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Abstract 11 

Progress towards national and international targets to halt and reverse declines in species’ abundances 12 

will be assessed using Multispecies Indicators (MSIs). A distinction must be drawn between two 13 

MSIs. One is the ideal, but unobserved, MSI that would have been estimated had all species and sites 14 

within the scope of the target been sampled. The other is the empirical MSI estimated from the sample 15 

in hand. The discrepancy between the two, the sampling error, determines whether the empirical MSI 16 

faithfully reflects progress towards abundance targets. 17 

We decompose the sampling error of common sample-based MSIs algebraically into a geographic 18 

component reflecting the effect of non-sampled sites and a taxonomic component reflecting the effect 19 

of non-sampled species. Building on established results from sampling theory, we further decompose 20 

each component into three contributing factors: the data defect (capturing the bias of the sampling 21 

process), the data scarcity (capturing the odds that species and sites are not sampled) and the problem 22 

difficulty (caused by variation in abundance across sites and species).  23 

Having shown that both error components are determined by the same three factors, we review 24 

approaches to mitigating them. The approaches can be categorised broadly as obtaining more data, 25 

estimating the sample-based MSI in a different way (e.g. using a model), or redefining the ‘target 26 

population’. The target population is effectively the spatial and taxonomic scope of the MSI, so 27 

redefining it changes what is being estimated and modifies the problem at hand. Hence, it can be 28 

justified only when an accurate answer to a different question (e.g. pertaining to a subset of species 29 

from the original population) is preferable to an inaccurate answer to the original one.  30 

Key words: Biodiversity indicator; Data defect correlation; Essential Biodiversity Variable; Missing 31 

data; Species abundance; Sampling theory 32 

Introduction 33 

From a legislative perspective, world leaders have never been more committed to halting and 34 

reversing declines in species’ abundances. In December 2022, parties to the Convention on Biological 35 

Diversity agreed on the latest Global Biodiversity Framework (GBF), which states that “the 36 

abundances of native wild species [should be] increased to healthy and resilient levels” (Convention 37 

on Biological Diversity, n.d.). Not long after, the UK and the European Union (EU) set a precedent by 38 

enshrining specific targets that echo this sentiment in law (DEFRA, 2024; European Commission, 39 

2024). That species abundance targets are becoming enforceable is clearly a positive development for 40 



nature conservation, but it does mean that the evidence used to monitor progress towards those targets 41 

must stand up to scrutiny. 42 

A common benchmark for monitoring progress towards species abundance targets is the Multispecies 43 

Indicator (MSI). MSIs have been defined in various ways (Freeman et al., 2021; Gregory & van 44 

Strien, 2010), but to us the term is best described as an estimate of the ‘average’ rate of change in 45 

abundance, relative to some reference time, across a predefined set of species and geographic area. A 46 

prominent example, which was recently reinstated as a ‘component’ indicator for monitoring progress 47 

towards the GBF, is the Living Planet Index (LPI; Collen et al., 2009; Loh et al., 2005). According to 48 

its website, the LPI measures the “the average rate of change in … population sizes of native 49 

[vertebrate] species” globally (ZSL & WWF, 2024). Other examples include the EU’s grassland 50 

butterfly index and England’s ‘all species’ index, which will be used to measure progress towards the 51 

respective governments’ legal commitments (DEFRA, 2024; European Parliament, 2024). 52 

MSIs have nominal spatial and taxonomic extents that should, in theory, align with the relevant 53 

species abundance target. Spatial extents might be defined in terms of, say, a country or administrative 54 

unit (or even globally in the case of the LPI), and they can be divided conceptually into areal units or 55 

‘sites’ (e.g. grid squares on a map). Taxonomic extents are usually defined in terms of a set of species. 56 

In statistical parlance, the complete set of species × site combinations to which an MSI nominally 57 

pertains is known as the target population or simply the population (not to be confused with the 58 

ecological concept of a population).  59 

Given the limited spatial and taxonomic coverage of biodiversity data (Gonzalez et al., 2016; Hughes 60 

et al., 2020; Meyer et al., 2016), it is likely that the set of sites and species for which abundance data 61 

are available will represent a small subset of the population. It follows that the MSI obtained using the 62 

data in hand is almost certain to differ from the one that would have been obtained had all species and 63 

sites in the population been sampled. To use more statistical language, the sample-based MSI is 64 

known as the estimator, and the population MSI is the target parameter or estimand. Since it is the 65 

estimand that is of interest, the hope is that the discrepancy between it and the estimator is small.    66 

There are several ways to define the discrepancy between an estimator and its corresponding 67 

estimand. Here, we focus solely on the sampling error induced by sampling a subset of species and 68 

sites in the population. We do not consider measurement error, which occurs when the observed 69 

number of individuals of a given species across sampled sites is not directly proportional to the true 70 

numbers. Nor do we invoke hypothetical replicate samples to characterise the statistical properties of 71 

the estimator, such as its bias or variance. Throughout, we reason conditionally on the sample in 72 

hand—that is, given the data actually collected.  73 

The purpose of this paper is to reveal the determinants of sampling error and what can be done to 74 

mitigate them. Since sampling error is caused by missing data, its determinants cannot be evaluated 75 

empirically. Rather, they must be identified on theoretical grounds or explored using in-silico 76 

experiments. We opt for a theoretical treatment because it does not require any assumptions about the 77 

underlying ecological processes and provides more general insights. That said, we acknowledge that 78 

simulations are useful for understanding sampling error (Guzman et al., 2022; Wilkes et al., 2025) and 79 

that they could always inspire—or be informed by—theory (Albert et al., 2010; Boyd et al., 2024).   80 

The remainder of the paper is organised as follows. We begin by formalising the concept of the target 81 

population and specifying general mathematical expressions for the estimator and the estimand. This 82 

framework allows us to decompose the sampling error of the estimator algebraically into a geographic 83 

component reflecting the impact of non-sampled sites and a taxonomic component reflecting the 84 

impact of non-sampled species. Building on established results from sampling theory, we further 85 

decompose the geographic and taxonomic error components into three fundamental sources: the data 86 

defect, data scarcity and the problem difficulty. The final section reviews methods for reducing the 87 



magnitude each of these three quantities and hence for reducing the total sampling error of MSIs. A 88 

simulated example that demonstrates some of the points made throughout can be found at https://nerc-89 

ceh.github.io/data-science-toolbox/methods/ds-toolbox-notebook-multispecies-biodiversity-90 

indicators/msbi-error.html.  91 

Theory 92 

Life on Earth as a finite population 93 

For a given time-period 𝑡, life on Earth—or any subset thereof—can be considered a statistical 94 

population comprising 𝑗 = 1,… , 𝐽 species, 𝑘 = 1,… , 𝐾 sites and 𝑁 = 𝐽 × 𝐾 combinations thereof 95 

(hereafter ‘Spatio-Taxonomic Units’, or STUs). We assume for simplicity that species and sites are 96 

classified in the same manner regardless of the time-period. Each STU is characterised by its 97 

abundance 𝑌𝑗𝑘𝑡 (or e.g. biomass) and its occupancy (i.e. whether 𝑌𝑗𝑘𝑡 > 0). We do not impose a 98 

mathematical model for abundance and hence do not need to treat it as a random variable.  99 

The sample 100 

In any one time-period, data on abundance 𝑌𝑗𝑘𝑡 are available for a sample of the 𝑁 STUs, 𝐾 sites and 101 

𝐽 species in the population. We denote sample inclusion using a binary indicator 𝑅, where 𝑅𝑗𝑘𝑡 = 1 if 102 

species 𝑗 is sampled at site 𝑘 in time-period 𝑡 and 0 otherwise.  103 

Two samples are defined. One is the set of species that were counted at least once at any site; we 104 

denote this set 𝑠𝑡
𝐽 = {𝑗|∃𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑅𝑗𝑘𝑡 = 1}. The other is the set of sites at which species 𝑗 was 105 

counted, which we denote 𝑠𝑡𝑗
𝐾 = {𝑘|𝑅𝑗𝑘𝑡 = 1}.   106 

The estimand and the estimator 107 

The details differ, but the general approach to constructing a MSI is to average 𝑌𝑗𝑘𝑡 in two stages for 108 

each time-period: first across sampled sites for each species and then across species (Freeman et al., 109 

2021). Assuming for now that the arithmetic mean is used at the first stage, the average abundance of 110 

species 𝑗 across sampled sites in time-period 𝑡 is  111 

 
𝑦̅𝑗𝑡 =

1

𝑛𝑗𝑡
𝐾 ∑ 𝑌𝑗𝑘𝑡
𝑘∈𝑠𝑗𝑡

𝐾

, 

 

(1) 

where 𝑛𝑗𝑡
𝐾  is the number of sites at which species 𝑗 was sampled. It is common practice to convert 𝑦̅𝑗𝑡 112 

to a relative index 𝑤𝑗𝑡 by dividing by its value in the first time-period (Buckland et al., 2011): that is, 113 

 
𝑤𝑗𝑡 =

𝑦̅𝑗𝑡

𝑦̅𝑗1
. 

 

(2) 

There is no requirement that the same set of sites were sampled in time-periods 1 and 𝑡, but mean 114 

abundance may not be zero in either period (this “zero problem” has been covered elsewhere; 115 

(Toszogyova et al., 2024).  116 

The geometric mean is typically used to average the relative abundance indices across species 117 

(Gregory & van Strien, 2010; McRae et al., 2017): 118 

 

𝑤̅𝑡
𝐽 = exp(

1

𝑛1,𝑡
𝐽 ∑ ln(𝑤𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

), 

 

 (3) 

https://nerc-ceh.github.io/data-science-toolbox/methods/ds-toolbox-notebook-multispecies-biodiversity-indicators/msbi-error.html
https://nerc-ceh.github.io/data-science-toolbox/methods/ds-toolbox-notebook-multispecies-biodiversity-indicators/msbi-error.html
https://nerc-ceh.github.io/data-science-toolbox/methods/ds-toolbox-notebook-multispecies-biodiversity-indicators/msbi-error.html


where 𝑠1,𝑡
𝐽
= 𝑠1

𝐽
∩ 𝑠𝑡

𝐽
 is the set of species sampled in both time-periods 1 and 𝑡 and 𝑛1,𝑡

𝐽
 is the number 119 

of elements therein. (Assuming for now that there are no imputed values of 𝑌, a point we come back 120 

to below, it is only those species sampled in periods 1 and 𝑡 whose relative abundance indices are 121 

defined.) We will refer to 𝑤̅𝑡
𝐽
 as the per time-period estimator or simply the estimator.  122 

The reader should be aware that the sample averages in equations (1) and (3) are special cases of a 123 

broader class of estimators for population averages. Both can be expressed as weighted sums of the 124 

observed data, a form that encompasses a wide range of estimators used in practice (Boyd et al., 2023; 125 

McRae et al., 2017). This observation will be useful below, where we show that the error 126 

decomposition applies more generally than to the specific estimator defined by equations (1–3). 127 

The LPI estimator is slightly different to one given by equations (1-3). Rather than representing the 128 

growth rate of annual average abundance, 𝑤𝑗𝑡 represents the average per-site growth rate across sites. 129 

Since it corresponds more closely to existing national biodiversity indicators, we focus on the error of 130 

the estimator given by equation 3. However, the error of the sample-based LPI decomposes in a 131 

similar manner (appendix C), so the general insights described in the remainder of the paper apply 132 

regardless of which of these estimators is used. 133 

The population analogue of the per period estimator is 134 

 

𝑊̅𝑡
𝐽 = exp(

1

𝑁1,𝑡
𝐽 ∑ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

), 

(4) 

where 𝑁1,𝑡
𝐽

 is the total number of species in the population in both time-periods 1 and 𝑡, 𝑊𝑗𝑡 = 𝑌̅𝑗𝑡 𝑌̅𝑗1⁄  135 

is the population relative abundance index for species 𝑗, 𝑌̅𝑗𝑡 = ∑ 𝑌𝑖𝑗𝑡
𝑁𝑗𝑡
𝐾

𝑖=1
/𝑁𝑗𝑡

𝐾 is the population mean of 136 

𝑌 for species 𝑗 in time-period 𝑡, and 𝑁𝑗𝑡
𝐾 is the total number of sites at which species 𝑗 was sampled in 137 

period 𝑡. It is standard practice in statistics, and indeed in many areas of applied science, to define 138 

one’s estimand before considering an estimator (Lundberg et al., 2021). Although this convention 139 

does not appear to be standard in biodiversity monitoring, we argue that the use of a biodiversity 140 

indicator with a similar form to equation 3 strongly implies that 𝑊̅𝑡
𝐽
 is the estimand. What value 𝑊̅𝑡

𝐽
 141 

takes depends on the precise definition of the population, and we come back to this point below (also 142 

see Box 2).  143 

Sampling error 144 

Now let us consider the discrepancy between the estimand and the estimator. As defined here, MSIs 145 

reflect proportional change. Hence, it is natural to consider their relative (rather than absolute) 146 

sampling error, which is given by (𝑤̅𝑡 − 𝑊̅𝑡)/𝑊̅𝑡 = (𝑤̅𝑡/𝑊̅𝑡) − 1. Focusing on 𝑤̅𝑡/𝑊̅𝑡, since −1 is a 147 

constant and provides no insight into the determinants of error, we have from equations (3) and (4) 148 

that  149 

 

𝑤̅𝑡
𝐽

𝑊̅𝑡
𝐽 =

exp(
1

𝑛1,𝑡
𝐽 ∑ ln(𝑤𝑗𝑡)𝑗∈𝑠1,𝑡

𝐽 )

exp(
1

𝑁1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1 )

.  

 

(5) 

Error decomposition 150 

Equation 5 gives the relative sampling error of 𝑤̅𝑡
𝐽
 as an estimator of 𝑊̅𝑡

𝐽
 (up to an additive constant 151 

−1) but provides few direct insights into its determinants. In this section, we decompose the relative 152 

error algebraically into its component sources.  153 



For ease of exposition, we begin with the estimator defined in equation (3). However, as we explained 154 

in the previous section, this estimator is a special case of a more general class that can be expressed as 155 

weighted sums of the observed data (i.e. linear estimators). By redefining certain terms, the same 156 

decomposition extends to this wider class of estimators (Meng, 2022), making it quite general. We 157 

return to these alternative estimators below, where we frame them as strategies to reduce the sampling 158 

error relative to the baseline estimator in equation (3).  159 

The first step in the decomposition is to apply a log transformation. Doing so does not alter the 160 

determinants of the error; it simply re-expresses them on a scale that makes their components 161 

additive. The resulting expression separates the sampling error into geographic and taxonomic 162 

components (appendix A): 163 

ln (
𝑤̅𝑡
𝐽

𝑊̅𝑡
𝐽) = ln(𝑤̅𝑡

𝐽
) − ln(𝑊̅𝑡

𝐽
) = (

1

𝑛1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

−
1

𝑁1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

)

⏟                        
𝑡𝑎𝑥𝑜𝑛𝑜𝑚𝑖𝑐
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+
1

𝑛1,𝑡
𝐽 ∑ 𝜖𝑗𝑡

𝑗∈𝑠1,𝑡
𝐽

⏟      
𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

,  

 

(6) 

where 𝜖𝑗𝑡 = ln(𝑤𝑗𝑡) − ln(𝑊𝑗𝑡) is the error of the log relative abundance index for species 𝑗 and 164 

reflects the change in the distribution of the sample relative to the species’ abundance over time.  165 

The taxonomic error component is the difference between the sample and population means of 166 

ln(𝑊𝑗𝑡) across species and reflects the fact that some species may not have been sampled. The 167 

geographic component is the mean of 𝜖𝑗𝑡 across sampled species. In the remainder of this section, we 168 

further decompose the geographic and taxonomic errors. 169 

Taxonomic sampling error 170 

To decompose the taxonomic error component, we can exploit an algebraic identity derived by Meng 171 

(2018). Assuming no measurement error, the identity shows that the difference between the sample 172 

and population means of an arbitrary variable in a finite population is the product of three 173 

fundamental quantities (defined below; also note that each of the quantities has a geographic 174 

analogue, which we also explain below). Applying Meng’s decomposition to ln(𝑊𝑗𝑡), we have 175 

 
1

𝑛1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

−
1

𝑁1,𝑡
𝐽 ∑ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

= 𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡))⏟          
𝑑𝑎𝑡𝑎
𝑑𝑒𝑓𝑒𝑐𝑡

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

 𝜎ln(𝑊𝑗𝑡)⏟    
𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

 √
1 − 𝑓1,𝑡
𝑓1,𝑡⏟      

.

𝑑𝑎𝑡𝑎
𝑠𝑐𝑎𝑟𝑐𝑖𝑡𝑦

 

(7) 

The first quantity on the right-hand side, the data defect correlation 𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡)), is the correlation 176 

between ln(𝑊𝑗𝑡) and a binary variable 𝑅1,𝑡 taking the value 1 for species sampled in both periods 1 177 

and 𝑡 and 0 otherwise. A positive data defect correlation implies that ln(𝑊𝑗𝑡) is larger on average for 178 

sampled than non-sampled species and vice versa. The second quantity 𝜎ln(𝑊𝑗𝑡)
 is the population 179 

standard deviation of ln(𝑊𝑗𝑡) across species. It takes the value 0 when ln(𝑊𝑗𝑡) is a constant, in which 180 

case the sample mean is equivalent to the population mean regardless of which species were sampled. 181 

Hence, it can be considered a measure of “problem difficulty” (Meng, 2018), because the higher the 182 

variability of ln(𝑊𝑗𝑡), the harder it is to accurately estimate its population average. 𝑓1,𝑡 is the 183 

proportion of species in the population that were sampled in periods 1 and 𝑡, and √(1 − 𝑓1,𝑡) 𝑓1,𝑡⁄  is a 184 

measure of data scarcity. 185 



Before going further, it is worth pointing out that general structure of equation (7) has been known to 186 

(survey) statisticians for some time. Others have tended to express it in terms of sample inclusion 187 

probabilities rather than the binary sample inclusion indicator (Aubry et al., 2024; Schouten, 2007), in 188 

which case it gives the expected error of the sample mean (i.e. its bias). Nevertheless, we refer to the 189 

identity as the “Meng expression”, since (Meng, 2018, 2022) formalised its general form and clarified 190 

its implications for a wide class of estimators and data collection mechanisms. 191 

Geographic sampling error 192 

We now turn to the geographic sampling error component. Recalling that 𝑦̅𝑗𝑡 is the mean abundance 193 

of species 𝑗 across sampled sites in time-period 𝑡 and that 𝑌̅𝑗𝑡 is its population equivalent, the 194 

geographic sampling error for species 𝑗 can be expressed as (appendix B) 195 

 
𝜖𝑗𝑡 = ln(1 +

𝑦̅𝑗𝑡 − 𝑌̅𝑗𝑡

𝑌̅𝑗𝑡
) − ln(1 +

𝑦̅𝑗1 − 𝑌̅𝑗1

𝑌̅𝑗1
). 

 

(8) 

Equation (8) yields two insights. One is that the differences between the sample and population mean 196 

abundances for species 𝑗 in time-periods 𝑡 and 1 feature in the numerators on the right-hand side. 197 

Consequently, the Meng expression in equation (7), which gives the difference between sample and 198 

population means, can be applied to the geographic sampling error component (see below). The 199 

second insight is that the geographic sampling error for a given species reflects not only the 200 

discrepancy between the sample and population mean abundances in time-period 𝑡 but also how this 201 

discrepancy differs from time-period 1. Hence, while we use the term “geographic error” for 202 

convenience, it could just as easily be described as the “spatio-temporal error component”. We further 203 

discuss equation (8) and its implications for how to reduce the geographic sampling error component 204 

in the next section. 205 

Applying Meng’s decomposition to the differences between the sample and population mean 206 

abundances for species 𝑗 in time-period 𝑡, we have 207 

 

𝑦̅𝑗𝑡 − 𝑌̅𝑗𝑡 = 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) 𝜎𝑌𝑗𝑡  √
1 − 𝑓𝑗𝑡

𝑓𝑗𝑡
. 

(9) 

Like in equation (7), the three quantities on the right-hand side of equation 9 are, respectively, the data 208 

defect correlation, the problem difficulty and a measure of data scarcity (see Fig. 1 for a graphical 209 

representation of each component). The quantities’ meanings are subtly different to their taxonomic 210 

counterparts, because 𝑅𝑗𝑡 indicates whether a site—rather than a species—was sampled for species 𝑗 211 

in time-period 𝑡, 𝑓𝑗𝑡 is the proportion of sites at which species 𝑗 was sampled in time-period 𝑡 and 212 

ln(𝑊𝑗𝑡) has been replaced by the abundance of species 𝑗 in period 𝑡, 𝑌𝑗𝑡. Hence, the geographic data 213 

defect correlation indicates whether the focal species is more abundant on average at sampled than 214 

non-sampled sites, and the geographic problem difficulty is the variability of the species’ abundance 215 

across geographic units within a given time-period.  216 



 217 

Figure 1. Six grids depicting 100 sites. Each grid shows either a high or low value (left to right) of the 218 

geographic data defect correlation, the data scarcity or the problem difficulty (top to bottom rows). 219 

Note that in the top right panel, where the data defect is high, it is only sites with high abundance that 220 

have been sampled. Mathematical notation used elsewhere in the paper for each quantity is also 221 

provided.  222 

How to reduce sampling error 223 

Insights from the decomposition 224 

Equations 6 through 9 tell us how to reduce the taxonomic error, the geographic errors and, 225 

consequently, the total sampling error of an MSI. (We consider the related problem of how to assess 226 

potential estimation error in Box 1.)  227 

Box 1. How to assess the potential sampling error of a Multispecies Biodiversity Indicator (MSI). 228 

The potential sampling error of an MSI determines whether mitigating action is needed. To 

understand the potential for error, we require information on the geographic and taxonomic data 

defect correlations, data scarcities and problem difficulties (see equations 7 and 9 and refer to Fig. 

1). The data scarcities reflect the proportions of species and sites in the population that have not 

been sampled, and they are measurable (assuming the total number of species is known). The data 

defect correlations and problem difficulties are not directly measurable and must be estimated or 

qualitatively assessed. 

 

Assessing the data defect 



We are aware of three general approaches to assessing the potential for a non-negligible data defect 

correlation.  

 

The first approach leverages the existing machinery of causal diagrams and the ‘d-separation’ 

algorithm, which are widely used in causal inference (Pearl et al., 2016). For notational simplicity, 

we will not index the time-period, will let 𝑅 be sample inclusion (which could be species or site 

inclusion) and will let 𝑌 be the variable of interest (which could be abundance or a relative 

abundance index). The idea is to construct a causal diagram depicting causes and effects of 𝑅 and 

𝑌; given the structure of the diagram, the d-separation algorithm determines whether two are 

dependent and thus whether we might expect a non-negligible data defect correlation (Boyd et al., 

2025; Thoemmes & Mohan, 2015).  

 

The second approach is to estimate sample inclusion probabilities 𝑃(𝑅 = 1) and to calculate their 

variability in the population (e.g. Schouten et al., 2012). If the variability of 𝑃(𝑅 = 1) is small, 

then 𝑅 and 𝑌 can only covary so much, and the data defect correlation is likely to be small (Aubry 

et al., 2024; Nishimura et al., 2016).  

 

The third approach is to assess covariate balance. The idea is to identify variables that are 

predictive of 𝑌 and whose distributions in the population are known and to compare their sample 

and population distributions (Backstrom et al., 2024; Boyd et al., 2023a; cf. Makela et al., 2014). A 

mismatch signals that sampling was more or less likely at different levels of the predictor, which 

suggests a non-negligible data defect correlation.  

 

Box Fig. 1 summarises the three approaches to assessing data defect correlations in the context of 

species population monitoring.   

 

 
Box figure 1. Schematic illustrating how one might diagnose a non-negligible geographic data 

defect correlation for a given species (the sample principles apply across species). It depicts a 

simple hypothetical situation in which rainfall is a common cause of sample inclusion (negative 

effect) and abundance and induces a non-negligible (data defect) correlation between the two. 

Forest cover and human population density solely affect abundance and sample inclusion, 

respectively, and do not contribute to the data defect correlation. 

 

Each of the three approaches to assessing the data defect correlations could presented as part of a 

“risk-of-bias” assessment (Pescott et al., 2023). Risk-of-bias assessment comprise a series of 

questions about the potential for sampling bias, which is very closely related to the data defect 

correlation (sampling bias being proportional to its expected value). One risk-of-bias tool, ROBITT, 

was designed specifically for the purpose of biodiversity monitoring (Boyd, Powney, et al., 2022). 



 

Assessing the problem difficulty 

Approaches to estimating the problem difficulty (the standard deviation of 𝑌) can also be imagined. 

One approach might be to identify predictors of 𝑌 whose population distributions are known and to 

calculate their variability. For example, 𝑌 might be a species’ abundance, and the predictor might 

be habitat type. If the population is variable in terms of habitat, and habitat is predictive of 

abundance, then we would expect abundance to be variable too.   
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It is easiest to see how the taxonomic error can be reduced, because it is simply the difference 230 

between the sample and population means of ln(𝑊𝑗𝑡) across species, which is given by the Meng 231 

expression. The Meng expression shows that the error is the product of the data defect correlation, the 232 

data scarcity and the problem difficulty. Consequently, it reduces to zero when any of those quantities 233 

is zero; all else being equal, reducing any of the quantities will also reduce error (although note that 234 

the quantities cannot vary independently in practice). 235 

Reducing the geographic error for any given species (equation 8) is best achieved by reducing the per 236 

period estimation errors given by equation (9) in time-periods 1 and 𝑡. It is true that one could get 237 

lucky and that the per period errors could have the same signs and similar magnitudes, in which case 238 

the geographic error would be small. However, given that the error in any one period generally cannot 239 

be known, a better strategy is to aim for zero error in both periods. Since the per period errors can be 240 

expressed using Meng’s decomposition, reducing the (geographic) data defect correlation, data 241 

scarcity and problem difficulty will reduce the per period errors and thus the geographic error for a 242 

given species.  243 

The total log relative sampling error is the sum of the taxonomic and geographic components (noting 244 

that the geographic component reflects a mean across sampled species). It is theoretically possible to 245 

have zero or negligible error if the two components cancel (i.e. if one is positive and the other is 246 

negative). How the analyst would know they are in this situation is unclear, however, so a more 247 

sensible approach is to try to minimise both error components. As we have seen, minimising the 248 

within- and taxonomic errors means reducing the taxonomic and geographic data defect correlations, 249 

problem difficulties and data scarcities (the latter being equivalent to maximising the sampling 250 

fraction).  251 

Problem preserving versus problem-modifying approaches 252 

We have now seen that to reduce the sampling error of an MSI is to reduce one or more of the three 253 

quantities in the Meng expression, whether their geographic or taxonomic variants. Approaches to 254 

reducing these quantities fall in one of three broad categories: obtaining new data, replacing the 255 

sample-based MSI with an alternative estimator or redefining the target population. Each type can 256 

help to address more than one quantity in the Meng expression, as illustrated in Table 1. 257 

Redefining the target population means modifying the estimand and hence the problem at hand. As 258 

such it can be justified only on the basis that obtaining an accurate answer to a different question is 259 

preferable to obtaining an inaccurate answer to the original one. Neither obtaining more data nor 260 

opting for an alternative estimator change the problem in this sense, since they generally do not affect 261 

the estimand. 262 

Modifying the estimator nevertheless warrants more discussion. The decomposition in the previous 263 

section assumes the particular estimator defined in equation (3). As we explained in that section, 264 

however, the estimator in equation (3) is part of a wider class that can be expressed as weighted sums 265 

of the observed data (i.e. estimators that are linear in the observed data). The decomposition applies in 266 

structure, albeit after redefining some quantities, to any estimator in this class (Meng, 2018, 2022).  267 



(There are inferential frameworks in which modifying the estimator necessarily modifies the 268 

estimand. One example is the estimating-equation framework. See appendix D for more on the 269 

relationship between the estimator and the estimand in this framework and its implications for our 270 

decomposition.) 271 

Starting with the geographic variants, we review approaches to reducing the data defect, the problem 272 

difficulty and the data scarcity in the remainder of this section. See Table 1 for an overview, which 273 

indicates whether each approach modifies the original problem.  274 

Table 1. A non-exhaustive list of approaches to reducing the sampling error of a Multispecies 275 

Indicator (MSI). The high-level approach is listed in column one: obtaining more data, modifying the 276 

estimator or redefining the target population. Column two lists the more specific approach within each 277 

higher-level class. The error component(s) targeted by each approach are listed in column three. 278 

Column four indicates whether the approach modifies the estimand and therefore the problem at hand. 279 

The mechanism(s) by which the relevant error components are reduced are described in column five. 280 

Column six lists the assumptions that must hold for a reduction in the error component to be achieved 281 

or, for those approaches that redefine the target population, for the new question to remain valid.  282 

High-level 

approach 

Specific 

approach 

Error 

component(s) 

targeted 

Problem 

modified?  

Mechanism(s) Condition 

required 

Obtain more 

data. 

Collect new 

data. 

Sampling 

fraction, data 

defect. 

No, if the 

new data 

are 

collected 

from the 

same 

target 

population  

Increase 

coverage of 

target 

population. 

Adaptive 

sampling of 

underrepresented 

strata might 

reduce data 

defect.  

Data defect 

given new 

data is smaller 

than before.  

Mobilise 

historic data. 

Sampling 

fraction, data 

defect. 

No, if the 

target 

population 

has not 

changed 

over time 

As above but for 

historic time-

periods. 

Data defect 

given newly 

mobilised data 

is smaller than 

before. 

Switch to an 

alternative 

estimator 

 

Quasi-

randomisation 

(i.e. propensity 

score 

weighting) 

Data defect.  No, if the 

altered 

estimator 

does not 

lead to an 

altered 

estimand 

Diminishes 

variability of 

sample inclusion 

propensities via 

weighting. 

Balances 

covariates 

between sample 

and population. 

Conditional 

data defect 

given 

covariates is 

smaller than 

the 

unconditional 

one. 

Superpopulation 

model 

Data defect, 

problem 

difficulty.   

No. Including 

confounders of 

sample inclusion 

and the response 

reduces the data 

defect; including 

predictors of the 

response reduces 

Conditional 

data defect 

given 

covariates is 

smaller than 

the 

unconditional 

one. Likewise 



the problem 

difficulty. 

for the 

problem 

difficulty. 

Redefine the 

target 

population 

 

Coarsen the 

spatial 

resolution. 

 

Sampling 

fraction, 

problem 

difficulty 

Yes. Generally lowers 

variability in 

abundance and 

growth rates. 

Aggregation 

preserves the 

usefulness of 

the estimand. 

Condition target 

population on 

occupied sites. 

Problem 

difficulty, 

sampling 

fraction. 

Yes. Removing zeros 

lowers 

population 

variability. 

Might increase 

sampling 

fraction if 

occupied sites 

were 

preferentially 

sampled. 

New target 

population is 

relevant to 

inferential 

goal. 

Condition target 

population on 

sampled sites. 

Sampling 

fraction. 

Yes. Geographic 

sampling 

fraction becomes 

1. 

New target 

population is 

relevant to 

inferential 

goal. 

Condition target 

population on a 

subset of 

species. 

Data defect, 

problem 

difficulty 

sampling 

fraction. 

Yes. Reduces data 

defect if sample 

inclusion 

becomes less 

correlated with 

growth rates and 

problem 

difficulty if 

growth rates 

become less 

variable. 

New target 

population is 

relevant to 

inferential 

goal. 
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Geographic sampling error 284 

Minimising the data defect correlation 285 

The key to reducing the geographic data defect correlation for species 𝑗 in time-period 𝑡, 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡), is 286 

to recognise that its conditional value once some variable or set of variables is held constant (i.e. 287 

stratified on or “adjusted for”; we come back to how this is achieved in practice below) might be 288 

smaller than its unconditional value when they are not. More formally, there usually exists a set of 289 

variables 𝑿 (or some other observed information) that satisfies |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡|𝑿)| < |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)|. The 290 

first step towards reducing 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) is to identify these variables.  291 

The variables that satisfy |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡|𝑿)| < |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)| when included in 𝑿 are generally the ones 292 

that induced the (data defect) correlation between whether sites were sampled 𝑅𝑗𝑡 and abundance 𝑌𝑗𝑡 293 

in the first place. Often, these variables will be direct common causes of the two. For example, 294 

abundance 𝑌𝑗𝑡 might be larger within protected areas, as they tend to be relatively well managed for 295 

species (Cooke et al., 2023). Likewise, data collectors might preferentially visit protected areas in the 296 

hope of seeing wildlife. In this case, when both 𝑅𝑗𝑡 and 𝑌𝑗𝑡 are greater within protected areas, 297 

𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) > 0. For a given level of protected area status (e.g. inside or outside), however, the 298 



(conditional) value of 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) should be smaller than its value across all sites, which is to say 299 

𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡|𝑿) < 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡).  300 

Variables that are not direct common causes of 𝑅𝑗𝑡 and 𝑌𝑗𝑡 can also induce a non-zero data defect 301 

correlation, so the “common cause principle” (Mathur et al., 2023) will not always suffice. A more 302 

formal and comprehensive (but laborious) approach to identifying the variables that should be 303 

included in 𝑿 is to construct causal diagrams (see Pearl et al., 2016) depicting causes and effects of 304 

𝑅𝑗𝑡 and 𝑌𝑗𝑡 (Boyd et al., 2025; Thoemmes & Mohan, 2015; Box 1). We will not go into the theory 305 

behind causal diagrams; the important point is that it is possible to deduce from their structures the 306 

sets of variables that induce a dependence between 𝑅𝑗𝑡 and 𝑌𝑗𝑡 and potentially a (data defect) 307 

correlation. As we saw earlier, it is the variables that induce a non-negligible data defect correlation 308 

that should be included in 𝑿, so causal diagrams are a good way to identify them. Critically, however, 309 

the use of a causal diagram supposes that it is a true reflection of reality, which is difficult to verify in 310 

practice (Grace & Irvine, 2020), and it generally provides no information on the form of the 311 

relationships between 𝑿, 𝑌𝑗𝑡 and 𝑅𝑗𝑡. 312 

Once the variables in 𝑿 have been identified, the next step is to account for or ‘condition on’ them in 313 

the hope that it reduces 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡). One option is to replace the arithmetic mean used to estimate 𝑌̅𝑗𝑡 in 314 

equation 1 with a weighted sample mean, where the weights are selected in such a way that they 315 

balance the variables in 𝑿 between sample and population (i.e. propensity score weighting a.k.a. 316 

quasi-randomisation; Boyd et al., 2023; Fink et al., 2023; McRae et al., 2017). Another is to impute 317 

values for 𝑌𝑗𝑡 given 𝑿 and to estimate 𝑌̅𝑗𝑡 from the complete dataset obtained by combining the 318 

observed and imputed values (i.e. “superpopulation modelling”; Dorfman & Valliant, 2005). More 319 

complex approaches are available (e.g. Ghitza & Gelman, 2013), but we will not consider them here. 320 

Equation 9, which gives the error of the sample mean of 𝑌𝑗𝑡 as an estimator of its population mean, 321 

can be modified to give the error of both the weighted mean and the superpopulation model estimate. 322 

For the weighted mean, 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) is replaced by 𝜌(𝑅̃𝑗𝑡 , 𝑌𝑗𝑡), where 𝑅̃𝑗𝑡𝑘 = 𝑅𝑗𝑡𝑘 𝑊𝑗𝑡𝑘, and 𝑊𝑗𝑡𝑘 is the 323 

weight applied to site 𝑘 (Meng, 2018). The data scarcity term also needs to be adjusted to account for 324 

the fact that weights reduce the ‘effective’ sample size, but this too is a simple modification (Meng, 325 

2022). To obtain the error of the superpopulation model estimate, the key is to substitute the model’s 326 

residuals 𝑍𝑗𝑡 = 𝑌𝑗𝑡 −𝑚(𝑿) for 𝑌𝑗𝑡, including those hypothetical residuals for non-sampled STUs 327 

(Meng, 2022). Switching the focus from 𝑌𝑗𝑡 to the model’s residuals means that 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) is replaced 328 

by 𝜌(𝑅𝑗𝑡 , 𝑍𝑗𝑡), which indicates whether the model is better fit for sampled than non-sampled sites. 329 

Given a judicious choice of 𝑿, weighting and imputation should ensure that |𝜌(𝑅̃𝑗𝑡 , 𝑌𝑗𝑡)| <330 

|𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)| and |𝜌(𝑅𝑗𝑡 , 𝑍𝑗𝑡)| < |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)|, respectively. 331 

In practice, the analyst will not possess knowledge of and data on all variables that should be included 332 

in 𝑿, so alternative types of information might be conditioned on (e.g. used to construct weights or 333 

included in a superpopulation model). One practical option is to exploit shared autocorrelation 334 

between 𝑅𝑗𝑡 and 𝑌𝑗𝑡 induced by autocorrelation in 𝑿. Adjusting for shared autocorrelation between 𝑅𝑗𝑡 335 

and 𝑌𝑗𝑡 (e.g. by including autocorrelation terms in a superpopulation model) moves one closer to 336 

rendering the two uncorrelated and potentially even independent (Diggle et al., 2010). Most examples 337 

of this approach in ecology have focused on spatial autocorrelation (Mostert & O’Hara, 2023; Seaton 338 

et al., 2024; Simmonds et al., 2020), but Johnson et al. (2024) recently extended the idea to account 339 

for spatial, temporal and phylogenetic autocorrelation simultaneously (this approach could also help 340 

to deal with the taxonomic data defect correlation in some circumstances, as we explain below).  341 



Increasing the sampling fraction (reducing the data scarcity) 342 

One obvious way to reduce the data scarcity—or, equivalently, to increase the geographic sampling 343 

fraction 𝑓𝑗𝑡—is to obtain data on sites for which no data was previously available. Since biodiversity 344 

indicators measure historic change in species’ populations, the effects of collecting new data will not 345 

be seen for some years. Mobilising previously inaccessible historic data, however, could have an 346 

immediate impact (e.g. Ellwood et al., 2015).  347 

When obtaining data for previously unsampled sites, there is a risk of inadvertently increasing the 348 

data defect correlation 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡). Indeed, Boyd et al. (2022) showed that adding newly digitised data 349 

on bee distributions in Chile to Global Biodiversity Information Facility increased some measures of 350 

sampling bias [and hence the expected value of 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)]. Following an adaptive sampling plan that 351 

explicitly targets a reduction in 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡), for example by prioritising underrepresented strata, may 352 

be one way to guard against this issue (Pescott et al., 2025; Schouten & Shlomo, 2017) 353 

A second and much simpler way to increase 𝑓𝑗𝑡 is to recognise that the population need not include 354 

every site and to constrain it from the outset. Conditioning on (i.e. restricting the population to) the set 355 

of sampled geographic units for a given species, for example, means that 𝑓𝑗𝑡 = 1, the data scarcity 356 

term √(1 − 𝑓𝑗𝑡) 𝑓𝑗𝑡⁄ = 0 and, consequently, that the geographic estimation error 357 

𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) 𝜎𝑌𝑗𝑡  √(1 − 𝑓𝑗𝑡) 𝑓𝑗𝑡⁄ = 0. Conditioning on occupied sites (either occupied in the focal time-358 

period or in some time-period since monitoring began), too, could increase 𝑓𝑗𝑡. Data collectors are 359 

usually interested in seeing wildlife as opposed to recording absences, so it is reasonable to suppose 360 

that, on average across species, occupied geographic units are more likely to have been sampled than 361 

unoccupied ones.  362 

Of course, modifying the target population means modifying the estimand and changing the problem 363 

at hand. Conditioning on occupied or sampled sites reduces the number of STUs in the population and 364 

therefore the generality of the MSI. Doing so could be problematic if, say, it means omitting a species 365 

or geographic area that is relevant to a species abundance target. A reviewer pointed out a special case 366 

of this problem that deserves mention: species’ range expansions would not affect the MSI if the 367 

target population were conditioned on sites that were occupied before that expansion took place. See 368 

Box 2 for more on the implications of conditioning the target population.  369 

Box 2. Six ways to define the target population in each time-period. The list is not exhaustive, and 370 

other definitions could be imagined. 371 

For a given set of species, geographic area and time-period, the population need not include every 

possible Spatio-Taxonomic Unit (STU). Rather, we might consider a conditional target population 

given, say, occupancy 𝑂𝑡 or sample inclusion 𝑅𝑡 (or indeed other variables such as habitat). 

Conditioning on 𝑅𝑡 = 1 means focusing on sampled species and sites, and conditioning on 𝑂𝑡 = 1 

means ignoring STUs with zero abundance. Of course, which sites are occupied by a given species 

is generally not known and would have to be estimated based on, say, the presence of relevant 

habitat. We explain in the main text why conditioning on 𝑅 and 𝑂 might reduce error, but the 

analyst must also recognise that modifying the target population means modifying the estimand and 

therefore the problem at hand (Table 1). 

 

Constraining the population can be done on a per period or cross-period basis: that is, we can 

condition on 𝑂𝑡 = 1 and 𝑅𝑡 = 1 or on 𝑂1,𝑡 = 1 and 𝑂1,𝑡 = 1, respectively. Since MSIs reflect 

change in abundance between two time-periods, it is perhaps most natural to condition the 

population on a cross time-period basis, in which case it does not change over time. If we condition 

the population on 𝑂 or 𝑅 on a cross time-period basis, it can change over time. From a 



mathematical perspective, one may not condition on 𝑅𝑡 = 1 or 𝑂𝑡=1 on a per time-period basis if it 

means that there is a different set of species in time-period 1 to time-period 𝑡. Doing so would 

invalidate the relative abundance indices, since they require a defined abundance for any given 

species in both time-periods. From a conceptual perspective, defining the population in such a way 

that it can vary over time means that the error is not defined with respect to a clear reference 

population and partly reflects shifts in which sites are included in the population (noting again that 

the set of species must remain constant between periods). Box Fig. 2 depicts six possible 

definitions of the population depending on whether it is unconditional, conditioned on 𝑂 across 

time-periods, conditioned on 𝑅 across time-periods or conditioned on 𝑅 for each time-period.  

 

 



Box figure 2. Six definitions of the target population for a given time-period. Each grid represents 

the total set of site × species combinations, or STUs, that might be considered. Black cells in the 

smaller grids represent the set that are considered under each definition of the population. In the top 

grid, cells with black circles were sampled in the focal time-period, and cells with red triangles 

were not sampled in the focal period but were sampled at some point (i.e. another period). 
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Reducing the problem difficulty  373 

One approach to reducing the problem difficulty is covariate adjustment. The idea is to construct a 374 

model of abundance 𝑌𝑗𝑡 given some covariates 𝑿. In this setting, the problem difficulty is no longer 375 

the standard deviation of 𝑌𝑗𝑡, 𝜎𝑌𝑗𝑡, but the standard deviation of the model’s residuals 𝜎𝑍𝑗𝑡 (Meng, 376 

2022). If 𝑿 explains a portion of 𝑌𝑗𝑡, then 𝜎𝑍 < 𝜎𝑌, which is to say the problem difficulty has been 377 

reduced. 𝑿 might include, say, land cover or environmental variables, for which high-resolution data 378 

are available globally (and therefore for any conceivable target population; Fick & Hijmans, 2017). 379 

Other estimators that condition on or “account for” 𝑿 (e.g. poststratification) can reduce the problem 380 

difficulty for similar reasons (Lohr, 2022). 381 

Another potential way to reduce the geographic problem difficulty is to modify the spatial resolution 382 

at which the analysis is conducted. For example, Boyd, Bowler, et al., (2024) showed that coarsening 383 

the resolution at which species occupancy is estimated can reduce the problem difficulty and reasoned 384 

on theoretical grounds that the same is likely to be true of abundance. Of course, for a given problem 385 

difficulty, estimates of species occupancy or abundance may be less practically useful at coarser 386 

resolutions, so there is a trade-off between potential error and the perceived usefulness of any given 387 

estimate across scales. This is known as the relevance–robustness trade-off for multi-resolution 388 

inference (Liu & Meng, 2016), a manifestation of the well-known bias-variance trade-off.  389 

A third approach to reducing the problem difficulty is to condition the population on (i.e. restrict it to) 390 

the set of occupied sites for which 𝑌𝑗𝑡 > 0. Assume as an example that 𝑌𝑗𝑡 follows a zero-inflated 391 

Poisson (ZIP) distribution, which separates sites into ‘structural’ zeros governed by a Bernoulli 392 

distribution and counts governed by Poisson distribution. Now let 𝑞 be the proportion of sites that are 393 

not structural zeros (i.e. occupied sites). When we do not condition on occupied sites, the problem 394 

difficulty is √𝜇2𝑞(1 − 𝑞) + 𝜇𝑞, where 𝜇 is the mean abundance across occupied sites. When we do 395 

condition on occupied sites, then the problem difficulty is √𝜇. The difference between the two is 𝐷 =396 

√𝜇 − √𝜇2𝑞(1 − 𝑞) + 𝜇𝑞. For most levels of 𝑞 and 𝜇 (when 𝑞 > 1/𝜇 to be precise), 𝐷 < 0, which is 397 

to say that conditioning on occupied sites reduces the problem difficulty (Fig. 2).  398 



 399 

Figure 2. Difference in the problem difficulty (population standard deviation of abundance) when the 400 

population is defined as occupied sites only and when it includes all sites. Negative values indicate 401 

that omitting unoccupied sites from the population reduces the problem difficulty. Each curve 402 

represents one value of mean abundance across occupied sites. The results in this figure assume a 403 

zero-inflated Poisson model for abundance.  404 

Another way to modify the population, which could also reduce the geographic problem difficulty, is 405 

to condition on sites with certain environmental conditions. Species’ abundances tend to vary between 406 

environments and habitats. Conditioning on sites that fall within certain environmental strata may 407 

therefore reduce its variability in the population.    408 

Taxonomic sampling error 409 

Many of the principles described above apply to minimising the geographic data defect correlation, 410 

problem difficulty and sampling fraction, which are conceptually similar to their taxonomic 411 

counterparts. The only differences are that taxonomic variants are calculated across species rather than 412 

geographic units and pertain to ln(𝑊𝑗𝑡), i.e. the log transformed relative abundance indices for some 413 

time-period after monitoring has begun, rather than abundance. Hence, the taxonomic problem 414 

difficulty is the variability of ln(𝑊𝑗𝑡) across species, the data defect correlation is the correlation 415 

between whether a species was sampled (in time-periods 1 and 𝑡) and its value of ln(𝑊𝑗𝑡), and the 416 

sampling fraction is the proportion of species that were sampled in both time-periods 1 and 𝑡.  417 

Minimising the data defect correlation 418 

In principle, reducing the taxonomic data defect correlation can be achieved in a similar manner to 419 

reducing its geographic counterpart. A set of variables could be sought that, once accounted for, 420 

reduce its conditional value relative to its unconditional value. Recall that the variables that satisfy 421 

this condition are generally the ones that induced the data defect correlation in the first place. Often, 422 

although not exclusively, these variables are common causes sample inclusion (here whether a species 423 

was sampled) and the variable of interest (here the relative abundance indices). Traits might be good 424 

candidates, since they could affect whether a species was sampled and its relative abundance index 425 

(e.g. a habitat specialist might be more likely to have been sampled because it is rare and more likely 426 

to be responding poorly to habitat loss). Once the data defect-inducing variables have been identified, 427 



sample weighting, superpopulation modelling and/or related approaches can then be used to correct 428 

for their effects.   429 

If the variables that induced the taxonomic data defect correlation prove hard to identify or measure, a 430 

more practical option might be to exploit the fact that closely related species could be faring similarly 431 

(but see e.g. Losos, 2008). For example, Johnson et al. (2024) proposed a “correlated effects” model 432 

for relative abundance, which includes species level random effects whose covariance matrix encodes 433 

phylogenetic relatedness. If phylogeny explains an appreciable portion of the taxonomic data defect 434 

correlation, then the conditional data defect correlation given these random effects should be smaller 435 

than its unconditional value. This approach is closely related to (and can be combined with) the use of 436 

spatial random effects and autocorrelation terms, which might help to reduce the geographic data 437 

defect correlation in some circumstances. 438 

Simpler forms of imputation than the ones described in the previous paragraph are generally used to 439 

deal with missing species in MSIs. One approach is to interpolate between years for which data are 440 

available on a per species basis (Collen et al., 2009). Others have proposed imputing values for 441 

missing species based on values for species that were sampled in the focal time-period (Freeman et 442 

al., 2021; Soldaat et al., 2017). Both of these approaches operate on the very strong assumption that 443 

non-sampled species are “Missing At Random” given the observed data (Rubin, 1976). We suggest 444 

that this assumption would be more plausible if estimators that condition on available data (e.g. 445 

superpopulation modelling or quasi-randomisation) were applied.   446 

Increasing the (taxonomic) sampling fraction 447 

Increasing the taxonomic sampling fraction can be achieved by obtaining data for underrepresented 448 

species or by modifying the definition of the population (Box 2). Obtaining data on underrepresented 449 

species means either collecting new data or mobilising previously inaccessible data. Modifying the 450 

population might mean restricting it to only those species sampled in every year, in which case the 451 

sampling fraction 𝑓1,𝑡 = 1 and there is no taxonomic error relative to the population MSI.  452 

Reducing the (taxonomic) problem difficulty  453 

A reduction in the taxonomic problem difficulty, i.e. the standard deviation of the log relative 454 

abundance indices across species, could be achieved by restricting the population to a set of species 455 

that are thought to be faring similarly. In practice, this would probably mean focusing on species in a 456 

particular taxonomic or functional group on the assumption that they are responding similarly to 457 

environmental change. Species are included in existing MSIs, including the European farmland bird 458 

(Gregory et al., 2005) and grassland butterfly indicators (Van Swaay et al., 2008), based on their 459 

functional traits, so there is a precedent.  460 

For some MSIs, conditioning the target population on a subset of species is not an option. One 461 

example is England’s ‘all species’ index (DEFRA, 2024), whose taxonomic scope is written into law. 462 

When the species set is fixed, the problem difficulty could be reduced by fitting a model for the 463 

growth rates. In this case, the (effective) problem difficulty becomes the unexplained rather than total 464 

variation in the growth rates across species. The more of the variation that the model explains, the 465 

greater the reduction in the problem difficulty.  466 

Concluding remarks 467 

Monitoring species’ populations using MSIs is generally a missing data problem in the sense that data 468 

on abundance are available for some species and sites in the target population but not others (Bowler 469 

et al., 2024; Dumelle et al., 2025). Consequently, it is not possible to verify a MSI empirically, and the 470 

potential for error must be appraised on theoretical grounds (and/or using in-silico experiments). Our 471 

theoretical framework is helpful in this respect, and, since it is merely an algebraic re-expression of 472 

the difference between the sample-based and population MSIs, it invokes very few assumptions. One 473 



notable exception is the assumption that abundance is measured without error (i.e. detection is perfect 474 

or at least consistently imperfect over space and time). This assumption is unlikely to hold in practice 475 

and should be relaxed in future work (e.g. Dempsey, 2023).  476 

On a practical level, our framework can act as a guide to developers of MSIs. It reminds us that the 477 

first and most critical step is to clearly define the estimand, which should include a specification of 478 

the target parameter (e.g. mean growth rate) and the target population (the set of sites and species of 479 

interest). Once the estimand has been defined, the next step is to systematically assess the potential for 480 

error by considering the issues of data quantity, data quality, and problem difficulty, as reflected in the 481 

following questions:  482 

• What fraction of sites in the target population were sampled, and has this changed over time? 483 

• What fraction of species in the target population were sampled in all time-periods of interest? 484 

• Are species similarly abundant at sampled and non-sampled sites, and has this changed over 485 

time?  486 

• Are sampled species faring differently to the rest in terms of relative abundance?  487 

• How variable is abundance across sites for any one species?  488 

• How variable are the growth rates or relative abundance indices across species?  489 

While most of these questions cannot be answered with certainty, carefully considering them is likely 490 

to reveal much about the potential for error and to guide more principled MSI development. Without 491 

such principles, the interpretation of biodiversity indicators and linked legislative targets is likely to 492 

be subject to so much model-based and epistemological uncertainty that scientific and political 493 

agreement on what they mean will remain out of reach. 494 
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Appendix A 501 

Derivation of equation 6 502 

The relative error of the sample-based MSI is 503 

 

(𝑤̅𝑡
𝐽 − 𝑊̅𝑡

𝐽)

𝑊̅𝑡
𝐽 =

𝑤̅𝑡
𝐽

𝑊̅𝑡
𝐽 − 1 =

exp [
1

𝑛1,𝑡
𝐽 ∑ ln(𝑤𝑗𝑡)𝑗∈𝑠1,𝑡

𝐽 ]

exp [
1

𝑁1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1
]

− 1. 

 

(A1) 

Focusing on 𝑤̅𝑡/𝑊̅𝑡 (since −1 is a constant and provides no insight into the determinants of the error) 504 

and applying a log transformation yields  505 

 

ln (
𝑤̅𝑡
𝐽

𝑊̅𝑡
𝐽) = ln(𝑤̅𝑡

𝐽
) − ln(𝑊̅𝑡

𝐽
) =

1

𝑛1,𝑡
𝐽 ∑ ln(𝑤𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

−
1

𝑁1,𝑡
𝐽 ∑ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

. 

 

(A2) 

Now let ln (𝑤𝑗𝑡) = ln (𝑊𝑗𝑡)+ 𝜖𝑗𝑡 be the estimated relative abundance index for species 𝑗 in time-506 

period 𝑡. It follows that the geographic estimation error for species 𝑗 is 𝜖𝑗𝑡 = ln (𝑤𝑗𝑡)− ln (𝑊𝑗𝑡), 507 



which is an identity and imposes no assumptions about the distribution or behaviour of 𝜖. Substituting 508 

into equation A2, we have 509 

 

ln(𝑤̅𝑡
𝐽
) − ln(𝑊̅𝑡

𝐽
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1
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−
1
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𝐽 ∑ln(𝑊𝑗𝑡)
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𝐽

𝑗=1
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(A3) 

which expands to  510 

 

ln(𝑤̅𝑡
𝐽
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𝐽
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1
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1
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(A4) 

or equivalently 511 

 

ln(𝑤̅𝑡
𝐽
) − ln(𝑊̅𝑡

𝐽
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Appendix B 512 

Derivation of equation 8 513 

For any species 𝑗 sampled in both time-periods 1 and 𝑡, the (log) geographic error component is 514 

 

ln(𝑤𝑗𝑡) − ln(𝑊𝑗𝑡) = ln (
𝑤𝑗𝑡

𝑊𝑗𝑡
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(

 
 

𝑦̅𝑗𝑡
𝑦̅𝑗1
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𝑌̅𝑗1)

 
 
. 

 

(B1) 

Using the complex fraction and logarithm product rules, equation B1 can be rewritten as 515 
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(B2) 

We can rewrite the fractions on the right-hand sides of equations B2 as 516 

 517 

 𝑦̅𝑗𝑡

𝑌̅𝑗𝑡
=
𝑌̅𝑗𝑡 + (𝑦̅𝑗𝑡 − 𝑌̅𝑗𝑡)

𝑌̅𝑗𝑡
= 1 +

𝑦̅𝑗𝑡 − 𝑌̅𝑗𝑡

𝑌̅𝑗𝑡
 

 

(B3) 

and  518 

 𝑦̅𝑗1

𝑌̅𝑗1
=
𝑌̅𝑗1 + (𝑦̅𝑗1 − 𝑌̅𝑗1)

𝑌̅𝑗1
= 1 +
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𝑌̅𝑗1
. 

 

(B4) 

Substituting the right-hand sides of equations B3 and B4, we have   519 



 
ln(𝑤𝑗𝑡) − ln(𝑊𝑗𝑡) = ln (
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Appendix C 520 

Error decomposition of the sample LPI estimator  521 

Here we show that the sample LPI estimator can be decomposed into within- and taxonomic 522 

components. Both components reflect the difference between sample and population means, so the 523 

Meng expression applies, and the decomposition is almost identical to the one presented in the main 524 

text. 525 

Let 𝑔𝑗𝑘 = ln(𝑦𝑗𝑘𝑡/𝑦𝑗𝑘1) be the log relative abundance index for species 𝑗 at site 𝑘. Its mean across 526 

sampled sites (in both time periods 1 and 𝑡) is 𝑔̅𝑗, and its mean across all sites in the population is 𝐺̅𝑗. 527 

Now let the set of species present in both time periods 1 and 𝑡 be 𝜁, the set species sampled in both 528 

periods be 𝑠𝜁, and the number of species in the population and sample be 𝑁𝜁  and 𝑛𝜁, respectively. The 529 

basic LPI estimator is (Collen et al., 2009) 530 

 

𝑤 = exp(
1

𝑛𝜁
∑ 𝑔̅𝑗
𝑗∈𝑠𝜁

), 

 

(C1) 

and the estimand is   531 

 

𝑊 = exp(
1

𝑁𝜁
∑𝐺̅𝑗

𝑁𝜁

𝑗=1

). 

 

(C2) 

In practice, a weighted estimator is now used in place of equation C1 (McRae et al., 2017), the effects 532 

of which we explain in the main text.  533 

The relative error of C1 as an estimator of C2 is (𝑤 −𝑊)/𝑊 = (𝑤/𝑊) − 1. Focusing on 𝑤/𝑊, 534 

since −1 is a constant and provides no insight into the determinants of the error, we have  535 

 
𝑤
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1
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(D3) 

We can now use the identity 𝑔̅𝑗 = 𝐺̅𝑗 + 𝜀𝑗, where 𝜀𝑗 = 𝑔̅𝑗 − 𝐺̅𝑗 is the geographic error component, to 536 

write the relative error as  537 
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(D4) 

 538 

Both terms inside the exponential represent differences between sample and population means, so 539 

Meng’s identity can be applied to each component, just as in the decomposition in the main text. 540 



Appendix D 541 

In the main text, we make the argument that changing one’s estimator does not have a bearing on 542 

one’s estimand. This statement is not strictly true in the estimating equation inferential framework, 543 

which is common in economics. In this setting, the estimand is defined implicitly as the solution to a 544 

population estimating equation: that is, as the population analogue of the sample-based estimating 545 

equation used to obtain the estimator. 546 

Zhou & Meng (2026) have derived a general decomposition for estimators based on estimating 547 

equations. It is similar to the Meng expression in (equation 7) but includes a fourth quantity that 548 

measures the efficiency of the set of estimating equations. When we use a linear estimator for a linear 549 

estimand (e.g. using a sample average to estimate a population average), this quantity takes the value 550 

one, which is why it does not appear in equation (7). However, it is vital to recognize that changing a 551 

set of estimation equations can affect both estimand and estimator, even if initially one’s desire is to 552 

alter the estimator only. We exercise the same caution here, since a seemingly impressive answer to a 553 

wrong question can be more harmful than being merely useless or wasting research resources.    554 
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