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Abstract

Understanding how both the mean (location) and variance (scale) of traits differ among species and lin-
eages is fundamental to unveiling macroevolutionary patterns. Yet, traditional phylogenetic comparative
methods primarily focus on modelling mean trait values, often overlooking variability and heteroscedas-
ticity that can provide critical insights into evolutionary dynamics. Here, we introduce phylogenetic
location-scale models (PLSMs), a novel framework that jointly analyzes the evolution of trait means and
variances. This dual approach captures heteroscedasticity and evolutionary changes in trait variability,
allowing for the detection of clades with differing variances and revealing patterns of adaptation, diversi-
fication, and evolutionary constraints. Extending PLSMs to a multivariate context enables simultaneous
analysis of multiple traits and their covariances, facilitating the testing of hypotheses about evolutionary
trade-offs, pleiotropy, and phenotypic integration. By modelling covariances between phylogenetic effects
in both the location and scale parts, we can discern whether changes in one trait’s mean or variance are
associated with changes in another’s, thereby offering deeper insights into the mechanisms driving trait
co-evolution, and co-divergence or “contra-divergence”. We also describe how an extended version of
PLSMs incorporating within-species variability can enhance our understanding of trait convergence and
divergence arising from ecological and environmental factors. Our framework provides an innovative and
flexible tool for exploring macro-evolutionary patterns by jointly modelling trait means and variances.
Importantly, PLSMs can be used to reassess almost all previously published comparative data, providing
new evolutionary insights and enriching our understanding of the diversity of life.

Keywords— phylogenetic comparative method, double-hierarchical model, phylogenetic generalized least squares,
phylogenetic generalized linear mixed-effects model, Bayesian statistics



1 Introduction

Understanding how traits evolve across species is a central theme in evolutionary biology. Phylogenetic comparative
methods (PCMs), particularly regression-based approaches, have played a pivotal role in revealing patterns of trait
evolution by accounting for shared ancestry among species (Felsenstein, 1985; Garland and Ives, 2000; Cornwallis
and Griffin, 2024). Traditional methods, such as phylogenetically independent contrasts (PICs) and phylogenetic
generalized least squares (PGLS), have focused on modeling mean trait values, shedding light on average evolutionary
trends (Hansen and Martins, 1996). However, these approaches often assume homogeneity in trait variance (i.e.,
homoscedasticity) across species and lineages, potentially missing key aspects of macroevolutionary processes tied to
variability and dispersion (e.g., Cleasby and Nakagawa, 2011). Contrary to the common assumption that selection
acts solely on trait means, evidence suggests that trait variance itself can be subject to selection. For instance, dairy
cows can be selectively bred for reduced variability in milk production or pigs can be bred for producing similar litter
sizes, demonstrating that genetic mechanisms can influence trait variance in addition to means (Mulder et al., 2008).
Such examples highlight the evolutionary importance of variance and underscore the need for models that explicitly
account for variability to better understand the dynamics of trait evolution.

Indeed, patterns of trait variance can reveal critical insights into macro-evolutionary dynamics, such as release from
stabilizing selection, adaptive radiation, or transitions to evolutionary optima (Hansen et al., 2008). For example, a
positive correlation between species’ mean and variance within a trait in a clade may indicate a release from selection,
allowing greater phenotypic diversity; in other words, a shift in mean trait values leads to increased trait variation
within a clade. Conversely, changes in the mean accompanied by a reduction in variance could signify the attainment
of an adaptive peak or the presence of biological constraints limiting further diversification. Moreover, certain clades
may harbour more variance in specific traits due to ecological opportunities or historical contingencies, but testing
these patterns has been challenging within a traditional linear modelling framework.

Incorporating both the mean (location) and variance (scale) components of traits offers a more comprehensive view of
evolutionary dynamics. Modelling trait variance alongside the mean allows researchers to investigate how variability
is influenced by phylogenetic history and ecological factors. This dual focus can reveal whether evolutionary processes
affect not just the average trait values but also the dispersion around those means, providing deeper insights into
adaptation and diversification in comparative studies. Examining mean and variance evolution simultaneously is
crucial because their interplay can inform us about underlying evolutionary mechanisms and constraints (cf. Hunt,
2007). For example, rapid phenotypic mean shifts via adaptive radiation must be accompanied by increased variation
in multiple traits (see Fig 1). However, this is rarely, if ever, done within a single analytical framework — the very
thing we need.

Therefore, here, we extend the phylogenetic generalized linear mixed models (PGLMMs) framework (Lynch, 1991;
Hadfield and Nakagawa, 2010; Ives and Helmus, 2011) by introducing phylogenetic location-scale models (PLSMs),
which encompass phylogenetic double-hierarchical models where both the location and scale parts have random
effects (cf. Lee and Nelder, 1996, 2006). This model simultaneously accounts for both the mean and variance of traits
across species; the double-hierarchical structure incorporates phylogenetic (random) effects in both components,
allowing us to quantify the coevolution of trait mean and variance within a trait (e.g., Cleasby et al., 2015). By
modelling the residual variance as a function of predictor variables along with phylogenetic relatedness, we aim to
capture evolutionary changes in trait variability; that is, different clades have different trait variances. Furthermore,
a multivariate extension enables us to model coevolution not only within a trait (mean-variance coevolution) but also
between traits (mean-mean coevolution and variance-variance coevolution; Fig 2).

Below, we develop PLSMs in four steps. First, we establish the theoretical framework of PLSMs, starting with a
model without a random effect in the scale part and introducing relevant concepts such as phylogenetic heritability
(Lynch, 1991) and evolvability (Houle, 1992). Second, we extend this PLSM to include phylogenetic effects in both the
location and scale components. Third, we generalize the model to a multivariate context, enabling the simultaneous
analysis of multiple traits and their covariances. Fourth, we incorporate within-species variation into PLSMs so that
individual-level measurements can be accommodated. This model allows us to gain insights into trait convergence
or divergence due to ecological and environmental factors by quantifying both non-phylogenetic and phylogenetic
effects. We then discuss how patterns of variance evolution can inform macro-evolutionary processes such as adaptive
radiation and release from selection and demonstrate the applicability of our model through empirical examples.
Notably, this paper includes an online tutorial (link) to help implement the PLSMs introduced here using brms
(Biirkner, 2017) in R.


https://itchyshin.github.io/phylo_location_scale/R/

2 Developing Phylogenetic Location-Scale Models (PLSMs)

2.1 PLSMs without the Phylogenetic Effect on the Scale Part

As alluded to above, a phylogenetic location-scale model has two parts (equations): 1) the location (mean) part and
2) the scale (variance) part; the simple example of such a model can be written as (Model 1):
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where y; is the observed trait value for species 1, ,3(()1) denotes the intercept term in the location part of the model,
representing the overall mean trait value across all species. The term az(-l) is the phylogenetic effect for species i in the
location part, capturing the variation due to shared evolutionary history among species. As specified in Equation 2,
these phylogenetic effects (a; or the vector a) are assumed to follow a multivariate normal distribution with mean
zero and covariance structure ag(l)A, where Ji(l) is the variance component associated with the phylogenetic effects,
and A is the phylogenetic correlation matrix derived from an ultrametric phylogenetic tree so containing information
on species relatedness. The residual error term ey) (or the vector e(l)) in the location part, as shown in Equation 3,
accounts for the unexplained variation in trait values after accounting for phylogenetic effects. These residuals are
assumed to be independently and normally distributed with mean zero and species-specific variance agi(”, and I is

the identity matrix (a diagonal matrix of 1’s).

The scale (variance) part of the model is given in Equation 4, where the natural logarithm of the residual standard
deviation o, is modelled as a constant intercept ﬁés) on the scale part; note that the scale part could take either
the residual standard deviation or residual variance, which is a matter of preference; for an example of using residual
variance (see O’Dea et al., 2022). This implies that the residual variances are homoscedastic across species unless
extended to include additional predictors or random effects. By modelling the logarithm of the residual standard
deviation, we ensure that the estimated variances are positive, but we acknowledge that variability in trait measure-
ments may differ across species, which is yet to be modelled (see below). Also, it is important to note that Equation 3
is equivalent to egl) ~N (O, 0’31). The variance component o2 is often considered to be the non-phylogenetic effect,
which consists of species variation not due to shared phylogenetic history (assuming measurement errors are negligible
in y; and y; is a representative measurement for species i, e.g., species mean so that y; does not include within-species
variation; for modelling within-species variance, see Section 2.4).

Before building upon this basic formulation, we introduce two key concepts in phylogenetic comparative methods
(PCMs). The one is phylogenetic heritability, introduced by Lynch (1991). Phylogenetic heritability (denoted as
H(21)) is the ratio between the phylogenetic variance and the sum of the phylogenetic and residual variance, showing
the amount of “phylogenetic signal”, which is often quantified by Pagel’s A (Pagel, 1999); according to Lynch (1991),
Pagel’s X\ and H, (21) are equivalent:
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where 02, is the expected (average) value of agi(l) or it is equivalent to exp (ﬂés) ) for the model above. The other



is evolvability, proposed by Houle (1992); evolvability is the phylogenetic standard deviation divided by the expected
(average) value of a trait:

Oa(l)
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where C'V' denotes the coefficient of variation, which is a popular mean-standardized dispersion measure. Evolvabil-
ity values indicate the potential for a given trait to evolve and, like phylogenetic heritability, are supposed to be
comparable across traits (later, we expand these two concepts to the scale part; note for estimating parameters in
these indexes, we use estimators such as Bayesian MCMC estimators). We note that CVy(;y can sometimes be more
involved to obtain as we usually In-transform trait values, and then, we need to convert such values back into the
original scale. This is because CV is only calculable on the original scale, which is the ratio scale where measurements
are all above zero (or example, see our online tutorial; see also O’Dea et al., 2022).

We can now add predictors to both parts of Model 1 to generalize (Model 2):
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where x; is the value of the k-th predictor variable for species i; 8 ,il) are the coefficients associated with the predictors
in the location part, representing the effect of each predictor xx; on the mean trait value; and B,(CS) are the coefficients
in the scale part, capturing how each predictor zy; influences the logarithm of the residual standard deviation o,
(with with k = 1,2...K). By incorporating predictors into both parts of the model, we allow for the possibility that
explanatory variables affect not only the mean trait values but also the variance, enabling a more comprehensive
understanding of the factors influencing trait evolution.

To show the usefulness of this type of PSLMs and make it more concrete, consider a scenario where we are interested
in the evolution of brain size (y) across two classes of vertebrates (e.g., birds and mammals). We hypothesize that,
after controlling for body size (z1), two different vertebrate classes (z2, a dummy variable) have different variances
(i.e., heteroscedasticity). Then, we may have the following model (Model 3):

yi = B + B w1i + B w2 + al” + e, 9)
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where a significant B%S) indicates changes in variance along body size while a significant ﬂés) indicates different

variances between two groups (note that depending on your questions, you may decide to model the interaction
between body size (z1 and z2, and also we do not necessarily have to have the same predictors in both parts of the
model; e.g., not having body size in the scale part) and two classes (z2); yet having the same fixed effects in both
parts seems to be the default). Model 3 and related models are useful for detecting which clades have more variation
in a given trait. Relatively high variance in a clade may represent relaxed selection or adaptations to diverse niches,
while low variance could mean strong stabilizing selection (i.e., the existence of trait optima; Fig 3).

2.2 PLSMs with the Phylogenetic Effect on the Scale Part

Although the above models (Models 1-3) are useful first steps to model mean and variance simultaneously, they
cannot tell us whether mean and variance are co-evolving in a trait across species. To model such an effect, we will



need the following model extending the scale part of Model 3 (Model 4; note its mean part is Equation 7):
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with (J’i(l) and 02(5) representing the phylogenetic variances for the location and scale parts, respectively, and pq(s)
denoting the correlation between the phylogenetic effects in the two parts. The operator ® denotes the Kronecker
product, indicating that the covariance matrix is constructed by multiplying the variance-covariance matrix ¥, with
the phylogenetic correlation matrix A.

()

aﬁ“‘), Model 4 enables us to investigate whether the mean and variance of the trait are co-evolving across species due
to shared ancestry. A significant correlation p, () suggests that species with higher (or lower) mean trait values also
tend to have higher (or lower) trait variability, which may reflect evolutionary processes affecting both the mean and
variance of the trait. For example, we may get a negative p,(s) (€.8., larger traits are associated with lower variance),
and such a correlation value could indicate the existence of a ceiling or optimal trait value for a clade (Fig 2).

®

By incorporating the phylogenetic effect a;”’ in the scale part and allowing for a correlation p,(s) between a;” and

Given Model 4, we redefine phylogenetic heritability for the location part, which is more general than Equation 5:
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where 012, is the observed phenotypic (trait) variance, calculated as the sum of the variance components from the fixed
effects, phylogenetic effects, and residual variance (i.e., all the elements in the model):

7y = 5+ 0aw + 0%eq)- (15)

In this expression, U?(l) represents the variance due to fixed effects in the location part, computed as (Nakagawa and
Schielzeth, 2013):
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and Pei(l) is the average residual variance across species in the location part, given by (O’Dea et al., 2022):

Pe(l) = eXp (2[3(()5) + 20’5(5)) . (17)

Similarly, we can define phylogenetic heritability for the scale part:



HYy = 2. (18)

Since the scale part is on the natural log scale, we need to back-transform 02(5) to the original scale (or the same
scale as in the location part) to obtain U;fs) (following Hill and Mulder, 2010; Mulder et al., 2016):
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Here, 0'5_2 is the variance of the phenotypic variance 0'37 calculated as (Hill and Mulder, 2010; Mulder et al., 2016):
P
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In this context, 032 is the variance of the residual variances in the location part, expressed as:
e()

aiz(l) = (exp (4 (0h(s) + 0F(5y)) — 1) exp (4 (B((f) + 02y + TF s )) (21)

and UJ%<S) represents the variance due to fixed effects in the scale part, computed as:
K
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For evolvability, we use Equation 6 for the location part and for the scale part, evolvability is defined as:
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An alternative expression for C'V4(s) which is applicable if az(-s) is the only random effect in the scale part (also, this
is easier as we do not need to transform back UZ(S))—iS (for the derivation from Equation 23, O’Dea et al., 2022):

CVA(S) = 1/6Xp(40'¢21(s)) — 1. (24)

Earlier relevant papers from quantitative genetics — where mixed-effects models and associated location-scale models
are initially developed — indicate phylogenetic heritability values on the scale part (H, (23)) may be useful yet tend to be
small, compared to that of the location part (Hill and Mulder, 2010; Mulder et al., 2016; Sae-Lim et al., 2015; O’Dea
et al., 2022). However, the evolvability values for the scale part may remain relatively high compared to those for the
location part (H, (QZ)) So, estimating evolvability for location and scale parts may be useful under some circumstances
(although, as we show in the online supplemental materials, evolvability can be challenging to obtain, as it is not
clear what scale evolvability should be calculated, and it seems to be only meaningful when traits are on ratio scale).
Furthermore (and to add to the complexity), although we introduce the CV for variance (Equation 24), it may be
better to have the CV for standard deviation (SD) because mean and SD are on the same scale. In such a case, we
have (Cleasby et al., 2015):

CVars) = \Jexp(oZ ) — 1. (25)



2.3 Multivariate (Multi-Response) PLSMs

So far, we have focused on the evolution of a single trait; however, traits often evolve in conjunction with others due
to genetic, developmental, or functional linkages. To capture these relationships, we need to extend our models to
accommodate multiple traits simultaneously (Halliwell et al., 2022). Multivariate or multi-response PLSMs allow us
to model the evolution of several traits and their covariances, providing a more comprehensive understanding of the
evolutionary processes at play.

In the simplest case of a bi-variate PLSM, we consider two traits, %) (trait 1) and y® (trait 2), across species. Such
a bi-variate model can be expressed as (Model 5):

yo (8D =800+ X B s ) el (26)
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In these equations, the vector y; (length of 2) represents a set of two trait values for species ¢ while the vector s; is
a set of two residual standard deviations on the natural logarithm scale. The coefficients ﬂ((]“), 5[()12)7 ﬂ,(fl), and ﬂ,im)
are the intercept and predictor effects for trait 1 and 2 in the location part, while ﬂ(()51), ,8852>, ,Bffl), and ,8,&52) are
the corresponding parameters in the scale part. The terms a§l1)7 agm), aESI), and agsz) are the phylogenetic effects for
species 7 in the location and scale parts of trait 1 and 2, respectively, capturing the shared evolutionary history.

The vector of phylogenetic effects for both traits and both parts is jointly modelled to account for correlations between

traits and between the mean and variance. Specifically, the random effects are assumed to follow a multivariate normal
distribution:
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where A is the phylogenetic correlation matrix, and 3, is the variance-covariance matrix of the phylogenetic effects.

Here, Uﬁum, 0‘2102), 02(51) and 02(52> are the phylogenetic variances for the location and scale parts of trait 1 and 2 j,
respectively. The terms pa(1112), Pa(s1s2)> Pa(il,s1)> Pa(i2 s2)s Pa(il s2)> dNd pa(i2s1) Tepresent the correlations between the
phylogenetic effects, capturing various types of coevolutionary relationships. Specifically, p,(1:2) reflects across-trait
mean-mean coevolution, indicating whether evolutionary changes in the mean of one trait are associated with changes
in the mean of another trait due to shared ancestry (i.e., coevolution of traits). For example, a positive correlation
may mean pleiotropy (the same set of genes affecting two traits in the same manner) and phenotypic integration (e.g.,
coevolution of wing and muscle size in birds; cf., Pigliucci, 2003), whereas a negative correlation could represent an
evolutionary trade-off. The term p,(s1s2) represents across-trait variance-variance coevolution, suggesting whether
the variability in one trait is evolutionarily linked to the variability in another trait; this is a new insight we obtain
from Model 5. Positive p,(s1s2) can also indicate pleiotropy (given a set of genes that affect a trait variability; see
Mulder et al. 2008) and phenotypic integration, which we call “co-divergence”. In contrast, negative pg(s152) could
show a trade-off; a famous yet statistically untested example is that avian lineage in which increased variability in
males songs are often accompanied by reduced variation in male plumage. Such negative correlations can be called



“contra-divergence”. Furthermore, it can suggest relaxed selection and adaptations to different environments for a
set of two traits in a clade (see Fig 2).

The correlations p,1s1) and p,2s2) denote within-trait mean-variance coevolution, showing whether species with
higher (or lower) mean trait values also tend to have higher (or lower) variability in the same trait (Model 4 can
provide such correlations for one trait). Lastly, p,(1s2) and pa(i2s1) capture across-trait mean-variance coevolution,
examining whether the mean of one trait is evolutionarily associated with the variance of another trait. At first
glance, it is hard to imagine the evolutionary significance of such correlations (pg(1s2) and pg2s1)). Yet, such a
correlation can signify that, for example, a shift in mean in trait 1 can relax selection in trait 2 (an increase in
variance in trait 2), therefore, they are evolutionarily meaningful.

The residual errors for the location parts are also allowed to be correlated across traits:
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where 0;11) and agm) are the residual variance for the location part of trait 1 and, and pe(1:2) is the correlation
between the residual errors of the two traits in the location part.

This multivariate PLSM allows us to explore not only how each trait evolves individually but also how their means
and variances coevolve. By modeling the covariance structures, we can test hypotheses about evolutionary trade-offs,
pleiotropy, and adaptive diversification. For instance, a significant positive p,(;1:2) would indicate that species with
higher mean values in trait 1 also tend to have higher mean values in trait 2 due to shared evolutionary history.
Quantifying a set of these four different types of phylogenetic correlations provides exciting avenues to discover and
test different evolutionary patterns.

The bivariate model can be extended to more than two traits, leading to a multivariate PLSM. In matrix notation,
the location part and and the scale part of the model for species i becomes, respectively (Model 6):

yi = X8 + agl) + egl), (32)

s =In (”em) — X389 +a®, (33)

where y; is a vector of trait values for species ¢ while s; is a vector of residual standard deviation values on the natural
logarithm scale, X; is the design matrix of predictors, 8% and B8(®) are vectors of coefficients for the location and
scale parts, and az(-l) and ags) are vectors of phylogenetic effects for the location and scale parts, respectively. The
residual errors ezm are assumed to follow a multivariate normal distribution with appropriate covariance structure.
Expanding the model to multiple traits increases the complexity of the covariance matrices, but the fundamental
approach remains the same. By modelling the covariances among multiple traits in both the mean and variance
components, we can gain a deeper understanding of the evolutionary dynamics shaping trait evolution by obtaining
the four types of phylogenetic correlations: 1) across-trait mean-mean, 2) across-trait variance-variance, 3) within-trait
mean-variance and 4) across-trait mean-variance phylogenetic correlation. This comprehensive approach enhances
our ability to detect patterns such as evolutionary constraints, correlated responses to selection, and the potential
for adaptive diversification across multiple traits.



2.4 PLSMs with Non-Phylogenetic Effects and Within-Species Variation

In the previous sections, we have considered models where each species is represented by a single observation (a
representative value per species). However, in empirical studies, multiple measurements are taken from individuals
within species, providing within-species variation. Incorporating within-species variation allows us to partition the
phenotypic variance into phylogenetic effects, species-specific non-phylogenetic effects, and individual-level residuals
(cf. Rohlfs et al., 2014). To accommodate this, we extend the PLSM framework by including additional random
effects at the species level that are not phylogenetically structured, as well as individual-level residuals.

The extended model is formulated as (Model 7):

K
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where y;; is the observed trait value for the j-th individual in species 4, and xy;; represents the value of the k-th
predictor variable for that individual (note that Model 7 can have two types of fixed factors: individual-level predictors
e.g., sex of birds and species-level predictors, e.g., mating systems of species). The term 561) is the intercept in the
location part, while B,il) are the coefficients for the predictors in the location part. The phylogenetic effect ail) accounts
for the shared evolutionary history among species in the mean trait values. The species-specific non-phylogenetic
effect egl) captures additional variation at the species level that is not explained by phylogeny. The individual-level
®
variance agij > which may vary among individuals. The term ,805) and ﬂfﬁ are the intercept and coefficients in the
(s)
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residual error ¢;; represents within-species variation, assumed to follow a normal distribution with mean zero and

scale part, respectively. The phylogenetic effect a
(s)

captures the phylogenetic variation in the residual variances

among species, while e;”’ is a species-specific non-phylogenetic effect in the scale part. It is important to clarify that

i
the residual term sg) represents something very different from the residual term (el(.l)) in Equation 3. The former
relates to within-species variation, whereas the latter relates to the non-phylogenetic part of the between-species

variation.

The phylogenetic effects in both the location and scale parts are assumed to follow a multivariate normal distribution:
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where ajm and 02(5) are the phylogenetic variances for the location and scale parts, respectively, and p,(;s) denotes
the correlation between the phylogenetic effects in the two parts. The operator ® denotes the Kronecker product,
indicating that the covariance matrix is constructed by multiplying 3, with the phylogenetic correlation matrix A
as defined earlier.

Similarly, the species-specific non-phylogenetic effects are modeled as:

() () =e1)
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where 0—3(,> and US(S) are the non-phylogenetic species-level variances for the location and scale parts, respectively,
and pe(is) is the correlation between the non-phylogenetic effects in the two parts (cf. Nakagawa and Santos, 2012;
Cinar et al., 2022). The interpretation of p.(;s) is similar to p,(s) except that driving forces of such correlations are
different; shared ancestry drives p,(;s) while shared environments drive pe(s).

By including both phylogenetic and non-phylogenetic (random) effects at the species level, as well as individual-
level residuals, this model allows us to partition the total phenotypic variance into components attributable to
phylogeny, non-phylogenetic factors and within-species (individual) variation; phylogenetic effects are related to
macroevolutionary changes while non-phylogenetic effects microevolutionary changes (sensu Adams and Collyer,
2024). Such partitioning is particularly important and insightful when individual measurements are available, as
it enables us to estimate the degree of trait convergence or divergence due to ecological and environmental factors
beyond what is explained by shared ancestry.

Furthermore, the inclusion of random effects in both the location and scale parts, along with their potential cor-
relations (poas) and pe(s)), allows us to investigate whether species with higher mean trait values also exhibit
higher variability, and whether these patterns are influenced by phylogenetic relationships or species-specific (non-
phylogenetic) factors. It is interesting to note that in multivariate contexts, a positive non-phylogenetic correlation
(pe; €.8. peqriz)) can mean phenotypic integration not by genes but by environments (i.e., convergent evolution of
trait means) while a positive pe(s152) could represent convergent evolution of trait variances (the model shown in the
online tutorial).

In practical applications, this model can analyze data where multiple individuals are measured per species, such as
morphological traits in animals or plants. By modelling both the mean and variance at multiple levels, we gain a more
comprehensive understanding of the factors influencing trait evolution and variation within and among species. We
note, however, that such datasets are still rare, and we will not provide an example of this model yet; we anticipate
there are many opportunities for the application of individual-level PLSMs in the future.

3 Worked Examples

To illustrate the application of our phylogenetic location-scale models (PLSMs), we analyze a subset of the AVONET
dataset (Tobias et al., 2022) focusing on 354 parrot species (Order: Psittaciformes), using avian phylogenetic trees
form Jetz et al. (2012). This dataset, featuring traits such as body mass, beak size, and habitat, enables us to examine
how mean trait values and variances evolve across species while incorporating phylogenetic relationships (Fig 5). The
ecological and morphological diversity of Psittaciformes makes them an excellent group for demonstrating PLSMs’
capacity to identify clade-specific variability and unravel evolutionary patterns of adaptation and diversification. As
this is a methodological paper, the examples aim to showcase the potential of PLSMs rather than discover new
patterns and deliver exhaustive biological interpretations. All implementations are performed using brms (v.2.22.0,
Biirkner, 2017) in R (v.4.4.2), and all code and detailed output and descriptions are available at link), where we also
show how to obtain phylogenetic heritability and evolvability not shown in the examples below.

3.1 Different Trait Variance in Two Groups (Model 3)

We analyzed beak length data from parrot species, contrasting forest-dwelling parrots with those inhabiting simpler,
more open and less complex environments (e.g., grasslands, shrublands, and woodland). Using a phylogenetic location-
scale model (i.e., Model 3, which is a simple version of Model 2), we estimated both the mean and variance parameters
as functions of a categorical (binary) moderator that indicates whether parrots lived in forests or not (named ’forest’).

The forest habitat predictor did not significantly predict changes in the mean length of the beak (Bj(flfrest: 0.02, 95%

CI: —0.01 to 0.05; note that we consider our results statistically significant when 95% CI is not spanning 0; Fig 5A
& B), although beak length was tended to be larger for forest living parrots. In contrast, forest living did influence
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variances in beak length (Bj(fo)rest: 0.96 (95% CI: 0.38 to 2.02); parrot species living in forests exhibit substantially
greater variation in beak length than those in non-forest habitats. The increased variability in forest-dwelling parrots’
beak lengths likely reflects more heterogeneous niches and ecological opportunities in forested environments, even

though their average beak length remains similar to that of their more open-habitat counterparts.

3.2 Co-evolution of Mean and Variance (Model 4)

In another application, we explored how mean trait values relate to their variance across species’ geographical ranges,
using Model 4. This phylogenetic location-scale model revealed a notable negative correlation between the intercepts
of the location and scale parts at the phylogenetic level (pqs): —0.94, 95% CI: —1.00 to —0.82; Fig 5C, E, & G). The
strong negative correlation at the phylogenetic level suggests that lineages with larger mean values are constrained
in terms of how much additional variance they can accumulate. In other words, as mean values approach a “ceiling”,
the variance i homogenized. This pattern suggests that parrot species with larger range sizes have similar ranges. In
addition, range size variance increases significantly as body size increases (i.e., heteroscedasticity; 57(221551 0.18 (95%
CI: 0.03 to 0.34).

3.3 Co-evolution of Two Traits (Model 5)

Finally, by using Model 5 (i.e., a bivariate phylogenetic location-scale model), we examined the co-evolution of two
traits: 1) beak width (trait 1) and 2) beak depth (trait 2). We detected positive correlations not only between the
means of these traits (pg1i2): 0.89, 95% CI: 0.82 to 0.94; Fig 5D, F, & H) but also between their variances (i.e.,
coevolution of the traits as well as co-divergence; pq(s1s2): 0.82, 95% CI: 0.48 to 0.98). Additionally, across-trait
mean-variance correlations emerged; a positive correlation between the mean of beak width and the variance of beak
depth was significant (pgi2s1): 0.36, 95% CL: 0.02 to 0.65) while the other mean-variance correlation was positive
albeit non-significant (p,@1s2): 0.28, 95% CI: —0.04 to 0.56). All these correlations suggest a form of phenotypic
integration. Although expected, these patterns likely reflect shared genetic architectures, developmental pathways,
or selective pressures that influence multiple aspects of morphology simultaneously.

4 Discussion

We have introduced phylogenetic location-scale models (PLSMs) as a novel framework for jointly analyzing the
evolution of trait means and variances across species. By extending traditional phylogenetic comparative methods
(specificallyy, PGLMM; Lynch, 1991; Hadfield and Nakagawa, 2010; Ives and Helmus, 2011) to model both the
location and scale components of traits, we have provided a more comprehensive approach to understanding macro-
evolutionary patterns. Our approach models heteroscedasticity and allows for the investigation of coevolution between
trait means and variances, both within and between traits.

One of the key insights from our work is the importance of considering trait variability alongside mean trait values
in evolutionary studies. Traditional models that focus solely on mean traits may overlook significant evolutionary
processes that influence trait dispersion across lineages. By modelling the variance explicitly, we can detect patterns
such as increased variability associated with adaptive radiation or reduced variability due to stabilizing selection. For
example, in our application using the AVONET dataset (Tobias et al., 2022), we identified an ecological factor that
explains heteroscedasticity in beak length (i.e., where variance in beak length was higher in forest living species).

Another key insight comes from our multivariate extension of PLSMs, which allows for exploring complex evolutionary
relationships among multiple traits. By modelling the covariances between phylogenetic effects in both the location
and scale parts, we can test hypotheses about evolutionary trade-offs, pleiotropy, and integration (Fig 3). This
comprehensive modelling approach can reveal whether changes in one trait’s mean or variance are associated with
changes in another’s, providing deeper insights into the mechanisms driving trait evolution.

More specifically, the ability to decompose the phylogenetic covariance structure into four distinct types of correlations
is a significant advancement offered by our PLSM framework. These four correlations are: (1) Across-trait mean-mean
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phylogenetic correlation (coevolution), which examines how the evolutionary changes in the mean of one trait are
associated with changes in the mean of another trait due to shared ancestry (Hansen and Martins, 1996; Cheverud,
1996); (2) Across-trait variance-variance phylogenetic correlation (co-divergence or contra-divergence), which explores
whether the variability in one trait is evolutionarily linked to the variability in another trait, shedding light on
coordinated evolution of trait variability (cf. Hansen and Houle, 2008); (3) Within-trait mean-variance phylogenetic
correlation, which assesses whether species with higher (or lower) mean trait values also tend to have higher (or
lower) variability in the same trait, indicating potential evolutionary constraints or diversification (cf. Revell et al.,
2008); and (4) Across-trait mean-variance phylogenetic correlation, which investigates whether the mean of one trait
is evolutionarily associated with the variance of another trait, suggesting complex evolutionary interactions such as a
shift in one trait relaxing selection on another (Fig 2). By explicitly modelling these correlations, we can disentangle
the multifaceted relationships among traits and their variances, providing a nuanced understanding of evolutionary
processes (summarised in Fig 3).

In conclusion, PLSMs offer a powerful and flexible framework for exploring the evolution of trait means and variances.
By leveraging extensive trait data such as AVONET and FishBase (Froese and Pauly, 2000) and comprehensive
phylogenies, researchers can uncover broad patterns and test overarching hypotheses about trait evolution. By
accounting for both aspects of trait distribution, researchers can gain a more nuanced understanding of evolutionary
dynamics. We encourage the adoption of PLSMs in comparative studies and suggest that they have the potential to
reveal novel insights into the mechanisms driving trait evolution. Although more future developments are necessary
(see Box 1), applying PLSMs will likely become much more accessible as computational tools and resources advance.
Importantly, PLSMs allow us to reanalyze almost all comparative datasets published previously, offering fresh insights
and potentially revising earlier conclusions. Such future work may lead to a better understanding of how evolutionary
processes shape biodiversity and how traits influence species’ ecological roles.

5 Data Availability Statement

All data, scripts and relevant files used for this study can be found at the GitHub repository (link).
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Box 1: Limitations and future opportunities in PLSMs

We have some potential limitations in PLSMs to address, especially in future work. Most notably, the increased
complexity of these models requires careful statistical handling. Estimating covariance structures, especially in mul-
tivariate models, can be computationally demanding and may require larger datasets for reliable parameter estimates
(cf. Cinar et al., 2022). Although advanced statistical software and computational techniques, such as Bayesian
methods implemented in brms (as in our example) or direct use of Stan (Carpenter et al., 2017), can facilitate the
fitting of these complex models, PLSMs with large datasets may take prohibitively long computational times. Op-
timizing code efficiency and leveraging high-performance computing resources could mitigate some of these challenges.

Another consideration is the interpretation of the correlations between phylogenetic effects. While significant
correlations provide evidence for coevolutionary patterns, distinguishing between causation and correlation remains
challenging. Integrating these findings with biological knowledge about the traits and species under study is essential
to drawing meaningful conclusions about the underlying evolutionary mechanisms. Of relevance, integrating PLSMs
with causal modelling frameworks (McElreath, 2018), such as phylogenetic path analysis or structural equation
modelling, could provide a more holistic view of the evolutionary relationships among traits (Hardenberg and
Gonzalez-Voyer, 2013).

Additionally, future research can extend the PLSM framework in several ways. Omne promising direction is to
apply PLSMs to non-Gaussian traits, such as count data (e.g., using negative binomial models for overdispersed
Poisson data; Ver Hoef and Boveng, 2007), proportion data (e.g., using beta regression models; Douma and Weedon,
2019; Burke et al., 2023; Korhonen et al., 2024), or ordinal data (e.g., threshold models; Martin et al., 2017).
Such extension would broaden the applicability of PLSMs to a wider range of traits and datasets commonly
encountered in evolutionary biology. Also, incorporating measurement error and accounting for uncertainty in
phylogenetic relationships could enhance the robustness of the models (Cornwell and Nakagawa, 2017; Nakagawa
and De Villemereuil, 2019). Methods to integrate phylogenetic uncertainty, such as Bayesian approaches that sample
from posterior distributions of phylogenies, would provide more accurate estimates of evolutionary parameters
with more appropriate degrees of uncertainty. Further, here we only considered the Brownian motion model of
evolution, yet other models, such as the Ornstein—Uhlenbeck process, can be tested by using different specifications
of phylogenetic correlation matrix and checking model fit (e.g., likelihood ratio tests) (Cornwell and Nakagawa, 2017).

It should also be noted that a different way of fitting the scale part; indeed, the alternative way has as many scale
parts as the number of random factors (including residuals). For example, using Equations 7-8 (i.e. Model 2), we can
have a location-scale model as follows (note we have numbered hyper-scripts to distinguish from other location-scale
models in the main text):

K
yi = (()11) i Zﬁ£11)$ki n al(_n) " el(_u)7 (41)
k=1
K
(o) = B8 + > BV ki, (42)
k=1
and
K
In(oe,) = (()52> + Zﬂ;(:%mm‘- (43)
k=1

As one can see, it has two scale parts, although the scale parts cannot have random effects in this formulation.
Whether such formulations are useful depends on questions in hand (cf. Williams et al., 2021; Rodriguez et al., 2023).
This is also a future area of statistics research. One disadvantage of the above formulation is that currently, we
cannot implement this model using brms.
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8 Figure legends

FIGURE 1 Conceptual illustration of phylogenetic location-scale models (PLSMs). (A) Hypothetical trait data
illustrating both differences in trait means and heterogeneous variance among species or clades (heteroscedasticity).
Traditional analyses often ignore phylogeny and heteroscedasticity, potentially overlooking crucial macroevolutionary
patterns. (B) A conventional regression model ignoring phylogenetic relationships assumes equal variance across
species, neglecting heterogeneity due to shared ancestry. (C) A phylogenetic (location) model incorporates phyloge-
netic relationships (depicted by the tree below), addressing correlations in trait means arising from shared evolutionary
history yet still assuming homogeneous variance across species. (D) The phylogenetic location-scale model (PLSM),
proposed here, extends further by simultaneously modelling both trait means (location) and variances (scale). This
model accounts for heteroscedasticity and allows variance to vary among clades, explicitly separating variance due to
phylogeny.

FIGURE 2 Illustration of the four types of phylogenetic correlations captured by the phylogenetic location-scale
model (PLSM). Each panel depicts hypothetical scenarios for two traits (y1, y2) across species, highlighting different
forms of correlated evolution in trait means (location) and variances (scale). The top-left panel (location—location
correlation) represents correlations between trait means (p(py, , fty,)), showing how evolutionary shifts in the mean of
one trait are associated with shifts in the mean of another due to shared ancestry. The top-right panel (location—scale)
illustrates the relationship between the mean of one trait (uy, ) and the variance of another (oy, ), indicating whether
evolutionary changes in the mean of one trait coincide with changes in variability of another. The bottom-left
panel (within-trait location—scale) depicts the correlation between the mean and variance of the same trait (uy,,
0y, ), suggesting evolutionary constraints or diversification within traits. Finally, the bottom-right panel (scale—scale)
demonstrates correlations between variances of two different traits (oy,, oy,), indicating coordinated evolutionary
changes in trait variability. Ellipses represent phylogenetic patterns, with circles indicating trait distributions of
species within clades.

FIGURE 3 Examples of how evolutionary mechanisms may be detected through distinct patterns in location-scale
variance-covariance (VCV) structures, accompanied by biological examples. The left column lists evolutionary mech-
anisms (anatomic integration/pleiotropy, life-history trade-offs, adaptive radiation, and saturation/ceiling effects).
The central column visualizes the expected phylogenetic correlation patterns between trait means (location) and
variances (scale), where “+” indicates a positive correlation, and “—” indicates a negative correlation. The right
column provides biological scenarios exemplifying each mechanism, including morphological integration in bird beaks,
life-history trade-offs in reproductive traits, trait diversification during cichlid adaptive radiations, and constraints
on variability such as range-size saturation in birds. The bottom inset clarifies how correlations are interpreted
within or between traits, with colours indicating predicted positive (red) or negative (blue) correlations and blank
spaces representing cases where no precise directional prediction can be made. Note that these mechanisms are not
exhaustive but rather illustrative.

FIGURE 4 Trait distributions and ecological characteristics of 354 parrot species (Order: Psittaciformes) from the
AVONET dataset (Tobias et al., 2022). Panels show residual morphological traits (beak length, width, depth) and
body mass, categorized by forest-living (green) and non-forest-living species (purple), along with their geographical
range size (in thousands of km?). Trait residuals were calculated after correcting for body size. This dataset, combined
with a tree from Jetz et al. (2012) phylogenetic tree, serves as our illustrative example for applying phylogenetic
location-scale models (PLSMs).

FIGURE 5 Posterior distributions of parameters from three worked examples of phylogenetic location-scale models
(PLSMs), fitted to parrot morphological traits. Panels (A & B) show results from the example for Model 3, examining
the effect of habitat (forest vs. non-forest) on mean (location: 1) and variance (scale; indicated by s) of beak length
(int: intercept; contrast: forest vs non-forest; cmass: body mass centered on log scale). Panels (C, D, & E) illustrate
the example for Model 4, which models the size of the geographical range with fixed effects for mean (location, 1)
and variance (scale, s), two types of phylogenetic standard deviations (s_sd and 1_sd), and the correlation (1s_cor)
between phylogenetic effects of location and scale components, indicating the coevolution mean-variance. Panels (F,
G, & H) display the example for Model 5, a bivariate analysis of beak width and depth, showing fixed effects intercept
(int) and centered body mass (cmass) for both traits’ location and scale parts of the traits, their phylogenetic standard
deviations, and correlations (11: mean-mean; ss: variance—variance; 1s and s1: mean—variance). The vertical dashed
lines indicate zero; points show posterior medians, thick intervals denote 66% credible intervals, and thin whiskers
represent 95% credible intervals.
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