality with robustness to realistic deviations from it and aligns with our 221 

broader guidance to avoid very small group sizes for these statistics. 222 

 223 



 

 224 

Figure 2. Bias in Δsk, Δku and ΔZr effect estimates (A, C, E) and relative bias in sampling variance 225 

using jackknife-based approximation (B, D, F) across simulations where samples ranged in group 226 

sample sizes between n ∈ {10, 20, ..., 100, 150, 500}. A total of 100 simulated scenarios were 227 

assessed for Δsk and Δku whereas 64 simulated scenarios were assessed for ΔZr. For each scenario 228 

we ran 2,500 simulations. For simplicity, we only present results from our recommended point 229 

estimators and sampling variance estimators using jackknife. For full simulation results see 230 

supplementary materials.  231 

 232 

Worked examples: sex differences in mice 233 

To illustrate the application of our proposed effect size statistics, we used data compiled by the 234 

International Mouse Phenotyping Consortium (IMPC, version 18.0; [40]; 235 



 

http://www.mousephenotype.org/). We examined differences between male and female mice in 236 

two pairs of traits from distinct functional domains: morphology (fat mass and heart weight) and 237 

physiology (glucose and total cholesterol). We selected these traits because they are widely 238 

understood traits, even by non-specialists, and had a large sample size (more than 10,000 239 

individuals measured). More specifically, we assessed differences between the sexes in mean 240 

(using the natural logarithm of the response ratio [41], hereby lnRR), variability (using the natural 241 

logarithm of the variance ratio [14], hereby lnVR), skewness (using Δsk), and kurtosis (using Δku) 242 

for each trait, as well as in the difference in correlation for each trait pair (using ΔZr). The IMPC 243 

dataset contains data from multiple phenotyping centres and mice strains, so we selected the ones 244 

with the most data points for our analyses here, computing the aforementioned effect size statistics 245 

separately for each one of them.  246 

We performed a meta-analysis for each effect size statistic to obtain a mean effect size for 247 

each trait (or pair of traits, in the case of ΔZr), using ‘phenotyping centre’ and ‘mice strain’ as 248 

random factors in meta-analytical models. In these analyses, positive effect sizes denoted a greater 249 

estimate (mean, variability, skewness, kurtosis, or correlation) for males than females. We 250 

conducted all statistical analyses in the software R 4.5.1 [42]. We used the functions 251 

moment_effects and cor_diff, which have been incorporated into the package orchaRd v. 2.1.3 252 

[43], to compute Δsk, Δku, and ΔZr. We fitted meta-analytical models using the rma.mv function 253 

from the package metafor v. 4.8-0 [44]. All methodological details and additional information can 254 

be found in our tutorial, at https://pietropollo.github.io/new_effect_size_statistics/. 255 

 We found that males, on average, had greater fat mass and heart weight than females 256 

regardless of phenotyping centre and mice strain (Fig. 3A, B, F, G). The variability among 257 

individuals regarding these traits was also greater for males than for females, except for fat mass 258 



 

from one specific phenotyping centre and mice strain (Fig. 3C). By contrast, females tended to 259 

have greater skewness in fat mass and heart weight than males (i.e., negative Δsk values, but note 260 

they overlap zero; Fig. 3D, I). Most importantly, Δsk values for fat mass and heart weight varied 261 

across phenotyping centres and mice strains, with negative and positive values present (Fig. 3D, 262 

I). Sex differences in kurtosis for fat mass and heart weight followed a very similar pattern to the 263 

one described for skewness: negative mean Δku values (i.e., greater kurtosis for females than for 264 

males, but overlapping zero) with some variation across individual effect sizes (Fig. 3E, J). 265 

Moreover, the correlation between fat mass and heart weight was, on average, greater for females 266 

than males (Fig. 4A, B). However, this difference in correlation was absent for some phenotyping 267 

centres and mice strains (Fig. 4A, B). 268 

We also found that male and female mice were, on average, similar in terms of blood 269 

glucose levels (Fig. 5A, B), although males had higher total cholesterol than females (Fig. 5F, G). 270 

We observed the same pattern regarding the variability of these traits: on average, the sexes were 271 

similarly variable in glucose (Fig 5C), but the variability of total cholesterol was greater in males 272 

than in females (Fig. 5H). Contrasting with morphological traits, sex differences in skewness and 273 

kurtosis were mostly absent (Fig. 5D, E, I, J). Lastly, males and females showed a similar 274 

relationship between glucose and total cholesterol, albeit this relationship was stronger for males 275 

than for females in some instances (Fig. 4C, D). 276 

 Our findings that females have, on average, lower (Fig. 3B, G), less variable (Fig. 3C, H), 277 

more concentrated at low values (higher skewness; Fig. 3D, I), and more extreme values (higher 278 

kurtosis; Fig. 3E, I) of fat mass and heart weight compared with males may contribute to sex-279 

related differences in the development of diseases associated with these traits and their biomarkers 280 

(e.g., QTc interval length [45]). Moreover, a stronger relationship between fat mass and heart 281 



 

weight in females than in males (Fig. 4B) may represent a greater risk of cardiohypertrophy arising 282 

from obesity in the former compared with the latter [46]. Meanwhile, absent or less pronounced 283 

sex differences in glucose and total cholesterol (Fig. 4) may suggest other sources of variation may 284 

contribute to sex differences in the symptomology of diseases associated with these measurements 285 

(e.g., [47–49]). Characterising sex differences in biological traits, as we have done here, can 286 

provide new perspectives on evolutionary, ecological, and medical patterns, possibly improving 287 

healthcare and environmental interventions. 288 

  289 



 

290 

Figure 3. Examples of morphological sex differences in mice (fat mass, A-E; heart weight, F-J) 291 

for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains 292 

(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and 293 

G-J (turquoise) representing the mean effect size. While A and F show distributions of these traits 294 

(scaled by subtracting the mean from each value and then dividing the result by the standard 295 

deviation) for males (black with dashed borders) and females (white with solid borders), panels B-296 



 

E and G-J show effect sizes (lnRR: natural logarithm of the response ratio; VR: variance ratio; Δsk: 297 

difference in skewness; Δku: difference in kurtosis). 298 

 299 

 300 

Figure 4. Relationship between fat mass and heart weight (A, B) and glucose and total cholesterol 301 

(C, D) in mice. Panels A and C show these relationships (with variables scaled by subtracting the 302 

mean from each value and then dividing the result by the standard deviation) separately for males 303 



 

(dashed line) and females (solid line), each subpanel representing a different phenotyping centre 304 

and/or mice strain. Panels B and D then show differences in correlation (ΔZr) between males and 305 

females, where each colour represents a distinct phenotype centre and each shape represents a 306 

distinct mice strain, with the bottom estimate in each panel (pink) representing the mean effect 307 

size. Note that panels A and C contain individual data points, which may appear as background 308 

shading in cases with large sample sizes.  309 

 310 



 

 311 

Figure 5. Examples of physiological sex differences in mice (glucose, A-E; total cholesterol, F-J) 312 

for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains 313 

(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and 314 

G-J (turquoise) representing the mean effect size. While A and F show distributions of these traits 315 

(scaled by subtracting the mean from each value and then dividing the result by the standard 316 

deviation) for males (black with dashed borders) and females (white with solid borders), panels B-317 



 

E and G-J show effect sizes (lnRR: natural logarithm of the response ratio; VR: variance ratio; Δsk: 318 

difference in skewness; Δku: difference in kurtosis). 319 

 320 

Limitations 321 

Despite the enormous potential of the effect size statistics we proposed here, they are not free of 322 

limitations. For instance, skewness and kurtosis (and therefore the difference in these estimates 323 

between two groups; i.e., Δsk and Δku, respectively) are more likely to become extreme with small 324 

sample sizes and with variables with few unique values, either because the variable is discrete or 325 

because it is naturally constant (e.g., number of vertebrae in mice). We thus recommend that 326 

researchers only compute Δsk and Δku for continuous variables with a minimum sample size of 327 

50 for each group (as shown in our simulations). Lastly, although Δsk, Δku, and ΔZr can be 328 

calculated, respectively, from reported skewness, kurtosis, or within-group correlations for 329 

different samples, empirical studies rarely report these estimates. Therefore, calculating these 330 

effect sizes will probably require raw data, which, fortunately, are now becoming more readily 331 

available. 332 

 333 

Future opportunities 334 

The effect size statistics proposed in the present study can be useful across the life sciences, social 335 

sciences, and medicine. This is because skewness and kurtosis, and consequently differences 336 

between any two or more groups in these estimates (i.e., Δsk and Δku), may help researchers to 337 

understand epidemiological trends [50], genetic patterns relevant to medical diagnosis [20,21], 338 

disruptive selection on quantitative traits [51], body size patterns across individuals [52] and 339 

species [53], reproductive patterns [54], regime shifts in ecosystems [55], heritability [18], 340 



 

community assembly processes [16], and possibly many other topics. Meanwhile, comparisons 341 

regarding correlations have been used to explore memory processing during sleep [56], 342 

physiological patterns in patients with certain medical conditions [57], and selection patterns [22–343 

24], to name a few. Because ΔZr can be used in virtually any comparison between two groups of 344 

correlational data, the opportunities for its use are endless. Most importantly, Δsk, Δku, and ΔZr 345 

are unitless measures, so they can be meta-analysed to uncover patterns between two groups (e.g., 346 

males and females). Moreover, the growing availability of raw data and big data approaches, 347 

facilitated by technological advances, makes these effect size statistics particularly valuable for 348 

modern research. 349 
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