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Abstract 11 

Progress towards many national and international targets to halt and reverse declines of species 12 

populations (abundances) will be measured against Multispecies Biodiversity Indicators (MSIs). Like 13 

any sample-based estimator, MSIs approximate some real-world quantity (the estimand), and the 14 

difference between the two is the ‘actual’ or realised statistical error. We propose a general estimator 15 

and its corresponding estimand, both of which apply to many high-profile MSIs. Doing so allows us 16 

to decompose the error into a within-species component reflecting the impact of missing data for 17 

relevant locations and a cross-species component reflecting the impact of non-sampled species. 18 

Building on recent developments in sampling theory, we further decompose each of the within- and 19 

cross-species errors into three contributing factors: the ‘data defect’ (akin to sampling bias), the ‘data 20 

scarcity’ (reflecting the proportion of sites and species sampled) and the ‘problem difficulty’ 21 

(variability of abundance across sites and species). Approaches to reducing the error of MSIs can be 22 

recast as approaches to minimising one or more of these three quantities: for example, sample 23 

weighting reduces the data defect, sampling previously unmonitored species and locations minimises 24 

the data scarcity and focusing on functionally similar species may reduce the problem difficulty. Our 25 

theoretical framework thus unifies existing approaches to reducing the error of MSIs, reveals 26 

alternative approaches that might be considered in future and highlights opportunities for improving 27 

the communication of uncertainty. 28 
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Introduction 31 

From a legislative perspective, world leaders have never been more committed to halting and 32 

reversing declines in species’ abundances. In December 2022, parties to the Convention on Biological 33 

Diversity agreed on the latest Global Biodiversity Framework (GBF), which states that “the 34 

abundances of native wild species [should be] increased to healthy and resilient levels” (Convention 35 

on Biological Diversity, n.d.). Not long after, the UK and the European Union (EU) set a precedent by 36 

enshrining specific targets that echo this sentiment in law (DEFRA, 2024; European Commission, 37 

2024). That species abundance targets are becoming enforceable is clearly a positive development for 38 

nature conservation, but it does mean that the evidence used to monitor progress towards those targets 39 

must stand up to scrutiny. 40 

A common benchmark for monitoring progress towards species abundance targets is the Multispecies 41 

Biodiversity Indicator (MSI). MSIs have been defined in various ways (Freeman et al., 2021; Gregory 42 



& van Strien, 2010), but to us the term is best described as an estimate of the ‘average’ rate of change 43 

in abundance, relative to some reference time, across a predefined set of species and geographic area. 44 

A prominent example, which was recently reinstated as a ‘component’ indicator for monitoring 45 

progress towards the GBF, is the Living Planet Index (LPI; Collen et al., 2009; Loh et al., 2005). 46 

According to its website, the LPI measures the “the average rate of change in … population sizes of 47 

native [vertebrate] species” globally (ZSL & WWF, 2024). Other examples include the EU’s grassland 48 

butterfly index and England’s ‘all species’ index, which will be used to measure progress towards the 49 

respective governments’ legal commitments (DEFRA, 2024; European Parliament, 2024). 50 

MSIs have nominal spatial and taxonomic extents that should, in theory, align with the relevant 51 

species abundance target. Spatial extents might be defined in terms of, say, a country or administrative 52 

unit (or even globally in the case of the LPI), and they can be divided conceptually into areal units or 53 

‘sites’ (e.g. grid squares on a map). Taxonomic extents are usually defined in terms of a set of species. 54 

In statistical parlance, the complete set of sites and species to which an MSI nominally pertains is 55 

known as the target population or simply the population (not to be confused with the ecological 56 

concept of a population).  57 

Given the limited spatial and taxonomic coverage of biodiversity data (Gonzalez et al., 2016; Hughes 58 

et al., 2020; Meyer et al., 2016), it is likely that the set of sites and species for which abundance data 59 

are available will differ from the population. It follows that the MSI obtained using the data in hand is 60 

likely to differ from the one that would have been obtained had all species and locations in the 61 

population been sampled. To use more statistical language, the sample-based MSI is known as the 62 

estimator, and the population MSI is the target parameter or estimand. Since it is the estimand that is 63 

of interest, the hope is that the difference between it and the estimator—the estimation error—is 64 

small.    65 

In this paper, we develop a theoretical framework in which to consider the estimation error of MSIs. 66 

We begin by formalising the concept of the target population and specifying general mathematical 67 

expressions for the estimator and estimand. Doing so allows us to decompose the difference between 68 

the two, the estimation error, into within- and cross-species components. The within-species 69 

component reflects the fact that, for any given species, data may not be available for all sites in the 70 

population; the cross-species component reflects the fact that some species in the population might 71 

not have been sampled. Building on recent developments in sampling theory, and in particular Meng’s 72 

(2018) re-expression of the difference between sample and population means, we further decompose 73 

the within- and cross-species error components into three fundamental quantities. Existing and 74 

prospective approaches to reducing the error of MSIs can be recast in terms of these quantities, and 75 

we review these in the final section.  76 

Theory 77 

Life on Earth as a finite population 78 

For a given time-period 𝑡, life on Earth—or any subset thereof—can be considered a statistical 79 

population comprising 𝑗 = 1,… , 𝐽 species, 𝑘 = 1,… , 𝐾 sites and 𝑁 = 𝐽 × 𝐾 combinations thereof 80 

(hereafter ‘Species-Site Units’, or SSUs). We will assume for simplicity that species and sites are 81 

classified in the same manner regardless of the time-period. Each SSU is characterised by its 82 

abundance 𝑌𝑗𝑘𝑡 (or e.g. biomass) and its occupancy (i.e. whether 𝑌𝑗𝑘𝑡 > 0). We do not impose a 83 

mathematical model for abundance and hence do not need to treat it as a random variable.  84 

The sample 85 

In any one time-period, data on abundance 𝑌𝑗𝑘𝑡 are available for a sample of the 𝑁 SSUs, 𝐾 sites and 𝐽 86 

species in the population. We denote sample inclusion using a binary indicator 𝑅, where 𝑅𝑗𝑘𝑡 = 1 if 87 

species 𝑗 is sampled at site 𝑘 in time-period 𝑡 and 0 otherwise. The sample sets are then defined as 88 



𝑠𝑡
𝐽
= {𝑗|∃𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑅𝑗𝑘𝑡 = 1} (species that were sampled at least once at any site) and 𝑠𝑡𝑗

𝐾 =89 

{𝑘|𝑅𝑗𝑘𝑡 = 1} (sites at which species 𝑗 was sampled or ‘searched for’). 90 

The estimand and the estimator 91 

The details differ, but the general approach to constructing a MSI is to average 𝑌𝑗𝑘𝑡 in two stages for 92 

each time-period: first across sampled sites for each species and then across species (Freeman et al., 93 

2021). Assuming for now that the arithmetic mean is used at the first stage, the average abundance of 94 

species 𝑗 across sampled sites in time-period 𝑡 is  95 

 
�̅�𝑗𝑡 =

1

𝑛𝑗𝑡
𝐾 ∑ 𝑌𝑗𝑘𝑡
𝑘∈𝑠𝑡𝑗

𝐾

, 

 

(1) 

where 𝑛𝑗𝑡
𝐾  is the number of sites at which species 𝑗 was sampled. It is common practice to convert �̅�𝑗𝑡 96 

to a relative index 𝑤𝑗𝑡 by dividing by its value in the first time-period (Buckland et al., 2011): that is, 97 

 
𝑤𝑗𝑡 =

�̅�𝑗𝑡

�̅�𝑗1
. 

 

(2) 

The geometric mean is typically used to average the relative abundance indices across species 98 

(Gregory & van Strien, 2010; McRae et al., 2017): 99 

 

�̅�𝑡 = exp(
1

𝑛1,𝑡
𝐽 ∑ ln(𝑤𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

), 

 

(3) 

where 𝑠1,𝑡
𝐽 = 𝑠1

𝐽 ∩ 𝑠𝑡
𝐽
 is the set of species sampled in both time-periods 1 and 𝑡 and 𝑛1,𝑡

𝐽
 is the number 100 

of elements therein. (Assuming no imputed values of 𝑌 for now, it is only those species sampled in 101 

periods 1 and 𝑡 whose relative abundance indices are defined.) We will refer to �̅�𝑡
𝐽
 as the per time-102 

period estimator or simply the estimator.  103 

An alternative estimator based on cumulative per-period ‘growth rates’ is sometimes used (Collen et 104 

al., 2009; Freeman et al., 2021; McRae et al., 2017). If every species is sampled in every time-period, 105 

a point we come back to below, the two estimators are equivalent due to the ‘telescoping’ property of 106 

logarithms. Hence, we will focus on the estimator described by equations 1-3, which is simpler to 107 

work with.  108 

The population analogue of the per period estimator is 109 

 

�̅�𝑡 = exp(
1

𝑁1,𝑡
𝐽 ∑ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

), 

(4) 

where 𝑁1,𝑡
𝐽

 is the total number of species in the population in both time-periods 1 and 𝑡, 𝑊𝑗𝑡 = �̅�𝑗𝑡 �̅�𝑗1⁄  110 

is the population relative abundance index for species 𝑗, �̅�𝑗𝑡 = ∑ 𝑌𝑖𝑗𝑡
𝑁𝑗𝑡
𝐾

𝑖=1
/𝑁𝑗𝑡

𝐾 is the population mean of 111 

𝑌 for species 𝑗 in time-period 𝑡, and 𝑁𝑗𝑡
𝐾 is the total number of sites at which species 𝑗 was sampled in 112 

period 𝑡. It is standard practice in statistics, and indeed in many areas of applied science, to define 113 

one’s estimand before considering an estimator (Lundberg et al., 2021). Although this convention 114 

does not appear to be standard in biodiversity monitoring, we argue that the use of a biodiversity 115 

indicator with a similar form to equation 3 strongly implies that �̅�𝑡 is the estimand. What value �̅�𝑡 116 



takes depends on the precise definition of the population, and we come back to this point below (also 117 

see Box 2).  118 

Estimation error 119 

Once the estimand has been defined, it is possible to consider whether the estimator is a good 120 

approximation to it. As defined here, MSIs reflect proportional change. Hence, it is natural to consider 121 

their relative (rather than absolute) error, which is given by (�̅�𝑡 − �̅�𝑡)/�̅�𝑡 = �̅�𝑡/�̅�𝑡 − 1. Focusing 122 

on �̅�𝑡/�̅�𝑡, since −1 is a constant and provides no insight into the determinants of error, we have from 123 

equations 3 and 4 that  124 

 

�̅�𝑡

�̅�𝑡
=

exp(
1

𝑛1,𝑡
𝐽 ∑ ln(𝑤𝑗𝑡)𝑗∈𝑠1,𝑡

𝐽 )

exp(
1

𝑁1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1 )

.  

 

(5) 

Error decomposition 125 

Equation 5 is proportional to the relative error of �̅�𝑡
𝐽
 as an estimator of �̅�𝑡

𝐽
 but provides few direct 126 

insights into its determinants. By log transforming both sides, the error can be expressed more 127 

usefully in terms of cross- and within-species components (appendix A): 128 

ln (
�̅�𝑡

�̅�𝑡
) = ln(�̅�𝑡) − ln(�̅�𝑡) = (

1

𝑛1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

−
1

𝑁1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

)

⏟                        
𝑐𝑟𝑜𝑠𝑠−𝑠𝑝𝑒𝑐𝑖𝑒𝑠
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+
1

𝑛1,𝑡
𝐽 ∑ 𝜖𝑗𝑡

𝑗∈𝑠1,𝑡
𝐽

⏟      
𝑤𝑖𝑡ℎ𝑖𝑛−𝑠𝑝𝑒𝑐𝑖𝑒𝑠
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

,  

 

(6) 

where 𝜖𝑗𝑡 = ln(𝑤𝑗𝑡) − ln(𝑊𝑗𝑡) is the error of the log relative abundance index for species 𝑗 and can 129 

vary arbitrarily among species. The cross-species error component is the difference between the 130 

sample and population means of ln(𝑊𝑗𝑡) across species and reflects the fact that for any given year 131 

some species may not have been sampled. The within-species component is the mean of 𝜖𝑗𝑡 across 132 

sampled species. In the remainder of this section, we further decompose the cross- and within-species 133 

errors. 134 

Cross-species error 135 

To decompose the cross-species error component, we can exploit an algebraic identity derived by 136 

Meng (2018), which shows that the difference between the sample and population means of an 137 

arbitrary variable in a finite population is the product of three fundamental quantities (defined below; 138 

also see Fig. 1 and note that each of the quantities has a within-species analogue, which we also 139 

explain below). Applying Meng’s decomposition to ln(𝑊𝑗𝑡), we have 140 

 
1

𝑛1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

−
1

𝑁1,𝑡
𝐽 ∑ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

= 𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡))⏟          
𝑑𝑎𝑡𝑎
𝑑𝑒𝑓𝑒𝑐𝑡

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

 𝜎ln(𝑊𝑗𝑡)⏟    
𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

 √
1 − 𝑓1,𝑡
𝑓1,𝑡⏟      

.

𝑑𝑎𝑡𝑎
𝑠𝑐𝑎𝑟𝑐𝑖𝑡𝑦

 

(7) 

The first quantity on the right-hand side, the data defect correlation 𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡)), is the correlation 141 

between ln(𝑊𝑗𝑡) and a binary variable 𝑅1,𝑡 taking the value 1 for species sampled in both periods 1 142 

and 𝑡 and 0 otherwise. A positive data defect correlation implies that ln(𝑊𝑗𝑡) is larger on average for 143 

sampled than non-sampled species and vice versa. The second quantity 𝜎ln(𝑊𝑗𝑡)
 is the population 144 

standard deviation of ln(𝑊𝑗𝑡) across species. It takes the value 0 when ln(𝑊𝑗𝑡) is a constant, in which 145 



case the sample mean is equivalent to the population mean regardless of which species were sampled. 146 

Hence, it can be considered a measure of “problem difficulty” (Meng, 2018), because the higher the 147 

variability of ln(𝑊𝑗𝑡), the harder it is to accurately estimate its population average. 𝑓1,𝑡 is the 148 

proportion of species in the population that were sampled in periods 1 and 𝑡, and √(1 − 𝑓1,𝑡) 𝑓1,𝑡⁄  is a 149 

measure of data scarcity. To obtain the expected difference between the sample and population means 150 

of ln(𝑊𝑗𝑡), one simply substitutes the expected data defect correlation E[𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡))] for its 151 

realised value 𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡)) (Lohr, 2022). 𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡)) partly reflects randomness in the way 152 

that the sample was collected, whereas E[𝜌(𝑅1,𝑡, ln(𝑊𝑗𝑡))] is an underlying feature of the sampling 153 

design or lack thereof (reflecting the sampling bias).   154 

 155 

Figure 1. Six grids depicting 100 species × location combinations, or SSUs. Each grid shows either a 156 

high or low value (left to right) of the data defect correlation, the data scarcity or the problem 157 

difficulty (top to bottom rows). Each of the three quantities operate both across and within species, 158 

and the panels depict situations in which the within- and cross-species variants are simultaneously low 159 

or high (e.g. the data defect correlation is low both across species and within species across locations, 160 

etc.). Note that in the top right panel, where the data defect is high, it is only SSUs with high 161 

abundance that have been sampled. Mathematical notation used elsewhere in the paper for each 162 

quantity is also provided. 163 

Within-species error 164 

Meng’s expression can also be applied to the within-species errors of the log relative abundance 165 

indices, but to see how we must write them in terms of differences between sample and population 166 



means. Recalling that �̅�𝑗𝑡 is the mean abundance of species 𝑗 across sampled sites in time-period 𝑡 and 167 

that �̅�𝑗𝑡 is its population equivalent, the within-species errors can be expressed as (appendix B) 168 

 
𝜖𝑗𝑡 = ln(1 +

�̅�𝑗𝑡 − �̅�𝑗𝑡

�̅�𝑗𝑡
) − ln(1 +

�̅�𝑗𝑡 − �̅�𝑗𝑡

�̅�𝑗𝑡
). 

 

(8) 

That is, the log within species error for species 𝑗 is the difference between the log relative errors in 169 

time-periods 𝑡 and 1. The differences between the sample and population mean abundances in each 170 

period feature on the right-hand side, and we can substitute Meng’s expression for each of them. 171 

Equation 8 is an exact identity for any realised sample, but it does not necessarily hold in expectation 172 

due to potential dependencies between the sample and population mean abundances. We further 173 

examine equation 8 and its implications for how to reduce the within-species errors in the next 174 

section. 175 

Applying Meng’s decomposition to the differences between the sample and population mean 176 

abundances for a given species in time-period 𝑡 (which could equally be period 1), we have 177 

 

�̅�𝑗𝑡 − �̅�𝑗𝑡 = 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) 𝜎𝑌𝑗𝑡  √
1 − 𝑓𝑗𝑡

𝑓𝑗𝑡
. 

(9) 

Like equation 7, the three quantities on the right-hand side of equation 9 are, respectively, the data 178 

defect correlation, the problem difficulty and a measure of data quantity. The quantities’ meanings are 179 

subtly different to their cross-species counterparts, because 𝑅𝑗𝑡 indicates whether a site—rather than a 180 

species—was sampled for species 𝑗 in time-period 𝑡, 𝑓𝑗𝑡 is the proportion of sites at which species 𝑗 181 

was sampled in time-period 𝑡 and ln(𝑊𝑗𝑡) has been replaced by the abundance of species 𝑗 in period 𝑡 182 

𝑌𝑗𝑡. Hence, the within-species data defect correlation indicates whether the focal species is more 183 

abundant on average at sampled than non-sampled locations, and the within-species problem 184 

difficulty is the variability of the species’ abundance across geographic units.  185 

How to reduce estimation error 186 

Equations 6 through 9 tell us how to reduce the cross-species error, the within-species errors and, 187 

consequently, the total estimation error of an MSI. (We consider the related problem of how to assess 188 

potential estimation error in Box 1.) It is easiest to see how the cross-species error can be reduced, 189 

because it is simply the difference between the sample and population means of ln(𝑊𝑗𝑡) across 190 

species, which is given by the Meng expression. The Meng expression shows that error as the product 191 

of the data defect correlation, the data scarcity and the problem difficulty. Consequently, it reduces to 192 

zero when any of those quantities is zero; reducing any of the quantities whilst the others are held 193 

constant will also reduce error. 194 

Reducing the within-species error for any given species (equation 8) is best achieved by reducing the 195 

per period estimation errors in time-periods 1 and 𝑡. It is true that one could get lucky and that the per 196 

period errors could have the same signs and similar magnitudes, in which case the within-species 197 

error would be small. However, given that the error in any one period generally cannot be known, a 198 

better strategy is to aim for zero error in both periods. Since the per period errors can be expressed 199 

using Meng’s decomposition, reducing the (within-species) data defect correlation, data scarcity and 200 

problem difficulty will reduce the per period errors and thus the within-species error for a given 201 

species.  202 

The total log relative estimation error is the sum of the cross- and within-species components (noting 203 

that the within-species component reflects a mean across sampled species). It is theoretically possible 204 

to have zero or negligible error if the two components cancel each other out (i.e. if one is positive and 205 



the other is negative). How the analyst would know they are in this situation is unclear, however, so a 206 

more sensible approach is to try to minimise both error components. As we have seen, minimising the 207 

within- and cross-species errors means reducing the cross- and within-species data defect correlations, 208 

problem difficulties and data scarcities (the latter being equivalent to maximising the sampling 209 

fraction). Starting with the within-species variants, we explain how each of these might be achieved 210 

below. 211 

Box 1. How to assess potential estimation error.  212 

To understand the potential error of an MSI, we require information on the within- and cross-

species data defect correlations, data scarcities and problem difficulties (see equations 7 and 9 and 

refer to Fig. 1). The data scarcities reflect the proportions of species and locations in the population 

that have been sampled, and they are measurable. The data defect correlations and problem 

difficulties are not directly measurable and must be estimated or qualitatively assessed. 

 

We are aware of three general approaches to assessing the potential for a non-zero data defect 

correlation. One leverages the existing machinery of causal diagrams and the ‘d-separation’ 

algorithm, which are widely used in causal inference (Pearl et al., 2016). For notational simplicity, 

we will here not index the time-period, will let 𝑅 be sample inclusion (which could be species or 

site inclusion) and will let 𝑌 be the variable of interest (which could be abundance or a relative 

abundance index). The idea is to construct a causal diagram depicting causes and effects of 𝑅 and 

𝑌; given the structure of the diagram, the d-separation algorithm determines whether two are 

dependent and thus whether we might expect a non-zero data defect correlation (Boyd, Botham, et 

al., 2024; Thoemmes & Mohan, 2015). The second approach is to estimate sample inclusion 

probabilities 𝑃(𝑅) and to calculate their variability in the population (e.g. Schouten et al., 2012). If 

the variability of 𝑃(𝑅) is small, then 𝑅 and 𝑌 can only covary so much, and the data defect 

correlation is likely to be small (Nishimura et al., 2016)(Nishimura et al., 2016) The third approach 

is to identify variables that are predictive of 𝑌 and whose distributions in the population are known 

and to compare their sample and population distributions (Backstrom et al., 2024; Boyd et al., 

2023a; cf. Makela et al., 2014). A mismatch signals that sampling was more or less likely at 

different levels of the predictor, which indicates a non-zero data defect correlation. Box Fig. 1 

summarises our three approaches to estimating data defect correlations in the context of species 

population monitoring.   

 

 
Box figure 1. Schematic illustrating how one might diagnose a non-zero within-species data defect 

correlation for a given species (the sample principles apply across species). It depicts a simple 

hypothetical situation in which rainfall is a common cause of sample inclusion (negative effect) and 

abundance and induces a non-zero (data defect) correlation between the two. Forest cover and 



human population density solely affect abundance and sample inclusion, respectively, and do not 

contribute to the data defect correlation. 

 

Each of the three approaches to estimating the data defect correlations could presented as part of a 

“risk-of-bias” assessment (Pescott et al., 2023). Risk-of-bias assessment comprise a series of 

questions about the potential for sampling bias, which is very closely related to the data defect 

correlation (sampling bias being proportional to its expected value). One risk-of-bias tool, ROBITT, 

was designed specifically for the purpose of biodiversity monitoring (Boyd, Powney, et al., 2022). 

 

Approaches to estimating the problem difficulty (the standard deviation of 𝑌) can also be imagined. 

One simple option is to use the sample standard deviation of 𝑌 as an estimate. Generally, the 

sample standard deviation is smaller than its population equivalent, so it could serve as a lower 

bound. A better alternative might be to identify predictors of 𝑌 whose population distributions are 

known and to calculate their variability. For example, 𝑌 might be a species’ abundance, and the 

predictor might be habitat type. If the population is variable in terms of habitat, and habitat is 

predictive of abundance, then we would expect abundance to be variable too.   

 213 

Within-species estimation error 214 

Minimising the data defect correlation 215 

The key to reducing the within-species data defect correlation for species 𝑗 in time-period 𝑡 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) 216 

is to recognise that its conditional value once some variable or set of variables is held constant (i.e. 217 

stratified on or “adjusted for”; we come back to how this is achieved in practice below) might be 218 

smaller than its unconditional value when they are not. More formally, there usually exists a set of 219 

variables 𝑿 (or some other observed information) that satisfies |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡|𝑿)| < |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)|. The 220 

first step towards reducing 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) is to identify these variables.  221 

The variables that satisfy |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡|𝑿)| < |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)| when included in 𝑿 are generally the ones 222 

that induced the (data defect) correlation between whether sites were sampled 𝑅𝑗𝑡 and abundance𝑌𝑗𝑡 223 

in the first place. Often, although not always, these variables will be direct common causes of the two. 224 

For example, abundance 𝑌𝑗𝑡 might be larger within protected areas, as they tend to be relatively well 225 

managed for species (Cooke et al., 2023). Likewise, data collectors might preferentially visit protected 226 

areas in the hope of seeing wildlife. In this case, when both 𝑅𝑗𝑡 and 𝑌𝑗𝑡 are greater within protected 227 

areas, 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) > 0 (other variables might induce a negative correlation). For a given level of 228 

protected area status (e.g. inside or outside), however, the value of 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) should be smaller than 229 

its value across all locations, which is to say 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡|𝑿) < 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡).  230 

Variables that are not direct common causes of 𝑅𝑗𝑡 and 𝑌𝑗𝑡 can also induce a non-zero data defect 231 

correlation, so the “common cause principle” (Mathur et al., 2023) will not always suffice. A more 232 

formal and comprehensive (but laborious) approach to identifying the variables that should be 233 

included in 𝑿 is to construct causal diagrams (see Pearl et al., 2016) depicting causes and effects of 234 

𝑅𝑗𝑡 and 𝑌𝑗𝑡 (Boyd et al., 2025; Thoemmes & Mohan, 2015; Box 1). We will not go into the theory 235 

behind causal diagrams; the important point is that it is possible to deduce from their structures the 236 

sets of variables that induce a dependence between 𝑅𝑗𝑡 and 𝑌𝑗𝑡 and potentially a (data defect) 237 

correlation. As we saw earlier, it is the variables that induce a non-zero data defect correlation that 238 

should be included in 𝑿, so causal diagrams are a good way to identify them. Critically, however, the 239 

use of a causal diagram supposes that it is a true reflection of reality, which is difficult to verify in 240 

practice (Grace & Irvine, 2020),, and it provides no information on the form of the relationships 241 

between 𝑿, 𝑌𝑗𝑡 and 𝑅𝑗𝑡. 242 



Once the variables in 𝑿 have been identified, the next step is to account for or ‘condition on’ them in 243 

the hope that it reduces 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡). One option is to replace the arithmetic mean used to estimate �̅�𝑗𝑡 in 244 

equation 1 with a weighted sample mean, where the weights are selected in such a way that they 245 

balance the variables in 𝑿 between sample and population (i.e. propensity score weighting a.k.a. 246 

quasi-randomisation; Boyd et al., 2023; Fink et al., 2023; McRae et al., 2017). Another is to impute 247 

values for 𝑌𝑗𝑡 given 𝑿 and to estimate �̅�𝑗𝑡 from the complete dataset obtained by combining the 248 

observed and imputed values (i.e. “superpopulation modelling”; Dorfman & Valliant, 2005). More 249 

complex approaches are available (e.g. Ghitza & Gelman, 2013), but we will not consider them here. 250 

Equation 9, which gives the error of the sample mean of 𝑌𝑗𝑡 as an estimator of its population mean, 251 

can be modified to give the error of both the weighted mean and the superpopulation model estimate. 252 

For the weighted mean, 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) is replaced by 𝜌(�̃�𝑗𝑡 , 𝑌𝑗𝑡), where �̃�𝑗𝑡𝑘 = 𝑅𝑗𝑡𝑘 𝑊𝑗𝑡𝑘, and 𝑊𝑗𝑡𝑘 is the 253 

weight applied to site 𝑘 (Meng, 2018). The data scarcity term also needs to be adjusted to account for 254 

the fact that weights reduce the ‘effective’ sample size, but this too is a simple modification (Meng, 255 

2022). To obtain the error of the superpopulation model estimate, the key is to substitute the model’s 256 

residuals 𝑍𝑗𝑡 = 𝑌𝑗𝑡 −𝑚(𝑿) for 𝑌𝑗𝑡, including those hypothetical residuals for non-sampled SSUs 257 

(Meng, 2022). Switching the focus from 𝑌𝑗𝑡 to the model’s residuals means that 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) is replaced 258 

by 𝜌(𝑅𝑗𝑡 , 𝑍𝑗𝑡), which indicates whether the model is better fit for sampled than non-sampled sites (or 259 

a better fit for non-sampled sites, which would imply a very poor model!). Given a judicious choice of 260 

𝑿, weighting and imputation should ensure that |𝜌(�̃�𝑗𝑡 , 𝑌𝑗𝑡)| < |𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)| and |𝜌(𝑅𝑗𝑡 , 𝑍𝑗𝑡)| <261 

|𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)|, respectively. 262 

In practice, the analyst will not possess knowledge of and data on all variables that should be included 263 

in 𝑿, so alternative types of information might be conditioned on (e.g. used to construct weights or 264 

included in a superpopulation model). One practical option is to exploit shared autocorrelation 265 

between 𝑅𝑗𝑡 and 𝑌𝑗𝑡 induced by autocorrelation in 𝑿. Adjusting for shared autocorrelation between 𝑅𝑗𝑡 266 

and 𝑌𝑗𝑡 (e.g. by including autocorrelation terms in a superpopulation model) moves one closer to 267 

rendering the two uncorrelated and potentially even independent (Diggle et al., 2010). Most examples 268 

of this approach in ecology have focused on spatial autocorrelation (Mostert & O’Hara, 2023; Seaton 269 

et al., 2024; Simmonds et al., 2020), but Johnson et al. (2024) recently extended the idea to account 270 

for spatial, temporal and phylogenetic autocorrelation simultaneously (this approach could also help 271 

to deal with the cross-species data defect correlation in some circumstances, as we explain below).  272 

Increasing the sampling fraction (reducing the data scarcity) 273 

One way to reduce the data scarcity—or, equivalently, to increase the within-species sampling fraction 274 

𝑓𝑗𝑡—is to obtain data on sites for which no data was previously available. Since biodiversity 275 

indicators measure historic change in species’ populations, the effects of collecting new data will not 276 

be seen for some years. Mobilising previously inaccessible historic data, however, could have an 277 

immediate impact (e.g. Ellwood et al., 2015).  278 

When obtaining data for previously unsampled sites, there is a risk of inadvertently increasing the 279 

data defect correlation 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡). Indeed, Boyd et al. (2022) showed that adding newly digitised data 280 

on bee distributions in Chile to Global Biodiversity Information Facility increased some measures of 281 

sampling bias [and hence the expected value of 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡)]. Following an adaptive sampling plan that 282 

explicitly targets a reduction in 𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡), for example by prioritising underrepresented strata, may 283 

be one way to guard against this issue (Pescott et al., 2024; Schouten & Shlomo, 2017). 284 

A second and much simpler way to increase 𝑓𝑗𝑡 is to recognise that the population need not include 285 

every site and to constrain it from the outset. Conditioning on (i.e. restricting the population to) the set 286 

of sampled geographic units for a given species, for example, means that 𝑓𝑗𝑡 = 1, the data quantity 287 



term √(1 − 𝑓𝑗𝑡) 𝑓𝑗𝑡⁄ = 0 and, consequently, that the within-species estimation error 288 

𝜌(𝑅𝑗𝑡 , 𝑌𝑗𝑡) 𝜎𝑌𝑗𝑡  √(1 − 𝑓𝑗𝑡) 𝑓𝑗𝑡⁄ = 0. Conditioning on occupied sites (either occupied in the focal time-289 

period or in some time-period since monitoring began), too, could increase 𝑓𝑗𝑡. Data collectors are 290 

usually interested in seeing wildlife as opposed to recording absences, so it is reasonable to suppose 291 

that, on average across species, occupied geographic units are more likely to have been sampled than 292 

unoccupied ones.  293 

Of course, modifying the target population means modifying the estimand, and the analyst must 294 

consider this alongside the desire to minimise error. Conditioning on occupied or sampled sites 295 

reduces the number of SSUs in the population and therefore the generality of the MSI. Doing so could 296 

be problematic if, say, it means omitting a species or geographic area that is relevant to a species 297 

abundance target. See Box 2 for more on the implications of conditioning the target population.  298 

Box 2. Six ways to define the target population in each time-period. The list is not exhaustive, and 299 

other definitions could be imagined. 300 

For a given set of species, geographic area and time-period, the population need not include every 

possible Species-Site Unit (SSU). Rather, we might consider a conditional target population given, 

say, occupancy 𝑂𝑡 (i.e. whether 𝑌𝑡 > 0) or sample inclusion 𝑅𝑡 (or indeed other variables such as 

habitat). Conditioning on 𝑅𝑡 = 1 means focusing on sampled species and sites, and conditioning on 

𝑂𝑡 = 1 means ignoring SSUs with zero abundance. We explain in the main text why conditioning 

on 𝑅 and 𝑂 might reduce error, but the analyst must also recognise that modifying the target 

population means modifying the estimand. 

 

Constraining the population can be done on a per period or cross-period basis: that is, we can 

condition on 𝑂𝑡 = 1 and 𝑅𝑡 = 1 or on 𝑂1,𝑡 = 1 and 𝑂1,𝑡 = 1, respectively. Since MSIs reflect 

change in abundance between two time-periods, it is perhaps most natural to condition the 

population on a cross time-period basis, in which case it does not change over time. If we condition 

the population on 𝑂 or 𝑅 on a cross time-period basis, it can change over time. From a 

mathematical perspective, one may not condition on 𝑅𝑡 = 1 or 𝑂𝑡=1 on a per time-period basis if it 

means that there is a different set of species in time-period 1 to time-period 𝑡. Doing so would 

invalidate the relative abundance indices, since they require a defined abundance for any given 

species in both time-periods. From a conceptual perspective, defining the population in such a way 

that it can vary over time means that the error is not defined with respect to a clear reference 

population and partly reflects shifts in which sites are included in the population (noting again that 

the set of species must remain constant between periods). Box Fig. 2 depicts six possible 

definitions of the population depending on whether it is unconditional, conditioned on 𝑂 across 

time-periods, conditioned on 𝑅 across time-periods or conditioned on 𝑅 for each time-period.  

 



 
Box figure 2. Six definitions of the target population for a given time-period. Each grid represents 

the total set of site × species combinations, or SSUs, that might be considered. Black cells in the 

smaller grids represent the set that are considered under each definition of the population. In the top 

grid, cells with black circles were sampled in the focal time-period, and cells with red triangles 

were not sampled in the focal period but were sampled at some point (i.e. another period). 

 301 

Reducing the problem difficulty  302 

One approach to reducing the problem difficulty is covariate adjustment. The idea is to construct a 303 

model of abundance 𝑌𝑗𝑡 given some covariates 𝑿. In this setting, the problem difficulty is no longer 304 

the standard deviation of 𝑌𝑗𝑡, 𝜎𝑌𝑗𝑡, but the standard deviation of the model’s residuals 𝜎𝑍𝑗𝑡 (Meng, 305 

2022). If 𝑿 explains a portion of 𝑌𝑗𝑡, then 𝜎𝑍 < 𝜎𝑌, which is to say the problem difficulty has been 306 

reduced. 𝑿 might include, say, land cover or environmental variables, for which high-resolution data 307 

are available globally (Fick & Hijmans, 2017). Other estimators that condition on or “account for” 𝑿 308 

(e.g. poststratification) can reduce the problem difficulty for similar reasons (Lohr, 2022). 309 



Another potential way to reduce the within-species problem difficulty is to modify the spatial 310 

resolution at which the analysis is conducted. For example, Boyd, Bowler, et al., (2024) showed that 311 

coarsening the resolution at which species occupancy is estimated can reduce the problem difficulty 312 

and reasoned on theoretical grounds that the same is likely to be true of abundance. Of course, for a 313 

given problem difficulty, estimates of species occupancy or abundance may be less practically useful 314 

at coarser resolutions, so there is a trade-off between potential error and the perceived usefulness of 315 

any given estimate across scales. 316 

A third approach to reducing the problem difficulty is to condition the population on (i.e. restrict it to) 317 

the set of occupied sites for which 𝑌𝑗𝑡 > 0. Assume that 𝑌𝑗𝑡 follows a zero-inflated Poisson 318 

distribution across sites and let 𝑞 (which we do not index for simplicity of notation) be the proportion 319 

of occupied sites. When we do not condition on occupied sites, the problem difficulty is 320 

√𝜇2𝑞(1 − 𝑞) + 𝜇𝑞, where 𝜇 is the mean abundance across occupied sites (appendix C). If occupied 321 

sites are omitted, then the problem difficulty is √𝜇. The difference between the two is 𝐷 = √𝜇 −322 

√𝜇2𝑞(1 − 𝑞) + 𝜇𝑞. For most levels of 𝑞 and 𝜇 (when 𝑞 > 1/𝜇 to be precise), 𝐷 < 0, which is to say 323 

that conditioning on occupied sites reduces the problem difficulty (Fig. 2).  324 

 325 

Figure 2. Difference in the problem difficulty (population standard deviation of abundance) when the 326 

population is defined as occupied sites only and when it includes all sites. Negative values indicate 327 

that omitting unoccupied sites from the population reduces the problem difficulty. Each curve 328 

represents one value of mean abundance across occupied sites.  329 

Another way to modify the population, which could also reduce the within-species problem difficulty, 330 

is to condition on sites with certain environmental conditions. Species’ abundances tend to vary 331 

between environments and habitats. Conditioning on sites that fall within certain environmental strata 332 

may therefore reduce its variability in the population.    333 

Cross-species estimation error 334 

Many of the principles described above apply to minimising the within-species data defect 335 

correlation, problem difficulty and sampling fraction, which are conceptually similar to their cross-336 

species counterparts. The only differences are that cross-species variants are calculated across species 337 

rather than geographic units and pertain to ln(𝑊𝑗𝑡), i.e. the log transformed relative abundance indices 338 



for some time-period after monitoring has begun, rather than abundance. Hence, the cross-species 339 

problem difficulty is the variability of ln(𝑊𝑗𝑡) across species, the data defect correlation is the 340 

correlation between whether a species was sampled (in time-periods 1 and 𝑡) and its value of ln(𝑊𝑗𝑡), 341 

and the sampling fraction is the proportion of species that were sampled in both time-periods 1 and 𝑡.  342 

Minimising the data defect correlation 343 

In principle, reducing the cross-species data defect correlation can be achieved in a similar manner to 344 

reducing its within-species counterpart. A set of variables could be sought that, once accounted for, 345 

reduce its conditional value relative to its unconditional value. Recall that the variables that satisfy 346 

this condition are generally the ones that induced the data defect correlation in the first place. Often, 347 

although not exclusively, these variables are common causes sample inclusion (here whether a species 348 

was sampled) and the variable of interest (here the relative abundance indices). Traits might be good 349 

candidates, since they could affect whether a species was sampled and its relative abundance index 350 

(e.g. a habitat specialist might be more likely to have been sampled because it is rare and more likely 351 

to be responding poorly to habitat loss). Once the data defect-inducing variables have been identified, 352 

sample weighting, superpopulation modelling and/or related approaches can then be used to correct 353 

for their effects.   354 

If the variables that induced the cross-species data defect correlation prove hard to identify or 355 

measure, a more practical option might be to exploit the fact that closely related species could be 356 

faring (but see e.g. Losos, 2008). For example, Johnson et al. (2024) proposed a “correlated effects” 357 

model for relative abundance, which includes species level random effects whose covariance matrix 358 

encodes phylogenetic relatedness. If phylogeny explains an appreciable portion of the cross-species 359 

data defect correlation, then the conditional data defect correlation given these random effects should 360 

be smaller than its unconditional value. This approach is closely related to (and can be combined 361 

with) the use of spatial random effects and autocorrelation terms, which might help to reduce the 362 

within-species data defect correlation in some circumstances. 363 

Simpler forms of imputation than the ones described above are generally used to deal with missing 364 

species in MSIs. One approach is to interpolate between years for which data are available on a per 365 

species basis (Collen et al., 2009). Others have proposed imputing values for missing species based on 366 

values for species that were sampled in the focal time-period (Freeman et al., 2021; Soldaat et al., 367 

2017). Both of these approaches operate on the very strong assumption that non-sampled species are 368 

“Missing At Random” given the observed data (Rubin, 1976), an assumption we suggest would be 369 

more plausible if, say, superpopulation models or weighted estimators were applied. 370 

Increasing the (cross-species) sampling fraction 371 

Increasing the cross-species sampling fraction can be achieved by obtaining data for underrepresented 372 

species or by modifying the definition of the population (Box 2). Obtaining data on underrepresented 373 

species means either collecting new data or mobilising previously inaccessible data. Modifying the 374 

population might mean restricting it to only those species sampled in every year, in which case the 375 

sampling fraction 𝑓1,𝑡 = 1 and there is no cross-species error relative to the population MSI.  376 

Reducing the (cross-species) problem difficulty  377 

A reduction in the cross-species problem difficulty, i.e. the standard deviation of the log relative 378 

abundance indices across species, could be achieved by restricting the population to a set of species 379 

that are thought to be faring similarly. In practice, this would probably mean focusing on species in a 380 

particular taxonomic or functional group on the assumption that they are responding similarly to 381 

environmental change. Species are included in existing MSIs, including the European farmland bird 382 

(Gregory et al., 2005) and grassland butterfly indicators (Van Swaay et al., 2008), based on their 383 

functional traits, so there is a precedent. Of course, restricting the population in this way will not be 384 



appropriate if it means omitting species that are relevant to a species abundance target or if a general 385 

MSI reflecting a large fraction of described species is desired.  386 

Estimation error and power to detect change 387 

The actual relative error of an MSI is one way to conceptualise our lack of knowledge about how 388 

species are faring; another is in terms of statistical power to detect real change (Leung & Gonzalez, 389 

2024; Valdez et al., 2023). Real change (i.e. a non-zero population MSI) is detectable if the ratio of 390 

the sample-based estimate to its standard error exceeds some critical threshold (e.g. 1.96 for the 95% 391 

confidence level). Consequently, for a given standard error, if the actual error reduces the magnitude 392 

of the estimate, then real change becomes less detectable and vice versa.  393 

Interestingly, the source of the actual error affects its impact on whether a trend can be detected. 394 

Although we have not framed it this way so far, actual error may reflect either a systematic bias or 395 

sampling variability. A systematic bias occurs when the expected data defect correlations are 396 

appreciably non-zero, and sampling variability reflects fluctuations in the data defect correlations 397 

across the many possible (and usually hypothetical) samples that could have been obtained. Large 398 

sampling variability should be reflected in the standard error of the estimate. Hence, if the actual error 399 

primarily reflects variance, then the ratio of the estimate to its standard error can only be so large, and 400 

real change can only be so detectable. If the actual error primarily reflects a systematic bias, however, 401 

the standard error may be small. In this case, whether real change can be detected depends primarily 402 

on whether the true trend and the actual error have the same sign—a bias of the same sign as the trend 403 

will make the trend more detectable and vice versa. This insight also highlights a well-known conflict 404 

between binary conceptions of “detecting” change (i.e. P -value cut-offs philosophically related to 405 

decision-theoretic models of inference; Greenland, 2023) and solely descriptive presentations: if a 406 

large contribution of systematic bias to actual error is suspected, then, even if there is evidence that 407 

the bias is the same sign as the trend, descriptive MSIs must be wrong. Should the trend be plotted 408 

under these circumstances without visual warnings (Pescott et al., 2022)? 409 

Concluding remarks 410 

Monitoring species’ populations using MSIs is generally a missing data problem in the sense that data 411 

on abundance are available for some species and sites in the target population but not others (Bowler 412 

et al., 2024). Consequently, it is not possible to verify a MSI empirically, and the potential for error 413 

must be appraised on theoretical grounds. Our theoretical framework is helpful in this respect, and, 414 

since it is merely an algebraic re-expression of the difference between the sample-based and 415 

population MSIs, it invokes very few assumptions. One notable exception is the assumption that 416 

abundance is measured without error (i.e. there are no false absences or presences or that the 417 

prevalence of these remains constant over time and space). This assumption is unlikely to hold in 418 

practice and should be relaxed in future work (e.g. Dempsey, 2023).  419 

On a practical level, our framework can act as a guide to developers of MSIs. It demonstrates that the 420 

first and most critical step is to clearly define the estimand, which should include a specification of 421 

the target parameter (e.g. mean growth rate) and the target population (the set of sites and species of 422 

interest). Once the estimand has been defined, the next step is to systematically assess the potential for 423 

error by considering the following questions:  424 

• What fraction of sites in the target population were sampled, and has this changed over time? 425 

• What fraction of species in the target population were sampled in all time-periods of interest? 426 

• Are species similarly abundant at sampled and non-sampled sites, and has this changed over 427 

time?  428 

• Are sampled species faring differently to the rest in terms of relative abundance?  429 

• How variable is abundance across sites for any one species?  430 



• How variable are the growth rates or relative abundance indices across species?  431 

While most of these questions cannot be answered with certainty, carefully considering them is likely 432 

to reveal much about the potential for error and to guide more principled MSI development. Without 433 

such principles, the interpretation of biodiversity indicators and linked legislative targets is likely to 434 

be subject to so much model-based and epistemological uncertainty that scientific and political 435 

agreement on what they mean will remain out of reach. 436 
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Appendix A 439 

Derivation of equation 6 440 

The relative error of the sample-based MSI is 441 

 

(�̅�𝑡 − �̅�𝑡)

�̅�𝑡
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− 1. 

 

(A7) 

Focusing on �̅�𝑡/�̅�𝑡 (since −1 is a constant and provides no insight into the determinants of the error) 442 

and applying a log transformation yields  443 

 

ln (
�̅�𝑡

�̅�𝑡
) = ln(�̅�𝑡) − ln(�̅�𝑡) =

1
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𝐽

𝑗=1

. 

 

(A8) 

Now let ln (𝑤𝑗𝑡) = ln (𝑊𝑗𝑡)+ 𝜖𝑗 be the estimated relative abundance index for species 𝑗. It follows 444 

that the within-species estimation error for species 𝑗 is 𝜖𝑗 = ln (𝑤𝑗𝑡)− ln (𝑊𝑗𝑡), which is an identity 445 

and imposes no assumptions about the distribution or behaviour of 𝜖. Substituting into equation A8, 446 

we have 447 

 

ln(�̅�𝑡) − ln(�̅�𝑡) =
1

𝑛1,𝑡
𝐽 ∑ (ln(𝑊𝑗𝑡)+ 𝜖𝑗)
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𝐽
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, 

 

(A9) 

which expands to  448 

 

ln(�̅�𝑡) − ln(�̅�𝑡) =
1

𝑛1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡) + 

1

𝑛1,𝑡
𝐽 ∑  𝜖𝑗

𝑗∈𝑠1,𝑡
𝐽

𝑗∈𝑠1,𝑡
𝐽

 − 
1

𝑁1,𝑡
𝐽 ∑ln(𝑊𝑗𝑡)

𝑁1,𝑡
𝐽

𝑗=1

 

(A10) 

or equivalently 449 

 

ln(�̅�𝑡) − ln(�̅�𝑡) =
1

𝑛1,𝑡
𝐽 ∑ ln(𝑊𝑗𝑡)

𝑗∈𝑠1,𝑡
𝐽

 − 
1

𝑁1,𝑡
𝐽 ∑ln(𝑊𝑗𝑡) + 

1

𝑛1,𝑡
𝐽 ∑  𝜖𝑗.

𝑗∈𝑠1,𝑡
𝐽

𝑁1,𝑡
𝐽

𝑗=1

 

(A11) 

Note that while equation 11 is an exact identity for realised relative error given the sample in hand, it 450 

does not necessarily hold in expectation due to potential dependencies between terms. 451 



Appendix B 452 

Derivation of equation 8 453 

For any species 𝑗 sampled in both time-periods 1 and 𝑡, the (log) within-species error component is 454 

 

ln(𝑤𝑗𝑡) − ln(𝑊𝑗𝑡) = ln (
𝑤𝑗𝑡

𝑊𝑗𝑡
) = ln

(

 
 

�̅�𝑗𝑡
�̅�𝑗1

�̅�𝑗𝑡
�̅�𝑗1)

 
 
. 

 

(A12) 

Using the complex fraction and logarithm product rules, equation A12 can be rewritten as 455 

 

ln

(

 
 

�̅�𝑗𝑡
�̅�𝑗1

�̅�𝑗𝑡
�̅�𝑗1)

 
 
= ln(

�̅�𝑗𝑡

�̅�𝑗1
×
�̅�𝑗1

�̅�𝑗𝑡
) = ln(

�̅�𝑗𝑡

�̅�𝑗1
) + ln (

�̅�𝑗1

�̅�𝑗𝑡
). 

 

(A13) 

We can then apply the logarithm quotient rule to expand each term on the right-hand side: 456 

 
ln (

�̅�𝑗𝑡

�̅�𝑗1
) + ln(

�̅�𝑗1

�̅�𝑗𝑡
) = (ln(�̅�𝑗𝑡) − ln(�̅�𝑗1)) + (ln(�̅�𝑗1) − ln(�̅�𝑗𝑡)). 

 

(A14) 

Rearranging the terms on the right-hand side yields 457 

 
ln (

�̅�𝑗𝑡

�̅�𝑗1
) + ln(

�̅�𝑗1

�̅�𝑗𝑡
) = (ln(�̅�𝑗𝑡) − ln(�̅�𝑗𝑡)) − (ln(�̅�𝑗1) − ln(�̅�𝑗1)). 

 

(A15) 

It is also evident from the logarithm quotient rule that 458 

 
ln(�̅�𝑗𝑡) − ln(�̅�𝑗𝑡) = ln (

�̅�𝑗𝑡

�̅�𝑗𝑡
) 

 

(A16) 

and that  459 

 
ln(�̅�𝑗1) − ln(�̅�𝑗1) = ln(

�̅�𝑗1

�̅�𝑗1
). 

 

(A17) 

We can rewrite the fractions on the right-hand sides of equations A16 and A17 as 460 

 461 

 �̅�𝑗𝑡

�̅�𝑗𝑡
=
�̅�𝑗𝑡 + (�̅�𝑗𝑡 − �̅�𝑗𝑡)

�̅�𝑗𝑡
= 1 +

�̅�𝑗𝑡 − �̅�𝑗𝑡

�̅�𝑗𝑡
 

 

(A18) 

and  462 

 �̅�𝑗1

�̅�𝑗1
=
�̅�𝑗1 + (�̅�𝑗1 − �̅�𝑗1)

�̅�𝑗1
= 1 +

�̅�𝑗1 − �̅�𝑗1

�̅�𝑗1
. 

 

(A19) 

Substituting the right-hand sides of equations A18 and A19, we have   463 

 
ln(𝑤𝑗𝑡) − ln(𝑊𝑗𝑡) = ln (

�̅�𝑗𝑡

�̅�𝑗𝑡
) − ln (

�̅�𝑗1

�̅�𝑗1
) = ln (1 +

�̅�𝑗𝑡 − �̅�𝑗𝑡

�̅�𝑗𝑡
) − ln(1 +

�̅�𝑗1 − �̅�𝑗1

�̅�𝑗1
). 

(A16) 



 

Like equation A11, equation A16 is an exact identity given the sample in hand but does not 464 

necessarily hold in expectation.  465 

Appendix C  466 

Variance of the ZIP model 467 

The ZIP (zero-inflated Poisson) model assumes that abundance 𝑌 is generated from two processes. 468 

The first process determines occupancy 𝑂 and follows a Bernoulli distribution:  469 

 𝑂~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞), 
 

(A17) 

where 𝑞 = 1 − 𝑝 is the proportion of occupied sites and 𝑝 is the proportion of unoccupied sites. The 470 

second process follows a Poisson distribution: 471 

 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇), 
 

(A18) 

where 𝜇 is the mean of 𝑋 across occupied sites. Assuming 𝑂 and 𝑋 are independent, abundance is 472 

given by 𝑌 = 𝑂𝑋. That is, if 𝑂 = 1, then 𝑌 = 𝑋, and if 𝑂 = 0, then 𝑌 = 0. The independence of 𝑂 473 

and 𝑋 also implies that  474 

From the law of total variance, 475 

 𝑉[𝑌] =  𝑉[𝐸(𝑌|𝑂)] + 𝐸[𝑉(𝑌|𝑂)], 
 

(A21) 

where 476 

 𝐸[𝑉(𝑌|𝑂)] = 𝑃(𝑂 = 1)𝑉(𝑌|𝑂 = 1) + 𝑃(𝑂 = 0)𝑉(𝑌|𝑂 = 0). 
 

(A22) 

Since 𝐸(𝑌|𝑂) = 𝑂𝜇, the first term on the right-hand side of equation A21 is 𝑉[𝑂𝜇]. Now, recognising 477 

that 𝑉[𝑎𝑋] = 𝑎2𝑉[𝑋] (for constant 𝑎),  478 

 𝑉[𝑂𝜇] = 𝜇2𝑉[𝑂]. 
 

(A23) 

As 𝑂 is Bernoulli distributed,  479 

 𝑉[𝑂𝜇] = 𝜇2𝑞(1 − 𝑞). 
 

(A24) 

The second term on the right-hand side of equation A21 is 𝐸[𝑉(𝑌|𝑂)]. If 𝑂 = 1, then, since 𝑋 is 480 

Poisson distributed, 𝑉[𝑌|𝑂 = 1] = 𝑉[𝑋] = 𝜇. If 𝑂 = 0, 𝑉[𝑌|𝑂 = 0] = 0. Hence,  481 

 𝐸[𝑉(𝑌|𝑂)] = 𝐸[𝑂𝜇]. 
 

(A25) 

Due to the linearity of expectations,  482 

 𝐸[𝑂𝜇] = 𝜇𝐸[𝑂]. 
 

(A26) 

And since 𝐸[𝑂] = 𝑞,  483 

 𝐸[𝑉(𝑌|𝑂)] = 𝐸[𝑂𝜇] = 𝜇𝑞. 
 

(A27) 

Summing the terms give the total variance: 484 

 𝑉[𝑌] = 𝜇2𝑞(1 − 𝑞) + 𝜇𝑞. 
 

(A28) 

 𝐸[𝑌] = 𝐸[𝑂𝑋] = 𝐸[𝑂]𝐸[𝑋] = 𝑞𝜇. 
 

(A19) 



The expression in A28 tells us that the variance of the ZIP has two components: 𝜇2𝑞(1 − 𝑞), which 485 

represents the variance of occupancy 𝑂, and 𝜇𝑞, which represents the variance of 𝑌 at occupied sites. 486 

Equation A28 can be derived more simply using standard results for the variance of a product of 487 

random variables: 𝑌 = 𝑂𝑋, 𝑉[𝑌] = 𝑉[𝑂𝑋] = 𝐸[𝑂2]𝑉[𝑋] + 𝑉[𝑂]𝐸[𝑋]2 = 𝑞𝜇 + 𝑞(1 − 𝑞)𝜇2. 488 

Nevertheless, we include the more complete derivation for pedagogical purposes.  489 
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