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Abstract

Population dynamic models are widely used to predict demography. How-
ever, they have rarely been extended to biogeographical applications despite
widespread calls to do so. We developed a process-based dynamic range model
(DRM) that estimated demographic rates and the effects of the environment on
demographic rates to forecast species range shifts in response to temperature
change. As a proof of concept, we fitted DRMs to historical observations of
summer flounder (Paralichthys dentatus), a fish species in the Northwest At-
lantic, and evaluated model skill at retrospective forecasting. The best DRMs
outperformed a statistical species distribution model and a persistence forecast
at predicting biogeographical dynamics across a decade. The DRM approach is
general and can be applied to a wide range of species with historical observa-
tions across space and time. By explicitly modeling demographic processes and
their relationship to climate, DRMs promise to substantially advance prediction
of species on the move.

Introduction

Prediction has become a central goal of ecology (Mouquet et al., 2015). Predic-
tive ecology often seeks to forecast human impacts on ecosystems. It supports
biodiversity conservation, natural resource management, climate change miti-
gation and adaptation, and other applications (Urban et al., 2016). Near-term
forecasting is a particularly pressing need so that the timescale of ecological
information aligns with the often-short timescale of environmental decision-
making (Dietze et al., 2018).

Species distributions have been a major emphasis of predictive ecology, par-
ticularly in the context of climate change (Pearson & Dawson, 2003). Species
are shifting their ranges in response to climate change (Parmesan & Yohe, 2003),
with cascading effects on communities, ecosystems, ecosystem services, and hu-
man welfare and well-being (Pecl et al., 2017). Early species distribution mod-
els (SDMs) projected species ranges and range shifts using correlations between
species’ presence (and sometimes abundance) and environmental variables (Elith
& Leathwick, 2009). However, observed range shifts have been highly individ-
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ualistic and are not well predicted by simple environmental variables (Davis et
al., 1998; Rubenstein et al., 2023). SDMs have been critiqued in the context of
near-term forecasting because they assume species are in equilibrium with the
environment, may be trained on data that does not resemble future climates,
and have demonstrated limited forecast skill to date (Jarnevich et al., 2015;
Lee-Yaw et al., 2022). New approaches (e.g., hybrid and ensemble SDMs) are
addressing some of these shortcomings, but still using fundamentally correlative
approaches that do not explicitly model ecological mechanisms (Brodie et al.,
2022; Ehrlén & Morris, 2015; Kearney & Porter, 2009; Zurell, 2017).

Mechanistic or “process-based” models are often presented as a way forward
in forecasting range shifts and for predictive ecology in general (Dietze et al.,
2018; Urban et al., 2016). These models can estimate assumed causal relation-
ships, predict effects using those estimates, provide insight into fundamental
ecological mechanisms, estimate parameters of interest, falsify ecological theo-
ries, and incorporate processes over varying spatial and temporal scales (Cabral
et al., 2017; Evans et al., 2016). Another advantage of mechanistic models is
that, if implemented in a hierarchical framework, they can model the underly-
ing ecological processes separately from the data collection process, facilitating
more accurate parameter estimation and error partitioning (Laubmeier et al.,
2020). These are rare in biogeography, however, partly due to the heightened
difficulty of parameter estimation and scale when mechanistic ecological models
(e.g., population dynamic models) are made spatial (Briscoe et al., 2019).

One promising class of mechanistic models for range forecasting is dynamic
range models (DRMs): spatially explicit population dynamic models that esti-
mate demographic rates as a function of the environment (Pagel & Schurr, 2012).
DRMs estimate key parameters from data on species’ occurrences and abun-
dances and can incorporate processes at multiple spatial and temporal scales,
making them flexible tools that may be applied to a broad suite of ecological
questions. However, this flexibility also makes them reliant on the availability
of large datasets through time and space. Indeed, DRMs have mainly been fit-
ted to simulated data for this reason (Zurell et al., 2016). DRMs have yielded
useful results when applied to real data for parameter inference (Le Squin et al.,
2021; Osada et al., 2019). However, DRMs have not been operationalized for
range forecasting of real species—the main purpose for which they were designed
(Briscoe et al., 2019; Pagel & Schurr, 2012).

An ideal system in which to operationalize DRMs for range forecasting is one
where species have already shifted their ranges, where large-scale biodiversity
surveys have been operating for some time, and where a strong theoretical
understanding exists of the underlying population dynamics and how they relate
to the environment. One such system is temperate marine continental shelf
ecosystems. Range shifts have been particularly rapid and widespread in these
systems, because there are relatively few barriers to dispersal, species live close
to their thermal limits, and spatial gradients in temperature are less steep in
the oceans than they are on land (Pinsky et al., 2020). Marine systems are also
relatively data-rich: we have records of historical fishing mortality, insights into
the population dynamics of harvested marine species, and large-scale, long-term
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monitoring programs that have conducted scientific marine surveys in the US
for many decades (Maureaud et al., 2023).

Here, we built DRMs—mechanistic models that explicitly model demographic
processes from physiological to metapopulation scales—to forecast range dy-
namics in response to climate variability and change using more than four
decades of biogeographical data. We implemented these DRMs as hierarchical
Bayesian models fitted to historical data from 1972-2006 on summer flounder
(Paralichthys dentatus), an important commercial and recreational species on
the east coast of the US that has been shifting northward (Perretti & Thor-
son, 2019). We then evaluated DRM performance with a retrospective forecast
from 2007-2016. We modeled the data collection process separately from the
underlying ecological dynamics and quantified both process and measurement
error. We designed multiple DRMs representing different hypotheses about the
underlying ecological processes; this allowed us to explore which vital rates were
most strongly affected by changing temperatures and the value of incorporating
additional ecological complexity (Briscoe et al., 2019; Zurell et al., 2016). Specif-
ically, we compared DRMs with temperature-dependent recruitment, mortality,
or movement. Out-of-sample DRM forecasts were more accurate and less biased
than a statistical SDM or a persistence forecast at predicting range centroid and
edge positions over a decade of testing.

1 Methods

The DRM simulated age-structured, discrete-time population dynamics, includ-
ing dispersal, within a spatial domain that was discretized into habitat patches
along the coastline, such that each patch was adjacent to one or two neighboring
patches (Fig. 1). Model parameters were estimated by fitting this process-based
model to observations of species abundance density across space and time. We
implemented a base model without temperature-dependent demographic rates
and three models with temperature-dependent recruitment, mortality, or move-
ment. We denote vectors, matrices, and arrays in bold.

We used a hierarchical Bayesian approach to model observed numerical den-
sities of all individuals regardless of age (D) as a function of the modeled latent
age-structured population density (Np,a,t) for each patch (p), age class (a), and
time step (t). We incorporated observed presence (P) to help account for zero-
density patches.

Our methodology comprises a process model, which explicitly models the
underlying population dynamics, and an observation model, which relates these
dynamics to observed data. We first describe the options for the process model,
followed by the observation model, which remained consistent across all process
model configurations.
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Figure 1: Schematic of the patch structure and temperature-dependent pro-
cesses in the DRM design highlighting dynamics within an example patch.
All patches contained distinct age classes and experienced stochastic recruit-
ment. The three processes for which a temperature effect could be implemented
are shown as dark grey arrows. Temperature-dependent recruitment affected
the production of recruits by adults; temperature-dependent mortality affected
all age classes; and temperature-dependent movement affected the dispersal of
adults between adjacent patches.

1.1 Process models

1.1.1 Base model

The base process model included age structure, adult dispersal, stochastic re-
cruitment, and annual mortality. The population dynamics driving Np,a,t were
as follows. Recruitment (i.e., production of age 1 individuals) in each year and
patch was calculated as a stochastic process (Johnson et al., 2016) around a
long-term average:

Np,a=1,t = µ× ert−
σ2
proc
2 (1)

where µ is the average density of recruitment per patch across all space and time,
rt represents recruitment stochasticity (through a first-order autoregressive pro-
cess), and σproc is its conditional standard deviation. Equation (1) implies that
recruitment in a given year is the same for all patches. The autoregressive term
rt was defined as

rt = αrt−1 + σproczt, (2)

where zt is an uncorrelated standard Normal error term and α is the temporal
autocorrelation, namely the correlation between rt and rt−1.

We modeled adults and juveniles (the latter are older than recruits but
not yet mobile or reproductive) separately. Summer flounder reach maturity
around two years of age (NEFSC, 2019), so in our application, age class one
represented recruits, age class two represented juveniles, and age classes three
and older represented adults. Juvenile age classes were modeled as the fraction
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of the next youngest age class that survived to the following year in a given
patch:

Np,a,t = Np,a−1,t−1 × sa−1,t−1 (3)

where s represents annual survival fraction, which was constant across patches
unless we added temperature-linked survival (see 1.1.2). Because summer floun-
der experience fishing mortality, we combined age- and year-specific fishing mor-
tality fa,t with natural mortality m to calculate the annual survival fraction:

sa,t = e−(fa,t+m). (4)

Both m and fa,t are instantaneous rates, so they can exceed 1.
Adults differed from juveniles in that they could move among adjacent

patches. We calculated age-structured population density for adults with an
isotropic dispersal fraction δ among adjacent patches:

Np,a,t = (1− 2δ)Np,a−1,t−1 × sa−1,t−1

+δNp−1,a−1,t−1 × sa−1,t−1

+δNp+1,a−1,t−1 × sa−1,t−1. (5)

Edges were treated as reflective, so adults did not disperse beyond the model
domain and dispersal rates were adjusted accordingly at the edges. Therefore,
we specifiedNp,a,t = (1−δ)Np,a−1,t−1×sa−1,t−1+δNp−1,a−1,t−1×sa−1,t−1 in the
northern-most patch, and Np,a,t = (1−δ)Np,a−1,t−1×sa−1,t−1+δNp+1,a−1,t−1×
sa−1,t−1 in the southern-most patch.

1.1.2 Temperature effects

To incorporate the effects of temperature on population dynamics—and, con-
sequently, on species distributions over space and time—we designed a series
of alternative models for temperature dependence. These represented different
hypotheses describing how temperature may affect population dynamics. For
example, adults might move to track their preferred thermal conditions, and
indeed, marine species ranges are highly correlated with their physiological ther-
mal tolerances (Sunday et al., 2012). However, the distribution of recruits has
shifted north faster than adults for some species, suggesting that temperature
might instead affect recruitment (Perretti & Thorson, 2019). Other research
indicates that historical population dynamics are consistent with temperature
effects on natural mortality (O’Leary et al., 2019). To explore these three hy-
potheses in the context of range shifts, we implemented alternative models that
included temperature effects on (1) recruitment, (2) mortality, or (3) adult move-
ment. To avoid parameter identifiability issues, these temperature effects were
tested in separate models and were not combined.

In each case, we calculated a relative index of temperature suitability for
each patch and year, I. I was maximized at an optimal temperature, τ , which
was estimated as part of model fitting. The intuition behind τ depends on
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the model structure. In the recruitment model, τ was the temperature at which
recruitment was highest. In the mortality model, it represented the temperature
at which natural mortality was lowest. In the movement model, τ represented
the temperature toward which the greatest proportion of fish migrated from an
adjacent patch. I was calculated as a Gaussian function such that, as the actual
temperature T deviated from τ , the temperature suitability index I declined at
a rate inversely proportional to a width parameter ω,

Ip,t = e

(
−0.5(

Tp,t−τ

ω )2
)
. (6)

The temperature-dependent recruitment model linked temperature to re-
cruitment by using I to rescale Np,a=1,t, thus modifying Equation (1):

Np,a=1,t = µ× ert−
σ2
proc
2 × Ip,t. (7)

In this case, µ becomes the average density of recruits under optimal environ-
mental conditions, that is, when T = τ .

To model temperature-dependent mortality, we modified Equation (4) to
include the temperature effect I, which acted by reducing survival when the
temperature was not at τ :

sp,a,t = e−(fa,t+m+γ(1−Ip,t)), (8)

where γ is the excess natural mortality due to temperature. Note that, unlike
in Equation (4), s could now vary over p because the temperature effect led to
distinct survival across patches.

The movement model required more complexity because we modeled both
passive diffusion between patches (Equation 5), δ, and taxis—the directed move-
ment by adults in response to environmental gradients. We followed the methods
in Thorson et al. (2021). Specifically, we log-transformed I and constructed a
p-by-p taxis matrix X for each year by subtracting the I of adjacent patches
and multiplying the difference (i.e., the habitat gradient) by βtax, a parame-
ter that defined how much taxis changed per unit of temperature. A p-by-p
diffusion matrix, Z, simply included δ for adjacent patches (rescaled so that
columns in the matrix summed to 1 at the end) and zeros elsewhere. We then
summed and exponentiated Z andX in every year to yield the movement matrix
M = eX+Z containing annual movement fractions between each patch. Finally,
we calculated Np,a,t by multiplying the right-hand side of Equation (5) by M.

1.2 Observation model

The observation model related the observed densities to the process model. We
defined observed presence (P) from observed density (D) at patch p and time t
as

Pp,t =

{
1 if Dp,t > 0

0 if Dp,t = 0.
(9)
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We assumed Pp,t and Dp,t were distributed as follows

Pp,t ∼ Bernoulli(θp,t) (10)

(log(Dp,t) | Pp,t = 1) ∼ N
(
log(λp,t/θp,t)−

σ2
obs

2
, σobs

)
, (11)

where θp,t is the probability of encountering individuals in patch p and time t,
N indicates a Normal distribution, σobs is the standard deviation of log(Dp,t),
and λp,t =

∑
a Np,a,t is the latent density of individuals in each patch. Note

that we divided λp,t by θp,t in Equation (11) to ensure that the expectation of
their product was equal to the mean of the observed abundance densities (D).

A logit-link was used to connect the probabilities of encounter θp,t to the
predicted densities as follows

logit(θp,t) = β0 + β1 log(λp,t), (12)

where β0 and β1 are slope and intercept parameters controlling how much the
probability of the species being encountered increases with the latent density.

1.3 Model implementation

We wrote the DRM in Stan, a platform for Bayesian modeling (Team, 2022), and
used “cmdstanr” (Gabry et al., 2024) to produce the results in R (Supp. Tab.
1). We specified weakly informative priors for parameters α, β0, β1, σobs, and
δ. We also bounded them to ecologically meaningful values: β1 was restricted
to positive numbers, and δ was restricted to the interval [0, 1/3] because the
probability of an individual staying in place or moving to one of two adjacent
patches cannot exceed 100%. We also specified weakly informative priors for
additional parameters in temperature-dependent models (Supp. Tab. 2). We
specified fishing and natural mortality rates as known values in most model
configurations (see Section 1.4).

For each model configuration, we obtained samples from the posterior from
four parallel chains, each of which ran for 5,000 iterations, including 2,000 warm-
up iterations. We considered a model to have converged if less than 5% of the
transitions in the sampler after warm-up were reported as divergent.

1.4 Data

To evaluate the DRMs, we used data from National Oceanic and Atmospheric
Administration (NOAA) bottom trawl surveys conducted in the northeast US
since 1968 (Smith, 2002). These surveys have been conducted with standardized
equipment and methods over time, and utilize a stratified randomized sampling
design, making them ideal for climate biogeography applications (Fredston et
al., 2021; Fredston-Hermann et al., 2020; Pinsky et al., 2013). We downloaded
the 2020 release of OceanAdapt, a data portal that compiled North American
bottom trawl survey records (Forrest et al., 2020). The NOAA Northeast survey
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operates in fall and spring; we used the fall survey that more often catches
summer flounder.

The sampling unit for the survey is a single “haul”, an event during which a
fishing net is towed through the ocean for a fixed amount of time. Temperature
is measured in situ for each haul at the seafloor. After each haul, scientists on
board the survey vessel identify, count, weigh, and measure the catch in the net.
To ensure that the years analyzed were sampled consistently throughout time,
we used data from 1972-2016.

These records encompassed the region from Cape Hatteras in North Carolina
to the border between Canada and Maine (Fig. 2), from just north of 35◦N to
above 44◦N. To model spatial structure in the region, we divided the summer
flounder data into 10 patches, each 1◦latitude in height (Fig. 2). We calculated
the observed summer flounder density D in units of fish per haul. We calculated
Dp,t as the average number of summer flounder per haul in patch p in year t.
These observed density values—varying over space and time—were the main
data input to the DRM.

The ability of the survey gear to catch summer flounder individuals depends
on their size. To relate fish observations to the latent, age-structured densities
in the DRM, we converted density-at-age to density-at-length using a length-at-
age key. This key assumes that summer flounder, on average, grow according to
a von Bertalanffy curve with log-normal deviations and a constant coefficient of
variation of 20%. Using this key, we converted density of fish at a given age a
to density of fish at length. From there, we assumed that the survey gear had a
logistic selectivity curve, with the lengths at 50% and 95% selectivity estimated
by the model. This selectivity curve was then used to convert the age-structured
density of fish in the model (Np,a,t) to the expected density of fish caught by
the survey (λp,t):

λp,t =
∑
a

Φ(a)Np,a,t (13)

with the function Φ(a) encoding the probability of sampling an individual of
age a.

We averaged bottom temperature data across hauls in every patch and year.
In situ sea bottom temperature data was missing for some hauls, including all
hauls south of 38◦N in 2008. To fill this data gap, we fitted a linear mixed-effects
model with latitude as a fixed effect, year as a random effect, and all available
bottom temperature data as the response variable. We then used this fitted
model to predict bottom temperature in 2008 in the three patches with missing
data.

Summer flounder in the northeast US have a stock assessment—a statisti-
cal analysis that integrates multiple data sources to produce estimates of total
biomass, fishery catch rates, and other parameters to inform fisheries manage-
ment. We used the estimated natural mortality rate m (often assumed to be
constant for all years and age-classes) and fishing mortality-at-age fa,t (which
differed across years t and age-classes a) from a recent stock assessment for
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Figure 2: Map of the study region showing the modeled patches as grey boxes.
Each patch was 1◦latitude high. US states are labeled for reference.
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this summer flounder population (NEFSC, 2019). The stock assessment fixed
m = 0.25 and estimated fa,t ranging from 0.009 to 1.983. We passed this
fishing mortality fa,t and the natural mortality m to the DRM as spatially
homogeneous known quantities (i.e., without error), except in the temperature-
dependent model. The latter model instead estimated m in every patch and
year as a combination of estimated temperature-driven mortality and a non-
temperature-related natural mortality parameter bounded at (0,0.25). The as-
sessment estimates of f began in 1982, so we imputed the 1982 values for our
earliest years of summer flounder data (1972-1981).

1.5 Species distribution model

To compare DRM performance to SDMs widely used in the range shift literature,
we fitted a generalized additive model (GAM) SDM (Morley et al., 2018) with
the “mgcv” package in R (Wood, 2017). The GAM SDM was also a two-stage
model; we fitted one GAM to presences and absences in the training data using
a logistic regression (i.e., logit-link and Bernoulli family) and a second GAM to
log-abundance conditioned on presence, assuming a Gaussian error distribution.
Both were single intercept models with a spline on bottom temperature, the
sole predictor. Unlike the DRMs, we fitted the GAM to the haul-level data (not
aggregated to the patch scale). Bottom temperature records were missing from
a number of hauls in 2008 (see Section 1.4). The interpolation method we used
to fill these data gaps for the DRMs was not appropriate for the much higher
spatial resolution of the GAMs, so we omitted 2008 data from the GAMs.

1.6 Model evaluation and comparison

We used a retrospective forecasting approach to assess model performance. The
DRM was fitted to summer flounder data from 1972-2006 and then simulated
for the final decade of data (2007-2016). The forecast was initialized with the
final year of fishing mortality data passed to the model (2006) and then run
forward by making draws from the posterior probability distribution of param-
eters estimated in the model fitting routine. Observed temperature data for
2007-2016 were used. We validated the forecasts against the held-out observa-
tions from 2007-2016, which we averaged into patches as we did for the input to
the DRM (Section 1.4). The GAM SDM forecast used the bottom temperature
records from 2007-2016. We then aggregated GAM predictions to the patch
scale the same way we aggregated the raw data passed to the DRM (Section
1.4) to enable forecast comparisons. The persistence forecast was a continuation
of the observations from the final year of the training interval (2006) into every
subsequent year.

Forecast performance metrics included (1) the abundance-weighted latitudi-
nal range center (i.e., range centroid) and (2) the cold and (3) the warm range
edge positions. The edge positions were calculated as abundance-weighted 0.05
and 0.95 quantiles of latitude. Note that because our study domain did not en-
compass the full geographic distribution of the focal species, these represented
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Figure 3: Summer flounder dynamics over space and time in the study region
from 1972-2016. Cells are color-coded by mean density in the survey, and sum-
mary statistics used to evaluate and validate models (the position of the range
centroid and warm and cold edges) are plotted.

population range metrics, not metrics for the full species range.
For each of these metrics, we calculated the residuals (forecasts minus ob-

servations) in each year. We then calculated bias (mean of residuals) and root
mean square error (RMSE, square root of the mean of the squared residuals)
for each metric. For the DRMs, we calculated the residuals for each of 12,000
posterior draws and then used the mean residual value for each posterior to
calculate bias and RMSE.

2 Results

Summer flounder exhibited complex spatiotemporal dynamics during the study
period, including a decline in density in the 1980s and an increase beginning
in the 1990s (Fig. 3). Its geographic distribution was relatively stable from
1972-1990, then shifted north substantially through 2002 before another period
of relative stability through 2016 (Fig. 3). During the northward shift (1990-
2002), for example, the centroid shifted from the latitude of Virginia (37.7 ◦N)
to that of New Jersey (39.1 ◦N), approximately 155 km (Fig. 2). These observed
shifts occurred primarily during our model training interval. From 2007-2016
(our testing interval), summer flounder did not shift north significantly (linear
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Figure 4: Sea bottom temperatures (SBT) recorded in situ by trawl surveys
by patch and year, calculated as means of haul-level observations. Grey boxes
indicate data gaps. Solid black lines represent isotherms; their positions were
calculated by fitting a linear regression of latitude on temperature in each year,
and predicting the annual latitudinal position of each degree Celcius value.

regression of latitude on time; centroid coefficient −0.03 ± 0.05 and p = 0.58,
warm edge coefficient 0.04± 0.06 and p = 0.52, cold edge coefficient 0.01± 0.03
and p = 0.79; n = 10; Fig. 3).

The in situ sea bottom temperature exhibited significant warming of 0.04
± 0.003 ◦C per year across the study region from 1972-2016 (linear regression;
p <0.001). This trend was spatially and temporally heterogeneous; warming
was concentrated in the center of the study domain (Fig. 2) during the training
period (Supp. Tab. 3), with a particularly intense period of warming from
1988-2000 (Fig. 4) that aligned with the strong northward shift observed in
flounder (Fig. 3). During the testing decade, warming was concentrated in the
northern half of the study domain, and was statistically significant at and above
40 ◦N (Fig. 4, Supp. Tab. 4).

Observations were available for 14,025 individual summer flounder caught
across 12,203 hauls from 1972-2016. As is common in marine fish surveys, the
data were heavily zero-inflated; 81% of these hauls did not catch any summer
flounder and 96.5% of hauls caught fewer than ten (Supp. Fig. 1). The number
of hauls per year was generally between 225 and 325, although 1978 and 1979
had almost 500 (Supp. Fig. 2).

All four DRM configurations (no temperature effect, or temperature ef-
fect on recruitment, mortality, or movement) converged when fit to the data
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and produced density estimates consistent with observations (Supp. Fig. 3-
6). The models generally reproduced the decline in density until 1990 and
the increase afterwards, though the null model (no temperature effect) failed
to re-create the lower abundances towards the northern and southern range
edges and higher abundance in mid-latitudes (Supp. Fig. 3). The DRMs with
temperature-dependent demography, and particularly recruitment or mortality,
more effectively captured these spatial gradients (Supp. Fig. 4-6). In addition,
their parameter estimates differed substantially (Supp. Fig. 7). Temperature-
dependent recruitment had an optimum of 14.4-14.6 ◦C with a width of 1.33-1.45
(90% credible intervals; see Eqn. 6), suggesting a narrow range of optimal tem-
peratures for recruitment of new offspring. Temperature-dependent mortality
had a similar optimum (14.6-14.8 ◦C) but a greater width (3.61-4.72) that im-
plied substantially less sensitivity of mortality to differences in temperature.
By contrast, movement had a higher optimal temperature (16.8-20.1 ◦C) and
a narrow width (1.09-1.33), suggesting adults moved towards warmer waters
than were optimal for recruitment of offspring. The temperature-dependent
movement and mortality models had fairly similar estimates of the between-
patch diffusion rate for adults (0.11-0.26 and 0.10-0.21, respectively), while the
temperature-dependent recruitment model estimated a much lower adult dif-
fusion rate (0.0003-0.02) and the null model estimated an intermediate rate
(0.07-0.19).

The temperature-dependent recruitment forecast, the temperature-dependent
mortality forecast, and the persistence forecast most often had greater skill
(lower RMSE) and less bias out-of-sample than the other models tested (Fig.
5, Supp. Fig. 8). Both of these DRMs notably out-performed the persistence
forecast at the warm range edge, where the persistence forecast substantially
over-predicted the edge latitude (Fig. 6). The GAM and other two DRM
configurations (a temperature effect on movement, or no temperature effect)
performed worse across the considered metrics, with less skill and greater bias.
For the temperature-dependent recruitment DRM, with the exception of the
cold edge in 2012 and the warm edge in 2010, every observed range metric fell
within the 95% credible interval in every year (Fig. 6). By contrast, the GAM
over-predicted the range size of summer flounder, estimating the warm edge
further south and the cold edge much further north than they were found in
the survey (Fig. 6). The actual spatiotemporal distribution of summer flounder
in the survey from 2007-2016 was highly concentrated between 37-40◦N, which
was better captured by the persistence and DRM forecasts (Fig. 3).

3 Discussion

Integrating greater biological process and mechanism into forecasts of species
responses to climate change and variation has long been a goal (Pagel & Schurr,
2012; Urban et al., 2016). Here, we show that dynamic range models with
climate-dependent demographic rates outperformed a statistical SDM and a
persistence forecast in near-term forecasting of range dynamics during a 10-year
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Figure 5: Skill of DRMs, GAM, and a persistence forecast at predicting summer
flounder range dynamics out-of-sample from 2007-2016 measured as root mean
square error (RMSE) and bias. The DRMs included no temperature effect (null)
or a temperature effect on recruitment (T-recruit), mortality (T-mortality), or
movement (T-movement). We measured ranged dynamics with three metrics:
the warm and cold range edge positions and the centroid (abundance-weighted
latitudinal average) every year. RMSE measures how close the predictions were
to the observed values; lower RMSE values indicate greater accuracy. Bias
measures whether the predictions were consistently too far north (positive bias)
or too far south (negative bias); values closer to zero (indicated by the vertical
dashed line) indicate less bias. Note that x-axis scales vary by panel.
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Figure 6: Observed range dynamics of summer flounder (red line) in the study
domain (Fig. 2) during the testing decade (2007-2016) and range dynamics
forecasted by the temperature-dependent recruitment (left) and temperature-
dependent mortality (right) DRMs and by the GAM and persistence forecasts.
Latitudinal positions of the cold edge (top row), range centroid (middle row),
and warm edge of the population (bottom row) are shown. Shaded blue regions
represent credible intervals (0.5, 0.8, and 0.95) of the DRM forecast.
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interval of environmental variability. These results provide evidence that rates
of population growth, dispersal, and reproduction are important for understand-
ing species responses to a changing climate, especially in the common scenario
where species are not in equilibrium with the climate (Guisan & Thuiller, 2005).
Because of their Bayesian structure, the DRMs also allowed the quantification
and communication of uncertainty around forecasted state variables like geo-
graphic position.

Our approach further provided evidence that range shifts in summer flounder
can be explained by temperature-dependent recruitment or mortality. Temperature-
dependent recruitment may drive northward shifts as habitats warm further
north and become thermally suitable for larvae and small juveniles. Indeed, a
more rapid northward shift in small juvenile summer flounder than in adults
has been reported (Perretti & Thorson, 2019). Alternatively, increasing rates
of survival at and beyond northern range edges can also drive a northern shift
in the density of the species, as suggested by the temperature-dependent mor-
tality model. Previous research suggested that summer flounder mortality is
linked to oceanographic conditions, though that study did not try to explain
the northward geographic shift in summer flounder distributions (O’Leary et al.,
2019). In addition, we found evidence that adult fish prefer and move towards
higher temperatures than are optimal for larvae and juveniles. This ontogenetic
difference is consistent with patterns across fishes suggesting that adult high
temperature limits are higher than for larvae (Dahlke et al., 2020), though in-
consistent with generally lower temperature preferences in larger than in smaller
fishes (Lafrance et al., 2005). More broadly, our application of DRMs provides a
model for moving research on geographic range shifts towards demographic and
ecological mechanisms. The explicit demography in the DRMs allows them to
be easily extended to include other mechanisms, including species interactions
(Urban et al., 2016).

The persistence forecast—i.e., the prediction that future conditions will be
identical to the final year of available data—performed relatively well in our
analysis. This result arose because the geographic range of summer flounder
was remarkably stable during the testing decade despite marked environmental
variability, and was unexpected given widespread observations of temperature-
related range shifts in marine fishes in this region (Fredston et al., 2021; Fredston-
Hermann et al., 2020; Mills et al., 2024; Pinsky et al., 2013). However, tempo-
ral autocorrelation in biological systems (often termed “ecological memory”) is
common and often used to inform statistical models of near-term change (Ogle
et al., 2015; Wolkovich et al., 2014). Indeed, the time horizon of 1-10 years that
we selected for its management relevance may be uniquely difficult to predict,
being longer than the daily-to-annual lead times of most near-term forecasting
programs (Dietze et al., 2018) but shorter than mid- and end-century projec-
tions that ignore transient population dynamics (Morley et al., 2018). Other
studies at this time horizon have found that persistence forecasts performed
similarly to, or even better than, mechanistic models (Harris et al., 2018; Ward
et al., 2014).

The DRM estimated some parameters that are difficult to validate, such the
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diffusion rate between habitat patches. We emphasize that the primary pur-
pose of this model is predictive, not providing precise estimates of population
parameters as would be done in a spatial stock assessment model (Punt, 2019)
which share many of the same processes and data fitting concepts. This dis-
tinction matters because the performance of a primarily predictive model can
be judged relative to alternatives, as we did here. In contrast, an inference-
focused model must demonstrate reliable identification of individual estimated
parameters, which we have not rigorously explored (Tredennick et al., 2021).

Dynamic range models that represent biological processes can and should
be extended to a wide range of taxa and systems that are underrepresented
in the literature on forecasting biodiversity responses to global change (Urban
et al., 2022; Zurell et al., 2022).One advantage of the DRM approach is that,
like other mechanistic models, it can in theory capture any ecological process
for which one can write down an equation hypothesizing its effect on a popula-
tion parameter (Pagel & Schurr, 2012). Another advantage is that DRMs are
conducive to best practices in informing environmental decision-making, such
as mechanistic representation of causal linkages, selection of model structure
for management relevance, measurement of forecast skill with decision-relevant
metrics, and quantification of uncertainty (Bodner et al., 2021; Mason et al.,
2023; Schmolke et al., 2010; Schuwirth et al., 2019). We tested mechanisms of
temperature dependence and fishing for a single species as a case study; future
work can incorporate new processes such as local adaptation or test the DRM
against more species with different life histories. Methodological investigations
of dynamic range modeling are also needed, including the effect of spatial and
temporal scale and extent on projections, and incorporating multiple observa-
tional data streams. For the summer flounder DRM to be operational as a
future (rather than retrospective) forecasting system, additional work would be
needed to incorporate future temperature projections (e.g., Koul et al., 2024).
Given the limited use to date of mechanistic models that are both validated
against historical observations and ready to forecast species on the move, we
hope that the results here motivate further investment in this promising new
field.
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