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Abstract 

Litter decomposition by arthropods, microbes, and fungi is a key ecosystem process in tropical forests, 
yet its response to forest disturbance and recovery remains poorly understood. To investigate 
decomposition dynamics across forest succession, we conducted an experiment in the Ecuadorian 
lowland Chocó (Esmeraldas) using a chronosequence approach. We deployed above- (AG) and 
belowground (BG) litterbags in 32 plots spanning active cacao plantations and pastures (age 0), 
secondary forests (1–38 years), and old-growth forest. AG litterbags (5 mm mesh) allowed arthropod 
access, while BG litterbags restricted decomposition to microbial activity. Each contained standardized 
leaf litter from five common tree species: Pourouma bicolor, Brosimum utile, Compsoneura atopa, 
Vochysia macrophylla, and Trema micrantha. Litterbags were collected at three time points, with 
replacements every 45 days. We examined decomposition drivers by modeling litter mass loss (%) 
against forest age and environmental factors. AG decomposition was analyzed in relation to tree 
aboveground biomass, surface temperature, leaf litter biomass, elevation, and terrain slope, while BG 
decomposition was assessed with soil pH, soil C:N, terrain slope, soil moisture, and soil temperature. 
Additionally, we tested how small-scale disturbances and large animal exclusion affected 
decomposition (PREX) using four treatments: control (C), fenced (CF, exclusion of large ground-
dwelling animals), perturbed (P, removal of litter and understory vegetation in 100 m²), and perturbed-
fenced (PF, combined litter removal and animal exclusion). AG decomposition rates increased with 
forest succession but followed a U-shaped pattern in plots recovering from cacao land-use, with a mid-
succession decline and higher rates in old-growth forests. Key drivers included surface temperature, 



elevation, and tree aboveground biomass, with temperature varying significantly depending on land-
use history. BG decomposition was unaffected by forest age, decreased with C:N, and showed a bell-
shaped response to soil moisture. Large animal exclusion (CF) had no effect, whereas perturbation (P, 
PF) significantly altered decomposition. Notably, decomposition in P plots showed dynamic recovery, 
whereas in PF plots, mass loss remained suppressed throughout the 135-day study, emphasizing the 
role of large animals in facilitating ecosystem recovery.  
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Introduction 

Litter decomposition is a fundamental ecological process in forests, driving the breakdown of fallen 
leaves and organic material on the forest floor through the activity of bacteria, fungi, insects, and other 
invertebrates (Q. Liu et al. 2005; Makkonen et al. 2012). Decomposition plays a pivotal role in nutrient 
cycling, thus supporting the fertility and productivity of forests (Long et al. 2021). Understanding 
decomposition dynamics is particularly relevant in regenerating tropical forests, which are expanding 
globally due to land abandonment and secondary succession (Heinrich et al. 2021). Secondary tropical 
forests have become critical for carbon storage and biodiversity conservation, yet their recovery 
trajectories vary depending on past land-use, disturbance history, and environmental conditions 
(Poorter et al. 2016). To grasp changes in nutrient cycling and forest productivity during forest 
regrowth, it is imperative to discern the impact of local environmental factors on litter decomposition. 
In lowland tropical rainforests, variations in local climatic conditions and soil characteristics occur 
within regions, across landscapes and at the forest microhabitat level (Paudel et al. 2015; Ostertag et 
al. 2022), due to differences in land-use legacy (Foster et al. 2003a; Kallenbach and Stuart Grandy 
2015), disturbance level (Röder et al. 2024), or successional stage (Attignon et al. 2004; Stone et al. 
2020). These factors in turn strongly influence tree species diversity and thus determine litter quality 
(Sánchez-Silva et al. 2018) and shape the decomposer community structure (Ashford et al. 2013), both 
of which are primary drivers of decomposition rates (Cornwell et al. 2008; García-Palacios et al. 2013).  

Findings from previous chronosequence studies (Powers et al. 2009; Paudel et al. 2015; Sánchez-Silva 
et al. 2018; Morffi-Mestre et al. 2023) indicate that decomposition rates tend to increase with forest 
recovery. Forest age is a critical factor influencing litter decomposition, with an increase in 
decomposition rates as aboveground biomass accumulates (Lohbeck et al. 2015). This "vegetation 
quantity effect" suggests that the recovery of ecological processes, including decomposition, is closely 
tied to biomass accumulation. Mature forests, with their more stable microclimates and developed 
decomposer communities, support higher decomposition rates, likely due to more favourable 
microhabitats and enhanced microbial activity in more structurally complex environments (Sniegocki 
et al. 2022).  Forest structure also influences microclimate and it is well-established that temperature 
and water availability are the two main controlling factors of decomposition, both above- (Salinas et 
al. 2011) and belowground (Aerts 1997). The importance of soil moisture is particularly pronounced in 
tropical forests, where temperature is less limiting and soil microbial activity is primarily moisture-
driven (Meir et al. 2008; Schaap et al. 2024). However, past land-use exerts a lasting influence on forest 
structure and soil properties (Chazdon 2003), which can affect decomposition trajectories over time.  

Historical agricultural activities, such as cultivation and grazing, can lead to soil compaction, nutrient 
depletion, and shifts in plant species composition (van der Sande et al. 2022), which in turn affect litter 
quality, decomposer communities and decomposition rates. Soil moisture acts as a key modulator of 



decomposition rates, exhibiting a non-linear relationship with microbial activity (Sierra, Malghani, and 
Loescher 2017). On one hand, increased moisture enhances soil organic carbon solubility and diffusion, 
facilitating microbial uptake and reducing physiological stress (Moyano, Manzoni, and Chenu 2013; 
Manzoni et al. 2014). On the other hand, excessive moisture reduces oxygen availability, which slows 
aerobic decomposition (Skopp et al., 1990; Keiluweit et al., 2016). Similarly, soil pH influences microbial 
communities and enzymatic activity, with decomposition rates varying across pH gradients (Sellan et 
al. 2020). Additionally, soil C:N ratios can have contrasting effects on decomposition, exhibiting 
ecosystem-dependent variability, with mass loss increasing with C:N in forests but decreasing in 
grasslands (Blanco et al. 2023). Topography also influences decomposition via its effects on soil 
properties and microclimate, with some studies reporting increased decomposition on steeper slopes 
due to enhanced solar exposure, temperature, and soil aeration (Hu et al. 2020), while others found 
no significant effects (Ma et al. 2024). Elevation is often closely associated with temperature and forest 
composition (Sinha et al. 2018), thus affecting leaf litter decomposition, especially aboveground 
(Bohara et al. 2020). 

Forest clearance activities, including biomass removal and logging, modify microclimate, soil 
properties, disrupt decomposer communities and hinder litter breakdown (Latterini et al. 2023). 
However, large-scale experimental manipulations of decomposition in tropical forests remain rare. A 
long-term litter manipulation experiment in mature forest in Panama, revealed that litter removal 
alters soil conditions, reduced nutrient cycling, and impacted soil fauna and microbial communities 
(Sayer, Tanner, and Lacey 2006; Ashford et al. 2013). However, the immediate effects of perturbations 
associated with tropical land-use change on decomposition dynamics remain uncharacterised. To 
address this, we studied the impacts of vegetation removal and large animal exclusion on leaf litter 
decomposition in the Chocó Forest in Ecuador, a lowland tropical forest known for its remarkable 
biodiversity and ecological importance. We used a space-for-time approach (described in Escobar et 
al., 2024), to examine how disturbance and environmental factors interact to influence above- and 
belowground decomposition along a chronosequence of naturally regenerating tropical forest with 
different land-use legacies. To mimic the low-impact forest degradation commonly observed in 
extensive areas of neotropical forests (Matricardi et al. 2020), we simulated two types of small-scale 
disruptions (100 m²) representing human interventions such as selective logging (Sagarin and Pauchard 
2010) or hunting (Dirzo et al. 2014; Granados et al. 2017) within forest areas at different stages of 
recovery from larger-scale disturbances (>1 ha).  

By investigating the in situ effects of small-scale disturbances on decomposition along a forest recovery 
chronosequence, our study addressed three key objectives: (1) To elucidate variations in leaf litter 
decomposition across stages of forest regeneration from different land-uses. (2) To identify how 
changes in key abiotic drivers during forest regrowth influence leaf litter decomposition. (3) To 
experimentally assess the recovery of decomposition following a strong pulse perturbation and 
evaluate the relative importance of large animal activity on decomposition dynamics. 

We hypothesised that: (1) Decomposition rates will increase with forest recovery, but the trajectory 
will differ between land-use legacies. H2) Differences in decomposition dynamics with forest age and 
between land-use legacies will be explained by distinct environmental conditions and soil properties, 
whereby decomposition rates will increase with temperature and be highest at moderate soil moisture 
levels. H3) Small-scale pulse disturbances simulating forest clearance and large animal exclusion will 
inhibit decomposition and the impact of perturbation will increase with forest age. 

 

Materials and Methods 

Study design 



This study formed a crucial component of the Reassembly Research Unit (www.reassembly.de), which 
focuses on elucidating the dynamics of tropical forest recovery. Situated in the northwest of Ecuador, 
within the lowland Chocó Forest, the study area includes the Canandé reserve of the Jocotoco 
Foundation, the Tesoro Escondido reserve and the nearby villages of La Yuca and Hoja Blanca (Province 
of Esmeraldas). Detailed information on the Reassembly study design is given in the respective site 
description (Escobar et al. 2024). The Reassembly chronosequence comprises study plots representing 
various stages of forest regeneration (Escobar et al. 2024), spanning active cacao plantations and 
pastures to 38-year-old regenerating forests originating from these respective land-use legacies. For 
our study we selected a subset of 32 plots consisting of three active cacao plantations, three active 
pastures, 18 forests at various stages of recovery (nine with cacao plantation legacy and nine with 
pasture legacy) and eight old-growth forests. The active cacao plots encompass two different land 
management practices, two plots with organic agroforestry cultivation and one conventional 
plantation encircled by pasture lands. Forest recovery is represented by forest age, defined as the 
number of years since the last human use of the study plot, and the age distribution of the plots was 
as uniform as possible across land-use legacies (Table S1). Finally, the old-growth forests provide a 
benchmark for undisturbed forest conditions; they were chosen based on the absence of evidence for 
past anthropogenic exploitation, determined from historic data provided by the Jocotoco Foundation.  

Perturbation-Recovery Experiment (PREX) 

To study the short-term response of decomposition processes to disturbance, we conducted a 
Perturbation-Recovery Experiment (PREX). We established four 10 x 10 m subplots within each forest 
plot long the chronosequence. In March 2022, we applied one of four treatments to each subplot: 1) 
complete removal of litter, dead wood, lianas, seeds, shrubs, and understory plants with < 25 cm stem 
circumference at 1.3 m above the ground (Po), 2) large animal exclusion by surrounding the area with 
a c. 1 m high shade-cloth fence (CF); 3) combined perturbation and fencing (PFo); and 4) undisturbed 
open controls (C). In March 2023, we repeated the Po and PFo treatments in 4 x 10 m areas inside the 
previously perturbed subplots. All new vegetation with stem circumference of < 25 cm, and all dead 
wood and leaf litter were removed from a 4 m x 10 m area in the old-growth and regeneration subplots, 
and a 2.5 m x 8 m area in the active agriculture. Because of the sloped terrain of some plots, a barrier 
was placed between the newly perturbed area and the one perturbed the year before to protect from 
eventual mudslides. Therefore, the re-perturbation added two more treatments to the experiment: 
open perturbed treatment (P) and perturbed-fenced (PF).  

Decomposition experiment 

To investigate the influence of forest age, land-use legacy and small-scale disturbance on 
decomposition dynamics, we measure litter mass loss during three consecutive 45-day post-
disturbance regeneration stages. We used litterbags to measure decomposition above- and 
belowground: aboveground (AG) litterbags measured 20 cm x 20 cm and were made with 0.5-cm 
plastic mesh; belowground (BG) litterbags measured 5 cm x 5 cm and were made with 0.5 mm mesh. 
We used a standard litter mix (with equal proportions of species) to encompass a range of leaf traits 
(Table S2) and plant species present across the chronosequence (Figure S1). To create the litter 
mixture, we collected and chopped leaves (to ca. 5 x 5 cm for litterbags and to 5 x 5 mm for teabags) 
from five local common trees: Pourouma bicolor (Urticaceae), Brosimum utile (Moraceae), 
Compsoneura atopa (Myristicaceae), Vochysia macrophylla (Vochysiaceae), Trema micrantha 
(Cannabaceae). To measure aboveground decomposition, we defaunated the leaves by freezing at -
18°C for at least 30 days, thoroughly mixed an equal mass of leaves per species to guarantee a uniform 
distribution, and then placed 30 g (± 0.01 g) of the standardised mix in each AG litterbag. For 
belowground decomposition, we oven dried the leaves at 70 °C to constant weight, then placed 0.2 g 
(± 0.001 g) of each litter from each species in each BG litterbag to give a total of 1 g litter dry mass. 



In March 2023, we deployed the first set of litterbags on the same day the perturbation treatment was 
applied. We placed one AG litterbag and two BG litterbags (c. 10 cm depth) in all four PREX subplots 
per plot. We used two BG litterbags per subplot as buried bags were more likely to be damaged or lost. 
After an incubation period of 45 days, we collected all litterbags and placed a new set of bags in each 
subplot and we repeated this process after 90 days. Thus, we measured decomposition at 45, 90 and 
135 days post-perturbation, in four subplots within 32 study plots, giving a total of 386 AG litterbags 
and 772 BG litterbags. 

Upon retrieval, the litterbags were thoroughly cleaned of soil and root material and then dried to 
constant weight at 70°C. The final dry weight was used to determine mass loss and decomposition was 
expressed as the percentage dry mass loss (%) of litter over each 45-day incubation. For belowground 
decomposition, mass loss of the two BG litterbags was averaged. A total of 62 AG and 67 BG litterbags 
were either lost or discarded because the litterbags had been damaged or because the content was 
indistinguishable from soil and roots, leaving 324 AG litterbags and 705 BG litterbags for analysis.  

Environmental data 

To characterise each plot, we used data on slope, tree aboveground biomass, elevation, litter standing 
crop, soil surface temperature, soil temperature at 0-6 cm depth, and soil pH, soil moisture and soil 
C:N ratio from 0-10 cm depth. We measured soil temperature and soil moisture with TMS-4 data logger 
(TOMST s.r.o., Prague, Czech Republic) following the field method described by Wild et al. (2019). We 
summarised the daily measurements by calculating the 95th percentile for each study plot for the 
study period of our decomposition experiment (see Supplementary Methods for further detail).  For 
soil pH and C:N ratio, eight soil samples were collected at 0-10 cm depth at the margins of each plot 
and later mixed to form a single composite sample of 800-1000 g. Within a week of collection, 300 gr 
to 500 gr of the mixed sample was oven-dried to constant weight at 40°C. Dry samples were stored in 
sealed plastic bags. Soil pH was measured in a 1:1 soil-water solution and soil total C and N content 
was measured by elemental analysis (Elemental Analyzer FlashSmart, Thermo Fisher Scientific, Italy). 
To determine litter standing crop, we collected litter from four 50 x 50 cm areas of each plot prior to 
the first perturbance event. The litter was dried to constant weight to obtain dry mass. Tree 
aboveground biomass was estimated on individual tree DBH and height measurements (Chave et al. 
2014) upon a detailed botanical survey on the study plots. Elevation and slope were extracted as 
topography DEM for plot centroids using bilinear interpolation. The topographical and botanical data 
for each plot was collected as part of the Reassembly project and the respective methods and datasets 
can be found in the site description (Escobar et al. 2024). 

Statistical analysis 

Data analysis was conducted in R version 4.3.1 (R Core Team 2023, www.r-project.org). To test the 
effect of forest age and land-use legacy on litter decomposition, we constructed generalised linear 
mixed models (GLMM, gaussian family) with the lme4 package (Dawber 2009; Bates et al. 2015) using 
mass loss in the control treatments in separate models for above- and belowground decomposition. 
For aboveground decomposition, litter mass loss was square-root-transformed to meet modelling 
assumptions. The models included forest age, land-use legacy (pasture or cacao) and time - or 
regeneration stages - since the start of treatments (45, 90 or 135 days) as fixed effects. The interaction 
term between forest age and land-use legacy was also included to capture differences in forest 
successional trajectories. We specified the study plots as a random intercept. To estimate fixed and 
random effects, we utilized the lmerTest package (Kuznetsova, Brockhoff, and Christensen 2017) and 
we assessed the significance of fixed effects with the Anova function in the car package (Fox and 
Weisberg 2018) based using Type II sums of squares and an F-test. If time since the start of treatments 
had no significant effect (p > 0.05) on a given response variable, we assumed that there was no 



seasonal variation across three regeneration stages. For the AG litterbags, exploratory data analysis 
revealed a possible quadratic relationship between mass loss and forest age, we therefore constructed 
models with and without the quadratic term and conducted a likelihood ratio test (anova function in 
stats package) to test the model fit. We calculated the Akaike Information Criteria (AIC) and selected 
the best model based on the lowest AIC. Finally, we used the DHARMa package (Hartig 2016) for model 
diagnostics, and to test for overdispersion or zero inflation.  

To evaluate how microhabitats vary with forest succession, we used generalised linear models to 
model environmental factors as a function of forest age, excluding old-growth forests. We assessed 
correlations among these variables and excluded LAI due to its high correlation with tree aboveground 
biomass, retaining only the latter (Table S2). To determine whether these environmental factors 
explain differences in decomposition with forest age or land-use legacy, we used generalised linear 
models to model mass loss from the control treatments as a function of five environmental variables 
per sample position measured across all 32 study plots (Table S3), including old-growth forests. 
Predictors were log- or square-root transformed if necessary to meet modelling assumptions. The 
models were constructed and tested as described above. 

Finally, to evaluate the impact of perturbation (P and PF treatments) and large animal exclusion (CF 
and PF treatments) on mass loss, we performed Kruskal-Wallis tests to compare the experimental 
treatments to the control for every regeneration stage and sample position. To measure the effect 
sizes, we calculated epsilon squared (ε2) as: 

𝜀ଶ =
ுିାଵ

ି
                                                                                                                                                         (Eq. 1) 

Where n the total sample size (64), k is the number of groups being tested (2, control and one 
treatment) and H is the Kruskal-Wallis statistic (Vogt and Johnson 2016). 

The high variation and non-normality of the data from both AG and BG samples did not allow model 
fitting against the continuous variable of forest age.  

For easier visualisation, we calculated treatment effects (TE) as response ratios: 

(𝑇𝐸)ௗ௬௦ =
(ெ௦௦ ௦௦ % ி,  ி)

(ெ௦௦ ௦௦ % )
                                                                                                            (Eq. 2) 

Where CF, P and PF are the experimental treatments and C is the control subplot in each study plot i, 
and regeneration stage (45, 90 or 135 days).  

We report significant results at p < 0.05 and non-significant trends at p < 0.1. 

 

Results 

1. Decomposition dynamics across the chronosequence 

Mass loss (%) was the highest in the old-growth forest, followed by cacao plantations, and was lowest 
in pastures (Table S4). The differences in mass loss among land-use types was greatest for AG 
litterbags.  

Aboveground mass loss generally increased with forest age (ANOVA, F2, 17 = 5.5, p = 0.014). At sites with 
cacao legacy the pattern of mass loss followed a quadratic trend (Cacao × Age², p = 0.011) with lower 
decomposition rates in the middle of the chronosequence (Figure 1), but this trend was not apparent 
in the sites with pasture legacy (Pasture × Age², p = 0.212), and there was no overall difference in 
decomposition between land-use legacies.  



There was a trend of declining belowground mass loss with forest succesional stage (β = -0.04, SE = 
0.07, p = 0.600), but the effect was not significant (Figure 1) and land-use legacy had no detectable 
influence.  

Figure 1 Leaf litter decomposition dynamics measured above- and belowground at three time points along a chronosequence 
of tropical forest regeneration from two different land-uses, where dots represent mean mass loss per subplot and timepoint; 
lines with shading represent modelled relationships with confidence intervals and their opacity stands for statistical 
significance;  green is pasture, orange is cacao plantation and purple is old-growth forest; old-growth forests were not 
included in the models and the data distribution is instead represented by boxplots, showing medians, interquartile range 
and whiskers.  

2. The influence of environmental factors 

Environmental variables differed markedly among sites along the regeneration gradient (Figure 2). 
Tree aboveground biomass and leaf area index (LAI) increased with forest age, a trend that persisted 
in old-growth forests. Elevation and soil C:N also increased with successional stage but exhibited lower 
values in old-growth forests. Temperature and pH decreased with forest age, stabilizing at lower levels 
in old-growth stands. Leaf litter standing crop followed a bell-shaped trajectory, increasing until mid-
chronosequence before declining, with old-growth forests showing lower biomass than the peak. 
Legacy effects were most pronounced early in the chronosequence, as pastures lacked leaf litter due 
to minimal tree cover.  

A detailed description of the results of the individual measured variables and their respective trends 
with forest age is reported in the Supplementary Information (Table S5 -Table S10). 



 

Figure 2 Environmental and soil variables measured along the studied chronosequence; lines with shading represent 
modelled relationships with confidence intervals and their opacity stands for statistical significance;  leaf litter biomass 
showed a bell-shaped relationship with forest age; in all models we differentiated the trends of each variable with forest age 
by land-use legacy; green is pasture, orange is cacao plantation and purple is old-growth forest; old-growth forests were not 
included in the models and the data distribution is instead represented by boxplots, showing medians, interquartile range 
and whiskers;  

Aboveground mass loss was related to differences in tree aboveground biomass, surface temperature 
and elevation across plots, whereas belowground mass loss was related to soil C:N and soil moisture 
(Table S11). 

Aboveground mass loss increased linearly with tree aboveground biomass (β = 0.04, p = 0.005) and 
elevation (β = 0.07, p = 0.03) but exhibited a bell-shaped relationship with leaf litter biomass (β = -2.00, 
p = 0.023, ANOVA p = 0.061), with peak values at a leaf litter biomass of approx. 1 t/ha. Aboveground 
mass loss declined with increasing surface temperature (β = -3.14, p = 0.022) but the relationship 
differed among land-use legacies (p = 0.012), whereby mass loss increased with soil surface 
temperature in old-growth forests but declined in plots with cacao and pasture legacy (Figure 3). Both 
above- and belowground mass loss increased with slope, though the trend was not significant. 
Belowground mass loss declined with increasing soil C:N (β = -35.67, p = 0.033) but showed a bell-
shaped relationship with soil moisture (β = -26.73, p < 0.001, ANOVA p = 0.001), with peak mass loss 



at a soil moisture of c. 0.57 (unitless, scale 0 - 1). Belowground mass loss also tended to increase with 
soil temperature, but the relationship was not significant across or within land-use legacies.  

 

 



Figure 3 Leaf litter decomposition as a function of microhabitat variables for above- (A-E) and belowground (F-L) litterbags, 
respectively; the individual trends for each legacy are depicted for surface temperature and soil temperature; models were 
fitted on transformed data; the opacity of the regression lines and respective confidence intervals stands for statistical 
significance. 

3. Effects of small-scale perturbation and animal exclusion 

In the control treatment, neither above- nor belowground mass loss differed over time. The effects of 
the three PREX treatments on above- and belowground mass loss was overall comparable (Figure 4, 
Table S12). Fencing had no influence on mass loss at any time point from the disturbance event. 
Perturbation inhibited mass loss both above- (p < 0.001, ε2 = 0.20) and belowground (p = 0.022, ε2 = 
0.07) after 45 days and only aboveground after 90 days from disturbance (p < 0.001, ε2 = 0.22). The 
perturbed-fenced treatment had a similar effect on belowground mass loss, resulting marginally lower 
than the control only after 45 days (p = 0.095, ε2 = 0.03). However, aboveground mass loss was strongly 
decreased at all three regeneration stages in the perturbed-fenced treatment (45 days: p = 0.004, ε2 = 
0.12; 90 days: p < 0.001, ε2 = 0.23; 135 days: p = 0.002, ε2 = 0.14). 

 

Figure 4 Treatment effect (TE) on above- and belowground decomposition in the experimental treatments (CF, P and PF) at 
the three time points from the PREX event; the dashed black line at TE = 0 indicates no effect of CF, P nor PF hence when 
mass loss in the treatment was the same as the control, TE < 0 when mass loss in the treatment was less than the control, TE 
> 0 when mass loss in the treatment was higher than the control; the significancy levels refer to the p-values of the Wilcoxon 
rank-sum test to compare the TE in the three time points (days from perturbation) within each treatment and sample position. 

 

Discussion 

Our study revealed that land-use legacy influences the recovery of decomposition processes during 
forest regeneration, while animal exclusion impacts the recovery of these processes in response to 
small-scale “pulse” disturbances. In accordance with our first hypothesis, the changes in mass loss 
during secondary forest succession followed different trajectories at sites with pasture legacy 
compared to former cacao plantations. We also found evidence to support our second hypothesis that 



differences in decomposition along the forest chronosequence would be related to microclimate. 
Finally, as hypothesised, perturbations representing initial land clearance inhibited litter 
decomposition. However, although large animal exclusion had no immediate effect on litter mass loss, 
the effects of small-scale perturbations persisted for longer in fenced treatments, indicating that 
animal activity could accelerate the recovery of decomposition processes after land clearance. Here, 
we discuss the relevance of our results for the regeneration of forest ecosystem functions after land 
abandonment. 

1. Land-use legacy influences decomposition dynamics during forest regeneration 

Our results demonstrate that land-use legacy influences aboveground litter decomposition during 
forest regrowth. The U-shaped relationship between decomposition and regeneration time from 
former cacao plantation use, with lower mass loss in the middle of the chronosequence, suggests that 
the decomposition process may slow down during certain stages of forest recovery, possibly due to 
shifts in both the decomposer community and microclimatic conditions (Guariguata and Ostertag 
2001; Paudel et al. 2015). Although we did not assess decomposer communities in this study, work on 
temperate forest succession showed that the richness and density (individuals/m2) of each functional 
groups of arthropods declined from early to mid-successional stages, and then increased again towards 
mature forest habitats (Deng et al. 2022), which mirrors the pattern we observed for litter mass loss. 
Lower mass loss in mid-successional stages may also be linked to transient changes in vegetation 
structure (Gessner et al. 2010), soil chemistry (van der Sande et al. 2022), or nutrient availability as the 
forest transitions from earlier successional stages to a more complex system (Sánchez-Silva et al. 2018; 
Thom and Keeton 2020).  

By contrast, the linear increase in mass loss with forest age at sites with pasture legacy, reflects the 
pronounced changes in microclimate and habitat conditions during the transition from open pasture 
to closed canopy forest. The harsh microclimatic conditions in the pastures, characterized by high 
temperatures, lack of canopy cover, and intense solar radiation, create an environment that is 
unfavourable for decomposer communities (Lorenzo et al. 2014). Accordingly, litter decay rates are 
often lower in pastures compared to forest sites (Stone et al., 2020; Röder et al., 2024) and increase 
as ecosystems regenerate. In our study, the soil surface temperature in open pastures was up to 11ºC 
higher than in forest sites (Table S5), and no shade nor protection from any tree canopy (Table S8), 
supporting our second hypothesis about the importance of changes in microclimate for the recovery 
of decomposition processes during forest regrowth. Overall, we demonstrate that land-use legacy can 
have long-lasting impacts on ecological processes, though their effects may become less pronounced 
as forests mature (Foster et al. 2003b).  

In contrast to surface processes, belowground decomposition tended to decline with successional age, 
and was not influenced by land-use legacy, indicating that belowground litter decay follows a different 
trajectory of recovery compared to aboveground decomposition. Soil microbial communities could be 
less responsive to forest regeneration, likely more constrained by factors such as soil pH (bacteria 
(Rousk et al. 2010) and fungi (Shi et al. 2019)) or nutrient content (Cornwell et al. 2008) and less bound 
to aboveground structural properties. However, also belowground samples consistently exhibited the 
lowest decomposition rates in the active pastures.  

Greater mass loss in active cacao plantations compared to pasture sites reflects differences in soil and 
microclimatic conditions under these two land-use types. It has been shown that nitrogen fertilisation 
in plantations (Gill, Schilling, and Hobbie 2021) and higher pH (Luizão, Luizão, and Proctor 2007; Corre, 
Beese, and Brumme 2003) can enhance microbial activity, thereby increasing decomposition. Although 
nitrogen (%) levels in active cacao plantations were similar to those in pastures at our sites, pH was 
noticeably higher in the plantations (Figure 2, Table S9). Additionally, cacao fields have a litter layer on 



the soil surface, which reduces evaporation and maintains a more favourable microclimate for 
decomposition (Sayer 2006) and acts as a buffer against harsh environmental conditions (R. Liu et al. 
2021). In our study, active cacao plantations had fairly high leaf litter standing crop (up to 2 t/ha, Table 
S7) thereby confirming the protective role of the litter layer. Finally, pastures are commonly associated 
with soil compaction, nutrient depletion, and diminished microbial activity (Souza et al. 2013), all of 
which significantly reduce decomposition potential. 

2. Microclimate and soil properties drive decomposition dynamics across the chronosequence 

Among the abiotic factors examined, tree aboveground biomass showed a strong positive relationship 
with AG decomposition (p = 0.005), reinforcing the “vegetation quantity effect” observed in previous 
studies (Lohbeck et al. 2015). The accumulation of tree aboveground biomass promotes favourable 
microhabitats for decomposers by increasing organic matter inputs, enhancing moisture retention, 
and moderating temperature fluctuations, all of which enhance microbial activity. In our study, 
temperature in old-growth forest remained stable, ranging between 23-26°C (Table S5), and higher LAI 
indicated a dense canopy providing shade and protection (Table S8), further supporting the vegetation 
quantity effect. Consequently, as tree biomass accumulates in regenerating forests, decomposition 
rates tend to increase, reflecting the recovery of ecological processes tied to forest structure. This 
pattern aligns with broader findings that forest age is strongly correlated with tree aboveground 
biomass in secondary forests (Chazdon et al. 2006; Poorter et al. 2016; Ojoatre et al. 2024; Escobar et 
al. 2024), further supporting the hypothesis that forest recovery enhances decomposition processes.  

Surface temperature emerged as one of the most influential drivers of AG decomposition. In old-
growth forests, decomposition rates were positively correlated with temperature, consistent with 
findings that temperature boosts microbial and enzymatic processes that facilitate decomposition 
(Salinas et al., 2011), even when moisture levels remain constant across sites (Esquivel et al. 2020). 
However, in regenerating forests with cacao and pasture legacies, decomposition rates declined with 
increasing temperature, suggesting that past land-use induced structural changes, such as reduced 
canopy cover in early regeneration plots (Table S8). Notably, surface temperatures in active plots and 
early pasture regeneration sites (forest age = 2 years) frequently exceeded 30°C (Table S5). These 
results align with studies highlighting the role of canopy closure in regulating microclimates that are 
conducive to decomposition (Wallace et al., 2018). Elevated surface temperatures are often linked to 
decreased soil moisture (Foster et al. 2003b), a pattern observed in our active cacao plots, where soil 
moisture was consistently lower than the other sites (Table S6). 

Elevation is also often closely associated with temperature and forest composition (Sinha et al. 2018). 
Our elevation range was quite narrow, spanning between 159-615 m a.s.l. The site-specific 
microclimate within such short gradient likely affected the positive relationship we observed between 
elevation and decomposition. In particular, mid- to high-elevation forest plots provided more 
favourable conditions for decomposition, such as increased humidity and moderate temperatures that 
reduce desiccation. Similarly, a study in the forests of Mount Kilimanjaro observed a peak in 
decomposition rates at mid-elevations, hence confirming a significant positive effect of both 
temperature and humidity on decomposition (Röder et al. 2024). 

With respect to leaf litter biomass, our results suggest an optimal standing crop for maximizing 
decomposition, as indicated by a bell-shaped relationship with samples’ mass loss (Figure 3). Low litter 
biomass may limit decomposition due to insufficient substrate availability, while excessive litter could 
indicate constrained decomposer activity, possibly due to unfavourable microclimatic conditions or 
resource imbalances. This aligns with findings from the Gigante Litter Manipulation Project, which 
demonstrated that experimental litter additions did not necessarily enhance decomposition rates 
(Sayer, Tanner, and Lacey 2006).  



Soil moisture and C:N ratio emerged as key drivers of BG decomposition, consistent with studies 
highlighting water availability and nutrient constraints, particularly nitrogen and phosphorus, as 
fundamental controls on decomposition (Pausas and Bond 2020; Wieder, Cleveland, and Townsend 
2009). In our plots, soil C:N ranged between 10.7-13.7, with overall lower values observed in the 
agricultural plots (Table S9). Decomposition rates declined with increasing soil C:N, likely mirroring the 
challenge microbial decomposers  face in accessing nitrogen as a nutrient source to sustain carbon 
metabolism in the litter (Blanco et al. 2023). Generally, soils with higher C:N ratios and more complex 
carbon compounds support slower decomposition rates than nutrient-rich substrates (Schaap et al. 
2024). Decomposition exhibited a bell-shaped response to soil moisture, with mass loss peaking at an 
optimal level before declining as excess water created anoxic conditions that inhibited microbial 
activity. In tropical wet forests, this threshold is easily reached, as observed in our study, where active 
pastures—lacking canopy cover and root biomass—became overly saturated (Table S6) and exhibited 
the lowest decomposition rates. A boreal forest study similarly demonstrated that high moisture levels 
primarily limit decomposition by depleting oxygen availability (Sierra, Malghani, and Loescher 2017). 
Conversely, active cacao plots exhibited very low soil moisture levels, likely due to increased 
evaporation. 

Soil temperatures were consistently lower than surface temperatures (Table S5), highlighting the 
buffering effect of soil and residual humidity in mitigating extreme aboveground conditions, 
particularly in early successional plots. Although not statistically significant, temperature was positively 
correlated with decomposition, supporting the well-established theory that higher temperatures 
accelerate microbial activity and organic matter breakdown (Aerts 1997).  

3. Forest clearance inhibits decomposition and exclusion of large animal slows down recovery  

Our results indicate that the presence of the fence alone had no substantial effect on decomposition. 
At first glance, this appears to contradict our initial hypothesis that mechanical disturbance by large 
animals would accelerate decomposition by promoting litter fragmentation and soil mixing. 

However, the perturbation treatments (P and PF) strongly reduced aboveground decomposition 
following disturbance, supporting our hypothesis and aligning with previous research showing that 
disturbances—such as logging or clearing—can slow decomposition by disrupting decomposer 
communities and altering soil conditions (Laigle et al. 2021; Latterini et al. 2023). In the P treatment, 
decomposition rates initially decreased (45 days) but gradually recovered to control levels after 135 
days, suggesting a process of recovery over time. In contrast, no such recovery was observed in the 
perturbed-fenced (PF) treatment, indicating that excluding large animals inhibited decomposition 
recovery within the experiment’s timeframe. This finding reinforces the crucial role of large animals in 
forest nutrient cycling by promoting litter breakdown, soil mixing, and bioturbation. Thus, large 
animals appear to play a key role in facilitating post-disturbance decomposition recovery, offering 
novel insights into their ecological function in tropical forests. 

Belowground decomposition also showed an initial decline following disturbance (after 45 days), but 
the effect size was relatively small (P: ε2 = 0.07, PF: ε2 = 0.03) and diminished over time. This suggests 
that belowground decomposition is less sensitive to pulse disturbances and exhibits greater resilience 
overall. 

 

Conclusion  

Our study reveals the intricate and dynamic nature of leaf litter decomposition in regenerating tropical 
forests, emphasizing the profound and lasting influence of land-use legacy. We demonstrate that 



historical land-use not only shapes initial recovery trajectories but also continues to mediate 
ecosystem processes long after abandonment. In forests regenerating from cacao plantations, 
aboveground decomposition followed a non-linear pattern, suggesting complex interactions between 
decomposer communities, microclimate, and vegetation structure. In contrast, forests recovering from 
pastures experienced prolonged suppression of decomposition, highlighting the severe and persistent 
ecological constraints imposed by this legacy. Key environmental drivers emerged with distinct yet 
interconnected roles to forest age and land-use history. 

We also provide novel insights into the role of large animals and disturbance in decomposition 
recovery. While simply excluding large animals did not alter decomposition, perturbation treatments 
significantly slowed the process. However, recovery occurred when animals remained present, 
whereas decomposition remained suppressed in the fenced treatment.  

Together, these results deepen our understanding of decomposition as a multifaceted and context-
dependent process, governed by the interplay of past and present ecological conditions. By 
demonstrating how vegetation structure, land-use legacy, and decomposer community resilience 
collectively shape decomposition, our study provides key insights into tropical forest recovery. These 
findings have direct implications for conservation and restoration strategies, emphasizing the need to 
account for historical land-use impacts, prioritize vegetation recovery, and recognize the ecological 
functions of fauna in promoting nutrient cycling. As tropical forests continue to regenerate under 
varying legacies and anthropogenic pressures, understanding these ecological processes becomes 
increasingly critical for guiding effective forest management and fostering ecosystem resilience. 
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Supplementary Methods 

Study design 

Table S1. Study sites described by coordinates, forest age, successional stage and legacy. 

Successional stage Legacy Plot Latitude Longitude Forest Age 

Active agriculture 

Cacao 

CA62 0.511049 -79.2121680 0 

CA63 0.544072 -79.14537496 0 

CA64 0.543444 -79.15454602 0 

Pasture 

PA54 0.536930 -79.18835000 0 

PA55 0.497629 -79.22451722 0 

PA57 0.511013 -79.20914000 0 

Forest regeneration 

Cacao 

CR02 0.501487 -79.22595296 2 

CR04 0.511733 -79.18950979 36 

CR05 0.511791 -79.20359239 12 

CR06 0.520722 -79.21059304 20 

CR09 0.472487 -79.22959582 6 

CR10 0.477183 -79.19957402 24 

CR11 0.477902 -79.20506568 31 

CR13 0.488969 -79.22612546 1 

CR14 0.49816 -79.13848336 38 

Pasture 

PR19 0.552739 -79.17480114 6 

PR21 0.508066 -79.18989812 36 

PR22 0.509382 -79.20450795 12 

PR23 0.510839 -79.23202079 1 

PR26 0.526454 -79.20466318 22 

PR31 0.479072 -79.21007127 24 

PR33 0.489268 -79.22841179 1 

PR34 0.493511 -79.13792672 38 

PR36 0.51652 -79.1430608 9 

Old-growth forest Old-growth 

OG38 0.513162 -79.19323403 NA 

OG39 0.521561 -79.19537184 NA 

OG41 0.529896 -79.18850798 NA 

OG42 0.538494 -79.17462629 NA 

OG45 0.477783 -79.20370404 NA 

OG46 0.478053 -79.19470296 NA 

OG49 0.531384 -79.14797897 NA 

OG52 0.545743 -79.13757074 NA 

 

Decomposition experiment 

Table S2. Leaf traits of plant species used in the decomposition experiment; the values reported 
consist of the mean of measurements taken from three different specimens per species. 



Species C:N 
Thickness 
b/r(mm) 

Thickness 
a(mm) 

Toughness 
1(N) 

Toughness 
2(N) 

Toughness 
3(N) 

Fresh 
weight 
(mg) / 
petiole 

Fresh 
weight 
(mg) 

Leaf + 
R:X DW 
(mg) / 
petiole 

DW 
blade 
(mg) 

Brosimum 
utile 

28.37 0.12 0.12 3.16 2.84 2.73 2920.67 116.67 19 958.33 

Compsoneura 
atopa 37.35 0.25 0.24 4.63 4.66 4.86 7637.67 517.67 88 1898 

Pourouma 
minor 

24.61 0.2 0.2 3.54 3.5 3.23 29193.33 8718.33 2520.33 11412.67 

Trema 
micrantha 

15.57 0.13 0.12 1.15 0.97 1.02 993.67 60.67 11.33 332.67 

Vochysia 
macrophylla 

36.95 0.16 0.16 4.02 4.17 4.16 2071 86 19.33 440 

 

 

Figure S1. Occurrence of plants used for the natural leaf litter mix along the chronosequence. 

Environmental data 

Soil loggers TMS-4 

Temperature and soil moisture data was recorded with soil loggers TMS-4 
(https://tomst.com/web/en/systems/tms/tms-4/) following the method described by Wild. 
During November-January 2023, we installed a soil logger TMS-4 in the soil of the three fenced 
treatments of the PREX experiment (CF, PF, PFo). We left the soil logger in the field for at least 13 days, 
during which it recorded temperature values at three height levels (-6 cm, 0 cm (surface), and +12 cm). 
Due to the low number of loggers, loggers were installed in a subset of samples and moved to a new 
set of plots after at least 13 days had passed. Before we installed the logger in the PREX-PF, vegetation, 
and litter were removed in an area of 1m2 and placed in the centre. 
 
Leaf Area Index (LAI) 

The leaf area index (LAI) was measured using an LAI 2200c device. For each plot, we collected four 
measurements per treatment. These measurements were then processed using the FV2200 software, 



which incorporates an open-sky reference for calibration. As LAI represents the ratio of leaf area to 
ground area, it is a unitless index (m²/m²).  

Statistical analysis 

Table S2. Correlation matrix among environmental variables.  

Soil 
temperature 

Surface 
temperature 

Elevation 
Terrain 
slope 

LAI 
Leaf 
litter 

biomass 

Tree 
aboveground 

biomass 

Soil 
moisture 

pH C:N 

1 0.971 -0.589 -0.205 -0.59 -0.434 -0.442 -0.061 0.233 -0.291 

0.889 1 -0.493 -0.173 -0.615 -0.389 -0.475 -0.012 0.236 -0.261 

-0.567 -0.539 1 0.115 0.27 0.203 0.233 0.186 -0.302 0.507 

-0.173 -0.153 0.006 1 -0.003 -0.012 -0.083 0.12 0.327 -0.19 

-0.381 -0.4 0.132 0.02 1 0.433 0.586 -0.194 -0.271 0.238 

-0.273 -0.238 0.117 0.03 0.276 1 0.377 0.031 0.011 0.314 

-0.429 -0.481 0.218 0.041 0.493 0.35 1 0.048 -0.358 0.109 

-0.132 -0.115 0.196 0.091 -0.131 0.021 0.028 1 -0.058 0.083 

0.245 0.257 -0.225 0.186 -0.202 0.015 -0.216 -0.083 1 -0.233 

-0.231 -0.188 0.24 -0.006 0.076 0.138 0.118 0.061 -0.117 1 

 

LAI showed a moderate correlation with tree aboveground biomass and temperature therefore we 
decided not to include it in the main text.  Elevation was also partially correlated with temperature 
(surface: r2 = 0.564, soil: r2 = 0.591) but we kept it as a main predictor.  

Table S3. Predictors of each individual model for both sample positions; we reported the 
transformation we applied to each respective variable.  

Sample position Variable Transformation 

Aboveground 

Above-ground biomass sqrt 

Elevation sqrt 

Leaf litter biomass NA 

Temperature (surface) log 

Terrain slope log 

Belowground 

pH NA 

Soil C:N log 

Soil moisture NA 

Temperature (soil) NA 

Terrain slope log 
 

We also included LAI, Nitrogen (%) and Carbon (%) in the analysis, though not in the final results. 
Nitrogen (%) was square-root transformed and Carbon (%) was log- transformed. 

 

Supplementary Results 

1. Decomposition dynamics across the chronosequence 

Table S4. Mass loss (%) data from both above- (AG) and belowground (BG) litterbags measured in the 
control treatments. 



Plot ID Legacy Mass loss (%) Position 
Days from PREX 

(Regeneration Stage) 
CA62 Cacao 37.5 BG 45 
CA62 Cacao 33.7 BG 90 
CA62 Cacao 22.35 BG 135 
CR04 Cacao 24.7 BG 45 
CR04 Cacao 31.45 BG 90 
CR04 Cacao 26.8 BG 135 
CR10 Cacao 31.5 BG 45 
CR10 Cacao 29.95 BG 90 
CR10 Cacao 36 BG 135 
OG38 Old-growth 30.5 BG 45 
OG38 Old-growth 35.7 BG 90 
OG38 Old-growth 30.55 BG 135 
OG45 Old-growth 38.5 BG 45 
OG45 Old-growth 29.2 BG 90 
OG45 Old-growth 34.65 BG 135 
PA54 Pasture 26.55 BG 45 
PA54 Pasture 28 BG 90 
PA54 Pasture 31.95 BG 135 
PR21 Pasture NA BG 45 
PR21 Pasture 29.45 BG 90 
PR21 Pasture 35 BG 135 
PR31 Pasture 36 BG 45 
PR31 Pasture NA BG 90 
PR31 Pasture 37.1 BG 135 
PR26 Pasture 16.47 AG 45 
CR06 Cacao 21.90 AG 45 
PR22 Pasture NA AG 45 
OG52 Old-growth 28.60 AG 45 
OG49 Old-growth 32.14 AG 45 
PR36 Pasture 16.97 AG 45 
PA55 Pasture 18.68 AG 45 
OG41 Old-growth 29.87 AG 45 
PA54 Pasture 18.35 AG 45 
CA62 Cacao 16.58 AG 90 
PA57 Pasture 14.31 AG 90 
PR21 Pasture 31.04 AG 90 
CR14 Cacao 34.03 AG 90 
OG42 Old-growth 31.92 AG 90 
PR19 Pasture NA AG 90 
OG45 Old-growth NA AG 90 
CR11 Cacao 31.81 AG 90 
OG46 Old-growth 30.21 AG 90 
OG38 Old-growth 36.35 AG 135 
OG39 Old-growth 37.63 AG 135 
CA63 Cacao 34.64 AG 135 



CR02 Cacao 22.23 AG 135 
CR13 Cacao 21.23 AG 135 
PR33 Pasture 14.86 AG 135 

 

2. The influence of environmental factors 

Surface temperature did not exceed 26°C in the old-growth forests, whereas it reached values above 
30 °C in the active plots and early pasture regeneration (forest age = 2). Soil temperatures at 6 cm 
depth were overall lower than surface temperatures and only exceeded 30° C in one active cacao and 
one active pasture plots (Table S5).  

Volumetric soil moisture values are reported in a scale of 0 to 1 (Table S6). Soil moisture ranged from 
0.49 to 0.69, which falls within the range reported for comparable tropical moist forests (Veldkamp et 
al., 2003).  

Leaf litter biomass ranged between 0 in the active pastures to more than 2 t/ha in early regeneration 
sites. However, leaf litter biomass production was highest in the old-growth forest and in the younger 
forest stages (Table S7), regardless of the agricultural legacy.  

Tables S8 and S9 report measurements of Leaf Area Index, soil pH, and C:N, respectively.  

Above biomass, elevation and terrain slope are reported in the site description (Escobar et al., 2024).  

Table S5. Surface and soil temperatures (°C) measured by the TMS-4 loggers. 

Plot ID Microhabitat Min Q5 Median Mean Q95 Max 

CA62 Surface 19.75 21.875 23.5 24.84404 31.92813 42.5625 
Soil 22.5625 23.75 25 25.22695 27.375 29.25 

CA63 Surface 22.3125 22.875 24 24.125 25.6875 26.875 
Soil 23.375 23.5625 24.0625 24.04762 24.5 24.75 

CA64 Surface 22.125 22.875 24.5 26.17827 34.05625 40.375 
Soil 24.375 24.75 26.5 26.9656 30.25 32.75 

CR02 Surface 21.375 21.875 23.4375 24.02588 27.625 31.375 
Soil 23 23.4875 24.375 24.58083 26.1875 26.625 

CR04 Surface 20.625 21.5 22.5 22.63484 24.125 25.5 
Soil 21.3125 21.75 22.375 22.41659 22.9125 23.25 

CR05 Surface 20.375 21.75 23 23.26339 25.375 26.6875 
Soil 22.25 22.75 23.375 23.44644 24.125 24.375 

CR06 Surface 21.1875 22.10313 23.125 23.27716 24.625 25.375 
Soil 22.125 22.5 23.25 23.20657 23.77188 24.125 

CR09 Surface 22.5 23 24.625 25.06575 28.09063 30.8125 
Soil 24 24.375 25.25 25.40656 26.625 27.25 

CR10 Surface 21.5625 22.05938 23.4375 23.6082 25.37813 28.125 
Soil 22.5 22.87188 23.5 23.58709 24.375 24.625 

CR11 Surface 21.5 21.9375 23.375 23.57345 25.57813 30.5 
Soil 22.625 22.9375 23.625 23.70862 24.57813 25 

CR13 Surface 21.5 22.08438 23.25 23.4171 25 25.875 
Soil 22.375 22.625 23.375 23.40004 24.125 24.25 

CR14 Surface 20.8125 21.25 22.25 22.39863 23.91875 24.875 
Soil 21.5 21.75 22.25 22.30007 22.875 23.125 



OG38 Surface 20.75 21.5 22.5 22.70959 24.25 24.9375 
Soil 21.4375 21.9375 22.625 22.66875 23.25 23.5 

OG39 Surface 21.25 21.62188 22.375 22.50859 23.81563 24.375 
Soil 21.625 21.8125 22.25 22.28571 22.75 23 

OG41 Surface 21.625 21.9375 23.125 23.24356 24.59375 25.1875 
Soil 22.3125 22.5625 23.25 23.23422 23.75 24 

OG42 Surface 21.625 22.25 23.25 23.44583 25 25.625 
Soil 22.5 22.89688 23.5 23.55078 24.25 24.375 

OG45 Surface 21.375 21.875 23.25 23.39931 25 26 
Soil 22.375 22.75 23.4375 23.45343 24 24.25 

OG46 Surface 21.875 22.25 23.75 23.7782 25.25 28.8125 
Soil 22.875 23.05625 23.75 23.7782 24.375 24.625 

OG49 Surface 22.375 22.625 23.625 23.64506 24.75 25.375 
Soil 23.25 23.375 23.8125 23.80974 24.125 24.375 

OG52 Surface 22.625 23.0625 24.125 24.25335 25.75 26.625 
Soil 23.8125 24 24.5 24.4828 25 25.125 

PA54 Surface 20.75 22.625 25 26.67799 35.08125 40.1875 
Soil 23.5 24.25 26.8125 27.4048 32.125 33.375 

PA55 Surface 20.75 21.625 23.5 24.95715 32.5 37.75 
Soil 22.875 23.6875 25.1875 25.66703 28.875 30.875 

PA57 Surface 19.875 22 23.875 25.23151 32.925 39.5 
Soil 23.125 24.5 25.75 25.93012 27.875 28.75 

PR19 Surface 21.875 23.3125 24.75 25.79572 30.34688 34.125 
Soil 24.25 24.875 25.875 25.99615 27.375 27.875 

PR21 Surface 20.75 21.5 22.5 22.64653 24.25 25.5 
Soil 21.25 21.75 22.4375 22.43077 23 23.375 

PR22 Surface 20.4375 21.875 22.9375 23.22746 25.17188 27.875 
Soil 22.5 23 23.5 23.5614 24.125 24.5 

PR23 Surface 21.375 21.9375 23.0625 23.21637 25 27.375 
Soil 21.9375 22.1875 23.625 23.40217 24.375 24.875 

PR26 Surface 20.4375 21.75 23.25 24.66065 32.075 40.125 
Soil 22.5 23.5 24.9375 25.33482 28.3375 29.875 

PR31 Surface 21.5 21.875 23.5 23.6894 25.75 27.75 
Soil 22.75 23.0625 23.8125 23.88777 24.75 25.125 

PR33 Surface 21.875 22.5625 24.3125 25.83905 34.4125 41.25 
Soil 23.75 24.375 25.875 26.25406 29.125 30.625 

PR34 Surface 20.5625 20.875 21.875 21.98316 23.5 24.5 
Soil 21.5 21.625 22.0625 22.08362 22.5625 22.875 

PR36 Surface 21.875 22.25 23.375 23.60834 25.625 26.75 
Soil 22.9375 23.0625 23.75 23.75898 24.5 24.75 

 

Table S6. Soil moisture measured by the TMS-4 loggers after correcting by temperature, soil texture 
and density. Scale is 0 to 1. 

Plot ID Min Q5 Median Mean Q95 Max 

CA62 0.502 0.505 0.511 0.512 0.524 0.539 
CA63 0.521 0.522 0.526 0.526 0.534 0.540 



CA64 0.475 0.476 0.501 0.498 0.520 0.531 
CR02 0.513 0.517 0.526 0.526 0.534 0.536 
CR04 0.514 0.515 0.517 0.519 0.526 0.536 
CR05 0.562 0.565 0.569 0.571 0.586 0.598 
CR06 0.528 0.531 0.535 0.535 0.540 0.541 
CR09 0.441 0.451 0.475 0.473 0.488 0.518 
CR10 0.523 0.524 0.530 0.530 0.536 0.538 
CR11 0.533 0.535 0.538 0.538 0.542 0.543 
CR13 0.582 0.588 0.601 0.605 0.634 0.658 
CR14 0.588 0.590 0.594 0.594 0.597 0.597 
OG38 0.556 0.560 0.567 0.572 0.589 0.594 
OG39 0.621 0.632 0.638 0.640 0.649 0.651 
OG41 0.493 0.500 0.515 0.524 0.561 0.568 
OG42 0.550 0.553 0.617 0.610 0.649 0.651 
OG45 0.566 0.566 0.575 0.577 0.593 0.601 
OG46 0.549 0.549 0.556 0.556 0.565 0.567 
OG49 0.486 0.535 0.565 0.563 0.585 0.640 
OG52 0.437 0.440 0.453 0.456 0.491 0.516 
PA54 0.516 0.525 0.534 0.534 0.547 0.559 
PA55 0.642 0.653 0.667 0.668 0.686 0.693 
PA57 0.545 0.556 0.565 0.564 0.571 0.574 
PR19 0.504 0.507 0.596 0.578 0.625 0.633 
PR21 0.542 0.544 0.548 0.552 0.564 0.565 
PR22 0.583 0.584 0.589 0.589 0.592 0.594 
PR23 0.351 0.387 0.564 0.543 0.625 0.652 
PR26 0.584 0.602 0.624 0.623 0.643 0.672 
PR31 0.562 0.574 0.587 0.586 0.596 0.602 
PR33 0.544 0.570 0.585 0.582 0.593 0.594 
PR34 0.597 0.598 0.606 0.607 0.618 0.620 
PR36 0.477 0.512 0.524 0.534 0.587 0.596 

 

Table S7. Measurements of leaf litter standing crop in each plot. Biomass and respective standard 
deviation are expressed in t/ha.  

Plot ID Leaf litter biomass 
(t/ha) 

Std dev 

CA62 2.16725 1.155059 
CA63 1.4545 0.318285 
CA64 0.4035 0.260165 
CR02 0.926 0.204967 
CR04 0.81325 0.272944 
CR05 1.24075 1.139832 
CR06 2.1425 1.461609 
CR09 1.066 0.286804 
CR10 1.76225 0.513767 
CR11 0.868 0.360212 
CR13 1.469 0.506208 



CR14 0.962 0.396594 
OG38 1.8515 0.251288 
OG39 1.6725 0.483242 
OG41 1.668 0.645435 
OG42 1.061 0.152737 
OG45 1.7095 0.185113 
OG46 1.49625 0.231783 
OG49 1.3155 0.357631 
OG52 1.491 0.310327 
PA54 0.001 0 
PA55 0.001 0 
PA57 0.033 0.064 
PR19 0.9385 0.706749 
PR21 1.451 0.413538 
PR22 2.415 1.404879 
PR23 0.597 0.427491 
PR26 2.201333 1.199183 
PR31 0.88575 0.224898 
PR33 0.35325 0.292477 
PR34 1.31 0.296789 
PR36 1.12525 0.384261 

 

Table S8. Measurements of the Leaf Area Index (LAI) in the plots (only control treatments reported). 

Plot LAI 
CA62 0 
CA63 6.03 
CA64 3.51 
CR02 4.33 
CR04 6.3 
CR05 3.53 
CR06 6.41 
CR09 3.97 
CR10 6.82 
CR11 5.62 
CR13 3.45 
CR14 5.04 
OG38 5.91 
OG39 6.14 
OG41 6.83 
OG42 5.94 
OG45 6.11 
OG46 6.09 
OG49 6.27 
OG52 7.78 
PA54 0 
PA55 0 
PA57 3.67 



PR19 0 
PR21 6.67 
PR22 4.88 
PR23 2.94 
PR26 4.1 
PR31 5.3 
PR33 0 
PR34 3.98 
PR36 3.5 

 

Table S9. Measurements of soil pH and C:N ratio. 

Plot ID pH Nitrogen (%) Carbon (%) C:N 

CA62 5.50 0.73117 8.74422 11.959 
CA63 5.29 0.33260 3.64507 10.959 
CA64 4.92 0.39637 4.48336 11.311 
CR02 5.18 0.47472 5.98120 12.599 
CR04 4.84 1.03162 12.86983 12.475 
CR05 4.93 1.13972 13.32875 11.695 
CR06 4.79 0.45099 5.15558 11.432 
CR09 5.35 0.44769 5.23768 11.699 
CR10 5.36 0.45642 5.24398 11.489 
CR11 4.88 0.45263 5.76786 12.743 
CR13 5.70 0.40018 4.80750 12.013 
CR14 5.23 0.54675 6.47654 11.846 
OG38 4.99 0.84249 11.09373 13.168 
OG39 4.70 0.86266 11.80498 13.684 
OG41 4.99 0.40113 4.53839 11.314 
OG42 5.36 2.03694 3.91361 11.551 
OG46 4.95 0.33992 4.09149 12.037 
OG49 4.74 0.43685 5.05931 11.581 
OG52 5.14 0.28778 3.36770 11.702 
PA54 5.24 0.35701 4.31359 12.083 
PA55 5.08 0.37495 4.49874 11.998 
PA57 5.14 1.00473 11.85641 11.801 
PR19 4.90 0.40570 4.47160 11.022 
PR21 4.86 0.83392 10.61424 12.728 
PR22 5.07 0.49073 6.37939 13.000 
PR23 5.0 0.44721 4.90319 10.964 
PR26 5.22 0.30048 3.79200 12.620 
PR31 5.05 0.53362 6.39526 11.985 
PR33 5.28 0.56704 6.07561 10.715 
PR34 5.11 0.62304 7.35087 11.798 
PR36 5.27 0.28348 3.37725 11.914 

 

Table S10. Model summaries and ANOVA (Type II) test results of the models of each environmental 
variable with forest age as predictor. 



Response variable Predictor β SE p ANOVA (Df, F, p-value) 

Tree aboveground biomass Forest Age 0.25 0.03 < 0.0001 1 67.18 < 0.0001 
Leaf litter biomass Forest Age2 -1.59 0.61 0.002 2 4.78 0.019 
Temperature (surface) Forest Age 0.00 0.00 < 0.0001 1 23.21 < 0.0001 
Temperature (Soil) Forest Age -0.05 0.01 < 0.0001 1 24.25 < 0.0001 
Terrain slope Forest Age 0.00 0.01 0.9 1 0.012 0.914 
Elevation Forest Age 0.14 0.03 0.0004 1 16.98 0.0004 
Soil moisture Forest Age 0.00 0.00 0.6 1 0.26 0.615 
pH Forest Age -0.01 0.00 0.07 1 3.73 0.066 
C:N Forest Age 0.00 0.00 0.05 1 4.44 0.047 
Carbon (%) Forest Age 0.01 0.00 0.1 1 2.94 0.100 
Nitrogen (%) Forest Age 0.00 0.00 0.2 1 1.94 0.178 
LAI Forest Age 0.09 0.02 0.001 1 14.53 0.001 

 

Table S11. Model summaries and ANOVA (Type II) test results of the individual models of mass loss (%) 
as a function of the respective predictors (here we reported the fixed effects). 

Aboveground  
predictors β SE p 

ANOVA  
(Df, Df.res, F, p-value) 

Tree aboveground 
biomass 

0.04 0.01 0.005 1 28.4 9.5 0.005 

Elevation 0.07 0.03 0.030 1 30.1 5.2 0.030 
Leaf litter biomass2 -2.00 0.83 0.023 2 27.1 3.1 0.061 
Temperature (surface) -3.14 1.29 0.022 1 26 5.9 0.023 
                  Legacy    1 23.7 5.2 0.013 
               * Legacy    1 25.7 0.8 0.474 
Terrain slope 0.34 0.20 0.095 1 26.9 3.0 0.096 

 

Belowground 
predictors β SE p 

ANOVA  
(Df, Df.res, F, p-value) 

pH -2.69 3.82 0.486 1 28.8 0.5 0.486 
Soil C:N -35.67 15.93 0.032 1 31.1 5.0 0.033 
Soil moisture2 -26.73 6.62 < 0.001 2 27.2 8.4 0.001 
Temperature (soil) 0.35 0.86 0.689 1 28.6 0.2 0.689 
                Legacy    1 25.8 1.2 0.318 
             * Legacy    1 26.4 0.5 0.635 
Terrain slope 1.49 1.81 0.416 1 30.2 0.7 0.416 

 

3. Effects of small-scale perturbation and animal exclusion 

Table S12 Kruskal-Wallis test results and epsilon squared to measure effect size of the test 
significancy. 

Treatment Position 
Days from 

Perturbation p value ε2 

Fenced Aboveground 

45   0.853 -0.016 
90   0.476 -0.008 

135   0.272 0.003 



Belowground 

45   0.943 -0.016 
90   0.644 -0.013 

135   0.501 -0.009 

Perturbed 

Aboveground 

45   < 0.001 0.196 
90   < 0.001 0.216 

135   0.311 0.000 

Belowground 

45   0.022 0.069 
90   0.207 0.010 

135   0.354 -0.002 

Perturbed-
fenced 

Aboveground 

45   0.004 0.121 
90   < 0.001 0.225 

135   0.002 0.141 

Belowground 

45   0.095 0.029 
90   0.168 0.015 

135   0.207 0.010 
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