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Background 15 

Animals disperse seeds, nutrients and microbes (collectively referred to as cargo hereafter), 16 

and they modify the physical structure of their ecosystem (Subalusky & Post, 2019).  Scaling 17 

theory allows us to extrapolate these results from individual species to all species in an 18 

ecosystem over large distances and time periods (West et al., 1997).  To scale movement of 19 

cargo across landscapes by animals, we use body mass scaling of metabolic rate, day range, 20 

population density, home range, gut passage time and animal lifetime (Doughty et al., 2013; 21 

Wolf et al., 2013). Scaling theory can predict how much food an individual animal needs to 22 

consume (metabolic rate) and how far it will move that food between consumption and 23 

defecation (multiply day range (how far an animal moves in a day) by food passage time) (Fig 24 

1a).  Scaling theory can also predict animal population density (individuals per km2) which can 25 

allow us to scale movement of cargo from the individual animal to estimate the movement by all 26 

animals of that species (Fig 1b). Of course, individual animals will rarely move in a straight line 27 

and the movement of an individual can be characterized as a random walk (Fig 1a).  The 28 

aggregate statistics of the movement of a population of animals can be described as Brownian 29 

motion (Okubo and Levin 2001) (Fig 1b).  Therefore, we can calculate the movement of cargo 30 

across the landscape as a diffusivity of all the animals in the landscape using species range maps 31 

and those animal’s body mass (Fig 1c) (Doughty et al., 2013; Wolf et al., 2013), since the scaling 32 

factors are all a function of body mass.  Finally, we can predict animal mediated diffusivity of 33 

cargo at the global scale (Fig1d). 34 

However, certain scaling factors are more predictable than others (i.e. predicting metabolic rate 35 

vs population density).  For instance, metabolic rate scales very consistently with body mass 36 

across vast ranges, from microbes to whales (Kleiber's law) because metabolic scaling theory 37 

(MST) predicts this tight relationship based on constraints of how resources are transported 38 

through bodies (see chapters xxx and West et al 1997). Different theory predicts other scaling 39 

relationships such as home range which predicts larger animals need disproportionately more 40 

space to support themselves than smaller animals (Broekman et al., 2023). However, body mass 41 

predictability (r²) of home range is lower than metabolic rate because the theory explaining home 42 

range does not go down to first principles but the theory explaining metabolic rate does.  Scaling 43 

of movement of cargo combines scaling parameters with high r² (that go down to first MST 44 

principles like metabolic rate) to others with lower r² (like home range or population density) that 45 

are based in sound ecological theory, but not first principles and predictability is therefore lower 46 

than metabolic rate.   47 

To test scaling models of animal mediated cargo movement, we first test mass-based scaling of 48 

seed dispersal as it is well studied.  Seed dispersal is strongly body size dependent with larger 49 

terrestrial animals generally moving seeds further than smaller ones (Pires et al., 2018). This is 50 

predicted with scaling theory that combines gut passage time with day range models and is 51 

empirically validated. For instance, Asian elephants that disperse seeds an average of 1–2 km 52 

(Campos-Arceiz et al., 2008; Pires et al., 2018), and African forest elephants that move 88% of 53 

seeds more than 1 km and move 14% more than 10 km (Blake et al., 2009)). However, it is 54 

difficult to observe the ecological impacts of animal dispersal of seeds because trees are long 55 

lived, and thus, vegetation turn-over can be slow (and out of human time scale). In other words, 56 
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if forest elephants are removed from a forest, it could take decades to observe the impact because 57 

of the long lives of trees. One broader way to consider the ecological impacts of megaherbivores 58 

(>1000kg) on seed dispersal is to consider megafauna extinctions in South America where all 15 59 

megaherbivore species went extinct ~12,000 ybp (allowing sufficient time to see the full 60 

ecological implications).  It has been hypothesized that many key fruit tree species in South 61 

America co-evolved with the now extinct megafauna (Janzen & Martin, 1982) and recent work 62 

has identified 103 such fruit tree species (Guimarães  Jr. et al., 2008). One study used scaling 63 

theory and an individual based model to predict that tree species dispersed by these extinct 64 

megaherbivores would have a range contraction of ~31% following extinctions compared to an 65 

actual range contraction of ~26% using data from the Botanical Information and Ecology 66 

Network (Enquist et al., 2016) for 63 (of the 103 hypothesized) megafauna dispersed species 67 

(Doughty, Wolf, et al., 2016), which suggests mass based scaling of cargo is possible.   68 

Scaling relationships can also be used to predict the movement of species that are carried by 69 

terrestrial vertebrate hosts, including single cell prokaryotes, eukaryotes, viruses, and macro-70 

parasites. The movement of gut microbes and endo-parasites is governed by largely the same 71 

allometric scaling laws that determine the movement of seeds and nutrients, including gut 72 

passage time and day range. Whereas the dispersal of ectoparasites and skin microorganisms 73 

may be closer to the movement of seeds that hitchhike on the exterior of the host.  Modelling 74 

microbes is often more difficult than nutrients as they are often part of a large, competing 75 

population that changes through time. The movement of cargo organisms likely impacts their 76 

evolution, especially those that have limited independent mobility when outside the host. 77 

Changing this dispersal would therefore alter these evolutionary processes and Doughty et al. 78 

(2020) estimate a global average 7-fold reduction in the dispersal of gut microbes and 79 

ectoparasites following the extinction of many of the largest host species during the Late 80 

Pleistocene and early Holocene (Doughty et al., 2020). Doughty et al. (2020) show that 81 

decreased host dispersal could lead to the aggregation of mutations in a simple, single-species 82 

gut microbe community, resulting in the development of different microbial strains through time. 83 

This divergence is similar to the evolution that occurs when a single species colonizes a new 84 

group of islands (MacArthur & Wilson, 1967), such as an ancestor to the Darwin’s finches that 85 

speciated across the Galapagos Islands (PETREN et al., 2005). The genetic differences that build 86 

up in the various sections of the population, eventually lead to separate species on each island. In 87 

this comparison, the ocean between the islands is a physical barrier to population mixing, 88 

analogous to the reduced dispersal faced by microorganisms and ectoparasites with the extinction 89 

of their carrier species. 90 

Scaling theory can also help us to predict how large animal browsing, movement, and destruction 91 

impacts vegetation structure and carbon cycling. Megaherbivores (>1000 kg) large body size and 92 

selective feeding behavior determines plant species compositions, opening up the understory in 93 

dense forests and increase vegetation openness in savanna/forest systems (Bakker et al., 2016). 94 

Specifically, African elephants are known to cause significant damage to understory vegetation 95 

both in the open savannas and dense tropical forests. For example, an exclosure study in Kruger 96 

that removed all animals greater than 5 kg found ∼9% more trees over ∼36 years and most of the 97 
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change was due to elephants (Asner & Levick, 2012; Davies & Asner, 2019). Another study 98 

followed reintroduced African savanna elephants across five nature reserves between 1927 - 99 

2003 and found that elephants promote a semi-open ecosystem (Gordon et al., 2023).  Many 100 

other large species show similar, but lesser, impacts on vegetation (Bakker et al., 2016).  101 

Doughty et al 2016 used scaling theory and statistical modelling to predict that the extinction of 102 

South American megafauna would have increased total woody cover in South America savannas 103 

by ∼ 29% resulting in similar openness to African savannas (Doughty, Faurby, et al., 2016).  In 104 

high latitude ecosystems such landscape changes following megafauna extinctions may even 105 

have affected global climate (Doughty et al., 2010). 106 

African forest elephants (Loxodonta cyclotis) are also known to be significant drivers of tropical 107 

forest structure by trampling, upheaving, and ingesting vegetation. Consistent destruction of 108 

small sapling numbers and large sapling diversity allows large trees to succeed, while clearing 109 

out the understory (Terborgh et al., 2016). Unlike the Amazon, African rainforests have less 110 

diversity in the understory, but higher diversity of large trees that dominate the canopy layer, 111 

which points to the substantial impact of megaherbivores on forest structure (Terborgh et al., 112 

2016). Furthermore, the changes in vegetation structure from elephant disturbance have 113 

significant effects on carbon stocks. The Ecosystem Demography (ED) model was used to 114 

estimate that,  if elephants were to become extinct in African tropical forests, aboveground 115 

biomass would be reduced by 7% (Berzaghi et al., 2019) mainly due to their preferential 116 

browsing on leaves from low wood density species and their propensity to disperse large seeds of 117 

trees with high wood density (Berzaghi et al., 2023). With tropical forests storing a significant 118 

percentage of global carbon, the ecological importance of forest elephants could be substantial, 119 

however additional research on their specific impact is needed. Forest elephants may impact 120 

forest structure like a light version of logging which could increase biodiversity (Malhi et al., 121 

2022).  Future research could use scaling theory to predict the accumulated impact of all animal 122 

species on structure. 123 

In addition to scaling seed and pathogen dispersal by megaherbivores, scaling laws have also 124 

been used to predict animal mediated elemental transport in an ecosystem.  Wolf et al 2013 125 

combined the scaling coefficients of metabolic rate, day range, population density, home range, 126 

gut passage time and animal lifetime to predict movement of elements through both bodies 127 

(corpses) and feces. They found a superlinear (>1) scaling coefficient of 1.17 for nutrient 128 

movement through feces, indicating that larger animals are disproportionately important to the 129 

spread of nutrients.  Furthermore, movement of elements through feces was two orders of 130 

magnitude more important than through bodies. This scaling framework was used to predict that 131 

total phosphorus concentrations in the Amazon basin decreased by ~50% following the 132 

megafaunal extinctions (Doughty et al., 2013) and that global (marine and terrestrial) animal 133 

mediated nutrient diffusion capacity was reduced by >90% following direct and indirect 134 

anthropogenic extinctions and population reductions (Doughty, Roman, et al., 2016). We have 135 

gained confidence in these model outputs comparing fossilized plant (coal) element 136 
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concentrations across the US which found more, and more evenly distributed bio-important 137 

elements in the Cretaceous (with the biggest animals through Earth history) compared to the 138 

Carboniferous (with few large animals) (Doughty, 2017).   139 

This prior work (e.g. Doughty et al 2013 and 2016) focused on simple mass-based scaling 140 

relationships to make predictions for global regions (with many data gaps) or for extinct animals 141 

(of which often little is known beyond body mass). However, to predict nutrient movement for 142 

existing, more data rich species at local scales, scaling theory can be modified to fit nuances of 143 

specific systems with, for instance, gap filling of missing data. For example, Hempson et al. 144 

(2017) parameterized the nutrient movement model from Doughty et al. (2016) with species 145 

specific population abundance data instead of only using scaling relationships and found far 146 

more dramatic declines in nutrient transport since the late-Pleistocene than originally calculated 147 

by Doughty et al. (2016) (Hempson et al., 2017). Abraham et al. (2021) further improved the 148 

nutrient transport model by using scaling theory and empirical data to calculate gut passage time 149 

which had previously been estimated (Demment & Van Soest, 1985). The simple mass-based 150 

scaling of gut passage time was less accurate than models that included important features such 151 

as gut physiology (e.g. ruminants vs hindgut fermenters) among other features like foraging 152 

strategy, morphology and phylogeny (Abraham et al., 2021). Therefore, whilst mass-based 153 

scaling relationships provide a foundational platform, more sophisticated characterization of 154 

nutrient transport using species specific data is required at local scales (Ellis-Soto et al., 2021).  155 

One way to address the shortcomings of mass-based scaling relationships is through 156 

individual/agent-based models (I/ABMs), techniques for modelling an ecosystem service at 157 

the resolution of the individual.  Agent-based models, which can resolve such individual-scale 158 

heterogeneity, provide one option. Ferraro et al. (2022) demonstrate how this suite of models can 159 

improve upon the one species, one nutrient model (Ferraro et al., 2022). Abraham et al. (2022) 160 

extend the agent based model approach and provide a number of suggestions of how future 161 

nutrient dispersal models can increase accuracy at finer resolutions (Abraham et al., 2022).  162 

Another benefit of ABM’s is that mass-based scaling is usually based on average mature 163 

individuals, but in an ABM or other mechanistic model, we can also account for age, health 164 

(disease, parasites, injury), gender, pregnancy, season (temperature + NPP), and predation risk.  165 

Another way to address the shortcomings is incorporating the agent-based model approach as 166 

cohorts (representing several individuals at once, sharing the same traits and state parameter 167 

values), into larger earth system models.  For instance, scaling theory and the cohort approach 168 

has now been incorporated into animal based general ecosystem models like the Madingley 169 

model which is a global, process-based model that simulates the interactions between all animal 170 

species in an ecosystem (Harfoot et al., 2014).  By simulating simplified animal cohorts, rather 171 

than individuals (like the I/ABMs), Madingley can simulate larger-scale processes like the 172 

landscape of fear where predators influence herbivore behavior.  This allows for a more 173 

detailed and realistic representation of the system being modeled and thus accounts for the 174 
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variability in metabolic rates, providing a powerful tool to challenge metabolic scaling theory’s 175 

assumptions. It can be used to simulate the impact of many parameters on individual cohorts’ 176 

metabolic rates and on ecosystem-level metabolic rates. Such a model has been used to show that 177 

continued loss of large animals globally could lead to a 44% reduction in terrestrial heterotrophic 178 

biomass, a 18% decline in metabolism, and a 92% decline in fertility (Enquist et al., 2020).  179 

Future directions in Madingley could rely on more scaling relationships not currently included 180 

(e.g. amount of sleep scales to -0.25), but in Madingley all cohorts are active for 0.5 day. 181 

Overall, significant progress has been made in using scaling theory to predict animal impacts on 182 

their environment at global scales and over tens of thousands of years. There are advantages and 183 

disadvantages to this approach. As we have seen, using scaling theory to predict nutrient 184 

movement at the local scale without taking advantage of available, species-specific data can lead 185 

to low accuracy.  However, scaling theory provides the fundamental framework for helping us 186 

calculate to within an order of magnitude whether the megafauna extinctions impacted cargo 187 

movement or vegetation structure.  Another advantage to scaling theory is that because it is tied 188 

to physics first principles (West et al., 1997), we can attempt to extend it over even greater scales 189 

across time and space. For instance, MST initially was utilized only for mammals, but has since 190 

been extended to sub-microbial levels (chapter xxx) and at broader astrobiological scales 191 

(chapter xxx). Now we attempt to build on this approach and suggest future ways to scale our 192 

previous results over even greater periods of space and time.  193 

Future directions - Scaling over space and time 194 

The main premise of our work is that scaling theory suggests that larger animals are 195 

disproportionately important for movement of cargo and changing vegetation structure.  Before 196 

we move on to scaling our results over space and time, we wanted to revisit some of the data 197 

from Wolf et al 2013 and Abraham et al. 2021 to verify that the nutrient diffusion coefficients do 198 

scale super-linearly (>1). We test this by calculating the coefficients using several methods 199 

including: leave one datapoint out and varying the data randomly by ±20%. In figure one, we 200 

show a histogram distribution of the coefficients for the key parameters in our models including: 201 

nutrient diffusion, metabolic rate, home range, day range, population density, and lifetime (Fig 202 

2a-f). The nutrient distribution parameter remained superlinear (with one exception) and we 203 

further noted possible underestimates to our nutrient diffusion coefficient due to an unusually 204 

low metabolic rate coefficient of 0.72 (compared with the typical 0.75) which would 205 

underestimate large herbivore consumption (e,g. predicting elephants consuming ~10 kg/day 206 

versus actual ~30kg/day of dry matter).   New mass-based scaling of gut passage time (GPT) 207 

from Abraham et al 2021 gives a scaling coefficient of 0.21 versus our previous modelled value 208 

0.26 (Fig 2g)(Demment & Van Soest, 1985).  Combining new coefficients for GPT and 209 

metabolic rate gives a superlinear scaling coefficient of 1.15, but foregut fermenters have a lower 210 

coefficient (0.06 vs 0.17 hindgut, 0.24 simple, and 0.11 ruminant) taking the total nutrient 211 

diffusion coefficient down to linear (=1) (Fig 2h).  Future work should expand this dataset 212 
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further (for example, new datasets of home range include over 75 thousand home range 213 

observations (Broekman et al., 2023)) and we encourage work to link the superlinear scaling of 214 

nutrient movement to the fundamental precepts of MST.  However, overall, we remain confident 215 

of the superlinear scaling for most animal mediated cargo. 216 

Now that we have gained more confidence in the superlinear scaling coefficients, we extrapolate 217 

our work over longer periods of Earth’s history using body size distributions over the past 250 218 

million years (O’Gorman & Hone, 2012) to predict potential planetary nutrient diffusion 219 

capacity following methodology developed in Doughty et al 2013 (Fig 3). In prior work, 220 

potential nutrient movement over a similar period was calculated based on the largest single 221 

species of the era (Doughty 2017). Here we calculate nutrient distribution by all animal species 222 

(not just the biggest) during each period. This is important because a distribution with more, 223 

smaller species could have greater diffusion potential than a distribution with fewer, bigger 224 

species. We find nutrient diffusion is more homogeneous over the past 300 million years than 225 

was previously reported (Doughty 2017), but still peaks in the Mesozoic. As a percentage, 226 

nutrient movement peaks during the late Jurassic (800% of current) followed by late Cretaceous 227 

(~500% of current) (Fig 3 bottom).  This is initially surprising as the Mesozoic has fewer total 228 

number of species than the Cenozoic (Fig 3 top), but it reinforces the importance of overall body 229 

size versus total number of species on nutrient distribution potential.   230 

Potential nutrient movement does not translate directly into actual nutrient movement because 231 

this is dependent on soil substrate variations. However, previous work suggests time periods with 232 

larger body sized animals do increase nutrient availability because the Cretaceous (with larger 233 

bodied animals) had increased concentrations (136%) and decreased spatial heterogeneity (22%) 234 

of plant-important rock-derived nutrients than the carboniferous (with smaller bodied animals) 235 

(Doughty 2017). Taphonomic bias, which means it is harder to find older, smaller fossils than 236 

newer, bigger ones, may account for fewer smaller species during the Mesozoic period. 237 

However, Gorman and Hone 2012 suggest the Mesozoic body size distributions were not due to 238 

taphonomic bias, but instead due to the unique ecology of egg laying dinosaurs where smaller 239 

herbivore niches were filled by smaller versions of bigger dinosaurs instead of different species. 240 

Overall, we suggest future verifications of these scaling results against other coal elemental 241 

records for different time periods and regions following Doughty 2017. 242 

Our final goal for this chapter is to demonstrate the use of remote sensing techniques to scale 243 

animal impacts on their landscape over large spatial scales (Fig 4). Nutrients moved by animals 244 

that are limiting in an ecosystem (like phosphorus in tropical regions) will be absorbed into 245 

canopy top leaves that are observable from aircraft or satellites.  Forests or grasslands with more 246 

nutrients in their leaves, like nitrogen or phosphorus, will reflect light in a different way and the 247 

nutrient concentrations can be measured with aircraft or satellites carrying hyperspectral (many 248 

band) sensors (Asner et al., 2016).  For example, Asner et al 2016 predicted plant canopy 249 

nutrient biogeochemistry for the entire country of Peru by combining hyperspectral data from 250 
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aircraft and satellites (Asner et al., 2016). In theory, we can predict where leaves will have higher 251 

nutrient concentrations based on which animal populations are present (following animal nutrient 252 

modelling from Doughty et al 2013).  We can then validate such models by observing trends in 253 

canopy biogeochemistry as predicted with hyperspectral remote sensing techniques (following 254 

Asner et al 2016) (Fig 4 right).   255 

Above we described how large animals impact forest structure, which could be measured with 256 

lidar (light detection and ranging). Lidar shoots a laser into a forest and based on the amount and 257 

timing of the return energy, can be used to predict forest structure.  For example, aircraft lidar 258 

was used to show that regions with large animals had ∼9% fewer trees (Asner and Levick 2012).  259 

A more recent study found that lidar can detect forest elephant trails in a dense tropical forest 260 

(Keany et al 2024).  Since, there is now satellite lidar for measuring forest structure (GEDI- 261 

Dubayah et al 2020), we propose to use scaling theory to predict large animal impacts on forest 262 

structure and then to validate these estimates using either aircraft or satellite lidar to measure 263 

vegetation structure (Fig 4 left).   264 

Finally, vertical forest stratification can lead to more species coexistence in species-rich regions 265 

like tropical forests and climate change could drive arboreal species away from the warmer top 266 

canopy towards the ground (Oliveira and Scheffers 2019).  Since forest elephants may impact 267 

vertical forest structure (Keany et al 2024) we propose, in Fig 4b, to use a spaceborne thermal 268 

sensor to observe how structural impacts from elephants may influence thermal heterogeneity at 269 

broad spatial scales.  Increasing vertical forest heterogeneity could allow more thermal niche 270 

space to allow arboreal animals to better acclimate to climate change. 271 

     272 

Conclusions 273 

Scaling theory allows us to predict animal impacts on seed distribution, zoogeochemistry, 274 

pathogen movement, and vegetation structure over space and time. Here we have both reviewed 275 

this literature and suggested future directions to scale such work over space and time and apply it 276 

to such disparate fields as ecosystem ecology, paleontology and remote sensing.     277 

  278 
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Figures 279 

 280 

Fig 1 – A schematic overview to calculate cargo dispersal rates.  Individual scale (A) is 281 

aggregated to the population scale (B). Random walk movement at the individual scale is 282 

simplified into Brownian motion diffusivity at the population scale.  Population scale dynamics 283 

are combined with species body mass and range maps (C) to estimate global cargo dispersal rates 284 

for all species (D). 285 

Population Scale
Trait           units        equation
Population      #/km2            87.6*M ^ 20.7
Density

Individual  Scale 
Trait             units       equation
Metabolic rate kg/#/day    0.021*M^0.72
Day Range km              0.453*M ^ 037
Passage time   days            0.29*M ^ 0.26

Movement type
Random walk

Global cargo dispersal rates
Trait - units              equation
Fecal Diffusivity   (km2/yr)      0.050*M^1.166

Movement type
Brownian motion

a probability density function 
governed by a random walk

Log10 fecal diffusivity(km2 yr-1)

Species Distributions 

+ body mass

A B C

D
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 286 

 287 

Fig 2 - Histograms for scaling coefficients for nutrient diffusion, home range, metabolic rate, day 288 

range, animal lifetime, and population density using data from Wolf et al 2013 and Abraham et 289 

al. 2021 with a leave one datapoint out methodology (blue) and adding a random 20% error to 290 

each datapoint (orange). Bottom row shows log10 mean gut retention time in hours for all 291 

animals (left) and separated by gut type (right).  We show linear regressions and statistics for all 292 

mammals (left) and separated by gut type (simple=green, foregut=red). 293 

 294 

 295 
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 296 

Fig 3 - (top) Body size distributions of number of animal species for eight distinct periods in 297 

Earth’s history recreated from (Gorman and Hone 2012).  (bottom) Calculated nutrient diffusion 298 

potential for each time period from species distributions shown above as a percentage of current 299 

nutrient diffusion following methodology from Doughty et al 2013.  300 

 301 

 302 

 303 

 304 

 305 
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 306 

Fig 4 - Potential impacts of low (blue) and high (red) megafauna density on structure (left), 307 

temperature (middle), and biogeochemistry (right) as seen from space by three current 308 

instruments (lidar, thermal, and hyperspectral). 309 

 310 

  311 
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