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ABSTRACT 24 

Large datasets of fossil occurrences, often downloaded from online community-maintained databases, are a 25 

vital resource for understanding broad-scale evolutionary patterns, such as how biodiversity has changed 26 

through time and space. Such datasets, however, are not infallible and must be ‘cleaned’ of inaccurate, 27 

incomplete, or duplicate data prior to analysis. Researchers must decide upon the extent, feasibility, and value 28 

of data cleaning steps to perform, but while guides are available for working with neontological occurrences, 29 

there is currently no clear procedure for palaeobiological data despite its unique attributes. Here, we outline 30 

ten rules that aim to aid the process of cleaning fossil occurrence data for downstream analysis. These rules 31 

cover the major steps involved in processing data prior to analysis, including project setup, data exploration 32 

and cleaning, and finalising and reporting work. We provide accompanying examples and a vignette covering 33 

the entire data cleaning process to demonstrate the application of each rule. We believe that these rules will 34 

serve as a useful guideline to support data cleaning and foster new standards for the palaeobiological 35 

community.  36 

Keywords: palaeontology, fossils, biodiversity, reproducibility, data cleaning  37 
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INTRODUCTION 38 

Large-scale fossil occurrence datasets have revolutionised our understanding of the evolution of biodiversity 39 

on Earth (e.g. Alroy et al., 2008; Alroy, 2010; Close et al., 2020a, 2020b) and enabled a diverse range of studies 40 

across palaeobiology, palaeoecology, and conservation (e.g. Powell et al., 2015; Pimiento et al., 2017; Dean 41 

et al., 2019; Jones et al., 2019; Allen et al., 2020; Mathes et al., 2021; Boag et al., 2021; Chiarenza et al., 2023). 42 

Such datasets provide information about the temporal and spatial distribution of organisms through geological 43 

time, along with associated stratigraphic, environmental and biological data (e.g. preservation, 44 

palaeoenvironmental information, trait data). Over the last 30 years, palaeobiology has seen the introduction 45 

of large-scale collaborative online databases (e.g. Neptune [Lazarus, 1994], the Paleobiology Database [Uhen 46 

et al., 2023], Neotoma [Williams et al., 2018]) of fossil occurrences where data are entered (or uploaded) by 47 

researchers from around the world with a range of goals, parameters, and collection methods. Using such 48 

databases is now commonplace within the field, with the Paleobiology Database (PBDB) and Neotoma both 49 

reporting over 500 associated official publications each at time of writing (March, 2025). The scale of these 50 

databases has moved palaeontology into the age of ‘big data’ (Allmon et al., 2018), allowing for the 51 

interrogation of Phanerozoic scale patterns that would have been impossible to implement previously. 52 

Despite their value, the use of large-scale databases can be hindered by data quality issues such as variable 53 

data curation efforts (e.g. resolving and updating taxonomic opinions, updating geochronological ages), 54 

inconsistencies during data entry, general error from those inputting data, ambiguity in the original published 55 

documents, and lack of familiarity with the underlying data. Resolving these data issues at the source can be 56 

challenging; such databases can contain millions of records but only maintained by a small group of volunteers 57 

who lack the necessary resources (e.g. time, funding, or relevant expertise) to identify and resolve incorrect 58 

records at pace. These issues can be non-random and consequently lead to bias in downstream analysis (Panter 59 

et al., 2020). Unfortunately, issues related to data quality are commonplace within all large datasets (Cai and 60 

Zhu, 2015; Isaac and Pocock, 2015), and palaeobiological resources are no exception. A recent estimate based 61 

on flowering plants (~19,000 records) from the PBDB suggested at least ~6% of records could be viewed as 62 

potentially ‘problematic’ (Zizka et al., 2019), while another estimate based on fossil occurrences from the Hell 63 

Creek Formation suggested an error rate up to 92.6% in taxonomic data (Schroeder et al., 2022). Cleaning 64 

occurrence data is therefore critical to ensure accurate, reliable, and up-to-date data analysis. However, it is by 65 
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no means a trivial task, particularly for complex datasets where values may change over time (e.g. due to 66 

updates in taxonomy or nomenclature). 67 

Here, we offer ten simple rules as guidance to follow when cleaning fossil occurrence data in preparation for 68 

palaeobiological analysis (Fig. 1). Many of these guidelines are equally applicable for neontological 69 

occurrence data and have previously been advocated for by ecologists (e.g. Chapman, 2005; Zizka et al., 2019; 70 

Panter et al., 2020; Ribeiro et al., 2022). We expand upon these guidelines and present them within a 71 

specifically palaeobiological context. The rules are structured broadly in chronological order to aid in carrying 72 

out an individual research project, covering project setup (Rules 1–3), data exploration and cleaning (Rules 4–73 

8), and finalising and reporting work (Rules 9–10). For each rule, we provide guidance on the value of its 74 

implementation and, where appropriate, highlight useful resources. Additionally, we demonstrate how each 75 

rule can be put into practice within the in-text boxes and in an accompanying vignette on crocodylian 76 

biogeography, available within the supplementary material and at https://tenrules.palaeoverse.org/. We hope 77 

this guidance acts as a helpful checklist for researchers to follow when cleaning their data, and highlights the 78 

extensive skill and knowledge often required to prepare datasets in preparation for palaeobiological analysis. 79 

While the rules presented here aim to be of use to the broader community, our intention is to specifically 80 

support researchers getting started with analyses using fossil occurrence data. As such, we assume no former 81 

knowledge on the subject, and start by defining fossil occurrence data and data cleaning.  82 

WHAT IS FOSSIL OCCURRENCE DATA? 83 

Fossil occurrence data comprise records of the presence of a particular taxon at a unique location in space and 84 

geological time. This is distinct from specimen-level data, which provides information about a specific fossil 85 

specimen. For example, if three specimens of Tyrannosaurus rex are present in the same geological bed at a 86 

single location, an occurrence-level dataset would record just one occurrence of T. rex. Typically, occurrence 87 

data will include information about the observed organisms such as detailed taxonomy (e.g. scientific name 88 

and taxonomic affiliation), location (e.g. modern and/or palaeo-geographic coordinates), geological context 89 

(e.g. bed, member, formation) and age (e.g. age, epoch, period, era, eon), and may also contain various 90 

associated metadata (e.g. references). From a user perspective, fossil occurrence data are most frequently 91 

organised as a single wide-format data table (Box 1) where each column represents a unique field and each 92 

https://tenrules.palaeoverse.org/
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row represents a unique occurrence record. From a user-perspective this is a common structure, but fossil 93 

occurrence data are regularly hosted in online databases as a set of relational data tables, linked through unique 94 

identifiers. 95 

Fossil occurrence data can be sourced from a variety of online databases such as the Paleobiology Database 96 

(https://paleobiodb.org/#/) (Uhen et al., 2023), Neotoma (https://www.neotomadb.org/) (Williams et al., 2018), 97 

Triton (Fenton et al., 2021), Global Biodiversity Information System (https://www.gbif.org/), and the 98 

Geobiodiversity Database (http://geobiodiversity.com) (Fan et al., 2013). An exhaustive list of other data 99 

sources can be found in Supplementary Table 1 in Dillon et al. (2023). 100 

Table 1: A list of terms used in this article and their respective definitions.  101 

Term Definition 

Data cleaning The process of fixing or removing incorrect, duplicate, or incomplete data present 
within a dataset (e.g. incomplete locality information, misspellings). 

Data filtering The process of removing data present within a dataset that is beyond the scope of 
the study (e.g. taxonomically, geographically, temporally, etc.). 

Data imputation The process of replacing missing values within a dataset with modelled values 
based on the existing observed values. 

Data preparation The process of preparing and transforming raw data so it is suitable for analysis 
and processing. 

Duplicate data Non-unique data records. 

Data outlier A data record value that notably deviates from other comparable data records. 

Inconsistent data Non-uniform or non-standardised data record values. 

Metadata Structured information that describes, explains, locates, or makes it easier to 
retrieve, use, or manage data. 

Reproducibility The ability to obtain consistent results using the same data and analyses. 

Reusability The ability to reapply data or code for purposes other than their original purpose. 

WHAT IS AND IS NOT DATA CLEANING? 102 

Data cleaning is the process of fixing or removing incorrect, duplicate, or incomplete data present within a 103 

dataset (Chapman, 2005). This process typically involves checking that essential fields like taxonomic names, 104 

https://paleobiodb.org/#/
https://www.neotomadb.org/
https://www.gbif.org/
http://geobiodiversity.com/
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location, and stratigraphic information contain accurate, consistent, and complete information. Common steps 105 

for palaeobiological datasets may involve correcting spelling errors in taxonomic names, updating ages of 106 

geological formations, or investigating and resolving occurrences suspected to contain inaccurate information. 107 

Within our definition of data cleaning, we exclude the use of filtering to remove data outside the scope of the 108 

study, whether that be temporally, spatially, environmentally, taxonomically, or by other criteria (see Table 1). 109 

For instance, if investigating the evolution of Phanerozoic terrestrial biodiversity, removing marine organisms 110 

from the occurrence dataset would constitute data filtering. However, if a fossil occurrence or taxon had been 111 

mistakenly coded as a marine organism (e.g. with crocodylomorphs) when it was in fact terrestrial, fixing this 112 

issue would constitute data cleaning (e.g. Mannion et al., 2015, 2019). 113 

 114 

Figure 1: Graphic summary of the proposed ten rules and steps to follow when cleaning occurrence data for 115 

palaeobiological analysis. The rules are grouped within their respective theme: project setup (Rules 1–3); data 116 

exploration and cleaning (Rules 4–8); and reporting and archiving (Rules 9 and 10). 117 
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RULE 1: CHOOSE THE RIGHT DATA FOR YOUR QUESTION 118 

Selecting the right data is a crucial first step in addressing your research question. Failure to do so can lead to 119 

wasted effort in data cleaning, biased results, or misleading conclusions. The data required to address a research 120 

question depends on the scope of the study, whether it involves taxonomic diversity, biogeographic patterns, 121 

evolutionary rates, ecological reconstructions, or some other thematic area. Before gathering data, whether 122 

through fieldwork or using existing databases, researchers must determine what fields, resolution (e.g. 123 

taxonomic rank, chronostratigraphic level), and coverage (e.g. temporal, spatial, environmental) are required 124 

for their specific inquiry. During this process, researchers should consider whether flexibility related to data 125 

resolution and coverage (e.g. taxonomic, temporal, or geographic sampling) may be useful, or introduce 126 

unnecessary biases and/or analytical noise. For example, are the same macroevolutionary or ecological trends 127 

still identifiable at coarser taxonomic levels or temporal resolutions (e.g. Sepkoski, 1997; Pandolfi, 2001; 128 

Hendricks et al., 2014)? Can macroecological trends be reliably reconstructed given the available spatial 129 

sampling (e.g. Darroch et al., 2020; Jones et al., 2021; Maidment et al., 2021)? Is sufficient granularity 130 

available to determine which environments favour high diversification (e.g. Kiessling et al., 2010)? While 131 

data-specific questions are important, defining a research question can be an iterative process and can be 132 

refined to meet what data is available, rather than abandoning a project altogether. This refinement may be 133 

necessary to ensure analyses are both robust and relevant, as well as to reduce bias and increase the reliability 134 

of palaeobiological interpretations. 135 

Many steps exist in identifying the right data to address a research question, and often vary between research 136 

questions. Nevertheless, some are shared across palaeobiological studies. The initial steps for data selection 137 

often include defining the target group (be that taxonomic, geographical, temporal, etc.) and the level of data 138 

resolution required. Including data at inappropriate resolutions can either dilute meaningful signals (if too 139 

broad) or introduce unnecessary noise (if too fine-grained), particularly if taxonomic or temporal assignments 140 

are uncertain or in flux (e.g. Paterson, 2020). For example, studies on species-specific ecological interactions 141 

or evolutionary trends require species-level data resolution (e.g. Kempf et al., 2020; Raja et al., 2021; Godbold 142 

et al., 2025), whereas broader macroevolutionary patterns may be addressed at the genus or family level (e.g. 143 

Sahney and Benton, 2008; Kiessling and Kocsis, 2015; Mannion et al., 2015; Dimitrijević et al., 2020; Drage 144 
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and Pates, 2024). This can be dependent on the taxonomic group of choice; for instance, there may be 145 

insufficient occurrences identified at the species level to enable analysis at this resolution, such as commonly 146 

the case with fossil pollen (e.g. Goring et al., 2013). When considering taxonomic resolution, researchers might 147 

also assess whether their study will benefit from incorporating multiple taxonomic groups. While focusing on 148 

a single clade may allow for taxon-specific trends to be identified, integrating data from multiple lineages can 149 

provide insights into ecosystem-wide responses and provide higher data coverage (e.g. Song et al., 2020). 150 

Nevertheless, increasing taxonomic breadth should be done deliberately, as different groups may have distinct 151 

preservation biases or ecological niches, complicating direct comparisons (e.g. Fernández-Jalvo et al., 2011; 152 

Kiessling and Kocsis, 2015; Dean et al., 2019; Shaw et al., 2020, 2021). Studies conducted at wide taxonomic 153 

breadth may therefore provide a large-scale picture of the clade included, but risk averaging across the nuanced 154 

trends of the individual subclades within it.  155 

Temporal resolution is equally important as taxonomic resolution. Overly broad temporal bins can obscure 156 

evolutionary or ecological signals, while excessively fine bins may introduce sampling noise and/or empty 157 

bins if observed fossil occurrences are sparse (Olszewski, 1999; Dean et al., 2020; Fan et al., 2020). For 158 

example, analysing faunal turnover leading up to the end-Cretaceous mass extinction within a regional setting 159 

requires well-constrained stratigraphic placements, rather than general assignments to the Late Cretaceous 160 

(Dean et al., 2020). Consequently, researchers should consider whether increasing temporal precision is truly 161 

necessary for their study or whether it will introduce more noise than clarity. 162 

Geographic resolution and coverage should also align with the research question. A global-scale study on 163 

biodiversity change must incorporate data from diverse regions rather than being limited to well-sampled areas 164 

like North America and Europe (Vilhena and Smith, 2013). If data from key regions are unavailable due to 165 

sampling biases (e.g. poor fossil records or insufficient sampling effort), researchers should reconsider whether 166 

their question can still be adequately addressed, then explicitly acknowledge this limitation if so. This 167 

assessment should be made before cleaning data, ensuring that all necessary regions are included and that 168 

limitations are acknowledged in the study design. Failure to do so can result in global signals being obfuscated 169 

by regional trends, or highlight apparent ‘global’ trends that are actually sampling artefacts (Allison and 170 
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Briggs, 1993; Vilhena and Smith, 2013; Brusatte et al., 2015; Jablonski and Shubin, 2015; Antell et al., 2020; 171 

Close et al., 2020b; Flannery-Sutherland et al., 2022b). 172 

If the planned study uses existing data rather than collecting new data (e.g. from a publication or online 173 

database), then selecting the right data source is a critical step. Different databases serve different purposes, 174 

and the choice depends on the research question and required resolution and coverage. The PBDB is a widely 175 

used resource for fossil occurrences, providing broad-scale taxonomic, geographic, and stratigraphic data 176 

(Uhen et al., 2023) that is best suited for large-scale palaeobiogeographic and macroevolutionary studies. The 177 

Neotoma Paleoecology Database specialises in Quaternary palaeoecological data, including pollen, 178 

vertebrates, and geochemistry, making it ideal for studies on more recent environmental changes (Williams et 179 

al., 2018). The Geobiodiversity Database (GBDB) is a taxonomic, stratigraphic, and geographic database 180 

providing occurrence, collection, and strata data within geological sections (Fan et al., 2013) that is well-suited 181 

to high-resolution temporal analyses (Fan et al., 2020). The Global Biodiversity Information Facility (GBIF) 182 

and Ocean Biodiversity Information System (OBIS) include modern and fossil occurrences/specimens, which 183 

can be leveraged to integrate information from palaeontological and neontological datasets (e.g. Kiessling et 184 

al., 2012; Lima‐Ribeiro et al., 2017; Jones et al., 2019; Pilotto et al., 2021; Chiarenza et al., 2023; Hodgson et 185 

al., 2025). Many other potential data sources exist and a comprehensive list can be found in Supplementary 186 

Table 1 in Dillon et al. (2023). Finally, cross-referencing and combining data from multiple databases can be 187 

important for enhancing data reliability and completeness, although particular care is needed to ensure datasets 188 

and collection approaches are compatible, and that this does not create duplicates. Researchers should consider 189 

the full range of data sources available and their data quality, accessibility, resolution and coverage before 190 

committing to a dataset. 191 

Box 1. Rule 1: Choose the right data for your question 

Robin is starting a project looking at the palaeodiversity of crocodiles through time, assessing their 

biogeographic patterns during the Paleogene. They decide to download the necessary data from the 

Paleobiology Database, where Crocodylia are reasonably well represented for this time interval and where 

relevant information (e.g. taxonomic, geographic, age) are available. When downloading these data, Robin 
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sets the time interval as “Paleogene” and the taxa to include as “Crocodylia”, also making sure to only 

include body fossils in the download and therefore avoiding the potential for ichnotaxa or ootaxa in the 

dataset. As they are interested in biogeographic patterns, Robin also makes sure to include information 

related to geographic coordinates, such as both modern and palaeo- latitude and longitude. They also want 

to assess the association between Crocodylia occurrences and the number of Crocodylia-bearing geologic 

formations through time, so they make sure that geological information is included within the download. 

Table 2: Example occurrence dataframe of “Crocodylia” fossil occurrences from the Paleobiology Database 

(https://paleobiodb.org/) demonstrating the structure of a wide-format dataframe. 

occurrence_no collection_no accepted_name max_ma min_ma lng lat … 

40163 3113 Crocodylia 59.2 56 -74.68 39.97 … 

40167 3113 Gavialoidea 59.2 56 -74.68 39.97 … 

40168 3113 Gavialoidea 59.2 56 -74.68 39.97 … 

… … … … … … … … 
 

RULE 2: KEEP RAW DATA RAW 192 

Once you have identified or collected appropriate occurrence data for the desired research question, a digital 193 

copy must be obtained. This digital copy is defined as raw data and remains so if it does not undergo any form 194 

of transformation, leaving the structure and composition of its fields and records identical to the data at the 195 

point of acquisition. As such, raw data represents the information available to the researcher at that moment in 196 

time (see Box 2). Although data cleaning is likely necessary prior to analyses, it is essential to keep a raw copy 197 

alongside any cleaned data. Keeping raw data raw is crucial for two reasons. The first is to allow identification 198 

of errors inadvertently introduced during data transformation, by ensuring that the original data remains 199 

available for cross-reference. The second is to enable scientific reproducibility, by ensuring that exactly the 200 

same data that informed an analysis is available for scrutiny and reuse by future researchers. 201 

Raw data is not necessarily primary data. For example, a fossil occurrence dataset sourced from the 202 

supplementary information of a published article, or a static data repository (e.g. Zenodo), may constitute first-203 

hand field observations, or a compilation from previous literature (as is usually the case for large online 204 

https://paleobiodb.org/
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databases). What matters here is that the raw data are new and unedited with respect to the project currently 205 

being conducted. 206 

Upon acquisition, raw data files should be immediately stored locally in a dedicated directory using a simple, 207 

descriptive file name, and in a format that preserves its structure and integrity (Borer et al., 2009). If a dataset 208 

contains entries with non-ASCII-printable text, such as accented characters (e.g. Candelária Formation), then 209 

it may also be appropriate to ensure that the file encoding will preserve this text as accurately as possible (e.g. 210 

a .csv file with UTF-8 encoding). If compression is required to meet memory restrictions, then a lossless format 211 

should also be used to avoid degradation of the raw data (e.g. a zip folder), although this is unlikely to be an 212 

issue for fossil occurrence datasets, which are frequently less than 1 GB in size. 213 

Manually opening raw data files should be avoided where possible; different software programs and versions 214 

may—and often do—perform automatic formatting upon opening, potentially resulting in mass data alteration 215 

(Perkel, 2019). A file may be stored in a read-only format to prevent inadvertent alteration of the raw data 216 

(Broman and Woo, 2018), with backups stored in other locations to further guard against future losses or 217 

alterations (Wilson et al., 2017). To avoid editing raw data, a researcher can perform manual edits on a working 218 

copy of the static file, or by reading the file data into a programming environment where scripted edits can be 219 

made to the temporary copy in the computer’s memory using a programming language (e.g. R or Python). In 220 

the latter case, the script then also functions as a precise log of any alterations to that dataset (see Rule 3; 221 

vignette) (Borer et al., 2009).  222 

Understandably, a researcher may wish to make small, practical alterations to the raw data itself (e.g. renaming 223 

column headers, manual correction of singular or overwhelmingly rare typographical errors) or performing 224 

simple reformatting (e.g. extraction of relevant columns or data sheets) to improve ease of downstream use. In 225 

most cases, such procedures can be scripted and manual manipulation of the raw data should still be avoided 226 

(Borer et al., 2009). If manual editing of the raw data is essential, this should be kept to the minimum possible, 227 

and a comprehensive description of these changes should be documented (e.g. as a plain text file) and kept 228 

alongside the static raw data file. 229 

Every effort should be made to ensure that any raw data acquired for analyses remains static and accessible 230 

for future users. New data are constantly being added to online community databases (e.g. PBDB and 231 
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Neotoma), while existing entries can be revised, merged, or deleted for a range of reasons including—but by 232 

no means limited to—human error, changes in taxonomic opinion, and refined age dating. As such, online 233 

community databases are not strictly static repositories, as a future user may obtain a different dataset from 234 

that of a past user, even with identical download parameters. Some databases provide a service to archive a 235 

copy of a raw data download on request (e.g. PBDB; Uhen et al., 2023), and others automatically do so (e.g. 236 

GBIF), providing a citable unique digital object identifier (DOI). However, it should not be taken for granted 237 

that raw data being archived at the source will always be available, whether that be an online database or the 238 

supplementary files of a journal article. Raw data may become unavailable in the future due to the loss of 239 

funding and maintainers, file corruption, and journals becoming non-operational. To further guarantee the 240 

long-term availability of raw data, raw data should be archived in a suitable open-access repository whenever 241 

possible (see Rule 10). 242 

Box 2. Rule 2: Keep raw data raw 

Robin downloads the occurrence data as a ‘.csv’ file to their computer, checking the option to “include 

metadata at the beginning of the output” to preserve information about the download. They then immediately 

copy the downloaded dataset to a separate raw data folder, and save it as ‘read-only’ to make sure that it 

can’t be accidentally manipulated. The raw data file has a total of 886 occurrences.  

RULE 3: DOCUMENT YOUR WORKFLOW 243 

In almost every data-oriented project, researchers carry out some form of filtering, cleaning, formatting, or 244 

other operations to transform raw data into a workable and appropriate state for analysis (see Rules 4–8). 245 

Documenting these steps is essential to ensure transparency, reproducibility, and a clear understanding of how 246 

data have been processed (Stoudt et al., 2021). Together, these steps can be described as a ‘workflow’, which 247 

represents a sequence of tasks or processes that are systematically organised to achieve a specific purpose (Box 248 

3). In a workflow, each step often depends on the previous one, and tasks are completed in a particular order 249 

to maintain efficiency, consistency, and accuracy. Workflows can be simple, involving just a few steps (e.g. 250 

restructuring of data), or complex (e.g. data cleaning and imputation), encompassing multiple transformations. 251 
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Having a clearly defined workflow can help streamline data processing steps, reduce errors, and enhance 252 

reproducibility by providing a clear, repeatable structure for completing work. 253 

Documenting your workflow improves the transparency, reproducibility, and overall value of your research 254 

by serving as a reference or guide for repeat, follow-up, or new analyses; whether by the individual who 255 

documented the workflow, a collaborator, or any member of the research community. This can be particularly 256 

vital when going through the review process or onboarding new team members and collaborators. Documented 257 

workflows can also serve as a key avenue for transferring knowledge about data processing decisions through 258 

preserving the ‘what’ (i.e. what data is being transformed), ‘why’ (i.e. why is the data being transformed), and 259 

‘how’ (i.e. how is the data being transformed). 260 

Workflows for cleaning occurrence data in palaeobiology fall into two categories that can be used 261 

independently or in combination: (1) manual transformation (e.g. hand-typed step-by-step actions in 262 

spreadsheet software) and (2) programmatic transformation (e.g. use of automated functions or pipelines within 263 

a script of a programming language). Manual manipulation of occurrence data often takes place in spreadsheet 264 

software such as Microsoft Excel, Google Sheets, or Apple Numbers, but can also be implemented in text 265 

editors. While transforming data in such software can often be more intuitive and user friendly than through 266 

programmatic solutions (e.g. in R or Python), the process of documenting the exact steps taken when 267 

transforming raw data can be laborious and prone to a lack of clarity. Conversely, programmatic data cleaning 268 

provides a clear and traceable workflow, recording the steps taken to clean the data. Through commenting 269 

code, additional context for specific data cleaning steps can also be provided to justify decisions made (e.g. 270 

taxonomic updates, exclusion of a specific data point), or simply to guide future users. In addition, several 271 

formal workflow tools exist that can be leveraged to support data cleaning and workflow documentation (e.g. 272 

SnakeMake [Köster and Rahmann, 2012; Mölder et al., 2021] and Galaxy [Giardine et al., 2005; The Galaxy 273 

Community, 2024]). To achieve sufficient code proficiency to the extent that a fully programmatic workflow 274 

can be developed, however, is not necessarily easy or efficient, and can be a steep learning curve (Brousil et 275 

al., 2023). While we generally advocate for a code-based approach to occurrence data cleaning herein, 276 

succinctly described manual data cleaning steps can be of equal value and may even be more accessible to the 277 

broader community. For researchers with less familiarity with programmatic data transformation (e.g. regex, 278 
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text parsing), resources are also available for generating a reproducible script of manual data transformation 279 

(e.g. OpenRefine). Notably, even in workflows which are entirely code-based, some elements may still require 280 

a degree of manual notation. For instance, when acquiring secondary data (e.g. downloading a dataset), it can 281 

be important to document the date of download, which may not inherently be obvious within an entirely code-282 

based pipeline. Through the implementation of Rule 2 and Rule 10, the exact data cleaning that has taken place 283 

can be inferred through file comparison software (even with manual workflows).  284 

Box 3. Rule 3: Document your workflow 

Robin then begins to set up their project. They make a new project in RStudio, which they also link to their 

GitHub account to ensure that they have version control and therefore a record of all the steps taken when 

developing their code and assessing their data. They begin to set up their R workflow, making sure to have 

a clear overarching structure in their project, making use of section labels. Robin also begins to set up their 

manuscript file, documenting the steps taken so far in the “Methods” section. They will continue to update 

this with relevant information as they carry out their analysis, and will make sure to add inline comments to 

the R script explaining what they’re doing and why.  

RULE 4: EXPLORE YOUR DATA 285 

After obtaining the raw data to address your research question and deciding how to document your workflow 286 

(see Rules 1–3), a practical next step is to explore your data. Exploratory data analysis (EDA) involves using 287 

graphical tools and basic statistical techniques to better understand the characteristics of your dataset, identify 288 

anomalies, and uncover patterns (Tukey, 1977; Quinn and Keough, 2002). This step is important for a variety 289 

of reasons. First, EDA can reveal the structure and attributes of your dataset, such as variable types and 290 

distributions, numbers of observations, and spatial or temporal dependencies between observations. Second, it 291 

can highlight relationships between variables to guide future analyses and maximise statistical insights. Third, 292 

EDA can help you select appropriate statistical tools and verify their assumptions to avoid type I (false positive) 293 

and II (false negative) errors that might lead to incorrect conclusions (Zuur et al., 2010). In doing so, EDA can 294 

illuminate aspects of your data that should be accounted for when constructing models, such as non-normality, 295 

collinearity or interactions between covariates, and spurious correlations. EDA can also flag systematic biases 296 

(e.g. taphonomic or sampling biases) that warrant careful consideration when interpreting your results. Lastly, 297 
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EDA can reveal missing values (see Rule 5), outliers (see Rule 6), inconsistencies (see Rule 7), duplication 298 

(see Rule 8), and other unusual or erroneous values that require cleaning. Together, EDA is used to assess the 299 

quality and completeness of your dataset and gauge whether it can provide a meaningful and representative 300 

sample to address your research question. Without this step, you run the risk of applying inappropriate 301 

statistical techniques or making faulty inferences. 302 

EDA is a creative and iterative process that is driven by asking questions about your dataset. As such, EDA 303 

workflows will inherently be dataset dependent. Nonetheless, the core data exploration steps often include the 304 

following: (1) creating data summaries, (2) visualising distributions of individual variables, and (3) visualising 305 

relationships between variables. These data exploration steps, together with data cleaning, will often take up 306 

the majority of the time you spend analysing your data (Zuur et al., 2010). However, starting simple and being 307 

thorough upfront can ultimately produce a more robust and insightful data analysis. 308 

A first step when becoming familiar with your dataset is to produce descriptive summary statistics of the 309 

central tendencies and variances of groups in the data. Histograms are typically used to plot the distributions 310 

of individual variables, flag outliers, determine whether there are high numbers of zeros, and assess normality 311 

(along with QQ-plots and formal tests like Shapiro-Wilk). A combination of scatterplots, correlation matrices, 312 

box plots, ordinations (e.g. principal component analysis), and cluster analyses should then be used to visualise 313 

bivariate and multivariate relationships between variables, depending on the data types present (see Zuur et 314 

al., 2010). These graphical tools can reveal interesting patterns between variables and highlight covariates that 315 

might be important to include as predictors in more complex models. This process can also help refine the 316 

hypotheses being tested, especially given the observational nature of palaeobiological data, yet caution should 317 

be exercised to avoid circularity (Hammer and Harper, 2024). Circular reasoning can arise when the same 318 

variable is used to both define and test for differences between groups, such that the outcome is guaranteed by 319 

the analytical approach (Makin and Orban de Xivry, 2019). For example, you might notice during EDA that 320 

your occurrences cluster in a particular way. If you then use those clusters to filter your data and define groups 321 

(e.g. clades that either increase or decrease in richness through time), you run into issues if you then examine 322 

differences in diversity across those groups because the statistic inference is tied to your grouping criteria; it’s 323 
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a self-fulfilling prophecy. For more in-depth treatment of these tools, Zuur et al. (2010) outlines protocols for 324 

EDA in ecology, which can readily be adapted to palaeobiological data (see Birks et al., 2012). 325 

Each of these steps can be scripted in R, other computer programming languages, or even in spreadsheet 326 

software, and used to create a transparent and reproducible log of the EDA workflow (see Rule 3), what was 327 

discovered, and how these initial inferences shaped the final analysis. To wrangle data and generate basic 328 

summary statistics, the dplyr (Wickham et al., 2023b) and tidyr (Wickham et al., 2024) packages (part of the 329 

tidyverse; Wickham et al., 2019) as well as skimr (Waring et al., 2022) are particularly helpful. These packages 330 

can be used in tandem with palaeoverse (Jones et al., 2023), which contains functions designed for working 331 

with fossil occurrence data such as temporal or spatial binning, range calculations, identifying unique taxa, 332 

and flagging misspellings of taxonomic names. For example, you might want to assess how many bins you 333 

have data available for. To visualise relationships between variables, ggplot2 (Wickham, 2016), psych (e.g. 334 

`pairs.panels` function; Revelle, 2024), GGally (e.g. `ggpairs` function; Schloerke et al., 2024), corrplot (Wei 335 

and Simko, 2024), and DataExplorer (Cui, 2024) offer useful graphical functions. A multitude of online 336 

resources exist to help build competency in programming as you explore your data, including R for Data 337 

Science (Wickham et al., 2023a), R Graphics Cookbook (Chang, 2018), and Posit cheat sheets 338 

(https://posit.co/resources/cheatsheets/). Importantly, we recommend commenting code and keeping a record 339 

of EDA results and visualisations to refer back to as you develop analyses and communicate findings (see Rule 340 

9). 341 

Box 4. Rule 4: Explore your data 

To get an idea for how their data is distributed and its various characteristics, Robin first decides to generate 

some basic summary statistics and plots. As they are interested in assessing palaeodiversity, Robin checks 

the proportions of the different taxonomic ranks in the dataset. They find that ~28% of the occurrences—

about 250 in total—are assigned to the species level, and that a further ~28% are assigned to genera. Because 

of this, they think it might be wise to carry out palaeodiversity analysis at the rank of genus to ensure that 

they have enough data to find meaningful patterns. However, they will decide upon this after doing a more 

thorough assessment of the data. They also look at the geographic distribution of occurrences by looking at 

their associated country codes, finding that Paleogene crocodiles are found in a total of 46 countries. 

https://posit.co/resources/cheatsheets/
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However, after sorting these data, they find this number drops to 45 countries. Something odd has happened 

that they will have to investigate during future data cleaning steps. 

RULE 5: IDENTIFY AND HANDLE INCOMPLETE DATA RECORDS 342 

When exploring your dataset by carrying out EDA (see Rule 4), you may encounter ambiguous, incomplete, 343 

or missing data entries. These incomplete or missing data records can occur due to various reasons. In some 344 

cases, the data truly do not exist or cannot be estimated due to issues relating to taphonomy, collection 345 

approaches, or biases in the fossil record (e.g. information derived from highly fragmentary fossils, historical 346 

collections without associated geological or chronological information, or underrepresentation of certain 347 

taxonomic groups). In other cases, discrepancies may arise because data were collected when definitions or 348 

contexts differed, such as shifts in geopolitical boundaries and country names over time (e.g. an occurrence 349 

that only has “Czechoslovakia” listed as the country of origin cannot be precisely located today). Additionally, 350 

data may be incomplete for some records, but can be inferred through other available data (e.g. inferring 351 

country of origin through geographic coordinates). Although an intuitively common issue in palaeobiology 352 

given the uneven and incomplete nature of the fossil record (Raup, 1972; Allison and Briggs, 1993; Cherns 353 

and Wright, 2000; Vilhena and Smith, 2013; Dean et al., 2019), missing information can bias the results of 354 

palaeobiological studies (e.g. Norell and Wheeler, 2003; Kearney and Clark, 2003; Wiens, 2003; Marshall et 355 

al., 2018; Jones et al., 2021; Dean and Thompson, 2025). Occurrence data are inherently based on the existence 356 

of a particular fossil, but missing data associated with that fossil occurrence can also affect analyses that rely 357 

on that associated data (e.g. studies examining environmental associations will be impacted by missing 358 

environmental data). 359 

Depending on your research goals and the data required to address your questions, incomplete entries may 360 

either be removed through filtering or addressed through imputation techniques. Data imputation approaches 361 

can be used to replace missing data with values modelled on the observed data using various methods (Gendre 362 

et al., 2024). These can range from simple approaches, like replacing missing values with the mean for 363 

continuous variables (e.g. morphometric measurements or associated climatic variables), to more advanced 364 

statistical or machine learning techniques (Demirtas, 2018; see Van Buuren, 2018; Haghish, 2022). If you do 365 
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decide to impute missing data, it is essential that this process and its effects on the dataset are clearly justified 366 

and documented (see Rule 3) so that future users of the dataset or analytical results are aware of these decisions. 367 

Although missing data can reduce the statistical power of analyses and bias the results, imputing missing values 368 

can introduce new biases, potentially also skewing results and interpretations of the examined data (Newman, 369 

2014). Therefore, if a dataset has sufficient data to test the desired hypotheses, or if incomplete data entries 370 

cannot be imputed reliably, these entries should be deleted in their entirety during the data cleaning process, 371 

while clearly documenting how entries were chosen for exclusion (see Rule 3). Alternatively, some data 372 

analyses allow for incomplete data entries (e.g. non-metric multidimensional scaling), and so where these 373 

methods are appropriate, you may choose to retain your incomplete data entries as-is.  374 

To decide how to handle missing data, start by identifying the gaps in your dataset, which are often represented 375 

by empty entries or ‘NA’ (meaning “not available” or “not applicable”). For imputing missing values, 376 

numerous methods and tools are available in your coding language of choice, such as missForest (Stekhoven 377 

and Buehlmann, 2012), mice (Van Buuren and Groothuis-Oudshoorn, 2011), and kNN (Kowarik and Templ, 378 

2016). Additionally, the R packages TDIP (Gendre et al., 2024) and mlim (Haghish, 2022) integrate various 379 

imputation and error identification methods, facilitating method comparison. Many detailed open-access 380 

references exist with which to compare the underlying methodologies of imputation approaches, and which 381 

provide guidance on the different missing data types and how to choose imputation methods and parameters 382 

(e.g. see Van Buuren, 2018). 383 

Removing missing data can be straightforward when working with small datasets. For manual removal, tools 384 

such as spreadsheet software can be sufficient (although see Rule 3). In R, built-in functions such as 385 

complete.cases() and na.omit() quickly identify and remove missing values. The tidyr package also provides 386 

the drop_na() function for this purpose (Wickham et al., 2024). However, incomplete data entries can also be 387 

of use without imputation or removal; for example, the tax_unique() function from the palaeoverse R package 388 

(Jones et al., 2023) can flag ‘cryptic diversity’ that arises due to taxa not assigned to a specific species or genus, 389 

but which represent the only appearance of that clade in the geographic region or time period of choice (e.g. 390 

Mannion et al., 2011). 391 
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Box 5. Rule 5: Handling incomplete data records 

Robin next begins to systematically explore their data in more detail, first making sure that the occurrences 

aren’t missing vital information. As they are assessing biogeography, they first find any occurrences that are 

missing palaeocoordinates and decide to remove them from the dataset rather than trying to estimate new 

palaeocoordinates using available tools. After removing these data, they check to make sure that all of the 

occurrences have both modern and palaeo- coordinates, then decide to revisit the issue of missing data within 

the ‘country code’ field. They find that there are two occurrences which have a value of ‘NA’; normally this 

would mean missing data, on further checking their geographic position using modern coordinates, Robin 

finds that they are actually from Namibia (i.e. NA!). It seems R has misconstrued these records! 

RULE 6: IDENTIFY AND HANDLE OUTLIERS 392 

Outliers, data points which lie to the extremes of the distribution of all data or otherwise deviate from 393 

comparable data points, will become readily apparent when applying EDA to your dataset (see Rule 4). 394 

Outliers may arise from a mistake in data entry, or because the value represents a genuine anomaly compared 395 

to the other available data. Identifying outliers is therefore doubly useful: it is a way of highlighting potentially 396 

suspect data for subsequent checking, and also allows us to better understand the range of values our data 397 

holds. Outliers are particularly important when an analysis investigates the maximum and minimum values of 398 

a field, or for calculations involving confidence intervals, as unusually small or large values can influence such 399 

analyses more strongly than other data points. 400 

Most data types are amenable to some form of outlier analysis. For numerical data, this usually involves 401 

identifying the points lying at the extremes of the range of values. A simple example of this is creating a box 402 

plot, where typically the ‘whiskers’ are quantified based on some range of values describing the data, and any 403 

points lying outside of this range are plotted as individual outliers. Here, the choice of cut-off is very important, 404 

and many different methods exist for setting outlier cut-off points that might be applicable in different 405 

situations (Aggarwal 2017). The shape of the distribution of the data also matters. Many methods of generating 406 

confidence intervals assume that data are normally distributed, but this is often not the case for real-world 407 

biological or palaeobiological datasets, and should be borne in mind when selecting a method. For categorical 408 
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data, a more appropriate method of identifying outliers might be examining abundance counts for the different 409 

categories to identify those with only a few instances. On such topics, we recommend referring to classic 410 

textbooks on statistics for (palaeo-)ecologists (e.g. Hammer & Harper 2024). 411 

The types of data commonly present in occurrence datasets can be checked for outliers in a multitude of ways. 412 

Checking age data for outliers can be very important: if we wish to quantify the temporal or stratigraphic range 413 

of a taxon, then a misplaced data point could falsely prolong our inferred range by millions of years. This is 414 

true for both numerical (e.g. ‘250 Ma’) and categorical (e.g. ‘Triassic’) forms of age data. Collecting tip or 415 

node age priors for phylogenetic inference is a common use of such data for which identifying outliers can be 416 

particularly important for downstream analyses (Mulvey et al. In Press). For such questions, the data resolution 417 

at which outliers are quantified should be carefully considered: for example, the age of an occurrence may 418 

appear anomalous for a specific species, but not within the context of the wider genus. This difference may 419 

alter the appropriate course of action for dealing with such data points. An example of a palaeontology-specific 420 

outlier detection method is the “Pacman” method (Lazarus et al. 2012), which uses ‘known’ age distributions 421 

for biostratigraphic markers to identify outliers in numerical stratigraphic data. This approach, and other 422 

relevant functions, are available in the fossilbrush R package (Flannery-Sutherland et al. 2022b). 423 

Exploring data to search for taxonomic outliers can also be a helpful way of identifying mistakes. In the case 424 

that a collection of fossils is stated to contain nine species of bivalve and one species of shark, it is worth 425 

checking that the shark occurrence is correct. Otherwise, for example, it could be that the shark species actually 426 

has the same name as a bivalve species and has been miscategorised, or that the shark species is a misspelling 427 

(an example of this being the genus Megalodon, a bivalve from the Jurassic, being confused with Otodus 428 

megalodon, the giant shark from the Neogene). For multivariate data (e.g. geographic coordinates), convex 429 

hulls can be generated to identify points that form the corners of the hull, and therefore lie at the extremes of 430 

the data. The distance of these points from the rest of the data can then be quantified, with those at the greatest 431 

distance highlighted for further checking. However, it is worth considering that geographic coordinates are 432 

often subject to limits which can artificially create clumpiness in the data. At a global scale, the distribution of 433 

the continents serves as a major control on the potential spread of both species and fossil preservation, and an 434 

apparently large distance between any two data points may simply represent an area of ocean between two 435 
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continents. CoordinateCleaner (Zizka et al. 2019) is an R package designed specifically for cleaning the 436 

geographic coordinates of occurrence data, including via outlier detection. 437 

It is also possible to design downstream analytical workflows with outliers in mind, which may be particularly 438 

appropriate when it is unclear whether outliers should be removed from a dataset or not. For example, a simple 439 

strategy is to calculate and use the 90th or 95th percentile of the data instead of maximum values, or median 440 

values over mean values. More complex alternatives include bootstrapping, jackknifing, and related methods 441 

implement repeated subsampling of a dataset; this has the overall effect of amplifying the signal of common 442 

data values, and diminishing the signal of rare data values (which typically include any outliers). This can 443 

reduce the influence of outliers on the results without completely excluding these values from analysis. 444 

Box 6. Rule 6: Identify and handle outliers 

Happy that the dataset contains the information needed, Robin sets out to identify potential outliers that 

might affect the specific variables that relate to their research question. To do this, Robin first plots a map 

of where crocodiles have been found across the globe to see if any fall in places that we would not expect. 

They find several occurrences that appear within Antarctica, which is outside the expected climate tolerances 

of the group. By checking these occurrences against the associated references, it turns out that the collections 

associated with these anomalous occurrences appear to be legitimate, but the occurrences themselves are 

only listed as “Crocodylia indet.”. Robin could consider removing these occurrences due to this lack of 

certainty, but they would have to be consistent in their approach across the data, and make sure that a record 

of this is documented so that future researchers can follow their approach (see Rule 3). 

RULE 7: IDENTIFY AND HANDLE INCONSISTENCIES 445 

When carrying out EDA on your dataset (see Rule 4), it is also likely that inconsistencies will become apparent. 446 

Inconsistencies refer to deviations in the format, structure, or definitions of data values in a dataset, and they 447 

can occur in all types of variables (e.g. numerical, categorical, etc.). Inconsistencies can represent information 448 

that is definitively incorrect (e.g. a taxonomic name spelt both correctly and incorrectly in different records) 449 

but can also arise from variation of input into a dataset. This could be due to inconsistencies in standards or 450 

unclear definitions of variables (e.g. alternative, but correct, spellings of the same geological formation or 451 
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different date formats being used in the same column), standards which have changed over time (e.g. a stage 452 

being given new age boundaries as a result of increased accuracy of new radiometric dates) or conflicting 453 

scientific opinions (e.g. two fossils of the same species input under different taxonomic names by researchers 454 

holding differing opinions). Although it is common for inconsistencies to apply across different rows within a 455 

single column of variables, they can also apply across multiple related columns. For example, columns for the 456 

earliest and latest ages of a fossil occurrence may have different data formats, or there could be a discrepancy 457 

between the named chronological interval for an occurrence in one column and its numerical age in a separate 458 

column. Inconsistencies may not inherently represent errors in data values, but their inclusion in a dataset can 459 

lead to a variety of downstream issues during data analysis, including skewing of summarised values, or the 460 

incorrect parsing of data by software. These issues can have serious knock-on effects for the interpretation of 461 

results, so it is essential that they are rectified prior to further data analysis. Given the variety of ways that 462 

inconsistencies can arise in a dataset, identifying them is challenging and can require high familiarity with the 463 

dataset. EDA should therefore be performed iteratively (see Rule 4) to minimise their risk of inclusion. 464 

When searching for inconsistencies in your data, it is essential to first set definitions and standards for the data, 465 

which may be different from those associated with the original format of the dataset. This involves ensuring 466 

that you have made clear and consistent decisions on value formats, structures, and classes (e.g. are dates listed 467 

as DD-MM-YYYY or MM-DD-YYYY?), variable definitions (e.g. the column ‘min_ma’ is referring to the 468 

minimum possible numerical age of the fossil occurrence in millions of years; see Box 1), and the necessary 469 

precision of your values (e.g. all measurements in a column will be in centimeters rather than millimetres). 470 

When making decisions regarding the formatting of a column, it is always advisable to make edits in a copy 471 

of that column to retain the original information (see Rules 2 and 3). Similarly, adding new columns and 472 

comments that contextualise your decisions or concerns about a column’s accuracy can help avoid the pitfalls 473 

of manual workflows (see Rule 3) and aid future users of your data.  474 

Many inconsistencies will become apparent as you familiarise yourself with the spread of data within a 475 

particular column (see Rule 4). When using R, the ‘table()’ function can highlight the frequency of categorical 476 

values within a column, which can quickly reveal inconsistent data. Additionally, systematically checking 477 

within and between columns for formatting and spelling discrepancies will flag data values which appear 478 
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problematic. Some inconsistencies may relate to facets of your data that you are less familiar with. This could 479 

result in incorrectly identifying values as inconsistencies which are actually separate data points (e.g. close 480 

taxonomic spellings, which represent different taxonomic units rather than spelling mistakes. For instance, 481 

Varanops is a genus of early Permian carnivorous synapsid, whereas Varanopus is an ichnogenus of tetrapod 482 

footprints also from the Permian), or missing inconsistencies due to a lack of knowledge (e.g. two geological 483 

formation names that have now been united under one name). In these cases, we recommend flagging potential 484 

issues and obtaining assistance from the literature or other researchers who have expertise in that particular 485 

area, rather than making decisions which may result in inaccurate data.  486 

Because inconsistencies are inherently related to the values of the data that you are working on, the ultimate 487 

resource for resolving issues is the literature for the corresponding geographic region, taxonomic group or time 488 

period of study. Additionally, there are a variety of packages in R that can help identify potential 489 

inconsistencies in your dataset. The fossilbrush package (Flannery-Sutherland et al. 2022b) aims to assist with 490 

chronostratigraphic and taxonomic harmonisation within a dataset. Similarly, the ‘tax_check()’ function of the 491 

palaeoverse package (Jones et al. 2023) can help to check for and tally potential spelling variations of the same 492 

taxon. The previously mentioned CoordinateCleaner package (Zizka et al. 2019) is also widely used to 493 

automatically and systematically flag common spatial and temporal errors in biological and palaeobiological 494 

collection datasets in a way that is systematic, transparent and easily built into personal workflows. However, 495 

packages such as these automatically flag records based on predetermined mathematical rules and so are blind 496 

to the context of the data that they are assessing. Consequently, such approaches should be used as a 497 

complement to, rather than a replacement for, decision making by the researcher. 498 

Box 7. Rule 7: Identify and handle inconsistencies 

It’s then time for Robin to do a thorough check for inconsistencies in the dataset. They check whether the 

class types of the fields in the dataset make sense (e.g. the ‘max_ma’ and ‘min_ma’ variables are listed as 

‘numeric’), and makes sure that there aren’t inconsistencies between columns in the dataset (e.g. making 

sure that occurrences with the same value in the ‘max_ma’ column all have the same value for 

‘early_interval’). Robin then uses several automatic check functions in different R packages to flag any 

taxonomic or formation names that might have several different spellings. They quickly find that there are 
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several formations which have suspiciously similar names, one obvious pair being “San Sebastián” and “San 

Sebastian”. After checking the literature to make sure that these are indeed the same formation, Robin 

corrects the spelling to ensure consistency across the dataset. 

RULE 8: IDENTIFY AND HANDLE DUPLICATES 499 

Duplicate appearances of data entries are also a common issue with occurrence datasets. The identification of 500 

duplicate fossil occurrences is an essential step in data cleaning, as neglecting them can directly impact the 501 

accuracy of analyses in a non-random way, i.e. by increasing the signal of repeated data points in the dataset 502 

(see Rules 6 and 7). There are several ways in which the same occurrence might be recorded in a dataset 503 

multiple times. The first is identical duplicates, where the exact same record appears twice or more within a 504 

dataset. This is unlikely, as occurrences within large databases are often assigned consecutive unique 505 

identifiers and by definition cannot appear twice. However, there are several circumstances where this can 506 

occur. For example, when two previously taxonomically unique occurrences are synonymised under the same 507 

taxonomic name, when merging occurrences sourced from different databases (e.g. the same fossil specimen 508 

could be independently entered into both GBIF and the PBDB), or from user error when manually manipulating 509 

a dataset (although this should be minimal if following Rules 2 and 3). A more common form of data 510 

duplication is the entry of the same fossil or collection of fossils as two separate occurrences or collections by 511 

different contributors to the database in question. 512 

The first step for resolving duplicate occurrences in your dataset is choosing the criteria for identifying 513 

duplicates. Identical duplicates should be inherently easy to spot, as they will consist of exactly the same values 514 

across all variables (after inconsistencies have been addressed). Duplicate occurrences arising from multiple 515 

entries of the same fossil are more challenging, as user variation during data entry will mean that not all 516 

variables are likely to be identical. When this is the case, one potential way to identify duplicates is to use 517 

columns in the dataset related to the reference (e.g. original descriptive publication) from which the occurrence 518 

was acquired; though consideration of what constitutes a duplicate should be established for your specific 519 

project (e.g. if we are interested in the total number of localities, multiple references may refer to the same 520 

locality and therefore could be defined as duplicates). Multiple occurrences of the same taxon from the same 521 
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reference might indicate that data duplication has taken place; checking the original reference will help resolve 522 

this. Other columns that are likely to have obvious duplicate values include those that tie a data record to a 523 

particular geographic or temporal position (e.g. two records with similar/identical geographical coordinates) 524 

(Pires et al. 2015; Zizka et al. 2020; Bonnet-Lebrun et al. 2023).  525 

Once the criteria for removing duplicates are established, only one occurrence record should be retained in the 526 

processed dataset if multiple share the same taxonomy, geological age, and coordinates. It is ultimately the 527 

researcher’s decision whether to exclude potential duplicates from the dataset, and the reasons for doing so 528 

should be documented (see Rules 3 and 9). However, accidental removal of non-duplicate data can also bias 529 

the results of a study, and so it is advisable to be conservative when removing entire occurrence entries. Data 530 

duplicates can be more difficult to identify if inconsistencies (see Rule 7) are present in the dataset, such as if 531 

the same taxon has an entry for two different ages or geological localities, where the age/location names have 532 

been redefined or have different regional names. This means that identification of inconsistencies and 533 

duplications (see Rule 8) should often be performed iteratively. 534 

Identification and removal of duplicates can be done manually, but this approach has a high time-cost with 535 

large datasets, particularly when identifying them can be challenging in the first place. Alternatively, different 536 

softwares can help streamline this process. Duplicates can be removed using Excel by filtering the different 537 

columns of your dataset, though this can be too time intensive. In Python, this can be achieved using Pandas 538 

(McKinney 2011), a library developed specifically for data manipulation. Scripting in R offers quick and 539 

effective alternatives; unique() or distinct() from the dplyr package (Wickham et al. 2023b) can be used to 540 

return a dataset with any direct duplicates removed. More complex approaches, such as CoordinateCleaner 541 

(Zizka et al. 2019) and fossilbrush (Flannery-Sutherland et al. 2022b), can flag spatial, temporal, and 542 

taxonomic errors in occurrence data. As discussed in Rule 7 and above, thorough literature and repository 543 

searches, or external expertise on variables/groups you are less familiar with, should also be used in tandem 544 

with the above analytical approaches to resolve data duplications.  545 

Box 8. Rule 8: Identify and handle duplicates 

For the last step of data cleaning, Robin needs to remove any duplicates that might have crept into the dataset, 
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as these could impact further analyses. Robin makes a new dataset including only the fields ‘collection_no’ 

and ‘accepted_name’, and then retains only the unique rows. By comparing the number of rows between 

this dataset and the total dataset, they find that 24 occurrences were absolute duplicates. Robin then double 

checks these, and removes them from the original dataset. After finishing this step, Robin now has a pretty 

good idea of how this dataset looks. They therefore decide to go back and re-run their initial summary 

statistics as well as adding some additional tests, before going back and further refining the dataset. 

RULE 9: REPORT YOUR DATA AND CLEANING EFFORTS 546 

After cleaning your data and ensuring that it is fit for purpose, it’s crucial to report on the cleaning steps you 547 

took and the overall state of your data. Reporting includes detailing how you carried out the cleaning steps (see 548 

Rules 5–8, using the workflow from Rule 3), why these were taken, the impact cleaning had on dataset 549 

composition (such as the pre- and post-cleaning occurrence counts; see Rule 4), and dataset summary statistics. 550 

Reporting these steps enables reproducibility: without knowing how the data were cleaned, it is impossible to 551 

understand the dataset in its processed form or reproduce the downstream analyses. This also increases 552 

transparency, such that other researchers will understand how and why the cleaning steps were performed, as 553 

well as the time investment on pre-analysis steps that is not otherwise well documented. Reporting on data 554 

cleaning also provides a venue for furthering acknowledgement; we can take this space to document other data 555 

sources and software (e.g. R packages) that contributed to the dataset in question before or during the cleaning 556 

process.  557 

Reporting should involve carefully documenting at minimum: (1) how the data were chosen to be collected 558 

(see Rule 1); (2) the data exploration performed (see Rule 4); (3) how outliers, inconsistencies, and duplicates 559 

were identified, their counts, and how they were dealt with (e.g. removed, corrected, resampled; see Rules 5–560 

8); and (4) the pre- and post-cleaning dataset summary statistics. The summary statistics should cover, for both 561 

the original raw dataset and the final cleaned dataset: the overall counts of occurrences, sampling units, or any 562 

other variables of interest; if applicable to the data, aspects like means and standard deviations or ranges of 563 

variables of interest; the degree of uncertainty regarding pertinent variables (e.g. how certain are the taxonomic 564 

assignments or stratigraphic occurrences, and to what granularity are these recorded?); the impact of any 565 
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filtering (i.e. n occurrences were excluded by cleaning step n); and any imputation in the dataset. Reporting 566 

your data cleaning should be clearly documented in the methods section, in the supplementary material, or 567 

accompanying the dataset (see Rule 3). 568 

Dataset reporting should also cover any cleaning cases specific to your data or difficulties in data processing 569 

that would be of interest to future data users or relevant specialists. This might include removing any 570 

occurrences of specific taxa due to a debate over synonymisation or higher group assignment, or removing 571 

occurrences from specific geographical regions or localities due to uncertain age assignment. For example, a 572 

study on global trilobite evolutionary trends might choose to identify and exclude entries in their occurrence 573 

dataset of families that recent assignments place within the poorly defined (i.e. ‘waste-basket’) order 574 

‘Ptychopariida’ (by following a published taxonomic list, such as Adrain 2011). A global study on Cambrian 575 

palaeobiogeography might explain that they chose to time-bin their dataset differently because the Cambrian 576 

Stage 10 (Cohen et al. 2013) has an as-yet undefined base. In both examples, these data cleaning decisions 577 

require direct explanation because they are not obvious to non-specialists (or future researchers) on the 578 

taxonomic group or time period, and will have extensive impacts on the analysis results, which might influence 579 

how other researchers view or use the data or results in the future. 580 

Several resources exist to aid the reporting process. When downloading raw occurrence data, such as from the 581 

PBDB, you can often download a supplementary reference list citing all the contributors to the data you 582 

downloaded. These should then be incorporated into publication reference lists (preferably) or supplemental 583 

references (see Smith et al. 2024 for discussion). If you gathered data from the primary literature, or used 584 

literature to verify potentially erroneous entries in your dataset (e.g. Rules 7 or 8), then you should compile a 585 

list of references manually or using bibliographic software (e.g. Zotero). Similarly, you can download package 586 

version citations in R or Python for those used during cleaning. Additionally, pre-formatted reporting templates 587 

exist, such as those by PRISMA (Page et al. 2021), which could be included in the supplementary information 588 

of an article.  589 

Box 9. Rule 9: Report your data and cleaning 

Robin now has a cleaned dataset that they use to run some analyses, and they find some results which are 
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worthy of publication. When Robin writes up their manuscript, they make sure to report all the steps that 

they took to clean the data in their ‘methods’ section and in the associated supplementary materials, drawing 

attention to the decisions that they made on particular occurrences (e.g. what Robin decided to do with the 

‘Crocodylia indet.’ specimens from Antarctica). Robin makes sure their code is clean, structured, and 

legible, and sufficiently commented such that it can be followed by someone who is less familiar with the 

approaches that they took. 

RULE 10: DEPOSIT YOUR DATA AND WORKFLOW 590 

Once you have documented and reported how you have followed Rules 1–8 (see Rule 9), it is critical that you 591 

deposit all of your data and workflow files in a reliable archival repository, preferably prior to review. This 592 

enables transparency, data accessibility, and reusability as well as research reproducibility (see Table 1) for 593 

the foreseeable future. Further, by uploading your workflow, you allow others to apply your cleaning and 594 

filtering steps to their own data, reinforcing standard practices and preventing duplicated effort. At the 595 

minimum, your archived files should include your raw data file(s) (see Rule 2) and your data processing 596 

documentation (see Rule 3). However, you should aim to archive as much of your entire research workflow as 597 

possible (see Rule 9). For example, such an archive would ideally include the scripts that you wrote to perform 598 

cleaning and filtering operations (see Rule 3) and/or analysis and visualisation of your cleaned data, including 599 

any figures in the accompanying paper (see Rule 4). It should also include modified versions of the data file 600 

created before or after manual and/or automated cleaning and filtering steps have been performed, and your 601 

reporting on how the data was changed by cleaning (see Rule 9). Finally, in addition to depositing these files 602 

(preferably in non-proprietary formats, e.g. .csv or .txt), you should also include a metadata file which 603 

describes the attributes of your various files, including their source, purpose, and, in the case of data files, 604 

column definitions (Baca 2016). In the case of occurrence data, the standards set forth and resources created 605 

by Darwin Core (https://dwc.tdwg.org/) may be useful (see https://fairsharing.org/ for other data and metadata 606 

standards). In addition to increasing the accessibility and reusability of your data, accurate and descriptive 607 

metadata is also vital for improving the discoverability of your data (Löffler et al. 2021). 608 

https://dwc.tdwg.org/
https://fairsharing.org/
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There are different types of repositories for different purposes. The PBDB and Neotoma serve as ideal 609 

repositories for individual occurrence data, and we strongly encourage you to input new occurrence and 610 

taxonomic information in these repositories or other appropriate repositories. Nevertheless, these repositories 611 

are not intended for storing your individual project materials such as raw data files and scripts. Further, while 612 

the ever-growing and dynamic nature of these databases via community crowdsourcing is a clear benefit to 613 

our field, this is also the same reason they are inappropriate for storing static versions of your raw data; they 614 

may be edited by other users at some point in the future (see Rule 2). Therefore, you’ll need to identify a 615 

separate repository for your data archive. However, navigating the data repository landscape can be 616 

challenging. For example, as of February 2025, the Registry of Research Data Repositories  617 

(https://www.re3data.org/; Pampel et al. 2013) lists over 2,850 open repositories available for archiving data, 618 

with over 85 of them covering ‘Geology and Palaeontology’. Commonly used general repositories for 619 

occurrence data and associated files include Dryad, Zenodo, FigShare, the Open Science Framework (OSF), 620 

and Pangaea (Felden et al. 2023). Institutions (e.g. Yale University, University of Vienna) and national bodies 621 

(e.g. UK National Geoscience Data Centre) may also offer their own in-house data archival services. When 622 

choosing between repository options, you should consider several archival aspects, including longevity, 623 

licensing, accessibility, discoverability, citability, version control, cost, and capacity. 624 

First, you should confirm that your chosen repository will be able to store your files for a long time (i.e. 625 

decades, at minimum). This information is often listed as ‘longevity’, ‘persistence’, or ‘retention’ within a 626 

repository’s policies. Most repositories aim to be sustainable and last indefinitely; however, uncertainties 627 

around funding, future costs, and technological developments mean this may not hold true. Many repositories 628 

will be clear about how much funding they currently have (usually in a number of years; e.g. OSF currently 629 

states it has 50 years of funding for hosting data), with the potential for further funding in the future. If a 630 

repository does not list a longevity of decades or guarantee permanent hosting, it should probably be avoided 631 

(see Lin et al. 2020 for further discussion). 632 

Next, your repository should either be clear of what copyright license your files are shared under or provide 633 

you with a selection of copyright licenses to choose from. For data, the licenses developed by the Creative 634 

Commons should be adequate, covering public domain, attribution, and non-commercial license types. In 635 

https://www.re3data.org/
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general, datasets containing only new data are usually published under the CC0 license (“No Rights Reserved”; 636 

https://creativecommons.org/public-domain/cc0/), which releases data into the public domain and makes the 637 

data easy to reuse for other projects. For example, data in the PBDB are licensed under a CC0 license (Uhen 638 

et al. 2023). On the other hand, data from the Neotoma database (Williams et al. 2018) are licensed under a 639 

CC-BY license, meaning the data must be attributed accordingly. For sharing code, there is a wider variety of 640 

licenses to choose from, with some of the most popular licenses including the MIT License, Apache License, 641 

and GNU General Public License. If you find yourself having a hard time choosing between licenses, you can 642 

find handy tools to choose a license from Creative Commons (https://creativecommons.org/choose/) and 643 

GitHub (https://choosealicense.com/). 644 

You should also ensure that your repository will make it easy to find and cite your data archive (Wilkinson et 645 

al. 2016). The most common currency of academic scholarship is citation count, which is often used as one of 646 

the determining factors for hiring, promotion, and funding decisions in academia, for better or worse 647 

(Ravenscroft et al. 2017; Desrochers et al. 2018; Smith et al. 2024). For a long time, datasets, particularly 648 

those of occurrence data, were not citable in the same way in which we cite publications (Payne et al. 2012; 649 

Silvello 2018). Many repositories, such as Dryad, FigShare, and Zenodo, have introduced the automatic 650 

assignment of permanent and unique identification numbers called Digital Object Identifiers (DOIs) to 651 

archived datasets (Brown 2021). Theoretically, DOIs have brought data on par with standard publications with 652 

regards to citability (although note that other restrictions may remain such as limits to the total number of 653 

references imposed by journals [Payne et al. 2012] and the lack of inclusion of data citations in many common 654 

citation indices [Silvello, 2018; Smith et al., 2024]). Some repositories may not automatically assign DOIs, 655 

but may have other ways to provide unique identifiers. For example, GitHub (a common repository for 656 

software and data files) does not assign DOIs and is therefore often not a citable repository in journal 657 

publications. However, it does allow for integration with Zenodo which will archive each ‘release’ of a public 658 

GitHub repository and assign each archive a DOI. This also ensures static versioning of the respective code 659 

and data files. Similarly, OSF, which can optionally provide a DOI for a public repository, can be linked to 660 

many other storage solutions such as Amazon S3, Dropbox, and OneDrive which are not otherwise citable. In 661 

addition to citability, it is also important that the repository provides a way for other researchers to discover 662 

your data. For example, Zenodo and FigShare provide simple search interfaces to search for datasets archived 663 

https://creativecommons.org/public-domain/cc0/
https://creativecommons.org/choose/
https://choosealicense.com/
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with their respective services. Note that Google Scholar historically has explicitly not indexed datasets, but 664 

tools such as Google Dataset Search and Science Explorer (https://scixplorer.org/) support finding of archived 665 

datasets across the web. 666 

Finally, hosting files costs money, and therefore most repositories have limits to the amount of storage that 667 

they provide to individual users or for individual repositories. For example, at the time of writing, free FigShare 668 

accounts can only upload up to a total of 20 GB for free, whereas Zenodo and OSF limit each free public 669 

repository to 50GB (with no account limits). Dryad similarly offers a storage limit of 50 GB per repository but 670 

at a base cost of $150 USD, though this cost can be covered by partnerships with journals or fee waivers. Most 671 

repositories will have the option to increase these quotas for a cost. For example, Dryad charges $50 USD for 672 

every 10 GB of storage above the base 50 GB, whereas FigShare offers a paid premium service that enables 673 

users to archive larger files and repositories with pricing based on the amount of storage required. Fortunately, 674 

as mentioned previously, occurrence datasets tend to be relatively small (<1 GB), so these free storage quotas 675 

should be sufficient for most occurrence data repositories. 676 

Box 10. Rule 10: Deposit your data and workflow 

When Robin submits the finished manuscript to Palaeontology, they make sure to upload their raw dataset, 

the cleaned dataset, and their R scripts to a data repository service. Robin then also makes sure to cite the 

dataset Digital Object Identifier (DOI) in the manuscript, drawing attention to where the data is kept. They 

can then sit back and wait for the (hopefully!) positive reviews on the manuscript, knowing that they have 

done their best to make sure that their research is accurate and easily reproducible. 

CONCLUSIONS 677 

Large fossil occurrence datasets have revolutionised the research questions that can be asked of the fossil 678 

record. However, a variety of decisions and processes must be carried out prior to conducting analyses that 679 

impact these data and subsequent conclusions, including how we set up projects (Rules 1–3), explore and clean 680 

data (Rules 4–8), and report our work (Rules 9–10). These steps can be further complicated by the specificities 681 

of palaeobiological data, particularly those collected over long time frames where collecting and reporting 682 

practices or broader geopolitical shifts may impact the quality and consistency of data being reported. 683 

https://scixplorer.org/
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Consequently, despite data cleaning aiming to be an objective process, it is ultimately the product of 684 

researchers who will make decisions based on their professional expertise. In this article, we provide general 685 

guidelines to serve as a framework to follow for those working with and cleaning fossil occurrence data. Some 686 

of these guidelines may or may not be relevant for individual projects, and they may not always be easy to 687 

implement. However, we posit that each rule that can be followed will ultimately provide a clearer 688 

understanding of the decisions made to process a dataset prior to analysis. This is an essential step to improve 689 

the reproducibility of research; a necessary goal in the face of a broader reproducibility crisis within science 690 

(Fidler et al. 2017).  We hope that, in following these rules, we as a community can produce datasets that not 691 

only benefit our own work in the present, but can assist future researchers for many years to come by providing 692 

clear and consistent explanations for how we have carried out our work. 693 
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