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Abstract 36 

Biological differences between males and females are pervasive. Researchers often focus on sex 37 

differences in mean or, occasionally, in variation, albeit other measures can be useful for 38 

biomedical and biological research. For instance, differences in skewness (asymmetry of a 39 

distribution), kurtosis (heaviness of a distribution’s tails), and correlation (relationship between 40 

two variables) might be crucial to improve medical diagnosis and to understand natural processes. 41 

Yet, there are currently no meta-analytic ways to measure differences in these metrics between 42 

two groups while accounting for sampling error. We propose three effect size statistics to fill this 43 

gap: Δsk, Δku, and ΔZr, which measure differences in skewness, kurtosis, and correlation, 44 

respectively. Besides presenting the rationale for the calculation of these effect size statistics, we 45 

illustrate their potential using a large dataset of mice traits. For example, we found that females 46 

show, on average, greater skewness and kurtosis than males in both fat mass and heart weight. 47 

Although calculating Δsk, Δku, and ΔZr may require large sample sizes of individual data, 48 

technological advancements in data collection create increasing opportunities to use these effect 49 

size statistics. Importantly, Δsk, Δku, and ΔZr can be used to compare any two groups, allowing a 50 

new generation of meta-analyses that explore such differences and potentially leading to new 51 

insights in multiple fields of study. 52 
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Background 56 

Sex is a biological attribute that can strongly impact organisms’ traits, with differences between 57 

males and females being central to questions in the biological sciences (e.g., [1,2]). In contrast, 58 

biomedical research has primarily focused on male subjects [3], posing a danger to female health 59 

[4,5]. Aware of these issues, the US National Institutes of Health and other health agencies have 60 

demanded the use of multiple sexes in animal studies when possible [6]. As a consequence, the 61 

number of biological and biomedical studies using both female and male animals as research 62 

subjects has increased in the last decade [7], leading to the accumulation of data that can be used 63 

to synthesise and quantify sex differences across biological domains. 64 

Realising the accumulation of sex-specific data, many perspective pieces have encouraged 65 

researchers to investigate sex differences more carefully (e.g., [8–10]). Yet, some of these pieces, 66 

and most of the biological literature, focus exclusively on mean differences between males and 67 

females. A fixation on mean differences has been present for a long time in science because of an 68 

obsession with dimorphism in trait averages (e.g., [11]), a lack of sufficiently powerful data, or 69 

limited (or difficult to use) statistical tools available to researchers. Yet, measures such as variance, 70 

correlation, skewness, and kurtosis can be critical to understanding sex differences. For example, 71 

certain traits in mice may exhibit no disparity in average values between sexes, but substantial 72 

differences emerge in terms of variability [12,13]. These differences could be more easily assessed 73 

because of an effect size statistic that measures differences in variability between two groups 74 

(proposed by [14]), illustrating how novel statistical tools can expand possible research questions 75 

and provide new scientific insights, such as identifying sex differences in trait selection or 76 

canalisation.  77 



 

Beyond variability, the relative shape of trait distributions to the normal distribution 78 

(measured by skewness and kurtosis, i.e. asymmetry of a distribution and heaviness of a 79 

distribution’s tails, respectively; Fig. 1A-B) can also be crucial to understanding ecological and 80 

evolutionary processes and patterns (e.g., [15–19]), as well as improving medical diagnostics (e.g., 81 

[20,21]). For instance, skewness can bias heritability estimates because evolutionary biologists 82 

assume that phenotypic components (genetic and environmental) are normally distributed [18]. 83 

Furthermore, kurtosis can be used to understand community assembly processes (e.g., [16]). 84 

Besides the shape of trait distributions, evolutionary biologists and quantitative geneticists can 85 

quantify correlation matrices to understand trait plasticity and evolvability (e.g., [22–24]), which 86 

could then be used for group comparisons (as in [25]; Fig.1C). Despite this, there are no effect size 87 

statistics that can easily measure between-group differences (e.g., males and females) in skewness, 88 

kurtosis, or within-group correlations.  89 

90 

Figure 1. Simulated trait distributions for two groups with different shapes (A: distinct skewness, 91 

B: distinct kurtosis), and different correlations between two traits for two groups (C). 92 

 93 

Here, we propose three new effect size statistics to evaluate between-group differences in 94 

skewness (Δsk), kurtosis (Δku), and correlation (ΔZr), key moments of a distribution that are 95 

usually unexplored. These effect size statistics will be valuable to explore sex differences but can 96 



 

also be applied in other fields of study and used to compare differences between any two groups 97 

of interest. Meta-analyses using these new effect sizes will create multiple avenues for novel 98 

biological enquiries. The time is particularly ripe for analyses using these new effect sizes because 99 

the individual-level data (e.g., individual participant data [26,27]) required for their calculation are 100 

increasingly available from new technological advances that allow faster data collection and 101 

sharing (e.g., automated phenotyping). 102 

 103 

Difference in skewness and kurtosis 104 

The mean and variance represent the first and second moments of a distribution, respectively. 105 

However, the third and fourth moments of a distribution (i.e. skewness and kurtosis, respectively) 106 

can also be valuable as they characterise the distribution’s shape. More specifically, skewness 107 

reflects the distribution's asymmetry around its mean. While positive skewness indicates an 108 

elongated right tail with an excess of high values, negative skewness suggests an elongated left 109 

tail with an excess of low values. This asymmetry can influence the interpretation of means and 110 

variation, as the mean tends to be larger than the median in positively skewed distributions, while 111 

the mean tends to be smaller than the median in negatively skewed distributions. Note that a 112 

perfectly normal distribution is symmetric (i.e. skewness = 0), where the mean is equal to the 113 

median. Skewness (sk) can be expressed as: 114 

sk  =  
1

n
  ∑ (xi − x̅)

3n
i = 1

[
1

n
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i = 1 ]

3
2

√𝑛(𝑛−1)
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 (eq. 1) 115 

where xi is a raw data value, x̄ is the sample mean, and n is the sample size. Skewness 116 

sampling variance (s2
sk) can then be expressed as: 117 

𝑠𝑠𝑘
2 =

6𝑛(𝑛−1)

(𝑛−2)(𝑛+1)(𝑛+3)
 (eq. 2) 118 



 

On the other hand, kurtosis measures tail heaviness: high kurtosis distributions have 119 

heavier tails (i.e., proportionally more extreme values than central values), whereas low kurtosis 120 

distributions have lighter tails. For comparison, a normal distribution is expected to have kurtosis 121 

= 3. Kurtosis (ku) can be expressed as: 122 

𝑘𝑢 =
𝑛(𝑛+1)(𝑛−1)

(𝑛−2)(𝑛−3)
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 (eq. 3) 123 

and its with sampling variance (s2
ku) as: 124 

𝑠𝑘𝑢
2 =

24𝑛(𝑛−1)2

(𝑛−3)(𝑛−2)(𝑛+3)(𝑛+5)
 (eq. 4) 125 

Evaluating skewness and kurtosis provides valuable insights into a variable distribution, 126 

which is crucial for interpreting means, assessing variability, and making informed decisions in 127 

statistical analyses. Although meta-analyses can use skewness (eq. 1) and kurtosis (eq. 3) to 128 

investigate single variables, effect size statistics that compare these metrics between two groups 129 

are lacking. Thus, we propose the difference between two groups in skewness (Δsk), expressed as: 130 

Δ𝑠𝑘 = 𝑠𝑘1 − 𝑠𝑘2 (eq. 5) 131 

 and its sampling variance (s2
Δsk) as: 132 

𝑠Δ𝑠𝑘
2 = 𝑠𝑠𝑘1

2 + 𝑠𝑠𝑘2
2 − 2ρ𝑠𝑘𝑠𝑠𝑘1𝑠𝑠𝑘2 (eq. 6) 133 

   Where ρsk represents the sampling correlation in skewness between the two groups (zero if 134 

assumed to be independent). Similarly, we propose the difference between two groups in kurtosis 135 

(Δku), expressed as: 136 

Δ𝑘𝑢 = 𝑘𝑢1 − 𝑘𝑢2 (eq. 7) 137 

and its sampling variance (s2
Δku) as: 138 

𝑠Δ𝑘𝑢
2 = 𝑠𝑘𝑢1

2 + 𝑠𝑘𝑢2
2 − 2ρ𝑘𝑢𝑠𝑘𝑢1𝑠𝑘𝑢2 (eq. 8) 139 



 

 where ρku represents the sampling correlation in kurtosis between the two groups (zero if 140 

assumed to be independent). 141 

 142 

Difference in correlation 143 

Numerous meta-analyses measure correlation between two variables (e.g., [28,29]). To do so, 144 

researchers use the effect size statistic Zr, which can be expressed as: 145 

𝑍𝑟 =
𝑙𝑛(

1+𝑟

1−𝑟
)

2
 (eq. 9) 146 

and its sampling variance (s2
Zr) as: 147 

𝑠𝑍𝑟
2 =

1

𝑛−3
 (eq. 10) 148 

where r is Pearson's correlation coefficient between two variables and n is the sample size. 149 

 Although Zr alone remains extremely useful to test correlational hypotheses, researchers 150 

from all fields would benefit from being able to compare Zr values between two groups. Although 151 

Cohen [30] proposed the difference between two groups in Zr as q, he did not provide an equation 152 

to calculate its sampling variance. Consequently, this effect size statistic has not been used despite 153 

its potential. We therefore propose the difference between two groups in Zr with a new name 154 

(ΔZr), as: 155 

Δ𝑍𝑟 = 𝑍𝑟1 − 𝑍𝑟2 (eq. 11) 156 

 and its sampling variance (s2
ΔZr) as: 157 

𝑠Δ𝑍𝑟
2 = 𝑠𝑍𝑟1

2 + 𝑠𝑍𝑟2
2 − 2ρ𝑍𝑟𝑠𝑍𝑟1𝑠𝑍𝑟2 (eq. 12) 158 

 where ρZr represents the sampling correlation in Fisher’s Zr between the two groups (zero 159 

if assumed to be independent). 160 

 161 



 

Worked examples: sex differences in mice 162 

To illustrate the application of our proposed effect size statistics, we used data compiled by the 163 

International Mouse Phenotyping Consortium (IMPC, version 18.0; [31]; 164 

http://www.mousephenotype.org/). We examined differences between male and female mice 165 

regarding two pairs of traits from distinct functional domains: morphology (fat mass and heart 166 

weight) and physiology (glucose and total cholesterol). We selected these traits because they are 167 

widely understood traits, even by non-specialists, and had a large sample size. More specifically, 168 

we assessed differences between the sexes in mean (using the natural logarithm of the response 169 

ratio [32], hereby lnRR), variability (using the natural logarithm of the variance ratio [14], hereby 170 

lnVR), skewness (using Δsk), and kurtosis (using Δku) for each trait, as well as in the difference in 171 

correlation for each trait pair (using ΔZr). The IMPC dataset contains data from multiple 172 

phenotyping centres and mice strains, so we selected the ones with the most data points for our 173 

analyses here, computing the aforementioned effect size statistics separately for each one of them.  174 

We performed a meta-analysis for each effect size statistic to obtain a mean effect size for 175 

each trait (or pair of traits, in the case of ΔZr), using ‘phenotyping centre’ and ‘mice strain’ as 176 

random factors in meta-analytical models. In these analyses, positive effect sizes denoted a greater 177 

estimate (mean, variability, skewness, kurtosis, or correlation) for males than females. We 178 

conducted all statistical analyses in the software R 4.4.0 [33]. We fitted meta-analytical models 179 

using the rma.mv function from the package metafor [34]. All methodological details and 180 

additional information can be found in our tutorial, at 181 

https://pietropollo.github.io/new_effect_size_statistics/. 182 

 We found that males, on average, had greater fat mass and heart weight than females 183 

regardless of phenotyping centre and mice strain (Fig. 2A, B, F, G). The variability among 184 



 

individuals regarding these traits was also greater for males than for females, except for fat mass 185 

from one specific phenotyping centre and mice strain (Fig 2C). By contrast, females tended to have 186 

greater skewness in fat mass and heart weight than males (i.e., negative Δsk values, but note they 187 

overlap zero; Fig. 2D, I). Most importantly, Δsk values for fat mass and heart weight varied across 188 

phenotyping centres and mice strains, with negative and positive values present (Fig. 2D, I). Sex 189 

differences in kurtosis for fat mass and heart weight followed a very similar pattern to the one 190 

described for skewness: negative mean Δku values (i.e., greater kurtosis for females than for males, 191 

but overlapping zero) with some variation across individual effect sizes (Fig. 2E, J). Moreover, the 192 

correlation between fat mass and heart weight was, on average, greater for females than males 193 

(Fig. 3A, B). However, this difference in correlation was absent for some phenotyping centres and 194 

mice strains (Fig. 3A, B). 195 

We also found that male and female mice were, on average, similar in terms of blood 196 

glucose levels (Fig. 4A, B), although males had higher total cholesterol than females (Fig. 4F, G). 197 

We observed the same pattern regarding the variability of these traits: on average, the sexes were 198 

similarly variable in glucose (Fig 4C), but the variability of total cholesterol was greater in males 199 

than in females (Fig. 4H). Contrasting with morphological traits, sex differences in skewness and 200 

kurtosis were mostly absent (Fig. 4D, E, I, J). Lastly, males and females showed a similar 201 

relationship between glucose and total cholesterol, albeit this relationship was stronger for males 202 

than for females in some instances (Fig. 3C, D). 203 

 Our findings that females have, on average, lower (Fig. 2B, G), less variable (Fig. 2C, H), 204 

more concentrated at low values (higher skewness; Fig. 2D, I), and more extreme values (higher 205 

kurtosis; Fig. 2E, I) of fat mass and heart weight compared with males may contribute to sex-206 

related differences in the development of diseases associated with these traits and their biomarkers 207 



 

(e.g., QTc interval length [35]). Moreover, a stronger relationship between fat mass and heart 208 

weight in females than in males (Fig. 3B) may represent a greater risk of cardiohypertrophy arising 209 

from obesity in the former compared with the latter [36]. Meanwhile, absent or less pronounced 210 

sex differences in glucose and total cholesterol (Fig. 4) may suggest other sources of variation may 211 

contribute to sex differences in the symptomology of diseases associated with these measurements 212 

(e.g., [37–39]). Characterising sex differences in biological traits, as we have done here, can 213 

provide new perspectives on evolutionary, ecological, and medical patterns, possibly improving 214 

healthcare and environmental interventions. 215 

  216 

  217 



 

 218 

Figure 2. Examples of morphological sex differences in mice (fat mass, A-E; heart weight, F-J) 219 

for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains 220 

(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and 221 

G-J (turquoise) representing the mean effect size. While A and F show distributions of these traits 222 

for males (black with dashed borders) and females (white with solid borders), panels B-E and G-J 223 



 

show effect sizes (lnRR: natural logarithm of the response ratio; VR: variance ratio; Δsk: difference 224 

in skewness; Δku: difference in kurtosis). 225 

 226 

 227 

Figure 3. Relationship between fat mass and heart weight (A, B) and glucose and total cholesterol 228 

(C, D) in mice. Panels A and C show these relationships separately for males (dashed line) and 229 

females (solid line), each panel representing a different phenotyping centre and/or mice strain. 230 



 

Panels B and D then show differences in correlation (ΔZr) between males and females, where each 231 

colour represents a distinct phenotype centre and each shape represents a distinct mice strain, with 232 

the bottom estimate in each panel (pink) representing the mean effect size. Note that panels A and 233 

C contain individual data points, which may appear as background shading in cases with large 234 

sample sizes.  235 

 236 

 237 



 

Figure 4. Examples of physiological sex differences in mice (glucose, A-E; total cholesterol, F-J) 238 

for various phenotype centres (each with a different colour in panels B-E and G-J) and mice strains 239 

(each with a different shape in panels B-E and G-J), with the bottom estimate in panels B-E and 240 

G-J (turquoise) representing the mean effect size. While A and F show distributions of these traits 241 

for males (black with dashed borders) and females (white with solid borders), panels B-E and G-J 242 

show effect sizes (lnRR: natural logarithm of the response ratio; VR: variance ratio; Δsk: difference 243 

in skewness; Δku: difference in kurtosis). 244 

 245 

Limitations 246 

Despite the enormous potential of the effect size statistics we proposed here, they are not free of 247 

limitations. For instance, skewness and kurtosis (and therefore the difference in these estimates 248 

between two groups; i.e., Δsk and Δku, respectively) are more likely to become extreme with small 249 

sample sizes and with variables with few unique values, either because the variable is discrete or 250 

because it is naturally constant (e.g., number of vertebrae in mice). We thus recommend 251 

researchers only to compute Δsk and Δku for continuous variables with a minimum sample size of 252 

50 for each group. Lastly, although Δsk, Δku, and ΔZr can be calculated, respectively, from 253 

reported skewness, kurtosis, or within-group correlations for different samples, empirical studies 254 

rarely report these estimates. Thus, the calculation of these effect sizes will probably require raw 255 

data, which are only now fortunately becoming more easily available. 256 

 257 

Future opportunities 258 

The effect size statistics proposed in the present study can be useful across the life sciences, social 259 

sciences, and medicine. This is because skewness and kurtosis, and consequently differences 260 



 

between any two or more groups in these estimates (i.e., Δsk and Δku), may help researchers to 261 

understand epidemiological trends [40], genetic patterns relevant to medical diagnosis [20,21], 262 

disruptive selection on quantitative traits [41], body size patterns across individuals [42] and 263 

species [43], reproductive patterns [44], regime shifts in ecosystems [45], heritability [18], 264 

community assembly processes [16], and possibly many other topics. Meanwhile, comparisons 265 

regarding correlations have been used to explore memory processing during sleep [46], 266 

physiological patterns in patients with certain medical conditions [47], and selection patterns [22–267 

24], to name a few. Because ΔZr can be used in virtually any comparison between two groups of 268 

correlational data, the opportunities for its use are endless. Most importantly, Δsk, Δku, and ΔZr 269 

are unitless measures, so they can be meta-analysed to uncover patterns between two groups (e.g. 270 

males and females). Moreover, the growing availability of raw data and big data approaches, 271 

facilitated by technological advances, make these effect size statistics particularly valuable for 272 

modern research. 273 

 274 
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