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Abstract45

Population dynamic models are widely used to predict demography. How-46

ever, they have rarely been extended to biogeographical applications despite47

widespread calls to do so. We developed a process-based dynamic range model48

(DRM) that estimated demographic rates and the effects of the environment on49

demographic rates to forecast species range shifts in response to temperature50

change. As a proof of concept, we fitted DRMs to historical observations of51

summer flounder (Paralichthys dentatus), a fish species in the Northwest At-52

lantic, and evaluated model skill at retrospective forecasting. The best DRMs53

outperformed a statistical species distribution model and a persistence forecast54

at predicting biogeographical dynamics across a decade. The DRM approach is55

general and can be applied to a wide range of species with historical observa-56

tions across space and time. By explicitly modeling demographic processes and57

their relationship to climate, DRMs promise to substantially advance prediction58

of species on the move.59

Introduction60

Prediction has become a central goal of ecology (Mouquet et al., 2015). Predic-61

tive ecology often seeks to forecast human impacts on ecosystems. It supports62

biodiversity conservation, natural resource management, climate change miti-63

gation and adaptation, and other ecological applications (Urban et al., 2016).64

Near-term forecasting is a particularly pressing need so that the timescale of65

ecological information aligns with the often-short timescale of environmental66

decision-making (Dietze et al., 2018).67

Species distributions have been a major emphasis of predictive ecology, par-68

ticularly in the context of climate change (Pearson & Dawson, 2003). Species69

are shifting their ranges in response to climate change (Parmesan & Yohe, 2003),70

with cascading effects on communities, ecosystems, ecosystem services, and hu-71

man welfare and well-being (Pecl et al., 2017). Early species distribution mod-72

els (SDMs) projected species ranges and range shifts using correlations between73

species’ presence (and sometimes abundance) and environmental variables (Elith74

& Leathwick, 2009). However, observed range shifts have been highly individ-75
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ualistic and are not well predicted by simple environmental variables (Davis et76

al., 1998; Rubenstein et al., 2023). SDMs have been critiqued in the context of77

near-term forecasting because they assume species are in equilibrium with the78

environment, may be trained on data that does not resemble future climates,79

and have demonstrated limited forecast skill to date (Jarnevich et al., 2015;80

Lee-Yaw et al., 2022). New approaches (e.g., hybrid and ensemble SDMs) are81

addressing some of these shortcomings, but still using fundamentally correlative82

approaches that do not explicitly model ecological mechanisms (Brodie et al.,83

2022; Ehrlén & Morris, 2015; Kearney & Porter, 2009; Zurell, 2017).84

Mechanistic or “process-based” models are often presented as a way forward85

in forecasting range shifts and for predictive ecology in general (Dietze et al.,86

2018; Urban et al., 2016). These models can estimate assumed causal relation-87

ships, predict effects using those estimates, provide insight into fundamental88

ecological mechanisms, estimate parameters of interest, falsify ecological theo-89

ries, and incorporate processes over varying spatial and temporal scales (Cabral90

et al., 2017; Evans et al., 2016). Another advantage of mechanistic models is91

that, if implemented in a hierarchical framework, they can model the underly-92

ing ecological processes separately from the data collection process, facilitating93

more accurate parameter estimation and error partitioning (Laubmeier et al.,94

2020). Mechanistic models are rare in biogeography, however, partly due to95

the heightened difficulty of parameter estimation and scale when mechanistic96

ecological models (e.g., population dynamic models) are made spatial (Briscoe97

et al., 2019).98

One promising class of mechanistic models for range forecasting is dynamic99

range models (DRMs), which are spatially explicit population dynamic mod-100

els that estimate demographic rates as a function of the environment (Pagel101

& Schurr, 2012). DRMs estimate key parameters from data on species’ occur-102

rences and abundances and can incorporate processes at multiple spatial and103

temporal scales, making them flexible tools that may be applied to a broad104

suite of ecological questions. However, this flexibility also makes them reliant105

on the availability of large datasets through time and space. Indeed, DRMs106

have mainly been fitted to simulated data for this reason (Zurell et al., 2016).107

DRMs have yielded useful results when applied to real data for parameter in-108

ference (Le Squin et al., 2021; Osada et al., 2019). However, DRMs have not109

been operationalized for range forecasting of real species—the main purpose for110

which they were designed (Briscoe et al., 2019; Pagel & Schurr, 2012).111

An ideal system in which to operationalize DRMs for range forecasting is112

one where species have already shifted their ranges, where large-scale biodiver-113

sity surveys have been operating for some time, and where a strong theoretical114

understanding exists of the underlying population dynamics and how they re-115

late to the environment. One such system is temperate marine continental shelf116

ecosystems. Range shifts have been particularly rapid and widespread in these117

systems, because there are relatively few barriers to dispersal, species live close118

to their thermal limits, and spatial gradients in temperature are less steep in119

the oceans than they are on land (Pinsky et al., 2020). Marine systems are120

also relatively data-rich: due to the historical and current significance of ma-121
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rine fisheries, we have records of historical fishing mortality, insights into the122

population dynamics of harvested marine species, and large-scale, long-term123

monitoring programs that have conducted scientific marine surveys in the U.S.124

for many decades (Maureaud et al., 2023).125

Here, we built DRMs—mechanistic models that explicitly model demographic126

processes from physiological (i.e., temperature impacts on recruitment and sur-127

vival) to metapopulation (i.e., dispersal) scales—to forecast range dynamics in128

response to climate variability and change using more than four decades of bio-129

geographical data. We implemented these DRMs as hierarchical Bayesian mod-130

els fitted to historical data from 1972-2006 on summer flounder (Paralichthys131

dentatus), an important commercial and recreational species on the east coast of132

the U.S. that has been shifting northward (Perretti & Thorson, 2019). We then133

evaluated DRM performance with a retrospective forecast from 2007-2016. We134

modeled the data collection process separately from the underlying ecological135

dynamics and quantified both process and measurement error. We designed a136

suite of candidate DRMs representing different hypotheses about the underly-137

ing ecological processes; this allowed us to explore which vital rates were most138

strongly affected by changing temperatures and the value of incorporating ad-139

ditional ecological complexity (Briscoe et al., 2019; Zurell et al., 2016). Specifi-140

cally, we compared DRMs with temperature-dependent recruitment, mortality,141

or movement. We also compared DRM forecasts to predictions from a SDM142

and a persistence forecast. Out-of-sample DRM forecasts were more accurate143

and less biased than the SDM or the persistence forecast at predicting range144

centroid and edge positions over a decade of testing.145

1 Methods146

The DRM simulated age-structured population dynamics, including dispersal,147

within a spatial domain that was discretized into habitat patches along the148

coastline, such that each patch was adjacent to one or two neighboring patches149

(Fig. 1). We also discretized time, with data from 1972 - 2016. Model pa-150

rameters were estimated by fitting this process-based model to observations151

of species abundance density across space and time. We implemented a base152

model without temperature-dependent demographic rates and three models with153

temperature-dependent recruitment, mortality, or movement. In our presenta-154

tion of the models, we denote vectors, matrices, and arrays in bold.155

We used a hierarchical Bayesian approach to model observed numerical den-156

sities (D, representing the density of all individuals regardless of age) as a157

function of the modeled latent age-structured population density (Np,a,t) for158

each patch (p), age class (a), and time step (t). Observed presence (P) was also159

incorporated to help account for zero-density patches.160

Our methodology comprises two parts: a process model, which explicitly161

models the underlying population dynamics, and an observation model, which162

relates these dynamics to observed data. We first describe the options for the163

process model, followed by the observation model, which remained consistent164
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Figure 1: Schematic of the patch structure and temperature-dependent pro-
cesses in the DRM design highlighting dynamics within an example patch.
All patches contained distinct age classes and experienced stochastic recruit-
ment. The three processes for which a temperature effect could be implemented
are shown as dark grey arrows. Temperature-dependent recruitment affected
the production of recruits by adults; temperature-dependent mortality affected
all age classes; and temperature-dependent movement affected the dispersal of
adults between adjacent patches.

across all process model configurations.165

1.1 Process models166

1.1.1 Base model167

The base process model included age structure, adult dispersal, stochastic re-168

cruitment, and annual mortality. In particular, the population dynamics driving169

Np,a,t were as follows. First, the recruitment (i.e., production of age 1 individ-170

uals) in each year and patch was calculated as a stochastic process (Johnson171

et al., 2016) around a long-term average:172

Np,a=1,t = µ× ert−
σ2
proc
2 (1)

where µ is the average density of recruitment per patch across all space and time,173

rt represents recruitment stochasticity (through a first-order autoregressive pro-174

cess), and σproc is its conditional standard deviation. Equation (1) implies that175

recruitment in a given year is the same for all patches. The autoregressive term176

rt was defined as177

rt = αrt−1 + σproczt, (2)

where zt is an uncorrelated standard Normal error term and α is the temporal178

autocorrelation, namely the correlation between rt and rt−1.179

We then modeled adults and juveniles (the latter are older than recruits but180

not yet mobile or reproductive) separately. Summer flounder reache maturity181

around two years of age (NEFSC, 2019), so in our application, age class one182
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represented recruits, age class two represented juveniles, and age classes three183

and older represented adults. Juvenile age classes were modeled as the fraction184

of the next youngest age class that survived to the following year in a given185

patch:186

Np,a,t = Np,a−1,t−1 × sa−1,t−1 (3)

where s represents annual survival proportion, which was constant across patches187

unless we added temperature-linked survival (as explained later). Because sum-188

mer flounder experience fishing mortality, we combined age- and year-specific189

fishing mortality fa,t with natural mortality m to calculate survival fraction:190

sa,t = e−(fa,t+m). (4)

Both m and fa,t are instantaneous rates, so they can exceed 1.191

Adults differed from juveniles in that they could move among adjacent
patches. We calculated age-structured population density for adults with an
isotropic dispersal fraction δ among adjacent patches:

Np,a,t = (1− 2δ)Np,a−1,t−1 × sa−1,t−1

+δNp−1,a−1,t−1 × sa−1,t−1

+δNp+1,a−1,t−1 × sa−1,t−1. (5)

Edges were treated as reflective, so adults did not disperse beyond the model192

domain and dispersal rates were adjusted accordingly at the edges. Therefore,193

we specifiedNp,a,t = (1−δ)Np,a−1,t−1×sa−1,t−1+δNp−1,a−1,t−1×sa−1,t−1 in the194

northern-most patch, and Np,a,t = (1−δ)Np,a−1,t−1×sa−1,t−1+δNp+1,a−1,t−1×195

sa−1,t−1 in the southern-most patch.196

1.1.2 Temperature effects197

To incorporate the effects of temperature on population dynamics—and, con-198

sequently, on species distributions over space and time—we designed a series199

of alternative models for temperature dependence. These represented differ-200

ent hypotheses describing how temperature may affect population dynamics.201

For example, adults might move to track their preferred thermal conditions,202

and indeed, marine species ranges are highly correlated with their physiological203

thermal tolerances (Sunday et al., 2012). However, the distribution of recruits204

has shifted north faster than adults for some species, suggesting that tempera-205

ture might instead affect recruitment into the age 1 cohort (Perretti & Thorson,206

2019). Other research indicates that historical population dynamics are consis-207

tent with temperature effects on natural mortality (O’Leary et al., 2019). To208

explore these three hypotheses in the context of range shifts, we implemented209

alternative models that included temperature effects on (1) recruitment, (2)210

mortality, or (3) adult movement. To avoid parameter identifiability issues,211

these temperature effects were tested in separate models and were not com-212

bined, noting that in reality temperature could affect multiple processes at the213

same time.214
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In each case, we calculated a relative index of temperature suitability for215

each patch and year, I. I was maximized at an optimal temperature, τ , which216

was estimated as part of model fitting. The intuition behind τ depends on217

the model structure. In the recruitment model, τ was the temperature at which218

recruitment was highest. In the mortality model, it represented the temperature219

at which natural mortality was lowest. The movement model represented the220

temperature toward which the greatest proportion of fish migrated from an221

adjacent patch. I was calculated as a Gaussian function such that, as the actual222

temperature T deviated from τ , the temperature suitability index I declined at223

a rate inversely proportional to a width parameter ω,224

Ip,t = e

(
−0.5(

Tp,t−τ

ω )2
)
. (6)

The temperature-dependent recruitment model linked temperature to re-225

cruitment by using I to rescale Np,a=1,t, thus modifying Equation (1):226

Np,a=1,t = µ× ert−
σ2
proc
2 × Ip,t. (7)

In this case, µ becomes the average density of recruits under optimal environ-227

mental conditions, that is, when T = τ .228

To model temperature-dependent mortality, we modified Equation (4) to229

include the temperature effect I, which acted by reducing survival when the230

temperature was not at τ :231

sp,a,t = e−(fa,t+m+γ(1−Ip,t)), (8)

where γ is the excess natural mortality due to temperature. Note that, unlike232

in Equation (4), s could now vary over p because the temperature effect led to233

distinct survival across patches.234

The movement model required more complexity because we modeled both235

the passive diffusion between patches in Equation (5), δ, and taxis—i.e., the236

directed movement by adults in response to environmental gradients. We fol-237

lowed the methods in Thorson et al. (2021). Specifically, we calculated a log-238

transformed version of I and constructed a p-by-p taxis matrix X for each year239

by subtracting the I of adjacent patches and multiplying the difference (i.e., the240

habitat gradient) by βtax, a parameter that defined how much taxis changed241

per unit of temperature. A p-by-p diffusion matrix, Z, simply included δ for ad-242

jacent patches (rescaled so that columns in the matrix summed to 1 at the end)243

and zeros elsewhere. We then summed and exponentiated Z and X in every year244

to yield the movement matrix M = eX+Z containing annual movement fractions245

between each patch. This matrix was used to redistribute adults among patches246

rather than Equation (5), with the mortality rates in Equation (4) applied. In247

other words, we calculated Np,a,t in this model configuration by multiplying the248

right-hand side of Equation (5) by M.249
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1.2 Observation model250

The observation model related the observed densities to the process model. In251

particular, we defined observed presence (P) from observed density (D) at patch252

p and time t as253

Pp,t =

{
1 if Dp,t > 0

0 if Dp,t = 0.
(9)

We assumed Pp,t and Dp,t, respectively, were distributed as follows

Pp,t ∼ Bernoulli(θp,t) (10)

(log(Dp,t) | Pp,t = 1) ∼ N
(
log(λp,t/θp,t)−

σ2
obs

2
, σobs

)
, (11)

where θp,t is the probability of encountering individuals at site p and time t, N254

indicates a normal distribution, σobs is the standard deviation of log(Dp,t), and255

λp,t =
∑

a Np,a,t is the latent density of individuals in each patch. Note that256

we divided λp,t by θp,t in Equation (11) to ensure that the expectation of their257

product was equal to the mean of the observed abundance densities (D).258

A logit-link was used to connect the probabilities of encounter θp,t to the259

predicted densities as follows260

logit(θp,t) = β0 + β1 log(λp,t), (12)

where β0 and β1 are slope and intercept parameters controlling how much the261

probability of the species being encountered increases with the true population262

density.263

1.3 Model implementation264

We wrote the DRM in Stan, a platform for Bayesian modeling (Team, 2022),265

and used “cmdstanr” (Gabry et al., 2024) to produce the results in R (Supp.266

Tab. 1). We specified weakly informative priors for parameters α, β0, β1,267

σobs, and δ. We also bounded them to ecologically meaningful values: β1 was268

restricted to positive numbers, and δ was restricted to the interval [0, 1/3] be-269

cause the probability of an individual staying in place or moving to one of two270

adjacent patches cannot exceed 100%. For temperature dependent models, we271

also specified weakly informative priors for the respective additional parameters272

included in the model (Supp. Tab. 2). We specified fishing and natural mortal-273

ity rates as known values from a stock assessment in most model configurations274

(see Section 1.4 for details).275

For each model configuration, we obtained samples from the posterior from276

four parallel chains, each of which ran for 5,000 iterations, including 2,000 warm-277

up iterations. We considered a model to have converged if less than 5% of the278

transitions in the sampler after warm-up were reported as divergent.279
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1.4 Data280

To evaluate the DRMs, we used data from National Oceanic and Atmospheric281

Administration (NOAA) bottom trawl surveys conducted in the northeast U.S.282

since 1968 (Smith, 2002). These surveys have been conducted with standardized283

equipment and methods over time, and utilize a stratified randomized sampling284

design, making them ideal for climate biogeography applications (Fredston et285

al., 2021; Fredston-Hermann et al., 2020; Pinsky et al., 2013). We downloaded286

the 2020 release of OceanAdapt, a data portal that compiled North American287

bottom trawl survey records (Forrest et al., 2020). The NOAA Northeast survey288

operates in fall and spring; we used the fall survey that more often catches289

summer flounder.290

The sampling unit for the survey is a single “haul”, an event during which a291

fishing net is towed through the ocean for a fixed amount of time. Temperature292

is measured in situ for each haul at the seafloor. After each haul, scientists on293

board the survey vessel identify, count, weigh, and measure the catch in the net.294

To ensure that the years analyzed were sampled consistently throughout time,295

we used data from 1972-2016.296

These records encompassed the region from Cape Hatteras in North Carolina297

to the border between Canada and Maine (Fig. 2), from just north of 35◦N to298

above 44◦N. To model spatial structure in the region, we divided the summer299

flounder data into 10 patches, each 1◦latitude in height (Fig. 2). We calculated300

the observed summer flounder density D in units of fish per haul. We calculated301

Dp,t as the average number of summer flounder per haul in patch p in year t.302

These observed density values—varying over space and time—were the main303

data input to the DRM.304

The ability of the survey gear to catch summer flounder individuals depends305

on their size. To relate this observation effect to the age structure in the DRM,306

we converted density-at-age to density-at-length using a length-at-age key. This307

key assumes that summer flounder, on average, grow according to a von Berta-308

lanffy curve with log-normal deviations and a constant coefficient of variation309

of 20%. Using this key, we converted density of fish at a given age a to density310

of fish at length. From there, we assumed that the survey gear had a logistic311

selectivity curve, with the lengths at 50% and 95% selectivity estimated by the312

model. This selectivity curve was then used to convert the age-structured den-313

sity of fish in the model (Np,a,t) to the expected density of fish caught by the314

survey (λp,t):315

λp,t =
∑
a

Φ(a)Np,a,t (13)

with the function Φ(a) encoding the probability of sampling an individual of316

age a.317

We aggregated temperature data to the patch level by taking a mean of318

all bottom temperature values from hauls in that patch and year. In situ sea319

bottom temperature data was missing for some hauls, including all hauls south320

of 38◦N in 2008. To fill this data gap, we fitted a linear mixed-effects model321
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Figure 2: Map of the study region showing the modeled patches as grey boxes.
Each patch was 1◦latitude high. U.S. states are labeled for reference.

with latitude as a fixed effect, year as a random effect, and all available bottom322

temperature data as the response variable. We then used this fitted model to323

predict bottom temperature in 2008 in the three patches with missing data.324

Summer flounder in the northeast U.S. have a stock assessment—a statisti-325

cal analysis that integrates multiple data sources to produce estimates of total326

biomass, fishery catch rates, and other parameters to inform fisheries manage-327

ment. We used the estimated natural mortality rate m (often assumed to be328

constant for all years and age-classes) and fishing mortality-at-age fa,t (which329

differed across years t and age-classes a) from a recent stock assessment for330

this summer flounder population (NEFSC, 2019). The stock assessment fixed331

m = 0.25 and estimated fa,t ranging from 0.009 to 1.983. We passed this332

fishing mortality fa,t and the natural mortality m to the DRM as spatially333

homogeneous known quantities (i.e., without error), except in the temperature-334

dependent model. The latter model instead estimated m in every patch and335

year as a combination of estimated temperature-driven mortality and a non-336
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temperature-related natural mortality parameter bounded at (0,0.25). The as-337

sessment estimates of f began in 1982, so we imputed the 1982 values for our338

earliest years of summer flounder data (1972 - 1981).339

1.5 Species distribution model340

To compare DRM performance to SDMs widely used in the range shift litera-341

ture, we fitted a generalized additive model (GAM) SDM (Morley et al., 2018)342

with the “mgcv” package in R (Wood, 2017). The GAM SDM was also a343

two-stage model; we fitted one GAM to presences and absences in the train-344

ing data using a logistic regression (i.e., logit-link and Bernoulli family) and a345

second GAM to log-abundance conditioned on presence, assuming a Gaussian346

error distribution. Both were single intercept models with a spline on bottom347

temperature (the sole predictor). Unlike the DRMs, we fitted the GAM to the348

haul-level data (not aggregated to the patch scale). As noted below (see Section349

1.4), bottom temperature records were missing from a number of hauls in 2008.350

The interpolation method we used to fill these data gaps for the DRMs was not351

appropriate for the much higher spatial resolution of the GAMs, so we omitted352

2008 data from the GAMs. GAMs were fitted and predicted at the scale of ob-353

servations; predictions were then averaged within patches for model evaluation354

and comparison.355

1.6 Model evaluation and comparison356

We used a retrospective forecasting approach to assess model performance. The357

DRM was fitted to summer flounder data from 1972-2006 and then simulated358

for the final decade of data (2007-2016). The forecast was initialized with the359

final year of fishing mortality data passed to the model (2006) and then run for-360

ward by making draws from the posterior probability distribution of parameters361

estimated in the model fitting routine. Observed temperature data for 2007-362

2016 were used. We calculated summary statistics from the 2007-2016 data for363

forecast validation by averaging the observations into patches, as we did for the364

input to the DRM (Section 1.4).365

To forecast into the testing decade for the GAM SDM, we passed the bottom366

temperature records from the testing dataset to the two parts of the GAM and367

multiplied their predictions together. We then aggregated the predictions to368

the patch scale the same way we aggregated the raw data passed to the DRM369

(Section 1.4) to enable forecast comparisons.370

To assess DRM performance, we compared forecast metrics of geographic371

distribution to observations of these metrics, to the SDM forecasts, and to a372

persistence forecast. The persistence forecast was a continuation of the obser-373

vations from the final year of the training interval (2006) into every subsequent374

year. The forecast metrics included (1) the abundance-weighted latitudinal375

range center (i.e., range centroid) and (2) the cold and (3) the warm range edge376

positions. The edge positions were calculated as abundance-weighted 0.05 and377
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Figure 3: Summer flounder dynamics over space and time in the study region
from 1972-2016. Cells are color-coded by mean density in the survey, and sum-
mary statistics used to evaluate and validate models (the position of the range
centroid and warm and cold edges) are plotted.

0.95 quantiles of latitude. Note that because our study domain did not en-378

compass the full geographic distribution of the focal species, these represented379

population range metrics, not metrics for the full species range.380

For each of these metrics, we calculated the residuals (forecasts minus ob-381

servations) in each year. We then calculated bias (mean of residuals) and root382

mean square error (RMSE, square root of the mean of the squared residuals)383

for each metric. For the DRMs, we calculated the residuals for each of 12,000384

posterior draws and then used the mean residual value for each posterior to385

calculate bias and RMSE.386

2 Results387

Over the time-series, summer flounder exhibited complex spatiotemporal dy-388

namics, including a decline in density in the 1980s and an increase beginning389

in the 1990s (Fig. 3). The geographic distribution was relatively stable from390

1972-1990, then shifted north substantially through 2002 before another period391

of relative stability through 2016 (Fig. 3). During the northward shift (1990-392

2002), for example, the centroid shifted from the latitude of Virginia (37.7 ◦N)393

to that of New Jersey (39.1 ◦N), approximately 155 km (Fig. 2). These observed394

12



Figure 4: Sea bottom temperatures (SBT) recorded in situ by trawl surveys
by patch and year, calculated as means of haul-level observations. Grey boxes
indicate data gaps. Solid black lines represent isotherms; their positions were
calculated by fitting a linear regression of latitude on temperature in each year,
and predicting the annual latitudinal position of each degree Celcius value.

shifts occurred primarily during our model training interval. From 2007-2016395

(our testing interval), summer flounder did not shift north significantly (linear396

regression of latitude on time; centroid coefficient −0.03 ± 0.05 and p = 0.58,397

warm edge coefficient 0.04± 0.06 and p = 0.52, cold edge coefficient 0.01± 0.03398

and p = 0.79; n = 10; Fig. 3).399

The in situ sea bottom temperature exhibited significant warming of 0.04400

± 0.003 ◦C per year across the study region from 1972-2016 (linear regression;401

p <0.001). This trend was spatially and temporally heterogeneous; warming402

was concentrated in the center of the study domain (Fig. 2) during the training403

period (Supp. Tab. 3), with a particularly strong period of warming from 1988-404

2000 (Fig. 4) that aligned with the strong northward shift observed in flounder405

(Fig. 3). During the testing decade, warming was stronger towards the northern406

and southern edges of the study domain, though only statistically significant at407

and below 40 ◦N (Fig. 4, Supp. Tab. 4).408

Observations of summer flounder were available for 14,025 individual fish409

caught across 12,203 distinct hauls from 1972-2016. As is common in marine410

fish surveys, the data were heavily zero-inflated; 81% of these hauls did not411

catch any summer flounder and 96.5% of hauls caught fewer than ten summer412

flounder (Supp. Fig. 1). The number of hauls per year was generally between413

225 and 325, although 1978 and 1979 had almost 500 (Supp. Fig. 2).414
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All four DRM configurations (no temperature effect, or temperature ef-415

fect on recruitment, mortality, or movement) converged when fit to the data416

and produced density estimates consistent with observations (Supp. Fig. 3-417

6). The models generally reproduced the decline in density until 1990 and418

the increase afterwards, though the null model (no temperature effect) failed419

to re-create the lower abundances towards the northern and southern range420

edges and higher abundance in mid-latitudes (Supp. Fig. 3). The models with421

temperature-dependent demography, and particularly recruitment or mortality,422

more effectively captured these spatial gradients (Supp. Fig. 4-6). In addition,423

their parameter estimates differed substantially (Supp. Fig. 7). Temperature-424

dependent recruitment had an optimum of 14.4 – 14.6 ◦C with a width of 1.33425

– 1.45 ◦C (90% credible intervals; see Eqn. 6), suggesting a narrow range of426

optimal temperatures for recruitment of new offspring. Temperature-dependent427

mortality had a similar optimum (14.6 – 14.8 ◦C) but a greater width (3.61 –428

4.72 ◦C) that implied substantially less sensitivity of mortality to differences in429

temperature. By contrast, movement had a higher optimal temperature (16.8 –430

20.1 ◦C) and a narrow width (1.09 – 1.33 ◦C), suggesting adults moved towards431

warmer waters than were optimal for recruitment of offspring. The temperature-432

dependent movement and mortality models had fairly similar estimates of the433

between-patch diffusion rate for adults (0.11 – 0.26 and 0.10 – 0.21, respec-434

tively), while the temperature-dependent recruitment model estimated a much435

lower adult diffusion rate (0.0003 – 0.02) and the null model estimated an in-436

termediate rate (0.07 – 0.19).437

The temperature-dependent recruitment forecast, the temperature-dependent438

mortality forecast, and the persistence forecast most often had greater skill439

(lower RMSE) and less bias out-of-sample than the other models tested (Fig.440

5, Supp. Fig. 8). Both of these DRMs notably out-performed the persistence441

forecast at the warm range edge, where the persistence forecast substantially442

over-predicted the edge latitude. The GAM and other two DRM configura-443

tions (a temperature effect on movement, or no temperature effect) performed444

worse across the considered metrics, with less skill and greater bias. For the445

temperature-dependent recruitment DRM, with the exception of the cold edge446

in 2012 and the warm edge in 2010, every observed range metric fell within447

the 95% credible interval in every year (Fig. 6). By contrast, the GAM over-448

predicted the range size of summer flounder, estimating the warm edge further449

south and the cold edge much further north than they were found in the survey450

(Fig. 6). The actual spatiotemporal distribution of summer flounder in the451

survey from 2007-2016 was highly concentrated between 37-40◦N, which was452

better captured by the persistence and DRM forecasts (Fig. 3).453

3 Discussion454

Integrating greater biological process and mechanism into forecasts of species455

responses to climate change and variation has long been a goal (Pagel & Schurr,456

2012; Urban et al., 2016). Here, we show that dynamic range models with457
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Figure 5: Skill of DRMs, GAM, and a persistence forecast at predicting summer
flounder range dynamics out-of-sample from 2007-2016 measured as root mean
square error (RMSE) and bias. The DRMs included no temperature effect (null)
or a temperature effect on recruitment (T-recruit), mortality (T-mortality), or
movement (T-movement). We measured ranged dynamics with three metrics:
the warm and cold range edge positions and the centroid (abundance-weighted
latitudinal average) every year. RMSE measures how close the predictions were
to the observed values; lower RMSE values indicate greater accuracy. Bias
measures whether the predictions were consistently too far north (positive bias)
or too far south (negative bias); values closer to zero (indicated by the vertical
dashed line) indicate less bias. Note that x-axis scales vary by panel.
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Figure 6: Observed range dynamics of summer flounder (red line) in the study
domain (Fig. 2) during the testing decade (2007-2016) and range dynamics
forecasted by the temperature-dependent recruitment (left) and temperature-
dependent mortality (right) DRMs and by the GAM and persistence forecasts.
Latitudinal positions of the cold edge (top row), range centroid (middle row),
and warm edge of the population (bottom row) are shown. Shaded blue regions
represent credible intervals (0.5, 0.8, and 0.95) of the DRM forecast.
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climate-dependent demographic rates outperformed statistical SDMs in near-458

term forecasting of range dynamics during a 10-year interval of environmental459

variability. These results provide evidence that rates of population growth, dis-460

persal, and reproduction are important for understanding species responses to461

a changing climate, especially in the common scenario where species are not462

in equilibrium with the climate (Guisan & Thuiller, 2005). Our approach also463

provided evidence that range shifts in summer flounder can be explained by464

temperature-dependent recruitment or mortality. Because of their Bayesian465

structure, the DRMs also allowed the quantification and communication of un-466

certainty around forecasted state variables like geographic position.467

We formulated DRMs to represent alternative hypotheses for the mecha-468

nisms driving summer flounder geographic distributions. Temperature-dependent469

recruitment, for example, can drive northward shifts as habitats warm further470

north and become thermally suitable for larvae and small juveniles. A more471

rapid northward shift in small juvenile summer flounder than in adults has also472

been reported (Perretti & Thorson, 2019), consistent with a recruitment-driven473

shift. Alternatively, increasing rates of survival at and beyond northern range474

edges can also drive a northern shift in the density of the species, as suggested by475

the temperature-dependent mortality model. Previous research has suggested476

that summer flounder mortality is linked to oceanographic conditions, though477

that study did not try to explain the northward geographic shift in summer478

flounder distributions (O’Leary et al., 2019). In addition, we found evidence479

that adult fish prefer and move towards higher temperatures than are optimal480

for larvae and juveniles. This ontogenetic difference is consistent with patterns481

across fishes suggesting that adult high temperature limits are higher than for482

larvae (Dahlke et al., 2020), though inconsistent with generally lower temper-483

ature preferences in larger than in smaller fishes (Lafrance et al., 2005). More484

broadly, our application of DRMs provides a model for moving research on485

geographic range shifts more fully towards demographic and ecological mecha-486

nisms. The explicit demography in the DRMs allows them to be easily extended487

to include other mechanisms, including species interactions (Urban et al., 2016).488

The persistence forecast—i.e., the prediction that future conditions will be489

identical to the final year of available data—performed relatively well in our490

analysis, except at the warm range edge. This result arose because the ge-491

ographic range of summer flounder was remarkably stable during the testing492

decade despite marked environmental variability, and was unexpected given493

widespread observations of temperature-related range shifts in marine fishes in494

this region (Fredston et al., 2021; Fredston-Hermann et al., 2020; Mills et al.,495

2024; Pinsky et al., 2013). However, temporal autocorrelation in biological496

systems (often termed “ecological memory”) is common and often used to in-497

form statistical models of near-term change (Ogle et al., 2015; Wolkovich et al.,498

2014). Indeed, the time horizon of 1-10 years that we selected for its man-499

agement relevance may be uniquely difficult to predict, being longer than the500

daily-to-annual lead times of most near-term forecasting programs (Dietze et al.,501

2018) but shorter than mid- and end-century projections that ignore transient502

population dynamics (Morley et al., 2018). Other studies at this time hori-503
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zon have found that persistence forecasts performed similarly to, or even better504

than, mechanistic models (Harris et al., 2018; Ward et al., 2014).505

The DRM estimated a large number of parameters, including some that506

are difficult to estimate, such the diffusion rate between habitat patches. We507

emphasize that the primary purpose of this model is predictive, not providing508

precise estimates of population parameters as would be done in a spatial stock509

assessment model (Punt, 2019) which share many of the same processes and510

data fitting concepts. This distinction matters because the performance of a511

primarily predictive model can be judged relative to alternatives, as we did512

here. In contrast, a model based primarily around inference needs to be able to513

demonstrate that it can reliably identify the individual estimated parameters,514

which we have not rigorously explored (Tredennick et al., 2021).515

Dynamic range models that represent biological processes can and should516

be extended to a wide range of taxa and systems that are underrepresented517

in the literature on forecasting biodiversity responses to global change (Urban518

et al., 2022; Zurell et al., 2022).One advantage of the DRM approach is that,519

like other mechanistic models, it can in theory capture any ecological process520

for which one can write down an equation hypothesizing its effect on a popula-521

tion parameter (Pagel & Schurr, 2012). Another advantage is that DRMs are522

conducive to best practices in informing environmental decision-making, includ-523

ing mechanistic representation of causal linkages, selection of model structure524

for management relevance, measurement of forecast skill with decision-relevant525

metrics, and quantification of uncertainty (Bodner et al., 2021; Mason et al.,526

2023; Schmolke et al., 2010; Schuwirth et al., 2019). We focused on testing527

mechanisms of temperature dependence and fishing for a single species as a case528

study; future work can incorporate new processes such as local adaptation or529

test the DRM against more species with different life histories. Methodolog-530

ical investigations of dynamic range modeling are also needed, including the531

effect of spatial and temporal scale and extent on projections, and incorporat-532

ing multiple observational data streams. For the summer flounder DRM to533

be operational as a future (rather than retrospective) forecasting system, ad-534

ditional work would be needed to incorporate future temperature projections535

(e.g., Koul et al., 2024). Given the limited use to date of mechanistic models536

that are both validated against historical observations and ready to forecast537

species on the move, we hope that the results here motivate further investment538

in this promising new field.539
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Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen,718

I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Eveng̊ard, B., Falconi,719

L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J.,720

Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., . . . Williams, S. E.721

(2017). Biodiversity redistribution under climate change: Impacts on722

ecosystems and human well-being. Science, 355 (6332), eaai9214. https:723

//doi.org/10.1126/science.aai9214724

22

https://doi.org/10.1111/1365-2664.12482
https://doi.org/10.1111/1365-2664.12482
https://doi.org/10.1111/1365-2664.12482
https://doi.org/10.1111/ele.12399
https://doi.org/10.1139/cjfas-2018-0092
https://doi.org/10.1002/ece3.4739
https://doi.org/10.1002/ece3.4739
https://doi.org/10.1002/ece3.4739
https://doi.org/10.1111/j.1466-8238.2011.00663.x
https://doi.org/10.1111/j.1466-8238.2011.00663.x
https://doi.org/10.1111/j.1466-8238.2011.00663.x
https://doi.org/10.1038/nature01286
https://doi.org/10.1038/nature01286
https://doi.org/10.1038/nature01286
https://doi.org/10.1046/j.1466-822X.2003.00042.x
https://doi.org/10.1126/science.aai9214
https://doi.org/10.1126/science.aai9214
https://doi.org/10.1126/science.aai9214


Perretti, C. T., & Thorson, J. T. (2019). Spatio-temporal dynamics of summer725

flounder (Paralichthys dentatus) on the Northeast US shelf. Fisheries726

Research, 215, 62–68. https://doi.org/10.1016/j.fishres.2019.03.006727

Pinsky, M. L., Selden, R. L., & Kitchel, Z. J. (2020). Climate-Driven Shifts728

in Marine Species Ranges: Scaling from Organisms to Communities.729

Annual Review of Marine Science, 12 (1). https://doi.org/10.1146/730

annurev-marine-010419-010916731

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A.732

(2013). Marine taxa track local climate velocities. Science, 341 (6151),733

1239–1242.734

Punt, A. E. (2019). Spatial stock assessment methods: A viewpoint on current735

issues and assumptions. Fisheries Research, 213, 132–143. https://doi.736

org/10.1016/j.fishres.2019.01.014737

Rubenstein, M. A., Weiskopf, S. R., Bertrand, R., Carter, S. L., Comte, L.,738

Eaton, M. J., Johnson, C. G., Lenoir, J., Lynch, A. J., Miller, B. W.,739

Morelli, T. L., Rodriguez, M. A., Terando, A., & Thompson, L. M.740

(2023). Climate change and the global redistribution of biodiversity:741

Substantial variation in empirical support for expected range shifts.742

Environmental Evidence, 12 (1), 7. https://doi.org/10.1186/s13750-743

023-00296-0744

Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological745

models supporting environmental decision making: A strategy for the746

future. Trends in Ecology & Evolution, 25 (8), 479–486. https://doi .747

org/10.1016/j.tree.2010.05.001748

Schuwirth, N., Borgwardt, F., Domisch, S., Friedrichs, M., Kattwinkel, M.,749

Kneis, D., Kuemmerlen, M., Langhans, S. D., Mart́ınez-López, J., &750
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