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Abstract 30 

Heatwaves, temporary periods of elevated temperatures, are increasing both in 31 

magnitude and in frequency and have been shown to have devastating negative 32 

effects on a wide range of taxa. However, to date, most studies investigating the 33 

impacts of heatwaves have either focus on populations that have evolved under 34 

constant conditions prior to assaying or, more importantly, only investigated the 35 

short-term outcomes of periods of elevated temperatures. Here, using the seed 36 

beetle, Callosobruchus maculatus, we investigate both the short- and long-term 37 

effects of evolution after 43 generations of fluctuating temperature with added 38 

heatwave exposure (a +2°C increase in diurnal temperature peaking at 42°C) on two 39 

important life history traits, development time and lifetime reproductive success 40 

(LRS). We found that when individuals were assayed under fluctuating conditions, 41 

those that evolved under heatwave conditions developed at a similar rate but had 42 

reduced LRS than those evolved and assayed under the same fluctuating conditions. 43 

In contrast, when individuals were assayed under a novel benign temperature of 44 

29°C, both thermal regimes developed slower and had a similar LRS that was 45 

significantly greater than the number produced when treatments were assayed in the 46 

stressful fluctuating environment. All together, this suggests that long-term evolution 47 

under periods of elevated temperatures may lead to increased resilience both in the 48 

long-term with exposure to repeated heatwaves, but also in the short-term when 49 

individuals are exposure to rapid environmental change. This study further 50 

underscores the importance of using natural diel fluctuations to enhance our 51 

understanding of organisms’ responses to climate change. Additionally, it 52 

emphasises the potency of investigating long-term multigenerational exposure to 53 

heatwaves.  54 

 55 

 56 
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 57 

Introduction 58 

Natural populations are responding to global temperature increases by 59 

shifting ranges, declining in abundance, or ultimately, going extinct (Parmesan & 60 

Yohe, 2003; Thomas et al., 2004; Chen et al., 2011). Not only are average annual 61 

temperatures rising, but extreme climatic events (ECEs) such as heatwaves are 62 

becoming far more frequent (Wang et al., 2024). Heatwaves, defined as three or 63 

more consecutive days of temperature above the 90th percentile for each 64 

calendar day (Perkins & Alexander, 2013), have been shown to negatively affect 65 

the persistence and adaptation of natural populations (Stillman, 2019; Ma et al., 66 

2021; Murali et al., 2023), including plant and animal life (Smith, 2011; Smale & 67 

Wernberg, 2013), with broad-scale simultaneous effects on marine and terrestrial 68 

ecosystems (Ruthrof et al., 2018). These effects are particularly alarming given 69 

that heatwaves are predicted to continue to increase across all scales and impact 70 

all inhabited regions of the globe (Perkins-Kirkpatrick & Lewis, 2020; 71 

Intergovernmental Panel on Climate Change (IPCC), 2023).  72 

Much of the research investigating the effects of heatwaves has been 73 

conducted under controlled laboratory conditions. Such studies have been 74 

particularly helpful in highlighting the devasting impact that exposure to extreme 75 

elevated temperatures can have on organismal function. For instance, exposure 76 

to these periods of persistent elevated temperature has been shown to reduce 77 

growth and biomass in plants and reduce reproductive success and increase 78 

mortality in a wide variety of animals. In the two tree species Pinus taeda and 79 

Quercus rubra, monthly heatwaves of +12 °C significantly reduced total growth as 80 

well as leaf, stem and root biomass (Bauweraerts et al., 2012). In male 81 

stickleback fish (Gasterosteus aculeatus), short-term heatwaves at 23°C for five 82 

days were found to suppress parental care, delay hatching, reduce hatching 83 
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success, and negatively impact offspring body condition and swimming 84 

performance (Barrett & Stein, 2024). In the zebra finch (Taeniopygia guttata), 85 

exposure of males to 30°C or 40°C temperatures daily for 14 consecutive days 86 

led to an increase in cloacal temperature and a reduction in the proportion of 87 

sperm with normal morphology (Hurley et al., 2018).  88 

In insects, extreme high temperatures (EHTs) are known to alter fitness-89 

related life history traits such as survival, development, and reproduction (Ma et 90 

al., 2021). Among these traits, reproductive potential is predicted to be the most 91 

susceptible to impacts from EHTs (Zhang et al., 2015; Walsh et al., 2019). The 92 

fruit fly, Drosophila melanogaster, is known to display reproductive sensitivity to 93 

temperature, with the over half of males (above 50% median) becoming sterile 94 

when temperatures exceed 30°C (Rohmer et al., 2004; David et al., 2005). In the 95 

flour beetle, Tribolium castaneum, experimental heatwave conditions reduce male 96 

fertility and sperm competitiveness, resulting in reduced reproduction and a 97 

decrease in the lifespan of offspring (Sales et al., 2018).  98 

Most laboratory studies investigating the impact of heatwaves have used 99 

populations that have evolved under constant temperature conditions rather than 100 

exposing them to realistic daily temperature fluctuations (Hurley et al., 2018; 101 

Sales et al., 2018, 2024; Breedveld et al., 2023; Barrett & Stein, 2024; although 102 

see Weaving et al., 2024). Fortunately, the need to consider the effects of thermal 103 

fluctuation is now well documented (Vasseur et al., 2014; Colinet et al., 2015; 104 

Sinclair et al., 2016; Bagni et al., 2024), and a number of studies have 105 

incorporated realistic thermal regimes into experimental designs, including 106 

changes to both the mean and variability of temperatures (Hokanson et al., 1977; 107 

Niehaus et al., 2012; Paaijmans et al., 2013; Vasseur et al., 2014; Bozinovic et 108 

al., 2016; Matsubara, 2018; Schaum et al., 2018, 2022; Buckley & Kingsolver, 109 

2021; but see Bagni et al., 2024).  For instance, a study by Weaving et al., (2024) 110 

investigated the effects of heatwaves on male and female tsetse flies (Glossina 111 
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pallidipes) by exposing the flies to fluctuating temperatures peaking at 36°C, 112 

38°C, or 40°C for two hours. At all heatwave temperatures, males and females 113 

experienced equivalent fertility loss. At 38°C in particular, the combination of 114 

declining mortality and fertility resulted in a 10.8% population decline compared to 115 

the control treatment. In contrast, 40°C resulted in 100% mortality of individuals. 116 

Despite this, there is still a lack of data on the long-term evolutionary impacts of 117 

exposure to heatwaves (Gutschick & BassiriRad, 2003; van de Pol et al., 2017). 118 

Some evidence suggests that populations exposed to realistic fluctuating 119 

conditions may end up responding better to both short- and long-term changes in 120 

environmental conditions (Ivimey-Cook et al., 2024). This underscores the need 121 

to study the long-term evolution of population exposed to heatwaves in 122 

combination with realistic diel fluctuations.  123 

Here, we investigated the effect of long-term exposure to heatwaves on 124 

the lifetime reproductive success (hereafter, LRS) and development time of the 125 

seed beetle, Callosobruchus maculatus, after multiple generations of evolving 126 

under realistic fluctuating conditions in a laboratory setting. In a previous 127 

experiment, we examined the impacts of short- and long-term exposure to 128 

fluctuating temperatures (with no exposure to heatwaves) on C. maculatus life 129 

history (Ivimey-Cook et al., 2024). Briefly, we found that evolving within a 130 

fluctuating environment leads to increased reproductive performance upon 131 

exposure to constant benign conditions. In contrast, we found no difference in 132 

LRS between those that evolved and were assayed under fluctuating or constant 133 

conditions (i.e. experienced no change in environment). In this follow-up study, 134 

we exposed these same populations to periods of elevated extreme 135 

temperatures. Although evolving under realistic diel fluctuations can promote a 136 

broadening of thermal niche (Ivimey-Cook et al., 2024), we might predict that 137 

exposure to short-term extreme heat will ultimately contribute to a reduction in 138 

reproductive fitness and impaired development (Sales et al., 2018, 2021; 139 
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Weaving et al., 2024). Alternatively, beetle populations exposed to long-term 140 

repeated heatwaves might exhibit improved tolerance and resistance to elevated 141 

temperatures, resulting in reproductive fitness and rates of development that are 142 

similar to populations evolving under purely fluctuating temperatures (French et 143 

al., 2019; Ahrens et al., 2021; Xu et al., 2021). Furthermore, as shown in Ivimey-144 

Cook et al., (2024) and Ketola et al., (2013) evolving under fluctuating conditions 145 

may have beneficial effects on reproductive performance when individuals are 146 

exposed to a constant benign environment. We may therefore expect a similar 147 

increase in fitness upon exposure to a constant environment for those that 148 

evolved under fluctuating conditions with repeated heatwaves.  149 

 150 

Methods 151 

Study system 152 

Callosobruchus maculatus is a globally widespread agricultural pest native to Africa 153 

and Asia. Females of this species deposit their eggs on the surface of dried legumes, 154 

such as mung beans (Vigna radiata) or black-eyed beans (Vigna unguiculata). Upon 155 

emergence, the larvae burrow into the bean, eclosing as adults 21-27 days later. 156 

Adult seed beetles are facultatively aphagous, obtaining all necessary resources 157 

during their larval stage within the bean. Adults without food or water can live up to 158 

two weeks, while adults with access to nutrients can live three weeks or more (Fox, 159 

1993; Ursprung et al., 2009).  As soon as they emerge from their beans, adult 160 

females of this species can start mating and laying eggs immediately (Beck & 161 

Blumer, 2014). 162 

In this experiment, we used a strain of C. maculatus originating from South 163 

India (SI). The original SI beetles were collected in Tirunelveli, India, in 1979 164 

(Mitchell, 1991) and were subsequently raised at the University of Kentucky USA 165 

(hereafter referred to as SI USA). We obtained this strain from Uppsala University in 166 
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Sweden in 2015 and have since maintained it at the American University of Paris. 167 

Stock populations have been cultured exclusively on mung beans and kept in climate 168 

chambers at a constant 29°C, 50% relative humidity, and 12:12h light:dark cycle.  169 

Prior to the experiment, beetles were kept in one liter jars containing 250 170 

grams of beans, and approximately 250-350 newly hatched beetles were moved to 171 

fresh jars with beans every 24 days. Adequate beans were provided to allow each 172 

female to lay just one egg per bean, thus preventing competition among multiple 173 

larvae within a single bean (Berg & Maklakov, 2012; Berg et al., 2019). This is 174 

important as larval competition has been found to significantly reduce fitness (Vamosi 175 

& Lesack, 2007) and body mass (Colegrave, 1993; Vamosi, 2005) at emergence. 176 

Indeed, within populations with high larval competition, females readily avoid laying 177 

additional eggs on seeds that have already been used (Fox & Messina, 2018).  178 

 179 

Thermal evolution lines and assay conditions 180 

See Fig. S1 for a detailed diagram. Before establishing treatment groups, we 181 

maintained a single ancestral population of SI USA beetles in two distinct climate 182 

chambers. These chambers were maintained under identical humidity and light 183 

conditions but differed in their long-term thermal regime. One population was 184 

maintained at a fluctuating thermal regime (hereafter, “Fluctuating”) for 130 185 

generations whilst another was maintained for 43 generations at the same fluctuating 186 

thermal regime but experienced regular heatwaves (hereafter, “Heatwave”). This 187 

provided ample time for the populations to adapt to these conditions. For the 188 

“Fluctuating” thermal regime, the seed beetles were subjected to a daily temperature 189 

cycle consisting of 12 separate 2 hour periods of constant temperature Ti ,	190 

𝑇! = 𝑇"#$% + ∆Tsin %
𝑖 − 12
12

𝜋+ ,	193 

where Tmean = 33°C, ∆T = 7°C, and i = 0,1…. 11. This was a stepwise sinusoidal 191 

temperature cycle with Tmax = 40°C and Tmin = 26°C which mimics typical late spring 192 
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condition in Southern India, where this species evolved. For the “Heatwave” thermal 194 

regime, the beetles were exposed to an increase of 2°C over the entire diurnal cycle, 195 

reaching a Tmax  of 42°C, consistent with a heatwave in Southern India. 196 

 𝑇&! = 𝑇! + 2 =		𝑇"#$% + ∆Tsin -
!'()
()

𝜋. + 2	 197 

Here, Th
i is the temperature of the chamber during the heatwave regime at step “i”, 198 

over a period of 7 days starting at 6:00 am (the point of Tmin). To mimic the random 199 

character of the occurrences, the “Heatwave” regime was initiated on different days 200 

during the lifecycle of the beetles. Specifically, during each generation the 201 

“heatwave” regime was initiated a day earlier relative to the prior one. 202 

Prior to conducting experimental assays, we subdivided beetles from the two 203 

different thermal regimes into three replicates each (n = 6, 2 thermal regimes x 3 204 

replicates). For both thermal regimes, beetles from each of the three replicates were 205 

used to create a final six groups, which were either kept at their ancestral conditions 206 

or were acclimatized for two generations without selection to Constant conditions at 207 

29°C (with a sample size of 50 beetle pairs each; total n of treatments = 12, 2 208 

thermal regimes x 3 replicates x 2 environmental conditions). The assay conditions 209 

were as follows: 210 

1. Fluctuating–Constant: Beetles that had evolved under Fluctuating 211 

conditions and then kept for two generations at Constant conditions of 29°C 212 

prior to assaying. This was done in order to control for any possible parental 213 

effects and to separate genetic adaptation from phenotypic plasticity (Lind et 214 

al., 2014; Lymbery et al., 2020).    215 

2. Heatwave–Constant: Beetles that had evolved under Heatwave conditions 216 

and then kept for two generations at Constant conditions of 29°C prior to 217 

assaying (see above). 218 

3. Heatwave–Fluctuating: Beetles that had evolved under Heatwave conditions 219 

and remained in these conditions prior to assaying. Note that, Fluctuating and 220 
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Heatwave conditions are the same except when a periodic heatwave is 221 

happening. No heatwaves were applied during the assay period (see below). 222 

4. Fluctuating–Fluctuating: Beetles that had evolved under Fluctuating 223 

conditions and remained in these conditions prior to assaying.  224 

 225 

For the Fluctuating-Constant and the Heatwave-Constant assays, the following 226 

steps were performed. First, we transferred beans containing fertilized eggs from jars 227 

into a 48-well virgin chamber (aerated plastic culture plates with a separate well for 228 

each individual) with one bean allocated per well. The virgin chambers were then 229 

moved to the Constant climate chamber where they were kept at constant 29°C. 230 

Once at least 50 males and 50 females from each virgin chamber had hatched, 231 

we randomly paired one-day-old males and females and placed them in petri dishes 232 

with 100 beans and returned these to the Constant chamber. C. maculatus females 233 

lay a maximum of 100 beans in their lifetime (Berg & Maklakov, 2012) and we 234 

ensured that each petri dish contained a sufficient number of beans to allow females 235 

to lay only one egg per bean, thereby minimizing larval competition. To further 236 

reduce larval competition, we removed adult beetle pairs from the petri dishes after 237 

72 hours (Berg & Maklakov, 2012; Berg et al., 2019). 19 days later, before any 238 

offspring eclosed, we transferred up to 48 beans with eggs from each dish into 239 

separate, labelled 48-well virgin chambers. One day following eclosion, we randomly 240 

selected and paired 50 females and 50 males (taking care not to pair full siblings) 241 

and placed them into 50mm petri dishes, each containing 80 beans. After 72 hours, 242 

the adult males and females were removed from the petri dishes. We repeated this 243 

process for one additional generation: once again, before eclosion, beans containing 244 

fertilized eggs from each petri dish were transferred into separate 48-well virgin 245 

chambers. We used the offspring that hatched out of these chambers for the 246 

development time (time from laying until hatching) and reproductive fitness assays 247 

(below).  248 



10 
 

For the Fluctuating-Fluctuating and Heatwave-Fluctuating treatments, we 249 

omitted the acclimatization steps, as controlling for the influence of parental effects 250 

was unnecessary here (see above) and directly transferred beans containing 251 

fertilized eggs into virgin chambers prior to hatching. These were kept at the same 252 

conditions that the beetles had evolved in, however, for the “Heatwave” thermal 253 

regime, we avoided applying heatwaves during the assay period to avoid any 254 

unintended effects of elevated heat exposure on larval development. This allowed us 255 

to test the effects of heatwaves on adult reproductive fitness specifically. For all 256 

assays, one-day-old males and females were randomly selected. 257 

 258 

Development time and reproductive fitness assays 259 

Development time and fitness assays were conducted simultaneously. We paired 50 260 

one-day-old male and female beetles and placed them into 60-mm Petri dishes 261 

containing 70 beans. After 24 hours, each pair was transferred together into a fresh 262 

60-mm petri dish containing 60 beans, while the initial dish was set aside in the same 263 

climate chamber. The following day, this procedure was repeated. The beetles were 264 

left in the third and last set of dishes, containing 50 beans, until their death. The 265 

number of beans in the dishes always exceeded the total number of eggs any female 266 

could lay in a single day at that age. The initial dishes for each pair were labeled as 267 

"Day 0," the second dishes were labeled as "Day 1," and the final set of dishes were 268 

labeled as "Day 2+." 18 days after each dish was set up, before any new beetles 269 

could hatch, all beans with fertilized eggs were transferred into virgin chambers. 270 

These were then monitored daily to record the date of eclosion and the sex of all 271 

offspring. To calculate development time, we counted the number of days between 272 

the date that an egg was laid and the date the adult offspring eclosed. LRS was 273 

calculated as the total number of offspring that emerged from each pair, across all 274 

three reproductive days (and dishes; Days 0, 1, and 2+). 275 

 276 
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Statistical Analysis 277 

All code was run using R v.4.4.2 (R Core Team, 2021) and is available on GitHub at 278 

EIvimeyCook/Heatwave_Beetles. Linear and generalized linear mixed were run 279 

initially in {glmmTMB} v.1.1.10 (Brooks et al., 2017; Magnusson et al., 2017) with 280 

residual diagnostics including detection of zero-inflation and dispersion using 281 

{DHARMa} v.0.4.7 (Hartig, 2017). Bias-corrected estimated marginals means were 282 

then extracted from these models using {emmeans} v.1.10.7 (Lenth et al., 2019) 283 

corrected for by a multivariate t distribution (mvt). Data was imported, cleaned, and 284 

tidied using {readr} v.2.1.5, {tidyr} v.1.3.1, {dplyr} v1.1.4 (Wickham et al., 2019), 285 

{hablar} v.0.3.2 (Sjoberg, 2020), {janitor} v.2.2.1 (Firke, 2020), and {data.table} 286 

v.1.17.0 (Dowle et al., 2019). Data was then visualised using {ggplot2} v.3.5.1 287 

(Wickham, 2011). Heteroscedasticity was detected in the linear model for 288 

development time even after adding a predictor into the dispersion formula of the 289 

glmmTMB model so was instead run using {robustlmm} v.3.3-1 (Koller, 2016). All 290 

other packages used are found in the “renv” folder stored using the {renv} v.1.0.7 291 

(Ushey, 2023) package and contained within the session.info section of the code 292 

README within the repository.  293 

 294 

For the model of lifetime reproductive success (or total reproduction across Days 0, 295 

1, 2+) we added fixed categorical predictors of thermal regime (fluctuating and 296 

heatwave) in a two-way interaction with assay environment (constant and 297 

fluctuating). A 16-level random effect of population (see above) was also added. The 298 

following model procedure was followed. Three models were initially fitted (a Poisson 299 

model, with and without an object-level random effect, and a Conway-Maxwell 300 

Poisson model) and tested for overdispersion and zero-inflation. If significant zero-301 

inflation was still detected, we instead compared a zero-inflated Poisson model (with 302 

and without an object-level random effect) to a zero-inflated Conway-Maxwell 303 

Poisson model and compared these via Akaike Information Criterion. Lastly, if 304 
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significant dispersion or heterogeneity of residuals were still detected after 305 

accounting for zero-inflation, we performed model selection on parameters in the 306 

dispersion formula (including adding a 12-level fixed factor of group, as random 307 

effects are not allowed within the dispersion formula). Note, no model selection 308 

occurred on the main part of the model. 309 

 310 

Development time was log-transformed and ran in a Gaussian model with the same 311 

random (albeit with an additional random intercept of pair ID nested within the 312 

random factor of group to account for non-independence) and fixed effects with 313 

interactions as above. Similar model selection took place on the dispersion formula of 314 

the model. However, even with this added dispersion parameter, significant 315 

heteroscedasticity was identified in residuals. This led to the use of a robust linear 316 

mixed effect model (see above). P values for the robust linear model were obtained 317 

using the {sjPlot} v. 2.8.17 package (Lüdecke, 2013). The qualitative results did not 318 

vary between either method.  319 

 320 

Results 321 

Lifetime reproductive success 322 

Lifetime reproductive success was significantly influenced by the interaction between 323 

thermal regime (Heatwave and Fluctuating) and assay environment (Constant and 324 

Fluctuating; Fig 1; p<0.001: Table S2). More specifically, when assayed under 325 

fluctuating conditions, individuals that evolved under heatwave conditions had 326 

reduced LRS compared to those that evolved under fluctuating conditions (p<0.001; 327 

Table S3). This difference in LRS disappeared when assayed under constant benign 328 

conditions (p = 0.701; Fig. 1: Table S3). For both thermal regimes, LRS under 329 

constant conditions was higher than fluctuating conditions (both p<0.001; Fig. 1; 330 

Table S3).  331 
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332 

Figure 1. Lifetime reproduction success of individuals from heatwave (orange) and 333 

fluctuating (purple) thermal regimes assayed in constant or fluctuating environments. 334 

Points with error bars represent mean values with accompanying 95% asymptotic 335 

confidence levels taken from the final model of lifetime reproductive success.  336 

 337 

Development time  338 

In a similar manner to LRS, the development time of individuals was influenced by 339 

the interaction between assay environment and thermal regime (p = 0.001; Fig. 2; 340 

Table S4). However, estimated marginal means corrected for by a multivariate t 341 

distribution indicated no significant difference between Fluctuating and Heatwave 342 

regimes within the Constant or Fluctuating assay environments (p = 0.565 and 0.098, 343 
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respectively; Fig. 2; Table S5). However, there were differences between 344 

environments, with all individuals, regardless of thermal regime, developing slower 345 

under the constant conditions (p = 0.050 and <0.001; Table S5), although this effect 346 

appeared larger for heatwave individuals (Fig. 2) 347 

 348 

Figure 2. Development time (in days) of individuals from heatwave (orange) and 349 

fluctuating (purple) thermal regimes assayed in constant or fluctuating environments. 350 

Points with error bars represent mean values with accompanying 95% asymptotic 351 

confidence levels taken from the final model of development time. 352 
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 353 

Discussion 354 

The aim of this study was to investigate the effects of long-term heatwave exposure 355 

on seed beetles (C. maculatus) that had evolved under natural diel temperature 356 

fluctuations. Beetles adapted to fluctuating temperatures were exposed for 43 357 

generations to periodic heatwaves and then assayed in either the ancestral 358 

fluctuating conditions or in a novel constant environment. We hypothesized that long-359 

term exposure to heatwaves would result in either 1) decreased fitness and impaired 360 

or delayed development relative to beetles that had not evolved with heatwaves 361 

(Sales et al., 2018, 2024), or conversely 2) improved resistance and tolerance to 362 

elevated temperatures (French et al., 2019; Ahrens et al., 2021; Xu et al., 2021). 363 

Additionally, we hypothesized that individuals from both the fluctuating and heatwave 364 

conditions would react in a similar manner when exposed to a novel constant (or 365 

benign) environment, similar to what Ivimey-Cook et al (2024) found in a previous 366 

experiment.   367 

 368 

In fact, we found that individuals from populations exposed to regular heatwaves had 369 

significantly lower fitness than individuals from populations without this exposure. 370 

This negative effect of heatwave exposure aligns with previous research across a 371 

variety of species across both sexes (Sales et al., 2018; Martinet et al., 2021; Siegle 372 

et al., 2022; Ratz et al., 2024; Weaving et al., 2024). This decline is to be expected if 373 

there is negative effect of repeated and sustained elevation of heat shock proteins 374 

(Feder & Hofmann, 1999; Sørensen et al., 2003; Siegle et al., 2022). Among males, 375 

reproductive success might decline if heatwaves lead to reduced sperm count or 376 

motility or alter sperm morphology (Sales et al., 2021; Ratz et al., 2024). We may 377 

also expect this decrease if females suffered reproductive abnormalities, such as 378 

those found in the female tsetse fly after exposure to 30°C heat (Mellanby, 1937; 379 
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Weaving et al., 2024). Furthermore, given that the occurrence of heatwaves was 380 

random, this difference in LRS could be a result of temporal misalignment between 381 

required phenotype and environment, or from the cost of evolving the necessary 382 

mechanisms to detect changes within the environment (such as heatwaves) and to 383 

produce appropriate phenotypes sufficiently rapidly (Burggren, 2020; Hoffmann & 384 

Bridle, 2021). However, it should be noted that the LRS between these two groups, 385 

although significant, is not markedly different (i.e, heatwave individuals exposed are 386 

still able to reproduce), suggesting either some form of reproductive recovery or 387 

repair after prolonged heatwaves exposure (Ma et al., 2018; Sales et al., 2021), or 388 

the evolution of improved tolerance and resistance to elevated temperatures (French 389 

et al., 2019). Future work involving these long-term evolution lines should therefore 390 

aim to compare the physiological differences, such as levels of expression of heat 391 

shock proteins or reproductive impairment, after one generation of heatwave 392 

exposure versus after multiple generations. 393 

 394 

Although long-term exposure to heatwaves appeared to have a negative impact on 395 

reproduction when the beetles were assayed at fluctuating conditions, we found that 396 

individuals from both fluctuating and heatwave conditions had increased reproductive 397 

fitness when assayed in a novel but constant 29°C environment. This is analogous to 398 

the results found in Ivimey-Cook et al., (2024), where two different strains of C. 399 

maculatus (SI USA and Leicester) that had evolved under diel fluctuations had higher 400 

LRS when assayed within a constant 29°C environment than when assayed under 401 

fluctuating conditions. This suggests that evolution in a fluctuating environment can 402 

select for individuals with a broadened thermal niche that are more robust after 403 

generations of mutation removal and selective mortality (Rankin & Sponaugle, 2011; 404 

Ketola et al., 2013, Ivimey-Cook et al 2024). Also, if an individual has narrowed their 405 

thermal niche and postponed critical functions that only occur within a specific 406 

temperature window, as in the diel narrowing hypothesis (Kefford et al., 2022), then 407 
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reproductive performance should increase when individuals are placed within a 408 

constant and benign environment (Gilchrist, 1995; Kefford et al., 2022). This is an 409 

important result, which further highlights how evolution under fluctuating 410 

environments can lead to an improved response to short-term changes in 411 

environment, regardless of heatwave exposure.  412 

 413 

Lastly, we found no negative effect of heatwave exposure on individual development 414 

time. Beetles from both thermal backgrounds developed more quickly (and equally 415 

quickly) in fluctuating environments, where the average mean temperature was 4°C 416 

hotter than constant conditions. This is similar to the result found in the previous 417 

experiment involving the same thermal conditions (Ivimey-Cook et al., 2024), with the 418 

fastest development occurring within a fluctuating environment. The lack of a 419 

detrimental effect of long-term heatwave exposure on development time is counter to 420 

what has been found previously. Some studies have shown a positive effect of 421 

elevated temperature exposure, such as in the parasitoid Cotesia glomerata, which 422 

developed twice as quickly in higher temperatures (Chen et al., 2019). Other studies 423 

have shown negative effects, for instance in the solitary bee Osmia lignaria, which 424 

developed more slowly under 37°C heatwave conditions than the no-heatwave 425 

control (Melone et al., 2024). However, in both of these cases, individuals were 426 

exposed to just one generation of heatwave rather than testing them after multiple (in 427 

our case 43) generations. Therefore, we may see a reduction in effect over time 428 

when individuals are exposed to more repeated heatwaves and become more 429 

resilient to environmental change (Ahrens et al., 2021; Xu et al., 2021). 430 

 431 

In conclusion, we found that populations evolving under repeated heatwaves within 432 

naturally fluctuating environments can not only become resilient to exposure in the 433 

long term, but are also able to cope with rapid environmental change, reaching 434 

maximal performance when conditions suddenly become benign. This study 435 
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highlights the importance of considering long-term diel fluctuations together with 436 

multi-generational exposure to heatwaves in order to better understand natural 437 

population responses to climatic warming.    438 
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