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Abstract 29 

1. We present LEPY, a Python-based pipeline for automating the extraction and analysis of 30 

morphological traits, including structural and colour properties, from mounted Lepidoptera 31 

specimens. It uses a U-Net neural network for image segmentation and a scale bar for precise 32 

measurements. LEPY is designed to be easy and reproducible, ensuring efficient and 33 

consistent analysis of large Lepidoptera image datasets. It also supports the integration of UV 34 

photographs for enhanced colour analysis. 35 

2. LEPY computes structural traits, including body and wing length and area, and colour 36 

characteristics such as hue, saturation, and intensity, which are stored in a structured format 37 

(CSV) for easy evaluation. It also provides distribution metrics that describe the brightness and 38 

dynamic range/contrast, chromaticity, and luminance for four colour channels (R, G, B, and 39 

UV). Data from all channels are integrated to calculate colour diversity using the Shannon 40 

index. A visual summary of each image pair, including false colour images, is also provided. 41 

3. We validated LEPY using data from Sphingidae and Saturniidae moths, known for their 42 

contrasting traits, which were sampled along a complete elevational gradient in the Peruvian 43 

Andes. In both families, forewing length increased with elevation. As expected, Sphingidae 44 

had smaller wing areas than Saturniidae despite their longer forewings. The brightness of 45 

colours decreased with elevation in both families, and Sphingidae were generally darker than 46 

Saturniidae. The dynamic range/contrast varied among species but was uncorrelated to 47 

elevation. 48 

4. LEPY is a powerful tool for studying key Lepidoptera traits. It integrates advanced computer 49 

vision and neural network methods to automated measurements, supporting ecological and 50 

https://www.andiv.biozentrum.uni-wuerzburg.de/
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evolutionary research. It also offers new possibilities for analysing Lepidoptera traits along 51 

gradients and responses to environmental changes. 52 

KEYWORDS  53 

Computer Vision, Deep Learning, Lepidoptera, Multispectral Colour Analysis, Structural Traits, 54 

Python, Photography, UV Photography 55 

 56 

1 |  INTRODUCTION 57 

Integrating measures of functional traits of organisms and their change with environmental 58 

stressors is becoming increasingly important in ecological research (Correa-Carmona et al., 59 

2022; Gámez-Virués et al., 2015; Wellstein et al., 2011). This can be particularly challenging 60 

in insects which are the most diverse and abundant organisms on Earth, and it is usually very 61 

time-consuming to identify, prepare and measure their morphological traits (van Klink et al., 62 

2022). Lepidoptera – butterflies and moths – is one of the most diverse insect clades, are no 63 

exception with this regard (Freitas et al., 2020). They have been used as a model group for 64 

many studies in ecology and evolution (Watt & Boggs, 2003; Hill et al., 2021), because at least 65 

the largest and most conspicuous groups have traditionally been intensively collected. 66 

Lepidopteran taxonomy is on average better studied than in other insect orders, with notable 67 

exceptions in which more difficult molecular analysis or other tools for identification are 68 

required (Lamarre et al., 2022; Moraes et al., 2021; Murillo-Ramos et al., 2021). 69 

 70 

Body size is probably the most important and the most studied functional trait, as it is linked to 71 

population vital rates (metabolism, survival, growth, reproduction) and to ecological 72 

interactions (Brehm et al., 2019; Woodward et al., 2005). It is also one of the most sensitive 73 

traits to environmental change (Chown & Gaston, 2010; Cortés-Gómez et al., 2023; Tammaru 74 

& Teder, 2012). Another important morphological trait of insects is their colouration. Colour is 75 
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particularly important in Lepidoptera, because it is used for a variety of purposes, such as body 76 

protection (i.e., camouflage, mimicry), signalling and physiological/thermal adaptation 77 

(Heidrich et al., 2018; Koič́ková et al., 2012). Wing colour patterns are also of key importance 78 

for species-level identification (Feng et al., 2015). The UV (ultraviolet) colouration of 79 

Lepidoptera is also of vital importance in a wide range of biological and ecological contexts 80 

(Brehm et al., 2021; Heidrich et al., 2018; Koič́ková et al., 2012). UV patterns, invisible to 81 

mammals including humans, but perceptible to a wide range of other organisms (e.g., most 82 

arthropods and birds), play an important role in communication (Cronin & Bok, 2016; Paul & 83 

Gwynn-Jones, 2003). For example, visual signals can attract mates or to distinguish 84 

conspecifics from other species (Bálint et al., 2012), they are important for survival (camouflage 85 

or mimicry strategies; Lyytinen et al., 2004; Zapletalová et al., 2016) and evolutionary 86 

processes (e.g., pollination; Ohashi et al., 2015; Papiorek et al., 2016). However, relatively few 87 

studies have been carried out that include UV patterns of insects in general and of Lepidoptera 88 

in particular (Stella & Kleisner, 2022), and digitisation programmes in biological collections 89 

have usually neglected UV patterns (Brehm, 2025). 90 

 91 

Traditional manual methods for measuring morphological traits in entomology are usually time 92 

consuming and prone to human error (Fountain-Jones et al., 2015). In the case of Lepidoptera, 93 

wing structures are also delicate and can be easily damaged. Recently, several studies 94 

investigated ways to automate the detection, classification, and measurement of functional 95 

traits such as wing and body size, coloration, and coloration patterns in Lepidoptera by using 96 

modern approaches such as computer vision and machine learning, offering ways to save time 97 

and improve the accuracy of these measurements (Feng et al., 2015; Høye et al., 2021; 98 

Manoukis & Collier, 2019; Palma et al., 2023). Computer vision and deep learning techniques 99 

have significantly advanced the field of entomology by reducing reliance on manual 100 

measurements, enabling large-scale, high-throughput analyses, and improving the accuracy 101 

and reproducibility of trait measurements (Høye et al., 2021; Manoukis & Collier, 2019; Palma 102 

et al., 2023). Python is the most used programming language for developing these techniques 103 
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(Van Rossum & Drake, 2009), thanks to its advanced image analysis frameworks, 104 

comprehensive and extensive scientific libraries/tools, broad user community, and continuous 105 

contributions from third-party developers, ensuring its adaptability for new applications. 106 

Pipelines already exist in the field of automated analysis of Lepidopteran images, including 107 

MothSeg and Mothra. MothSeg (https://github.com/erodner/mothseg) contains Python-based 108 

tools for segmenting and analysing images of moths and butterflies in dorsal and ventral 109 

position using a scale. Mothseg provides mean, median, and standard deviation of hue, 110 

saturation, and intensity of an RGB image, and calculates the width of the moth shape as well 111 

as the area of body + wings (Jaimes Nino et al., 2019). However, options for body size 112 

measurements are limited, and it takes 3 to 5 minutes to analyse a single image. Another 113 

computer vision pipeline is Mothra (Wilson et al., 2023); it automatically detects the specimen 114 

and other objects in the image, adjusts the scale, measures wing characteristics (e.g., forewing 115 

length), determines the orientation of the image (vertical or horizontal), and identifies sex by 116 

assessing patterns of sexual size dimorphism. Mothra is also limited regarding the number of 117 

morphological traits and does not analyse colours. 118 

 119 

In this paper we introduce LEPY, a Python-based tool for the automatic segmentation and 120 

analysis of lepidopteran structural and colour traits. Our goal was to integrate key features from 121 

existing algorithms with significant new features, especially in quantitative colour analysis, 122 

including information on UV reflectance. We aimed to enhance segmentation accuracy through 123 

deep learning models and incorporate a configurable calibration step to extract comprehensive 124 

measurements more efficiently. We also wanted to develop a structured trait data to store all 125 

trait data and a visualization system that highlights key morphological traits alongside density 126 

plots of colour channels. To validate LEPY’s utility, we applied it to a dataset of two well-studied 127 

moth families, viz. Sphingidae and Saturniidae, collected along an elevational gradient in Peru. 128 

https://github.com/erodner/mothseg
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2 |  MATERIALS AND METHODS 129 

2.1 |  Implementation details 130 

LEPY is an open-source pipeline hosted on GitHub (https://github.com/tzlr-de/LEPY), 131 

developed and tested under Python 3.9 and 3.12. The recommended installation includes the 132 

setup of a virtual python environment like Anaconda (Anaconda, 2023) and the installation of 133 

the packages listed in the requirements file. For the detailed installation instructions, we refer 134 

to the README.md in the code repository. 135 

LEPY is a command-line program. To run the pipeline, the users must provide the image folder 136 

and a configuration file with processing parameters as command-line arguments. In the code 137 

repository, we included a configuration file with default values, which worked well on our 138 

dataset.  139 

A minimum of one regular (RGB) TIF image is required. For the inclusion of UV information, 140 

the corresponding UV image must share the same file name as the RGB image, with ‘uv’ 141 

appended to the UV file name (e.g., Pe-Geo-0016.tif and Pe-Geo-0016uv.tif; see Figure 3). 142 

The images should preferably have good lighting conditions, including a neutral grey and 143 

homogeneous background, consistent scaling across all images, and the removal of any labels 144 

for photography (Brehm, 2025; Figure 3). 145 

Using the UV channel, LEPY generates two new images: RGB-UV mixed and GB-UV. The 146 

first image is a single-channel image, where each pixel is a weighted sum of the R, G, B, and 147 

UV channels. It is related to the computation of a grayscale image; in such a normal greyscale 148 

image, the grey value is = 0.299 * red + 0.587 * green + 0.114 * blue, corresponding to the 149 

sensitivity of a human eye. Since we could not simply extend this weighting to the UV channel, 150 

we decided for the most neutral approach in which all four channels where equally weighted 151 

(0.25 each). The second image is a false colour image. In this image, the information from the 152 

GB-UV channels is shown in the available RGB channels, resulting in the GB-UV image.  153 

 154 

https://github.com/tzlr-de/LEPY
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 155 

FIGURE 1 LEPY Pipeline - The input images are processed in multiple steps, including a CNN-based 156 

pixel-accurate segmentation of the specimen, the localisation of points of interest (POI) using the mothra 157 

package, the detection and processing of the scale bar using the scalebar package, and finally the 158 

computation of various structural and colouring traits. Besides the main trait summary, which LEPY 159 

stores as a CSV table, LEPY stores for each image a visual summary (see Section 3.1), a false colour 160 

image (GB-UV), all the computed traits in a JSON file, and the contours of the segmentation mask. 161 

In Figure 1, we show the major processing steps of LEPY: (1) the pixel-accurate segmentation 162 

of the specimen, (2) the localisation of the points of interest (POI), (3) the detection and 163 

analysis of the scale bar, and (4) the computation of the structural and colouring traits based 164 

on the scale bar information and the POI.  165 

For the first step, we used the backgroundremover (https://github.com/nadermx/ 166 

backgroundremover) package. It utilises a U-NET-based (Ronneberger et al., 2015) neural 167 

network which is trained for general background removal. This solution works well with the 168 

homogeneous light grey background we used (see Brehm, 2025), as the specimen can be 169 

usually easily distinguished from the background. We also evaluated other methods for 170 

background separation, e.g., GrabCut (Rother et al., 2004), Otsu’s thresholding (Otsu, 1979), 171 

etc.), but the backgroundremover package delivered the most stable results, especially in the 172 

cases where the specimen had a very bright colouring. After postprocess the binary mask 173 

https://github.com/nadermx/%20backgroundremover
https://github.com/nadermx/%20backgroundremover


   
 

 8 

returned by the backgroundremover by filling minor holes, we identify contours in the binary 174 

mask and select only the largest contour under the assumption that this contour encloses the 175 

specimen. 176 

Based on the extracted binary mask, we estimated eight points of interest (POI) in each 177 

specimen (Figure 2A), which helps to separate the body from the wings and calculate the sizes 178 

of different specimen parts. We used and extended the Mothra package (Wilson et al., 2023), 179 

which estimates four of the POI we are interested in, i.e., the wing tips and base of both 180 

forewings. LEPY also estimates also the two lower points which connect the wings with the 181 

body, and the upper and lower tips of the body (Figure 1). 182 

Next, for the extraction of the scaling information from the scale bar present in the image, we 183 

used scalebar (https://github.com/DiKorsch/scalebar), a reworked and improved version of the 184 

MothSeg pipeline (https://github.com/erodner/mothseg). To locate the scale bar, it uses a 185 

simple pattern matching method 186 

(https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching .html) by matching a 187 

template image at different sizes (ranging from 2.5% to 100% of the original template size in 188 

steps of 2.5%) across the left 15% area of the image. As a template, we used a single image 189 

of a chessboard reference (see Figure 3) with a pre-computed ratio of 290 pixels per mm (a 190 

scale bar template is supplied in SI4; if printing, ensure it's at 100% for accurate 191 

measurements; scale purchased from Sphere Optics, https://sphereoptics.de/uebersicht-192 

produkte/). Using this pre-computed scale and the resize factor matched best during pattern 193 

matching, the final scale is computed and returned. If the scale of the template image is 194 

unknown, then another algorithm identifies up to 50 corners of the chessboard and estimates 195 

the scale based on the distances between these corners. Both the location of the template 196 

image and the pre-computed scale can be modified in the configuration file if our provided 197 

scale does not accurately represent the scale bar of the analysed images.  198 

 199 

https://github.com/DiKorsch/scalebar
https://github.com/erodner/mothseg
https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching%20.html
https://sphereoptics.de/uebersicht-produkte/
https://sphereoptics.de/uebersicht-produkte/
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 200 

FIGURE 2 A: Points of interest (POI, shown as red dots) detected on a binarized moth image, 201 

highlighting the body and length of both forewings, and the thorax width generated by the pipeline. B: 202 

The binarized moth image is segmented into three sections: 1. the left forewing and hindwing, 2. the 203 

body, and 3. the right forewing and hindwing. 204 

Finally, after we estimated the eight POI and the scale of the image, LEPY quantifies various 205 

structural and coloration traits. For structural measurements, it assesses thorax width, body 206 

length, and forewing length (Figure 2A). By segmenting the mask into distinct body and wing 207 

regions, LEPY also calculates their respective areas (Figure 2B). These measurements are 208 

recorded in the visual summary generated for each image and the corresponding .csv file (see 209 

2.2). For the colouring traits, LEPY analyses each channel of the RGB (red, green, and blue) 210 

image separately. LEPY transforms the RGB image into HSV (hue, saturation, and value) 211 

colour space. A distinguishing feature of LEPY is its capability to compute statistical metrics 212 

for the ultraviolet (UV) channel. Finally, using the segmentation mask estimated in previous 213 

image processing step, we calculate mean, median, minimum, and maximum pixel values for 214 

the RGB-UV and HSV. For the all four channels (RGB-UV), LEPY calculates the 25% quartile, 215 

75% quartile, the interquartile range (IQR) which represents dynamic range / contrast, 216 

Shannon index, luminance, and chromaticity (formulas detailed in SI1). In the visual summary, 217 

we also add density and box plots for each channel and the RGB-UV mixed image (Figure 4). 218 
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 219 

FIGURE 3 Example of a pair of original images of a moth (Geometridae: Opisthoxia sp.), taken with a 220 

modified camera, UV lens and respective lighting and filtering (Brehm 2025). A: normal RGB 221 

photograph. B: UV photograph in which the red channel is the most sensitive to UV. A 10 mm scale bar 222 

with chessboard pattern is placed along the left edge for accurate and reliable size reference (green 223 

box). 224 

2.2 |  Pipeline outputs 225 

The LEPY pipeline generates a new folder to store all result files. These files are saved in a 226 

directory specified by the command-line argument (--output). If this argument is omitted, the 227 

results are saved by default in a new created folder within the same directory of the input folder. 228 

This folder is named after the input folder, with "_results" appended to the name. 229 

The primary result file is a trait summary document in CSV format, containing all traits 230 

calculated by LEPY. Each row represents a single input image, with structural and coloration 231 

traits stored in separate columns (for detailed descriptions, see SI1). 232 

Besides the trait summary file, the current version of LEPY creates the following outputs: (1) a 233 

contour of the segmentation mask, (2) a false colour image (if the UV-channel was detected; 234 

GB-UV), (3) a trait file in JSON format containing the same structuring and colouring traits as 235 

the corresponding row in the CSV summary file, and (4) a visual summary of the main structural 236 

and colouring traits, and of the different colour channels in form of density and box plots. The 237 

visual summary is explained in more detail in Section 3.1. Each of these outputs is stored in a 238 

separate subfolder: “contours”, “gbuv”, “json”, and “visualisations”, respectively.  239 
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 240 

2.3 |  Validation of structural trait measurements and performance in an 241 

example dataset 242 

We performed a validation of size measurements derived from LEPY against a traditional 243 

manual method, using ImageJ, a widely used software for morphometric analysis (Rasband, 244 

2015). For this, we used a dataset of 100 moth images of moths of the families Sphingidae (54 245 

images) and Saturniidae (46 images; See SI2). Moths were sampled in Peru in 2022 and 2023 246 

as part of the ANDIV project (Holzmann et al., 2025). Moths were collected at 26 sampling 247 

sites between 250 and 3650 m a.s.l. in habitats ranging from Amazon lowland rainforest up to 248 

the treeline in the Andes. Size measurements included forewing length (both sides), body width 249 

(BW), body length (BL), and wingspan (WS). We applied paired Welch’s t test when normality 250 

assumptions were met, and a Wilcoxon rank sum test when deviations were detected. We 251 

checked the normality of model residuals using the Shapiro-Wilk test.  Statistical significance 252 

was determined at a threshold of 𝑝𝑝<0.05. 253 

Furthermore, we explored selected morphological traits (size and colour) using data derived 254 

from LEPY. This also included moths from the same taxa collected in the same region as 255 

above. A total of 224 photographed moth specimens with 109 image pairs of Saturniidae and 256 

115 image pairs of Sphingidae were analysed (See SI3). Photographs were taken at the 257 

Phyletisches Museum Jena (PMJ), Germany, according to the methods of photography and 258 

lighting described in detail by Brehm (2025). LEPY was run on a computer with an Intel(R) 259 

Core (TM) i5-13500 2.50GHz processor and 16.0 GB RAM (15.7 GB usable). As an example 260 

of the software’s ecological application, we investigated the relationship between elevation and 261 

several functional traits, including forewing length, wing area and colour properties such as 262 

brightness (median of the four colour channels) and dynamic range / contrast (expressed as 263 

interquartile range of four colour channels). 264 

Statistical analyses for the validation and exploration of performance were conducted in R 265 

v.4.4.0 (R Core Team, 2024). To evaluate whether elevation had a linear or non-linear effect 266 
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on the traits, we constructed generalized additive models (GAMs) separately for each 267 

taxonomic family and trait. In GAMs, non-parametric smoothers are used to define the 268 

relationship between a response and a predictor variable, allowing flexible, semi-automatic 269 

estimations of both linear and non-linear relationships. To avoid overparameterization, we set 270 

the basis dimension of the smoothing term (k) to five for all GAMs. The models were 271 

implemented using the ‘mgcv’ package (Wood, 2023).  272 

 273 

The number of images LEPY can process in one run depends on the computer’s memory 274 

capacity. To address this, we developed a script called LepyLoop, for analysing large datasets 275 

(available at https://github.com/DesBoe/LepyLoop). This script must be run in the same 276 

environment as LEPY. It will ask users for an input directory containing images or subfolders. 277 

All images are stored in a new folder and checked for unmatched RGB and UV image pairs. 278 

Small packages are created that contain a smaller number of images to be analysed 279 

consecutively by LEPY. Users can specify the individual count for each package (we 280 

recommend 100 from computational capacity). After all packages are analysed, input images 281 

are stored in their original directory, results are merged, and a .xlsx file containing all statistics 282 

is generated. 283 

3 |  RESULTS 284 

3.1 |  Visual summary 285 

As described in Section 2.2, LEPY creates a variety of output files after processing the images. 286 

The most condensed summary is the visual summary as explained in Figure 4. It visualises 287 

the most important structural and colouring traits, different colour channels (including the UV 288 

channel), as well as statistics of each channel in the form of density and box plots. The visual 289 

summary is both useful and practical, as it displays the main traits generated by LEPY and 290 

provides a quick check to ensure that the measurements and all LEPY steps were executed 291 

correctly for each image. 292 

https://github.com/DesBoe/LepyLoop
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 293 

 294 

FIGURE 4 Example of a visual summary of the results of LEPY for a moth specimen (Arctiinae: Idalus 295 

sp.) with explanations (coloured boxes). The visualisation shows the input images (orange), the binary 296 

mask (yellow), the POI, and the scale bar (purple). It also shows structural trait data (blue green), density 297 

plots (pink), and boxplots (light blue) of four colour channels with colour metrics for each (blue), and the 298 

Shannon index (violet). The density plots indicates that the moth has relatively high brightness values 299 

in all channels (in the order red, green, blue, and ultraviolet). The boxplots visualise the interquartile 300 

range (IQR) of the dynamic range / contrast. The bars of the green, blue and UV channel are relatively 301 

broad, i.e., they have a wide dynamic range / contrast. The red bar is rather narrow, indicating lesser 302 

dynamic range / contrast in the red channel (See SI1 for further explanation of colour metrics). 303 

 304 

In the upper left part, it displays a series of images. From left to right in the first row those are 305 

the original input images, the UV (ultraviolet) channel, classic grayscale image (B/W; black and 306 

white), the false colour image (GB-UV) as described in Section 2.1, and finally the binary mask 307 

estimated with the backgroundremover package. In the second row the images from left to 308 

right are four channels masked according to the binary mask and the weighted average of 309 
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those channels, the RGB-UV mixed image. In the upper right section, the estimated points of 310 

interest (POI), the length measurements of the specimen, and the detected scale bar along 311 

with the estimated pixel scale in pixel per millimetre are visualised.  312 

The lower part of the visual summary displays the density and box plots of the four colour 313 

channels and the RGB-UV mixed image on the left. The most important structural and colour 314 

traits of the specimen are displayed in two tables on the right. Based on the eight POI, LEPY 315 

calculates eight structural traits: five lengths and three areas as shown in the visual summary 316 

(Figure 4). The colour traits include the median, Q25, Q75, IQR (interquartile range), and the 317 

Shannon index of the four channels and of the RGB-UV mixed image. The median pixel value 318 

is a measure for the brightness of each channel. The dynamic range / contrast of an image is 319 

usually defined by the difference between maximum and minimum pixel value. We use the 320 

IQR of the dynamic range / contrast because it is less sensitive to statistical outliers and 321 

therefore probably provides more stable results. As mentioned in Section 2.2, additional 322 

colouring traits are stored in the main trait summary file. Those are explained in more detail in 323 

supplementary information (SI). 324 

 325 

3.2 |  Validation of structural trait measurements 326 

The comparison between LEPY and ImageJ measurements (n = 100) revealed no statistically 327 

significant differences for any of the measured parameters. For normally distributed data (both 328 

forewing lengths), Welch’s t-tests produced 𝑝𝑝-values of 0.80 and 0.96, respectively. For non-329 

normally distributed data (BW, BL, and WS), Wilcoxon rank-sum tests resulted in 𝑝𝑝-values of 330 

0.50, 0.85, and 0.49, respectively. Visual representation of the data, presented in boxplots, 331 

further supported the similarity between the two measurement methods (Figure 5). 332 

 333 
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 334 

FIGURE 5 Comparison of structural measurements obtained using ImageJ and LEPY. Boxplots with 335 

jittered points represent measurements for body length (BL), body width (BW), left forewing length 336 

(LFWL), right forewing length (RFWL), and wingspan (WS) across the two methods. 337 

3.3 |  Performance of LEPY in the example data set 338 

General performance. The processing of 224 image pairs (RGB image, UV image) took 339 

between 15 and 50 seconds per pair. The performance of LEPY is influenced by specific image 340 

and specimen characteristics. For example, visible antennae or legs in the images occasionally 341 

led to errors in POI identification, resulting in inaccuracies in morphological measurements. 342 

Specimen preparation and mounting also played a role: errors in wing positioning, such as 343 

misalignment of the wings at a 90° angle relative to the body or asymmetry between the two 344 

sides of the body, led to POI detection errors. 345 

 346 

Forewing length and wing area. The effect of elevation on forewing length and wing area varied 347 

between Sphingidae and Saturniidae, as indicated by the Generalised Additive Models (GAM). 348 

For forewing length, elevation had a significant effect in both families, but the trend of this 349 

relationship differed. In Sphingidae, the effect was linear (edf = 1, F = 5.227, p = 0.0241), 350 



   
 

 16 

though the model explained only 4.42% of the deviance. In Saturniidae, the effect was non-351 

linear (edf = 3.281, F = 2.267, p = 0.0487), and the model explained a slightly higher proportion 352 

of variance (10% deviance explained). These results suggest that elevation influences 353 

forewing length in both families, but with a non-linear effect in Saturniidae (Figure 6A). For 354 

wing area, elevation had no significant effect in either family. In Sphingidae, the relationship 355 

was non-significant (edf = 1.58, F = 1.562, p = 0.267 deviance explained = 2.91%). In 356 

Saturniidae, wing area changed in a complex manner with elevation, but the effect was only 357 

marginally significant (edf = 3.183, F = 2.205, p = 0.0579, explained deviance = 9.4%). These 358 

results suggest that elevation has a limited effect on wing area variation in both families, though 359 

Saturniidae shows a slightly stronger non-linear response (Figure 6B). 360 

 361 

 362 

FIGURE 6 A. Relationship between elevation and forewing length of Sphingidae (purple) and 363 

Saturniidae (orange). B. Relationship between elevation and wing area of Sphingidae (purple) and 364 

Saturniidae (orange). Each point represents an individual moth, and the shaded regions indicate 95% 365 

confidence intervals around the fitted GAM predictions (lines). 366 

Brightness and dynamic range / contrast. The effect of elevation on brightness and dynamic 367 

range / contrast was weak in both Sphingidae and Saturniidae. For brightness, elevation had 368 

a significant effect in Sphingidae (edf = 1.083, F = 12.05, p = 0.000384), suggesting a nearly 369 

linear relationship. The model explained 11.5% of the deviance, indicating that elevation 370 

played a moderate role in shaping this trait in Sphingidae. In Saturniidae, trends in brightness 371 
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were similar but the effect was not significant (edf = 3.216, F = 1.62, p = 0.129). The model 372 

explained only 7.53% of the deviance, suggesting a minimal impact of elevation on brightness 373 

in this family (Figure 7A). For dynamic range / contrast, elevation had a non-significant effect 374 

in both families. In Sphingidae, the model showed a weak relationship with elevation (edf = 1, 375 

F = 2.106, p = 0.149), explaining only 1.83% of the deviance. Similarly, for Saturniidae, the 376 

effect was weak and non-significant (edf = 1.917, F = 1.675, p = 0.194), with 4.56% of the 377 

deviance explained. These results suggest that elevation had little influence on contrast 378 

variation in both families (Figure 7B). 379 

 380 

 381 

FIGURE 7 A. Relationship between elevation and brightness (median of four colour channels) in 382 

Sphingidae (purple) and Saturniidae (orange). B. Relationship between elevation and dynamic range / 383 

contrast (IQR of four colour channels) in Sphingidae (purple) and Saturniidae (orange). Points represent 384 

individual data, and the shaded regions indicate confidence intervals around the fitted GAM predictions 385 

(lines). 386 

4 |  DISCUSSION 387 

4.1 |  Capabilities of LEPY 388 

LEPY demonstrated significantly enhanced capabilities compared to previous algorithms such 389 

as Mothseg and Mothra. LEPY can easily analyse more than thousand image pairs overnight 390 
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with a normal computer and provides a wealth of data for analysing traits of body size and 391 

colouration of moths and butterflies at once. Results automatically derived by LEPY were 392 

highly like those measured manually with ImageJ. Our examples showed only a selection of 393 

the possibilities and demonstrate that different size measurements can lead to different results. 394 

For example, a longer wing length does not automatically mean a larger wing area, as this 395 

ratio varies between different taxa. In many studies, only a single measure, such as wing 396 

length, was used, but this is only possible if the groups are relatively homogeneous (e.g., 397 

Brehm et al., 2019). 398 

With the automated methods used in LEPY, it is now easy to record different measures 399 

simultaneously and compare them. The comparison of colouration parameters such as 400 

brightness only give a foretaste of future possibilities. In our tested dataset, members of both 401 

families become darker with elevation whereas we found no significant changes in the dynamic 402 

range /contrast. These results highlight how morphological traits can vary in response to 403 

environmental gradients. Stronger patterns are expected in groups with aposematic or 404 

chemically defended species, such as butterflies and Arctiinae and other moths, which use 405 

coloration to signal toxicity or unpalatability (Prudic et al., 2007). 406 

The inclusion of UV information represents a significant further development. UV patterns can 407 

be important for communication, camouflage, and mating signals (Pinna et al., 2021; 408 

Prabhulinga et al., 2022), but the systematic consideration of UV information has received little 409 

attention to date, e.g., in digitisation programmes (Brehm, 2025). To better understand this 410 

potential, we encourage studies to compare the contribution that this information can make. 411 

LEPY can also be used without UV photographs and represents the traditional parameters 412 

such as HSV (hue, saturation, and intensity). Our four-channel approach enables the full 413 

integration and visualization of UV information using false-colour images. We also encourage 414 

to work on further models for this colour information and possibly derive further meaningful 415 

parameters. LEPY provides scalable analyses of large Lepidoptera datasets, allowing the 416 

accurate extraction of morphological traits relevant to studies of phenotypic diversity, 417 

ecological adaptations, and trait-environment relationships. The comparison between LEPY 418 
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and ImageJ measurements demonstrated strong consistency across all measured 419 

parameters, with no statistically significant differences observed. This suggests that LEPY 420 

provides an accurate and automated alternative to ImageJ for morphological measurements 421 

in Lepidoptera. Future studies could leverage LEPY to streamline data collection processes 422 

while maintaining measurement accuracy. Data generated by LEPY can easily be registered 423 

in publicly accessible repositories. 424 

 425 

4.2 |  Current limitations of LEPY 426 

Despite its strengths, LEPY has some limitations that may require further development for 427 

other types of input data, for example regarding the type of scale bar used. LEPY currently 428 

requires a specific chessboard pattern. Adapting to different scales or formats would require 429 

additional programming, which in most cases appears possible, given a standardization (e.g., 430 

a uniform 10 mm black scale bar). Furthermore, extending compatibility to a broader range of 431 

file formats could enhance a broader accessibility and usability. Accuracy and efficiency of the 432 

pipeline are dependent on the quality of specimen preparation. Errors in segmentation and 433 

POI detection can arise from poorly prepared specimens, visible legs, or pale or translucent 434 

wings. Such problems can never be completely avoided but the visual summary of results 435 

make it possible to identify such errors relatively quickly and replace them with manual 436 

measurements. 437 

A broader question is whether LEPY could be adapted in such a way that it will be possible to 438 

investigate also other insect groups. Although this is certainly desirable, we expect that insects 439 

characterized by pronounced three-dimensional body shapes will be more difficult to analyse, 440 

and additional technologies (such as image stacking) are likely to be required. However, LEPY 441 

could serve as a good starting point, as its modularity and extensibility are likely to allow such 442 

adaptations. 443 
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4.3 |  Ecological relevance and potential applications of LEPY 444 

LEPY enables the study of Lepidoptera adaptation to environmental changes, such as climate 445 

change or habitat loss (Clusella-Trullas & Nielsen, 2020; Duarte et al., 2017; Henriques et al., 446 

2022). For example, body size is related to individual mobility, whereas individuals with 447 

reduced mobility tend to be more sensitive to habitat loss (Mattila et al., 2008). The tool enables 448 

the monitoring of changes in Lepidoptera populations and communities over time. By 449 

facilitating the study of how environmental changes and habitat degradation influence their 450 

morphology, coloration, and survival, it provides critical insights into species responses. Such 451 

information is essential for predicting whether species will adapt or face decline, as well as for 452 

informing the development of effective conservation strategies (Koneru & Caro, 2022; Mikitová 453 

et al., 2022). 454 

In our example dataset, morphological traits varied with elevation, likely due to associated 455 

environmental changes. However, the magnitude and direction of these effects differed by trait. 456 

Notably, forewing length increased significantly with elevation, particularly in Sphingidae. In 457 

contrast, Saturniidae species had significantly larger wing areas, but this trait did not follow a 458 

clear elevational pattern. These findings align with those of Brehm et al. (2019), who found a 459 

significant increase in body size (measured as forewing length) along an elevational gradient 460 

of nearly 2,900 meters in Costa Rica, with temperature as the main predictive factor. However, 461 

Brehm & Fiedler (2004) reported a negative relationship between body size and elevation of 462 

Geometridae moths in Ecuador along a gradient of more than 1,600 m, suggesting that 463 

geographical differences and gradient length may influence these patterns. 464 

The increase in forewing length at higher elevations may reflect adaptations to flight constraints 465 

in montane environments. Reduced atmospheric pressure may require larger wings to 466 

maintain efficient flight (Brehm et al., 2019). The relatively low R² for forewing length suggests 467 

that while elevation has an effect, other factors – such as taxon-specific adaptations or 468 

phylogenetic relationships – are likely to contribute to variation in this trait. In contrast, traits 469 

with higher R² values (brightness and wing area), indicate that moth taxon and, to some extent, 470 
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elevation explain most of the variation. These results support previous findings that colour-471 

related traits change with elevation (Fiedler & Brehm, 2021). 472 

Previous studies found that larger and darker insects are favoured in colder environments and 473 

that body size and coloration might play an important role for thermoregulation, even in 474 

nocturnal species. For instance, Heidrich et al. (2018) found that noctuid moths were larger 475 

and darker at high elevations in Europe, whereas geometrids showed an opposite trend in 476 

brightness and no clear trend in body size. 477 

For future research, integrating morphological patterns with phylogenetic analyses would help 478 

to clarify whether the observed changes are primarily driven by elevation or result from 479 

species-specific evolutionary adaptations. Combining trait-based approaches with 480 

phylogenetic frameworks will be essential for understanding how moth communities respond 481 

to environmental gradients over evolutionary timescales (Shrestha et al., 2014). 482 

5 |  CONCLUSION 483 

LEPY is a tool that addresses key challenges in Lepidoptera trait research by automating the 484 

analysis of structural traits and colour properties, including UV information, across large 485 

datasets of specimens and/or images. Our results highlight the effectiveness of LEPY in 486 

quantifying morphological trait variation and detecting the influence of elevational gradients on 487 

Lepidoptera communities. By incorporating both morphological and ecological data, this 488 

approach can provide valuable insights into how environmental factors shape trait distributions 489 

in insect communities. We encourage users to test LEPY and expand its possibilities through 490 

further adaptation steps. 491 
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