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Abstract29

30

1. Understanding how both the mean (location) and variance (scale) of traits differ among species31

and lineages is fundamental to unveiling macroevolutionary patterns. Yet, traditional phylogenetic32

comparative methods primarily focus on modelling mean trait values, often overlooking variability33

and heteroscedasticity that can provide critical insights into evolutionary dynamics.34

2. Here, we introduce phylogenetic location-scale models (PLSMs), a novel framework that jointly35

analyses the evolution of trait means and variances. This dual approach captures heteroscedasticity36

and evolutionary changes in trait variability, allowing for the detection of clades with differing37

variances and revealing patterns of adaptation, diversification, and evolutionary constraints.38

3. Extending PLSMs to a multivariate context enables simultaneous analysis of multiple traits and39

their covariances, facilitating the testing of hypotheses about evolutionary trade-offs, pleiotropy, and40

phenotypic integration. By modelling covariances between phylogenetic effects in both the location41

and scale parts, we can discern whether changes in one trait’s mean or variance are associated with42

changes in another’s, thereby offering deeper insights into the mechanisms driving trait co-evolution,43

and co-divergence or “contra-divergence”.44

4. We also describe how an extended version of PLSMs incorporating within-species variability can45

enhance our understanding of trait convergence and divergence arising from ecological and environ-46

mental factors.47

5. Our framework provides a powerful tool for exploring macroevolutionary patterns and can be used48

to reassess previously published comparative data, offering new insights into the mechanisms driving49

the diversity of life.50

Keywords— phylogenetic comparative method, double-hierarchical model, phylogenetic generalised least squares,51

phylogenetic generalised linear mixed-effects model, Bayesian statistics52

2



1 Introduction53

Understanding how traits evolve across species is a central theme in evolutionary biology. Phylogenetic comparative54

methods (PCMs), particularly regression-based approaches, have played a pivotal role in revealing patterns of trait55

evolution by accounting for shared ancestry among species (Felsenstein, 1985; Garland and Ives, 2000; Cornwallis56

and Griffin, 2024). Traditional methods, such as phylogenetically independent contrasts (PICs) and phylogenetic57

generalised least squares (PGLS), have focused on modelling mean trait values, shedding light on average evolutionary58

trends (Hansen and Martins, 1996). However, these approaches often assume homogeneity in trait variance (i.e.,59

homoscedasticity) across species and lineages, potentially missing key aspects of macro-evolutionary processes tied60

to variability and dispersion (e.g., Cleasby and Nakagawa, 2011).61

Contrary to the common assumption that selection acts solely on trait means, evidence suggests that trait variance62

itself can be subject to selection. For instance, dairy cows can be selectively bred for reduced variability in milk63

production, or pigs can be bred for producing similar litter sizes, demonstrating that genetic mechanisms can influence64

trait variance in addition to means (Mulder et al., 2008). Further, earlier work supports that variance and covariance65

structures evolve. Theoretically and empirically, genetic variances and covariances (G) can change through time66

as selection and mutation–drift regimes shift (Turelli, 1984, 1988; Shaw et al., 1995). Across species, phenotypic67

integration and modularity studies show that the pattern of trait covariation (P) differs among clades (Porto et al.,68

2009; Marroig et al., 2009; Haber, 2016). Importantly for macroevolution, comparative methods have detected69

heterogeneity in evolutionary covariances among regimes or clades (Revell and Collar, 2009; Hermansen et al., 2018).70

These findings point to the need for comparative models that treat (co)variances as evolvable quantities, not fixed71

background noise (Bruijning et al., 2020).72

Indeed, patterns of trait (co)variance can reveal critical insights into macro-evolutionary dynamics, such as release73

from stabilising selection, adaptive radiation, or transitions to evolutionary optima (Hansen et al., 2008). For example,74

a positive correlation between species’ mean and variance within a trait in a clade may indicate a release from75

selection, allowing greater phenotypic diversity; in other words, a shift in mean trait values leads to increased trait76

variation within a clade. Conversely, changes in the mean accompanied by a reduction in variance could signify77

the attainment of an adaptive peak or the presence of biological constraints limiting further diversification. As78

indicated in earlier studies, mentioned above, particular clades may harbour more variance in specific traits due to79

ecological opportunities or historical contingencies. However, direct investigations of variance are extremely rare in80

macro-evolutionary studies. This is probably because the different patterns of variance can arise due to two distinct81

processes: (1) the selection of trait means, resulting in changes in population variance, and (2) selection on trait82

variance, also resulting in similar changes (cf. Hill and Mulder, 2010; Mulder et al., 2008). Macro-evolutionary83

research seemed to have focused on the former but not the latter (e.g., stabilising selection is seen as a byproduct of84

selection on means rather than direct selection on variance).85

Importantly, following the Brownian motion model of evolution, the mean and the variance of a quantitative trait86

could diffuse independently on a phylogeny, because each is governed by its own mutational (or developmental) input87

and can experience separate selective pressures (Turelli, 1984; Wagner et al., 2008). In quantitative-genetic terms,88

a trait’s expected value evolves under one Brownian process with rate σ2
µ, whereas the log of its residual (within-89

lineage/among species unexplained) variance can evolve under a second, independent process with rate σ2
ln(σ2) (Hill90

and Mulder, 2010; Mulder et al., 2008). Empirical evidence for such dual diffusion comes from clade-wide heterogeneity91

in canalisation, bet-hedging, and evolvability statistics (Hansen and Houle, 2008). Consequently, treating variance as92

an evolvable character alongside the mean is not only biologically plausible but mathematically consistent with the93

standard comparative framework; failing to model it risks conflating two distinct evolutionary signals.94

Incorporating both the mean (location) and the residual variance (scale) offers a more complete view of macro-95

evolutionary dynamics, because evolutionary processes can reshape not only the average phenotype but also disper-96

sion (cf. Hunt, 2007). Rapid mean shifts, for example during adaptive radiations, are often accompanied by increased97

among-lineage variance, yet such joint patterns are rarely analysed within a single framework (see Fig. 1). Here98

we extend the phylogenetic generalised linear mixed-model (PGLMM) framework (Lynch, 1991; Hadfield and Nak-99

agawa, 2010; Ives and Helmus, 2011) by introducing phylogenetic location-scale models (PLSMs). A PLSM treats100

the mean and the log-variance (standard deviation) as parallel response variables, each with its own fixed effects101

and phylogenetic random effect, thereby quantifying the co-evolution of trait means and variances (Lee and Nelder,102

1996, 2006; Cleasby et al., 2015). Notably, some related approaches, such as the “Fabric” model (Pagel et al., 2022;103

Pagel and Meade, 2025), allow evolutionary rates (parting to variation due to phylogeny) to vary discretely across104

3



the phylogeny, identifying branches where directional trends and rate parameters shift. Instead, our approach allows105

us to test whether particular clades harbour unusually high heteroscedasticity, whether mean–variance correlations106

signal evolutionary limits or trade-offs, and, via a multivariate extension, whether two traits show mean–mean,107

variance–variance, or mean–variance co-evolution (Fig. 2). Throughout, we show how PLSMs capture evolutionary108

changes in trait variability that conventional PCMs overlook.109

Below, we develop PLSMs in four steps (cf. Halliwell, 2025). First, we describe the statistical framework of PLSMs,110

starting with a model without a random effect in the scale part and introducing relevant concepts such as phylogenetic111

heritability (Lynch, 1991) and evolvability (Houle, 1992). Second, we extend this PLSM to include phylogenetic effects112

in both the location and scale components. Third, we generalise the model to a multivariate context, enabling the113

simultaneous analysis of multiple traits and their covariances. Fourth, we incorporate within-species variation into114

PLSMs, allowing individual-level measurements to be accommodated. This model allows us to gain insights into trait115

convergence or divergence due to ecological and environmental factors by quantifying both non-phylogenetic and116

phylogenetic effects (throughout the paper, we designate within-species variation as ε and among-species residual117

variation as e; only the latter is modelled by the scale component unless individual data are available). We then118

discuss how patterns of variance evolution can inform macro-evolutionary processes such as adaptive radiation and119

release from selection, and demonstrate the applicability of our model through empirical examples. Notably, this120

paper includes an online tutorial (link) to help implement the PLSMs introduced here using brms (Bürkner, 2017) in121

R.122

2 Developing Phylogenetic Location-Scale Models (PLSMs)123

Before diving into mathematical definitions of phylogenetic location-scale models (PLSMs), it may be useful to have124

an overview of key variables and parameters in PLSMs, summarised in Table 1. This table provides biological125

interpretations of each notation. Also, for many readers, it may be helpful to look at the brms code snippets126

corresponding to the formulas (equations) below in our online tutorial.127

2.1 PLSMs without the Phylogenetic Effect on the Scale Part128

A phylogenetic location-scale model has two parts: 1) the location (mean) part and 2) the scale (variance) part; the129

simple example of such a model can be written as (Model 1):130

yi = β
(l)
0 + a

(l)
i + e

(l)
i , (1)

{ai} = a ∼ N (0, σ2
a(l)A), (2)

{e(l)i } = e(l) ∼ N
(
0, σ2

ei(l)I
)
, (3)

ln
(
σei(l)

)
= β

(s)
0 , (4)

where yi is the observed trait value for species i, β
(l)
0 denotes the intercept term in the location part of the model,131

representing the overall mean trait value across all species. The term a
(l)
i is the phylogenetic effect for species i in the132

location part, capturing the variation due to shared evolutionary history among species. As specified in Equation 2,133

these phylogenetic effects (ai or the vector a) are assumed to follow a multivariate normal distribution with mean zero134

and covariance structure σ2
a(l)A, where σ2

a(l) is the variance component associated with the phylogenetic effects, and135

A is the phylogenetic correlation matrix derived from an ultrametric phylogenetic tree so containing information on136

species relatedness (a correlation matrix is only calculable when a phylogenetic tree is ultrametric). The residual error137

term e
(l)
i (or the vector e(l)) in the location part, as shown in Equation 3, accounts for the unexplained variation in138

4

https://anonymous.4open.science/w/phylo_location_scale-5061//R/


trait values after accounting for phylogenetic effects. These residuals are assumed to be independently and normally139

distributed with mean zero and species-specific variance σ2
ei(l)

, and I is the identity matrix (a diagonal matrix of 1’s).140

The scale (variance) part of the model is given in Equation 4, where the natural logarithm of the residual standard141

deviation σei is modelled as a constant intercept β
(s)
0 on the scale part; note that the scale part could take either142

the residual standard deviation or residual variance, which is a matter of preference; for an example of using residual143

variance (see O’Dea et al., 2022). This implies that the residual variances are homoscedastic across species unless144

extended to include additional predictors or random effects. By modelling the logarithm of the residual standard145

deviation, we ensure that the estimated variances are positive, but we acknowledge that variability in trait measure-146

ments may differ across species, which is yet to be modelled (see below). Also, it is important to note that Equation 3147

is equivalent to e
(l)
i ∼ N

(
0, σ2

eI
)
. The variance component σ2

e is often considered to be the non-phylogenetic effect,148

which consists of species variation not due to shared phylogenetic history (assuming measurement errors are negligible149

in yi and yi is a representative measurement for species i, e.g., species mean so that yi does not include within-species150

variation; for modelling within-species variance, see Section 2.4).151

Before building upon this basic formulation, we introduce two key concepts in phylogenetic comparative methods152

(PCMs). The first one is phylogenetic heritability, introduced by Lynch (1991). Phylogenetic heritability (denoted as153

H2
(l)) is the ratio between the phylogenetic variance and the sum of the phylogenetic and residual variance, showing154

the amount of “phylogenetic signal”, which is often quantified by Pagel’s λ (Pagel, 1999). Although Housworth et al.155

(2004) state Pagel’s λ and phylogenetic heritability are equivalent, Pearse et al. (2025) have recently pointed out156

that this cannot be the case. This is because Pagel’s λ can exceed one while phylogenetic heritability H2
(l) cannot157

although both are closely related:158

H2
(l) =

σ2
a(l)

σ2
a(l) + σ2

e(l)

, (5)

where σ2
e(l) is the expected (average) value of σ2

ei(l)
or it is equivalent to exp

(
β
(s)
0

)2
for the model above.159

The other is evolvability, proposed by Houle (1992); evolvability is the additive genetic standard deviation, divided160

by the expected (average) value of a trait. An analogous quantity can be obtained as follows:161

CVA(l) =
σa(l)

β
(l)
0

, (6)

where CV denotes the coefficient of variation, which is a popular mean-standardised dispersion measure. We can162

call this quantity “macro-evolvability” while the original evolvability can be referred to as “micro-evolvability” as163

with macro- and micro-evolution. Macro-evolvability values indicate the potential for a given trait to evolve and, like164

phylogenetic heritability, are supposed to be comparable across traits (later, we expand these two concepts to the scale165

part; note that for estimating parameters in these indexes, we use estimators such as Bayesian MCMC estimators).166

We note that CVA(l) can sometimes be more involved to obtain, as we usually ln-transform trait values, and then, we167

need to convert such values back into the original scale. This is because CV is usually only calculable on the original168

scale, which is the ratio scale where measurements are all above zero (for example, see our online tutorial; see also169

O’Dea et al., 2022). However, for ratio-scale traits (i.e., y > 0), there is a simple connection between dispersion on170

the original and log scales. If y is log-normal distributed, SD on the natural log scale (ln y is approximately CV on171

the original scale, when CV < 0.3 (Lynch, 1990). This equivalence is useful as many continuous traits are on the172

ratio scale; also, such traits should usually be ln-transformed for analysis.173

We can now add predictors to both parts of Model 1 to generalise (Model 2):174

yi = β
(l)
0 +

K∑
k=1

β
(l)
k xki + a

(l)
i + e

(l)
i (7)
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ln(σei(l)) = β
(s)
0 +

K∑
k=1

β
(s)
k xki (8)

where xki is the value of the k-th predictor variable for species i; β
(l)
k are the coefficients associated with the predictors175

in the location part, representing the effect of each predictor xki on the mean trait value; and β
(s)
k are the coefficients176

in the scale part, capturing how each predictor xki influences the logarithm of the residual standard deviation σei177

(with with k = 1, 2...K). By incorporating predictors into both parts of the model, we allow for the possibility that178

explanatory variables affect not only the mean trait values but also the variance, enabling a more comprehensive179

understanding of the factors influencing trait evolution.180

To show the usefulness of this type of PSLMs and make it more concrete, consider a scenario where we are interested181

in the evolution of brain size (y) across two classes of vertebrates (e.g., birds and mammals). We hypothesise that,182

after controlling for body size (x1), two different vertebrate classes (x2, a dummy variable) have different variances183

(i.e., heteroscedasticity). Then, we may have the following model (Model 3):184

yi = β
(l)
0 + β

(l)
1 x1i + β

(l)
2 x2i + a

(l)
i + e

(l)
i , (9)

ln(σei(l)) = β
(s)
0 + β

(s)
1 x1i + β

(s)
2 x2i, (10)

where a significant β
(s)
1 indicates changes in variance along body size while a significant β

(s)
2 indicates different185

variances between two groups (note that depending on your questions, you may decide to model the interaction186

between body size and vertebrate classes (x1 and x2), and also we do not necessarily have to have the same predictors187

in both parts of the model; e.g., not having body size in the scale part) and two classes (x2). Yet, without clear188

hypotheses, the same fixed effects in both parts could be fitted. Model 3 and related models are useful for detecting189

which clades have more variation in a given trait. Relatively high variance in a clade may represent relaxed selection190

or adaptations to diverse niches, while low variance could mean strong stabilising selection (i.e., the existence of trait191

optima; Fig 3).192

2.2 PLSMs with the Phylogenetic Effect on the Scale Part193

Although the above models (Models 1-3) are useful first steps to model mean and variance simultaneously, they194

cannot tell us whether mean and variance are co-evolving in a trait across species. To model such an effect, we will195

need the following model extending the scale part of Model 3 (Model 4; note its mean part is Equation 7):196

ln(σei(l)) = β
(s)
0 +

K∑
k=1

β
(s)
k xki + a

(s)
i , (11)

(
a
(l)
i

a
(s)
i

)
∼ N (0,Σa ⊗A) , (12)

where a
(s)
i is the phylogenetic effect in the scale part, capturing the phylogenetic variation in residual variances among197

species. The vector of phylogenetic effects (a
(l)
i , a

(s)
i )′ follows a multivariate normal distribution with mean zero and198

Σa ⊗A, which is:199

Σa ⊗A =

(
σ2
a(l)A ρa(ls)σa(l)σa(s)A

ρa(ls)σa(l)σa(s)A σ2
a(s)A

)
, (13)
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with σ2
a(l) and σ2

a(s) representing the phylogenetic variances for the location and scale parts, respectively, and ρa(ls)200

denoting the correlation between the phylogenetic effects in the two parts. The operator ⊗ denotes the Kronecker201

product, indicating that the covariance matrix is constructed by multiplying the variance-covariance matrix Σa with202

the phylogenetic correlation matrix A.203

By incorporating the phylogenetic effect a
(s)
i in the scale part and allowing for a correlation ρa(ls) between a

(l)
i and204

a
(s)
i , Model 4 enables us to investigate whether the mean and variance of the trait are co-evolving across species due205

to shared ancestry. A significant correlation ρa(ls) suggests that species with higher (or lower) mean trait values also206

tend to have higher (or lower) trait variability, which may reflect evolutionary processes affecting both the mean and207

variance of the trait. For example, we may get a negative ρa(ls) (e.g., larger traits are associated with lower variance),208

and such a correlation value could indicate the existence of a ceiling or optimal trait value for a clade (Fig 2).209

Given Model 4, we redefine phylogenetic heritability for the location part, which is more general than Equation 5:210

H2
(l) =

σ2
a(l)

σ2
p

, (14)

where σ2
p is the observed phenotypic (trait) variance, calculated as the sum of the variance components from the fixed211

effects, phylogenetic effects, and residual variance (i.e., all the elements in the model):212

σ2
p = σ2

f(l) + σ2
a(l) + σ2

e(l). (15)

In this expression, σ2
f(l) represents the variance due to fixed effects in the location part, computed as (Nakagawa and213

Schielzeth, 2013):214

σ2
f(l) = Var

(
K∑

k=1

β
(l)
k xki

)
, (16)

and σ2
ei(l) is the average residual variance across species in the location part, given by (O’Dea et al., 2022):215

σ2
e(l) = exp

(
2β

(s)
0 + 2σ2

a(s)

)
. (17)

Similarly, we can define phylogenetic heritability for the scale part:216

H2
(s) =

σ∗2
a(s)

σ2
σ2
p

. (18)

Since the scale part is on the natural log scale, we need to back-transform σ2
a(s) to the original scale (or the same217

scale as in the location part) to obtain σ∗2
a(s) (following Hill and Mulder, 2010; Mulder et al., 2016):218

σ∗2
a(s) = σ2

σ2
e(l)

(
σ2
a(s)

σ2
a(s) + σ2

f(s)

)
. (19)

Here, σ2
σ2
p
is the variance of the phenotypic variance σ2

p, calculated as (Hill and Mulder, 2010; Mulder et al., 2016):219

σ2
σ2
p
= 2σ4

p + 3σ2
σ2
e(l)

. (20)
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In this context, σ2
σ2
e(l)

is the variance of the residual variances in the location part, expressed as:220

σ2
σ2
e(l)

=
(
exp

(
4
(
σ2
a(s) + σ2

f(s)

))
− 1
)
exp

(
4
(
β
(s)
0 + σ2

a(s) + σ2
f(s),

))
(21)

and σ2
f(s) represents the variance due to fixed effects in the scale part, computed as:221

σ2
f(s) = Var

(
K∑

k=1

β
(s)
k xki

)
. (22)

For macro-evolvability, we use Equation 6 for the location part and for the scale part, macro-evolvability is defined222

as:223

CVA(s) =
σ∗
a(s)

σ2
e(l)

. (23)

An alternative expression for CVA(s) which is applicable if a
(s)
i is the only random effect in the scale part (also, this224

is easier as we do not need to transform back σ2
a(s))—is (for the derivation from Equation 23, O’Dea et al., 2022):225

CVA(s) =
√

exp(4σ2
a(s))− 1. (24)

Earlier relevant papers from quantitative genetics – where mixed-effects models and associated location-scale models226

are initially developed – indicate phylogenetic heritability values on the scale part (H2
(s)) may be informative yet tend227

to be small, compared to that of the location part (Hill and Mulder, 2010; Mulder et al., 2016; Sae-Lim et al., 2015;228

O’Dea et al., 2022). However, the macro-evolvability values for the scale part may remain relatively high compared229

to those for the location part (H2
(l)). So, estimating evolvability for location and scale parts may be useful under230

some circumstances. Notably, macro-evolvability values can be challenging to obtain, as it is not clear on what scale231

evolvability should be calculated, and it seems to be only meaningful when traits are on ratio scale (e.g., or example232

that the median macro-evolvability on the original scale was 0.38 while on the log scale this is 0.83, as we have233

shown in the online tutorial). Furthermore, to add to the complexity, although we introduce the CV for variance234

(Equation 24), it may be better to have the CV for standard deviation (SD) because mean and SD are on the same235

scale. In such a case, we have (Cleasby et al., 2015):236

CV ∗
A(s) =

√
exp(σ2

a(s))− 1. (25)

2.3 Multivariate (Multi-Response) PLSMs237

So far, we have focused on the evolution of a single trait; however, traits often evolve in conjunction with others238

due to genetic, developmental, or functional linkages. To capture these relationships, we need to extend our models239

to accommodate multiple traits simultaneously (?). Multivariate or multi-response PLSMs allow us to model the240

evolution of several traits and their covariances, providing a more comprehensive understanding of the evolutionary241

processes at play.242

In the simplest case of a bi-variate PLSM, we consider two traits, y(1) (trait 1) and y(2) (trait 2), across species. Such243

a bi-variate model can be expressed as (Model 5):244

yi =

(
y
(1)
i = β

(l1)
0 +

∑K
k=1 β

(l1)
k xki + a

(l1)
i + e

(l1)
i

y
(2)
i = β

(l2)
0 +

∑K
k=1 β

(l2)
k xki + a

(l2)
i + e

(l2)
i

)
, (26)
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si =

(
ln(σei(l1)) = β

(s1)
0 +

∑K
k=1 β

(s1)
k xki + a

(s1)
i

ln(σei(l2)) = β
(s2)
0 +

∑K
k=1 β

(s2)
k xki + a

(s2)
i

)
. (27)

In these equations, the vector yi (length of 2) represents a set of two trait values for species i while the vector si is245

a set of two residual standard deviations on the natural logarithm scale. The coefficients β
(l1)
0 , β

(l2)
0 , β

(l1)
k , and β

(l2)
k246

are the intercept and predictor effects for trait 1 and 2 in the location part, while β
(s1)
0 , β

(s2)
0 , β

(s1)
k , and β

(s2)
k are247

the corresponding parameters in the scale part. The terms a
(l1)
i , a

(l2)
i , a

(s1)
i , and a

(s2)
i are the phylogenetic effects for248

species i in the location and scale parts of trait 1 and 2, respectively, capturing the shared evolutionary history.249

The vector of phylogenetic effects for both traits and both parts is jointly modelled to account for correlations between250

traits and between the mean and variance. Specifically, the random effects are assumed to follow a multivariate normal251

distribution:252


a
(l1)
i

a
(l2)
i

a
(s1)
i

a
(s2)
i

 ∼ N



0
0
0
0

 ,Σa ⊗A

 , (28)

Σa =


σ2
a(l1) ρa(l1l2)σa(l1)σa(l2) ρa(l1s1)σa(l1)σa(s1) ρa(l1s2)σa(l1)σa(s2)

ρa(l1l2)σa(l1)σa(l2) σ2
a(l2) ρa(l2s1)σa(l2)σa(s1) ρa(l2s2)σa(l2)σa(s2)

ρa(l1s1)σa(l1)σa(s1) ρa(l2s1)σa(l2)σa(s1) σ2
a(s1) ρa(s1s2)σa(s1)σa(s2)

ρa(l1s2)σa(l1)σa(s2) ρa(l2s2)σa(l2)σa(s2) ρa(s1s2)σa(s1)σa(s2) σ2
a(s2)

 . (29)

where A is the phylogenetic correlation matrix, and Σa is the variance-covariance matrix of the phylogenetic effects.253

Here, σ2
a(l1), σ

2
a(l2), σ

2
a(s1) and σ2

a(s2) are the phylogenetic variances for the location and scale parts of trait 1 and 2,254

respectively. The terms ρa(l1l2), ρa(s1s2), ρa(l1,s1), ρa(l2 s2), ρa(l1 s2), and ρa(l2s1) represent the correlations between the255

phylogenetic effects, capturing various types of coevolutionary relationships. Specifically, ρa(l1l2) reflects across-trait256

mean-mean coevolution, indicating whether evolutionary changes in the mean of one trait are associated with changes257

in the mean of another trait due to shared ancestry (i.e., coevolution of traits). For example, a positive correlation258

may mean pleiotropy (the same set of genes affecting two traits in the same manner) and phenotypic integration (e.g.,259

coevolution of wing and muscle size in birds; cf., Pigliucci, 2003), whereas a negative correlation could represent an260

evolutionary trade-off.261

The term ρa(s1s2) represents across-trait variance-variance coevolut ion, indicating whether the variability in one262

trait is evolutionarily linked to the variability in another trait; this is a new insight obtained from Model 5. Positive263

ρa(s1s2) can also indicate pleiotropy (given a set of genes that affect a trait variability; see Mulder et al. 2008)264

and phenotypic integration, which we call “co-divergence”. In contrast, negative ρa(s1s2) could show a trade-off; a265

famous yet statistically untested example is that avian lineages in which increased variability in male songs are often266

accompanied by reduced variation in male plumage. Such negative correlations can be called “contra-divergence”.267

Furthermore, it can suggest relaxed selection and adaptations to different environments for a set of two traits in a268

clade (see Fig 2). However, phylogenetic variance on the scale part (i.e., σ2
a(s)) can be confounded by external factors269

if we have missing predictors, which pertain to trait variability. Given that one is unlikely to have all the information270

about a trait, one needs to exercise caution in interpreting ρa(s1s2) or any quantities involving σ2
a(s). This issue is271

somewhat reduced once we have multiple data points per species, which will be described in the next sub-section.272

The correlations ρa(l1s1) and ρa(l2s2) denote within-trait mean-variance coevolution, showing whether species with273

higher (or lower) mean trait values also tend to have higher (or lower) variability in the same trait (Model 4 can274

provide such correlations for one trait). Lastly, ρa(l1s2) and ρa(l2s1) capture across-trait mean-variance coevolution,275

examining whether the mean of one trait is evolutionarily associated with the variance of another trait. At first276

glance, it is hard to imagine the evolutionary significance of such correlations (ρa(l1s2) and ρa(l2s1)). Yet, such a277

correlation can signify that, for example, a shift in mean in trait 1 can relax selection in trait 2 (an increase in278

variance in trait 2), therefore, they are evolutionarily meaningful.279
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The residual errors for the location parts are also allowed to be correlated across traits:280

(
e
(l1)
i

e
(l2)
i

)
∼ N

((
0
0

)
,Σe ⊗ I

)
, (30)

Σe =

(
σ2
e(l1) ρe(l1l2)σe(l1)σe(l2)

ρe(l1l2)σe(l1)σe(l2) σ2
e(l2)

)
, (31)

where σ2
e(l1) and σ2

e(l2) are the residual variance for the location part of trait 1 and, and ρe(l1l2) is the correlation281

between the residual errors of the two traits in the location part.282

This multivariate PLSM allows us to explore not only how each trait evolves individually but also how their means283

and variances coevolve. By modelling the covariance structures, we can test hypotheses about evolutionary trade-offs,284

pleiotropy, and adaptive diversification. For instance, a significant positive ρa(l1l2) would indicate that species with285

higher mean values in trait 1 also tend to have higher mean values in trait 2 due to shared evolutionary history.286

Quantifying a set of these four different types of phylogenetic correlations provides exciting avenues to discover and287

test different evolutionary patterns.288

The bivariate model can be extended to more than two traits, leading to a multivariate PLSM. In matrix notation,289

the location part and and the scale part of the model for species i becomes, respectively (Model 6):290

yi = Xiβ
(l) + a

(l)
i + e

(l)
i , (32)

si = ln
(
σei(l)

)
= Xiβ

(s) + a
(s)
i , (33)

where yi is a vector of trait values for species i while si is a vector of residual standard deviation values on the natural291

logarithm scale, Xi is the design matrix of predictors, β(l) and β(s) are vectors of coefficients for the location and292

scale parts, and a
(l)
i and a

(s)
i are vectors of phylogenetic effects for the location and scale parts, respectively. The293

residual errors e
(l)
i are assumed to follow a multivariate normal distribution with appropriate covariance structure.294

Expanding the model to multiple traits increases the complexity of the covariance matrices, but the fundamental295

approach remains the same. By modelling the covariances among multiple traits in both the mean and variance296

components, we can gain a deeper understanding of the evolutionary dynamics shaping trait evolution by obtaining297

the four types of phylogenetic correlations: 1) across-trait mean-mean, 2) across-trait variance-variance, 3) within-trait298

mean-variance and 4) across-trait mean-variance phylogenetic correlation. This comprehensive approach enhances299

our ability to detect patterns such as evolutionary constraints, correlated responses to selection, and the potential300

for adaptive diversification across multiple traits.301

2.4 PLSMs with Non-Phylogenetic Effects and Within-Species Variation302

In the previous sections, we have considered models where each species is represented by a single observation (a303

representative value per species). However, in empirical studies, multiple measurements are taken from individuals304

within species, providing within-species variation. Incorporating within-species variation allows us to partition the305

phenotypic variance into phylogenetic effects, species-specific non-phylogenetic effects, and individual-level residuals306

(cf. Rohlfs et al., 2014; Silvestro et al., 2015; Gaboriau et al., 2020). To accommodate this, we extend the PLSM307

framework by including additional random effects at the species level that are not phylogenetically structured, as308

well as individual-level residuals.309

The extended model is formulated as (Model 7):310
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yij = β
(l)
0 +

K∑
k=1

β
(l)
k xkij + a

(l)
i + e

(l)
i + ε

(l)
ij , (34)

ln
(
σεij(l)

)
= β

(s)
0 +

K∑
k=1

β
(s)
k xkij + a

(s)
i + e

(s)
i , (35)

ε
(l)
ij ∼ N

(
0, σ2

εij(l)

)
, (36)

where yij is the observed trait value for the j-th individual in species i, and xkij represents the value of the k-th311

predictor variable for that individual (note that Model 7 can have two types of fixed factors: individual-level predictors312

e.g., sex of birds and species-level predictors, e.g., mating systems of species). The term β
(l)
0 is the intercept in the313

location part, while β
(l)
k are the coefficients for the predictors in the location part. The phylogenetic effect a

(l)
i accounts314

for the shared evolutionary history among species in the mean trait values. The species-specific non-phylogenetic315

effect e
(l)
i captures additional variation at the species level that is not explained by phylogeny. The individual-level316

residual error ε
(l)
ij represents within-species variation, assumed to follow a normal distribution with mean zero and317

variance σ2
εij(l)

, which may vary among individuals. The term β
(s)
0 and β

(s)
k are the intercept and coefficients in the318

scale part, respectively. The phylogenetic effect a
(s)
i captures the phylogenetic variation in the residual variances319

among species, while e
(s)
i is a species-specific non-phylogenetic effect in the scale part. It is important to clarify that320

the residual term ε
(l)
ij represents something very different from the residual term (e

(l)
i ) in Equation 3. The former321

relates to within-species variation, whereas the latter relates to the non-phylogenetic part of the between-species322

variation.323

The phylogenetic effects in both the location and scale parts are assumed to follow a multivariate normal distribution:324

(
a
(l)
i

a
(s)
i

)
∼ N

((
0
0

)
,Σa ⊗A

)
, (37)

Σa =

(
σ2
a(l) ρa(ls)σa(l)σa(s)

ρa(ls)σa(l)σa(s) σ2
a(s)

)
, (38)

where σ2
a(l) and σ2

a(s) are the phylogenetic variances for the location and scale parts, respectively, and ρa(ls) denotes325

the correlation between the phylogenetic effects in the two parts. The operator ⊗ denotes the Kronecker product,326

indicating that the covariance matrix is constructed by multiplying Σa with the phylogenetic correlation matrix A327

as defined earlier.328

Similarly, the species-specific non-phylogenetic effects are modelled as:329

(
e
(l)
i

e
(s)
i

)
∼ N

((
0
0

)
,Σe ⊗ I

)
, (39)

Σe =

(
σ2
e(l) ρe(ls)σe(l)σe(s)

ρe(ls)σe(l)σe(s) σ2
e(s)

)
, (40)

where σ2
e(l) and σ2

e(s) are the non-phylogenetic species-level variances for the location and scale parts, respectively,330

and ρe(ls) is the correlation between the non-phylogenetic effects in the two parts (cf. Nakagawa and Santos, 2012;331

Cinar et al., 2022). The interpretation of ρe(ls) is similar to ρa(ls) except that driving forces of such correlations are332

different; shared ancestry drives ρa(ls) while shared environments drive ρe(ls).333
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By including both phylogenetic and non-phylogenetic (random) effects at the species level, as well as individual-334

level residuals, this model allows us to partition the total phenotypic variance into components attributable to335

phylogeny, non-phylogenetic factors and within-species (individual) variation; phylogenetic effects are related to336

macro-evolutionary changes while non-phylogenetic effects micro-evolutionary changes (sensu Adams and Collyer,337

2024). Such partitioning is particularly important and insightful when individual measurements are available, as338

it enables us to estimate the degree of trait convergence or divergence due to ecological and environmental factors339

beyond what is explained by shared ancestry.340

Furthermore, the inclusion of random effects in both the location and scale parts, along with their potential cor-341

relations (ρa(ls) and ρe(ls)), allows us to investigate whether species with higher mean trait values also exhibit342

higher variability, and whether these patterns are influenced by phylogenetic relationships or species-specific (non-343

phylogenetic) factors. It is interesting to note that in multivariate contexts, a positive non-phylogenetic correlation344

(ρe; e.g. ρe(l1l2)) can mean phenotypic integration not by genes but by environments (i.e., convergent evolution of345

trait means) while a positive ρe(s1s2) could represent convergent evolution of trait variances (the model shown in the346

online tutorial).347

In practical applications, this model can analyse data where multiple individuals are measured per species, such as348

morphological traits in animals or plants. By modelling both the mean and variance at multiple levels, we gain a more349

comprehensive understanding of the factors influencing trait evolution and variation within and among species. We350

note, however, that such datasets are still rare, and we will not provide an example of this model yet; we anticipate351

there are many opportunities for the application of individual-level PLSMs in the future.352

3 Worked Examples353

To illustrate the application of our phylogenetic location-scale models (PLSMs), we analyse a subset of the AVONET354

dataset (Tobias et al., 2022) focusing on 354 parrot species (Order: Psittaciformes), using avian phylogenetic trees355

from Jetz et al. (2012). This dataset, featuring traits such as body mass, beak size, and habitat, enables us to examine356

how mean trait values and variances evolve across species while incorporating phylogenetic relationships (Fig 5). The357

ecological and morphological diversity of Psittaciformes makes them an excellent group for demonstrating PLSMs’358

capacity to identify clade-specific variability and unravel evolutionary patterns of adaptation and diversification. As359

this is a methodological paper, the examples aim to showcase the potential of PLSMs rather than discover new360

patterns and deliver exhaustive biological interpretations. All implementations are performed using brms (v.2.22.0,361

Bürkner, 2017) in R (v.4.4.2), and all code and detailed output and descriptions are available at link), where we also362

show how to obtain phylogenetic heritability and macro-evolvability not shown in the examples below.363

3.1 Different Trait Variance in Two Groups (Model 3)364

We analysed beak length data from parrot species, contrasting forest-dwelling parrots with those inhabiting simpler,365

more open and less complex environments (e.g., grasslands, shrublands, and woodland). Using a phylogenetic location-366

scale model (i.e., Model 3, which is a simple version of Model 2), we estimated both the mean and variance parameters367

as functions of a categorical (binary) moderator that indicates whether parrots lived in forests or not (named forest).368

Let the response (yi) be (log) centred beak length for species i (cbeak lengthi), foresti ∈ {0, 1} the habitat indicator,369

and cmassi centred log body mass. The fitted PLSM (no phylogenetic random effect in the scale part) is:370

cbeak lengthi = β
(l)
0 + β(l)

cmass cmassi + β
(l)
forest foresti + a

(l)
i + e

(l)
i , (location)

{a(l)
i } ∼ N

(
0, σ2

a(l) A
)
, {e(l)i } ∼ N

(
0, σ2

ei(l) I
)
,

ln
(
σei(l)

)
= β

(s)
0 + β(s)

cmass cmassi + β
(s)
forest foresti. (scale)

Here β(l) shift the clade-level mean (location), and β(s) reshape among-species dispersion (scale). A significant β
(s)
forest371

implies heteroscedasticity between habitats.372

The forest habitat did not significantly predict changes in the mean length of the beak (β
(l)
forest: 0.02, 95% CI: −0.01 to373

12

https://anonymous.4open.science/w/phylo_location_scale-5061//R/


0.05; note that we consider our results statistically significant when 95% CI is not spanning 0; Fig 5A & B), although374

beak length was tended to be larger for forest living parrots. In contrast, forest living did influence variances in beak375

length (β
(s)
forest: 0.96 (95% CI: 0.38 to 2.02); parrot species living in forests exhibit substantially greater variation in376

beak length than those in non-forest habitats (a 1̃60% increase; 100[exp(0.96) − 1] = 161.2). Our model indicates377

that forest-dwelling parrot species exhibit higher evolutionary rates in beak shape than their non-forest counterparts.378

While this pattern is consistent with increased among-species variability, potentially reflecting greater evolvability in379

forest niches; it could also arise if forest environments are more heterogeneous, leading to faster shifts in adaptive380

optima. Additionally, greater phenotypic plasticity in response to variable resources or microhabitats could produce381

similar macro-evolutionary signatures. Disentangling these mechanisms would require complementary ecological or382

experimental data.383

3.2 Co-evolution of Mean and Variance (Model 4)384

In another application, we explored how mean trait values relate to their variance across species’ geographical ranges,385

using Model 4. Let the response (yi) be (log) centred geographical range size for species i (crange sizei) and cmassi386

centred log body mass. We modelled a phylogenetic effect in both parts with a correlation ρa(ls):387

crange sizei = β
(l)
0 + β(l)

cmass cmassi + a
(l)
i + e

(l)
i , (location)

ln
(
σei(l)

)
= β

(s)
0 + β(s)

cmass cmassi + a
(s)
i , (scale)(

a
(l)
i

a
(s)
i

)
∼ N

((
0
0

)
,Σa ⊗A

)
, Σa =

(
σ2
a(l) ρa(ls) σa(l)σa(s)

ρa(ls) σa(l)σa(s) σ2
a(s)

)
,

e
(l)
i ∼ N

(
0, σ2

ei(l)

)
.

A negative ρa(ls) indicates that lineages with larger means exhibit reduced dispersion (a “ceiling/saturation” signa-388

ture).389

This phylogenetic location-scale model revealed a notable negative correlation between the intercepts of the location390

and scale parts at the phylogenetic level (ρa(ls): −0.94, 95% CI: −1.00 to −0.82; Fig 5C, E, & G). The strong391

negative correlation at the phylogenetic level suggests that lineages with larger mean values are constrained in terms392

of how much additional variance they can accumulate. In other words, as mean values approach a “ceiling”, the393

variance is homogenised. This pattern could suggest that parrot species with larger range sizes have similar ranges.394

In addition, range size variance increases significantly as body size increases (a 2̃0% increase as 1 SD change in cmass;395

i.e., heteroscedasticity; β
(s)
mass: 0.18 (95% CI: 0.03 to 0.34; 100[exp(0.18)− 1] = 19.72).396

3.3 Co-evolution of Two Traits (Model 5)397

Finally, by using Model 5 (i.e., a bivariate phylogenetic location-scale model), we examined the co-evolution of398

two traits. Let the first response (y
(1)
i ) be (log) centred beak width (cbreak widthi), the second response (y

(2)
i ) ,399

(log) centred beak depth (cbreak depthi), and cmassi centred log body mass. We fitted a bivariate PLSM with400

phylogenetic random effects in both parts for both traits:401

cbreak widthi = β
(l1)
0 + β(l1)

cmass cmassi + a
(l1)
i + e

(l1)
i ,

cbreak depthi = β
(l2)
0 + β(l2)

cmass cmassi + a
(l2)
i + e

(l2)
i , (location)

ln
(
σei(l1)

)
= β

(s1)
0 + β(s1)

cmass cmassi + a
(s1)
i ,

ln
(
σei(l2)

)
= β

(s2)
0 + β(s2)

cmass cmassi + a
(s2)
i . (scale)

Stacking the four phylogenetic effects,402 
a
(l1)
i

a
(l2)
i

a
(s1)
i

a
(s2)
i

 ∼ N (0, Σa ⊗A) ,
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with403

Σa =


σ2
a(l1) ρa(l1l2) σa(l1)σa(l2) ρa(l1s1) σa(l1)σa(s1) ρa(l1s2) σa(l1)σa(s2)

· σ2
a(l2) ρa(l2s1) σa(l2)σa(s1) ρa(l2s2) σa(l2)σa(s2)

· · σ2
a(s1) ρa(s1s2) σa(s1)σa(s2)

· · · σ2
a(s2)

,

and residuals in the location parts404 (
e
(l1)
i

e
(l2)
i

)
∼ N

((
0
0

)
,Σe ⊗ I

)
, Σe =

(
σ2
e(l1) ρe(l1l2) σe(l1)σe(l2)

· σ2
e(l2)

)
.

Here ρa(l1l2) (mean–mean), ρa(s1s2) (variance–variance), and ρa(l1s2), ρa(l2s1) (cross mean–variance) are the four cor-405

relation types, summarised in Fig. 2.406

We detected positive correlations not only between the means of these traits (ρa(l1l2): 0.89, 95% CI: 0.82 to 0.94;407

Fig 5D, F, & H) but also between their variances (i.e., coevolution of the traits as well as co-divergence; ρa(s1s2):408

0.82, 95% CI: 0.48 to 0.98). Additionally, across-trait mean-variance correlations emerged; a positive correlation409

between the mean of beak width and the variance of beak depth was significant (ρa(l2s1): 0.36, 95% CI: 0.02 to 0.65)410

while the other mean-variance correlation was positive albeit non-significant (ρa(l1s2): 0.28, 95% CI: −0.04 to 0.56).411

The observed positive phylogenetic correlations between two traits are consistent with phenotypic (morphological)412

integration, a pattern of coordinated evolution among traits. Mechanistically, such integration can arise from shared413

genetic or developmental architecture (e.g., pleiotropy, modularity), correlated selection on functionally linked traits,414

or phenotypic plasticity along shared environmental gradients. Also, we repeat exercising caution when interpreting415

parameters involving phylogenetic variance on the scale part (i.e., ρa(s1s2), ρa(l1s2), ρa(l2s1)).416

4 Discussion417

We have introduced phylogenetic location-scale models (PLSMs) as a novel framework for jointly analysing the418

evolution of trait means and variances across species. By extending traditional phylogenetic comparative methods419

(specifically, PGLMM; Lynch, 1991; Hadfield and Nakagawa, 2010; Ives and Helmus, 2011) to model both the420

location and scale components of traits, we have provided a more comprehensive approach to understanding macro-421

evolutionary patterns. Our approach models heteroscedasticity and allows for the investigation of coevolution between422

trait means and variances, both within and between traits.423

One of the key insights from our work is the importance of considering trait variability alongside mean trait values424

in evolutionary studies. Traditional models that focus solely on mean traits may overlook significant evolutionary425

processes that influence trait dispersion across lineages. By modelling the variance explicitly, we can detect patterns426

such as increased variability associated with adaptive radiation or reduced variability due to stabilising selection. For427

example, in our application using the AVONET dataset (Tobias et al., 2022), we identified an ecological factor that428

explains heteroscedasticity in beak length (i.e., where variance in beak length was higher in forest living species).429

Another key insight comes from our multivariate extension of PLSMs, which allows for exploring complex evolutionary430

relationships among multiple traits. By modelling the covariances between phylogenetic effects in both the location431

and scale parts, we can test hypotheses about evolutionary trade-offs, pleiotropy, and integration (Fig 3). This432

comprehensive modelling approach can reveal whether changes in one trait’s mean or variance are associated with433

changes in another’s, providing deeper insights into the mechanisms driving trait evolution.434

More specifically, the ability to decompose the phylogenetic covariance structure into four distinct types of correlations435

is a significant advancement offered by our PLSM framework (Fig 3). These four correlations are: (1) Across-trait436

mean-mean phylogenetic correlation (coevolution), which examines how the evolutionary changes in the mean of one437

trait are associated with changes in the mean of another trait due to shared ancestry (Hansen and Martins, 1996;438

Cheverud, 1996); (2) Across-trait variance-variance phylogenetic correlation (co-divergence or contra-divergence),439

which explores whether the variability in one trait is evolutionarily linked to the variability in another trait, shedding440

light on coordinated evolution of trait variability (cf. Hansen and Houle, 2008); (3) Within-trait mean-variance441

phylogenetic correlation, which assesses whether species with higher (or lower) mean trait values also tend to have442

higher (or lower) variability in the same trait, indicating potential evolutionary constraints or diversification (cf. Revell443

et al., 2008); and (4) Across-trait mean-variance phylogenetic correlation, which investigates whether the mean of444
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one trait is evolutionarily associated with the variance of another trait, suggesting complex evolutionary interactions445

such as a shift in one trait relaxing selection on another (Fig 2). By explicitly modelling these correlations, we can446

disentangle the multifaceted relationships among traits and their variances, providing a nuanced understanding of447

evolutionary processes.448

Of relevance, several earlier and existing phylogenetic comparative methods (PCMs) speak to heterogeneity and449

heteroscedasticity. First, “regime-based” models compare evolutionary rate–covariance matrices across clades or450

discrete regimes mapped onto the tree, testing whether evolutionary covariances differ among lineages classified by451

a categorical character (e.g., Revell and Collar, 2009; Caetano and Harmon, 2017; Hermansen et al., 2018). These452

methods are powerful for asking whether the mean-process (e.g., Brownian motion rate matrices) changes by regime,453

but they typically treat residual dispersion as a nuisance term rather than a modelling target. Second, the Fabric454

model and its recent multi-variable extension identify branches where evolutionary rates and covariances shift by455

transforming branch lengths, allowing among-clade differences in variability/evolvability to be detected without a456

priori regime assignments (Pagel et al., 2022; Pagel and Meade, 2025). In contrast, PLSMs treat the log residual457

standard deviation as an explicit, evolvable response with its own fixed and phylogenetic effects, estimated jointly458

with the mean. This distributional, multi-response formulation yields quantities that are difficult to obtain in the459

alternatives, most notably the four classes of phylogenetic correlations (mean–mean, variance–variance, within-trait460

mean–variance, and across-trait mean–variance), as well as H2
(s) and CVA(s). Thus, PLSMs complement regime-based461

and branch-shift approaches by modelling how dispersion evolves and how it covaries with means, rather than only462

where rate structure changes on the tree. In other words, with PLSMs, the evolution of variation becomes a central463

target of research (cf. Rohlfs et al., 2014; Silvestro et al., 2015; Gaboriau et al., 2020).464

As summarised in Figure 3, we can convert these four correlation classes, which only PLSMs could directly ob-465

tain, as far as we are aware, into concrete examples of macro-evolutionary patterns. First, anatomical integration466

or pleiotropy, shared genetic or developmental pathways, should yield positive mean-mean and variance-variance467

correlations, because the same loci drive coordinated shifts in both the averages and the lability of multiple traits468

(Wagner and Altenberg, 1996; Pigliucci, 2003). Second, life-history trade-offs impose allocation limits that favour469

inverse relationships between competing functions; this generates negative mean-mean correlations (e.g. clutch size470

vs. egg size) (Stearns, 1992). Yet, whether life-history also induces correlations involving variance is an open ques-471

tion. Third, during adaptive radiation, an ecological opportunity relaxes constraints across or selects many trait472

axes simultaneously. Although correlated evolution of means is unpredictable, adaptive radiation should generate473

positive variance-variance correlation, a pattern we term “co-divergence” (Schluter, 2000). Fourth, saturation or474

ceiling effects arise when a trait approaches a physiological or environmental limit (e.g., maximum dispersal range);475

the mean plateaus while among-lineage variance is squeezed, leaving a distinctive negative mean-variance signature476

(cf. Brown, 1995). Finally, “contra-divergence” describes the reciprocal case in which directional change in one trait477

constrains the evolutionary lability of another, producing negative variance-variance correlations. For example, in-478

creasing complexity in bird song is accompanied by reduced variability in plumage signals (cf. Badyaev et al., 2002;479

Cooney et al., 2018). Although not an exhaustive list of potential macro-evolutionary relationships, the examples are480

readily testable with existing comparative data.481

In conclusion, PLSMs offer a powerful and flexible framework for exploring the evolution of trait means and variances.482

By leveraging extensive trait data such as AVONET and FishBase (Froese and Pauly, 2000) and comprehensive phylo-483

genies, researchers can uncover broad patterns and test overarching hypotheses about trait evolution. By accounting484

for both aspects of trait distribution, researchers can gain a more nuanced understanding of evolutionary dynamics.485

We encourage the adoption of PLSMs in comparative studies and suggest that they have the potential to reveal novel486

insights into the mechanisms driving trait evolution. Although more future developments are necessary (see Box 1),487

applying PLSMs will likely become much more accessible as computational tools and resources advance. Importantly,488

PLSMs allow us to reanalyse almost all comparative datasets published previously, offering fresh insights and poten-489

tially revising earlier conclusions (Nakagawa et al., 2025a). Such future work may lead to a deeper understanding of490

how evolutionary processes shape biodiversity and how traits influence the ecological roles of species.491
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Table 1: Key notations for phylogenetic location–scale models, PLSMs (see the main text for mathematical
definitions and extended explanations).

Notation Definition (biological meaning)

yi Observed trait value for species i (typically a species mean on the analysis scale). Realised

phenotype at the tips. Also, yi = (y
(1)
i , y

(2)
i , . . .) is a vector of multiple traits for species i

in multivariate PLSMs; used to study phenotypic integration, trade-offs, and modularity.
yij Observation j from species i (individual-level data). Separates within-species variation

from among-species patterns.
xki, xkij Predictor k for species i (or individual j in species i). Ecology, environment, or life history

that may shift means or dispersion.

β
(l)
0 , β

(l)
k Intercept and slopes in the location (mean) model; quantify how predictors shift clade-

level averages.

β
(s)
0 , β

(s)
k Intercept and slopes in the scale model for ln(σei(l)); quantify how predictors reshape

among-species dispersion (heteroscedasticity).

a
(l)
i Phylogenetic random effect (location): lineage-level deviation in mean due to shared

ancestry (macro-evolutionary signal in trait averages).

a
(s)
i Phylogenetic random effect (scale): lineage-level deviation in log residual SD; captures

clade-specific lability/canalisation (variance evolution).

e
(l)
i Species-level non-phylogenetic random effect in the location part; among-species variation

not explained by shared ancestry (e.g., convergent environments).

ε
(l)
ij Individual-level residual (within-species variation). Distinct from e

(l)
i , which is among-

species.

σ2
a(l) Phylogenetic variance of a(l); magnitude of among-lineage divergence in trait means.

σ2
a(s) Phylogenetic variance of a(s); magnitude of among-lineage divergence in dispersion (how

strongly heteroscedasticity is phylogenetically structured).

ρa(ls) Phylogenetic correlation between a(l) and a(s) (within-trait mean–variance coevolution).
ρa(ls) < 0 suggests ceilings/saturation; ρa(ls) > 0 suggests co-divergence.

A Phylogenetic correlation matrix from a ultrametric tree; encodes shared evolutionary time
and structures all phylogenetic effects

ln(σei(l)) Species-specific residual SD on the natural logarithm scale (ln), the response in the scale
part; treats dispersion as an evolvable/conditioned trait.

σ2
e(l) Average residual variance in the location part (on the data scale); background scatter

after accounting for phylogeny and fixed effects on the mean part.
Σa Variance–covariance (VCV) matrix of phylogenetic effects across parts/traits; with A

gives Σa ⊗A, encoding coevolution in mean and variance.
Σe VCV of residuals among traits in the location part; allows residual mean–mean coupling

beyond phylogeny (environmental/convergent effects).
ρa(l1l2) Across-trait phylogenetic correlation of means (coevolution via pleiotropy/integration vs.

trade-offs).
ρa(s1s2) Across-trait phylogenetic correlation of variances (“co-divergence” or “contra-divergence”

of lability).
ρa(l1s1), ρa(l2s2) Within-trait phylogenetic mean–variance correlations (do lineages with larger means show

greater or lower dispersion in the same trait?).
ρa(l1s2), ρa(l2s1) Across-trait phylogenetic mean–variance correlations (e.g., shift in trait 1 relaxes or con-

strains variability in trait 2).
H2

(l), H
2
(s) Phylogenetic heritability (location and scale): Fractions of variance attributable to shared

ancestry in trait means (l) and variances (s).
CVA(l), CVA(s) Macro-evolvability (location and scale): Mean-standardised potential for evolutionary

change in trait means (l) and variances (s).

σ2
f(l), σ

2
f(s) Variance due to fixed effects in location/scale: Var

(∑
k β

(l)
k xki

)
and Var

(∑
k β

(s)
k xki

)
;

deterministic components (ecology, environment).
σ2
p Phenotypic variance for the location part on the data scale; basis for H2

(l) (sum of fixed,
phylogenetic, and residual components).
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Box 1: Limitations and future opportunities in PLSMs

We have some potential limitations in PLSMs to address, especially in future work. Most notably, the increased
complexity of these models requires careful statistical handling. Estimating covariance structures, especially in
multivariate models, can be computationally demanding and may require larger datasets for reliable parameter
estimates (cf. Cinar et al., 2022). Although advanced statistical software and computational techniques, such as
Bayesian methods implemented in brms (as in our example) or direct use of Stan (Carpenter et al., 2017), can
facilitate the fitting of these complex models, PLSMs with large datasets may take prohibitively long computational
times. Optimising code efficiency and leveraging high-performance computing resources could mitigate some of
these challenges (e.g, our most complex model, i.e., bivariate PLSM, took approximately 122 hours to run on a Mac
computer: Apple M1 Ultra with 128 GB memory).

Another consideration is the interpretation of the correlations between phylogenetic effects. While significant
correlations provide evidence for coevolutionary patterns, distinguishing between causation and correlation remains
challenging. Integrating these findings with biological knowledge about the traits and species under study is essential
to drawing meaningful conclusions about the underlying evolutionary mechanisms. Of relevance, integrating PLSMs
with causal modelling frameworks (McElreath, 2018), such as phylogenetic path analysis or structural equation
modelling, could provide a more holistic view of the evolutionary relationships among traits (Hardenberg and
Gonzalez-Voyer, 2013).

Additionally, future research can extend the PLSM framework in several ways. One promising direction is to apply
PLSMs to non-Gaussian traits (Nakagawa et al., 2025b), such as count data (e.g., using negative binomial models
for overdispersed Poisson data; Ver Hoef and Boveng, 2007), proportion data (e.g., using beta regression models;
Douma and Weedon, 2019; Burke et al., 2023; Korhonen et al., 2024), or ordinal data (e.g., threshold models;
Martin et al., 2017). Such an extension would broaden the applicability of PLSMs to a wider range of traits and
datasets commonly encountered in evolutionary biology. Also, incorporating measurement error and accounting for
uncertainty in phylogenetic relationships could enhance the robustness of the models (Cornwell and Nakagawa, 2017;
Nakagawa and De Villemereuil, 2019). Methods to integrate phylogenetic uncertainty, such as Bayesian approaches
that sample from posterior distributions of phylogenies, would provide more accurate estimates of evolutionary
parameters with more appropriate degrees of uncertainty. Further, here we only considered the Brownian motion
model of evolution, yet other models, such as the Ornstein–Uhlenbeck process, can be tested by using different
specifications of phylogenetic correlation matrix and checking model fit (e.g., likelihood ratio tests) (Cornwell and
Nakagawa, 2017; Pottier et al., 2024).

It should also be noted that a different way of fitting the scale part; indeed, the alternative way has as many scale
parts as the number of random factors (including residuals). For example, using Equations 7-8 (i.e. Model 2), we can
have a location-scale model as follows (note we have numbered hyper-scripts to distinguish from other location-scale
models in the main text):

yi = β
(l1)
0 +

K∑
k=1

β
(l1)
k xki + a

(l1)
i + e

(l1)
i , (41)

ln(σai) = β
(s1)
0 +

K∑
k=1

β
(s1)
k xki, (42)

and

ln(σei) = β
(s2)
0 +

K∑
k=1

β
(s2)
k xki. (43)

As one can see, it has two scale parts, although the scale parts cannot have random effects in this formulation.
Whether such formulations are useful depends on questions in hand (cf. Williams et al., 2021; Rodriguez et al., 2023;
King et al., 2025). Interestingly, this formulation is probably more comparable to the Fabric model (Pagel et al.,
2022; Pagel and Meade, 2025), because it models phylogenetic standard deviation directly as well as residual standard
deviation; the Fabric model also directly works with phylogenetic variance (standard deviation). One disadvantage
of the above formulation is that currently, we cannot implement this model using brms.

492
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Figure 1: Concept: evolution of mean and variance
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Figure 2: Matrix of co-evolution
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Figure 3: Biological mechanisms
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Figure 4: Parrot data visualization
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Figure 5: Results of our 3 examples
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5 Figure legends493

FIGURE 1 Conceptual illustration of phylogenetic location-scale models (PLSMs). (A) Hypothetical trait data494

illustrating both differences in trait means and heterogeneous variance among species or clades (heteroscedasticity).495

Traditional analyses often ignore phylogeny and heteroscedasticity, potentially overlooking crucial macroevolutionary496

patterns. (B) A conventional regression model ignoring phylogenetic relationships assumes equal variance across497

species, neglecting heterogeneity due to shared ancestry. (C) A phylogenetic (location) model incorporates phyloge-498

netic relationships (depicted by the tree below), addressing correlations in trait means arising from shared evolutionary499

history yet still assuming homogeneous variance across species. (D) The phylogenetic location-scale model (PLSM),500

proposed here, extends further by simultaneously modelling both trait means (location) and variances (scale). This501

model accounts for heteroscedasticity and allows variance to vary among clades, explicitly separating variance due to502

phylogeny.503

FIGURE 2 Illustration of the four types of phylogenetic correlations (variance-covariance, VCV), captured by the504

phylogenetic location-scale model (PLSM). Each panel depicts hypothetical scenarios for two traits (y1, y2) across505

species, highlighting different forms of correlated evolution in trait means (location) and variances (scale). The506

top-left panel (location–location correlation) represents correlations between trait means (ρ(µy1 , µy2)), showing how507

evolutionary shifts in the mean of one trait are associated with shifts in the mean of another due to shared ancestry.508

The top-right panel (location–scale) illustrates the relationship between the mean of one trait (µy1) and the variance of509

another (σy2), indicating whether evolutionary changes in the mean of one trait coincide with changes in variability of510

another. The bottom-left panel (within-trait location–scale) illustrates the correlation between the mean and variance511

of the same trait (µy1 , σy1) or (µy2 , σy2), indicating potential evolutionary constraints or diversification within traits.512

Finally, the bottom-right panel (scale–scale) demonstrates correlations between variances of two different traits (σy1 ,513

σy2), indicating coordinated evolutionary changes in trait variability. Ellipses represent phylogenetic patterns, with514

each ellipsis indicating trait distributions of species within a clade.515

FIGURE 3 Examples of how evolutionary mechanisms may be detected through distinct patterns in location-scale516

variance-covariance (VCV) structures, accompanied by biological examples. The left column lists evolutionary mech-517

anisms (anatomic integration/pleiotropy, life-history trade-offs, adaptive radiation, and saturation/ceiling effects).518

The central column visualises the expected phylogenetic correlation patterns between trait means (location) and519

variances (scale), where “+” indicates a positive correlation, and “−” indicates a negative correlation. The right520

column provides biological scenarios exemplifying each mechanism, including morphological integration in bird beaks,521

life-history trade-offs in reproductive traits, trait diversification during cichlid adaptive radiations, and constraints522

on variability such as range-size saturation in birds. The bottom inset clarifies how correlations are interpreted523

within or between traits, with colours indicating predicted positive (red) or negative (blue) correlations and blank524

spaces representing cases where no precise directional prediction can be made. Note that these mechanisms are not525

exhaustive but rather illustrative.526

FIGURE 4 Trait distributions and ecological characteristics of 354 parrot species (Order: Psittaciformes) from the527

AVONET dataset (Tobias et al., 2022). Panels show residual morphological traits (beak length, width, depth) and528

body mass, categorised by forest-living (green) and non-forest-living species (purple), along with their geographical529

range size (in thousands of km2). Trait residuals were calculated after correcting for body size. This dataset, combined530

with a tree from Jetz et al. (2012) phylogenetic tree, serves as our illustrative example for applying phylogenetic531

location-scale models (PLSMs).532

FIGURE 5 Posterior distributions of parameters from three worked examples of phylogenetic location-scale models533

(PLSMs), fitted to parrot morphological traits. Panels (A & B) show results from the example for Model 3, examining534

the effect of habitat (forest vs. non-forest) on mean (location: l) and variance (scale; indicated by s) of beak length535

(int: intercept; contrast: forest vs non-forest; cmass: body mass centred on log scale). Panels (C, D, & E) illustrate536

the example for Model 4, which models the size of the geographical range with fixed effects for mean (location, l)537

and variance (scale, s), two types of phylogenetic standard deviations (s sd and l sd), and the correlation (ls cor)538

between phylogenetic effects of location and scale components, indicating the coevolution mean-variance. Panels (F,539

G, & H) display the example for Model 5, a bivariate analysis of beak width and depth, showing fixed effects intercept540

(int) and centered body mass (cmass) for both traits’ location and scale parts of the traits, their phylogenetic standard541

deviations, and correlations (ll: mean–mean; ss: variance–variance; ls and sl: mean–variance). The vertical dashed542

lines indicate zero; points show posterior medians, thick intervals denote 66% credible intervals, and thin whiskers543

represent 95% credible intervals.544
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